导数中的任意性与存在性问题探究

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数中任意性和存在性问题探究

高考中全称命题和存在性命题与导数的结合是近年高考的一大亮点,下面结合高考试题对此类问题进行归纳探究 一、相关结论:

结论1:1212min max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∀∈>⇔>;【如图一】 结论2:1212max min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∃∈>⇔>;【如图二】 结论3:1212min min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∃∈>⇔>;【如图三】 结论4:1212max max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∀∈>⇔>;【如图四】 结论5:1212[,],[,],()()()x a b x c d f x g x f x ∃∈∃∈=⇔的值域和()g x 的值域交集不为空;【如图五】

例题1:已知两个函数2

3

2

()816,()254,[3,3],f x x x k g x x x x x k R =+-=++∈-∈;

(1) 若对[3,3]x ∀∈-,都有()()f x g x ≤成立,求实数k 的取值范围; (2) 若[3,3]x ∃∈-,使得()()f x g x ≤成立,求实数k 的取值范围; (3) 若对12,[3,3]x x ∀∈-,都有12()()f x g x ≤成立,求实数k 的取值范围;

解:(1)设3

2

()()()2312h x g x f x x x x k =-=--+,(1)中的问题可转化为:[3,3]x ∈-时,()0h x ≥恒成立,即min [()]0h x ≥。

'2()66126(2)(1)h x x x x x =--=-+;

当x 变化时,'

(),()h x h x 的变化情况列表如下:

x

-3

(-3,-1

) -1 (-1,2) 2 (2,3) 3 h '(x )

+ 0 - 0 + h(x)

k-45

增函数

极大值

减函数

极小值

增函数

k-9

因为(1)7,(2)20h k h k -=+=-,所以,由上表可知min [()]45h x k =-,故k-45≥0,得k ≥45,即k ∈[45,+∞).

小结:①对于闭区间I ,不等式f(x)k 对x ∈I 时恒成立⇔[f(x)]min >k, x ∈I.

②此题常见的错误解法:由[f(x)]max ≤[g(x)]min 解出k 的取值范围.这种解法的错误在于条件“[f(x)]max ≤[g(x)]min ”只是原题的充分不必要条件,不是充要条件,即不等价. (2)根据题意可知,(2)中的问题等价于h(x)= g(x)-f(x) ≥0在x ∈[-3,3]时有解,故[h(x)]max ≥0.

由(1)可知[h(x)]max = k+7,因此k+7≥0,即k ∈[-7,+∞). (3)根据题意可知,(3)中的问题等价于[f(x)]max ≤[g(x)]min ,x ∈[-3,3]. 由二次函数的图像和性质可得, x ∈[-3,3]时, [f(x)]max =120-k. 仿照(1),利用导数的方法可求得x ∈[-3,3]时, [g(x)]min =-21. 由120-k ≥-21得k ≥141,即k ∈[141,+∞). 说明:这里的x 1,x 2是两个互不影响的独立变量.

从上面三个问题的解答过程可以看出,对于一个不等式一定要看清是对“∀x ”恒成立,还是“∃x ”使之成立,同时还要看清不等式两边是同一个变量,还是两个独立的变量,然后再根据不同的情况采取不同的等价条件,千万不要稀里糊涂的去猜.. 例题2:(2010年山东理科22) 已知函数1()ln 1()a

f x x ax a R x

-=-+

-∈; (1) 当1

2

a ≤

时,讨论()f x 的单调性; (2)设2

()24g x x bx =-+,当1

4

a =

时,若对1(0,2)x ∀∈,2[1,2]x ∃∈,使12()()f x g x ≥,求实数b 的取值范围;

解:(1)(解答过程略去,只给出结论)

当a ≤0时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;

当a=

21

时,函数f(x)在(0,+∞)上单调递减; 当0

-上单调递增,在(1

(1,)a -+∞上

单调递减;

(2)函数的定义域为(0,+∞),

f '(x )=x 1-a+21x

a -=-2

21x a x ax -+-,a=41时,由f '(x )=0可得x 1=1,x 2=3. 因为a=

41∈(0,2

1),x 2=3∉(0,2),结合(1)可知函数f(x)在(0,1)上单调递减,在(1,2)上单调递增,所以f(x) 在(0,2)上的最小值为f(1)= -2

1

.

由于“对∀x 1∈(0,2),∃x 2∈[1,2],使f(x 1) ≥g(x 2)”等价于“g(x)在[1,2]上的最小

值不大于f(x) 在(0,2)上的最小值f(1)= -2

1”. (※)又g(x)=(x -b)2+4-b 2

, x ∈[1,2],

所以

① 当b<1时,因为[g(x)]min =g(1)=5-2b>0,此时与(※)矛盾;

相关文档
最新文档