盾构机设计选型依据

合集下载

盾构机的设计选型依据

盾构机的设计选型依据

盾构机的设计选型依据-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN盾构机的选型盾构法以其具有较高的可靠性及对周边环境适应性强的特点而在国内外地铁建设中得到了广泛应用,盾构法涉及多门学科,专业性强,尤其是其施工过程完全是工厂化的流水作业,机械化、自动化程度高,其施工效率较其他方法非常明显的优势。

在国内地铁工程中,我国上海市六十年代开始盾构法的试验研究工作,并随着城市建设的发展,特别是近几年来科学技术的进步,新技术、新工艺、新材料、新设备的发展广泛应用,盾构法施工技术也取得较大的发展,至今已使用过近五十余台盾构。

配套施工技术也相应在逐步完善,工程规模和应用范围也相应扩大。

地铁施工条件复杂,涉及城市建筑、管线水网、交通环境、污染控制严格,盾构施工在城市地铁施工中越来越显出其无可比拟的优越性,但是城市施工的首先要保证的前提条件是,由施工造成的地面隆起和沉降不能超出限制标准,否则将破坏地面和其它建筑物,造成巨大的经济损失,甚至人员伤亡的严重后果。

这是城市施工和山岭隧道施工的根本区别,同时也是盾构施工首先需要解决的技术和组织问题。

在围岩状况不佳的地质条件下,采用土压平衡和泥水式盾构开挖能起到保证安全的作用。

盾构施工,首先需要决定盾构机的类型,盾构的形式取决于地质条件。

按结构模式盾构机分为泥水式盾构、敞开式、土压平衡式盾构、硬岩盾构四类。

敞开式盾构用于整个地层稳定,透水率低,涌水能够不采取其它辅助措施则能被控制的区段。

硬岩盾构用于硬度较大,且能够自稳、涌水不大的岩石地层开挖。

土压平衡盾构和泥水式盾构都是利用控制推进的速度和出料的速度来使推进所产生的压力同掌子面的压力相平衡,从而达到维持掌子面稳定,继而维持地面沉降和隆起在控制范围内的作用。

这两类盾构的最大区别是泥水式盾构需要有昂贵的泥浆制备和分离设备,将泥浆通过管路注入到盾构机混合仓内,与开挖下来的碴土进行混合,通过泥浆泵将混合后的碴土抽出到地面以后进行分离处理,泥浆再循环利用。

盾构管片选型技术

盾构管片选型技术

不同的隧道工程所使用的管片的超前量是不 同的,超前量的大小在隧道管片设计上是最 重要的设计内容。一般超前量的大小起码要 能够适应隧道最小转弯半径的要求。但如果 超前量设计的过大,施工中很容易造成管片 错台和管片失圆,不但给管片拼装带来很大 困难,更影响隧道的防水和美观。
5 KL 6
CL BL BL
盾构机管片选型技术
目录
一、盾构机管片选型原则 二、盾构机管片选型依据 三、盾构机电脑管片选型
一、盾构机管片选型原则
管片拼装时,通过转弯环与标准环的组合来 适应不同的曲线要求。管片拼装时按照以下 以下两个原则: 第一,要适合隧道设计线路; 第二,要适应盾构机的姿态。 这两者相辅相成,通过正确的管片选型和选 择正确的拼装点位,将隧道的实际线路调整 在设计线路的允许公差±50mm内。
管片对圆曲线段隧道的拟合计算步骤如下:
θ=2γ=2arctgδ/D 式中: θ---转弯环的偏转角 δ---转弯环的最大楔形量的一半 D----管片直径 将数据带入得出θ=0.3629 根据圆心角公式: α=180L/πR 式中:L---一段线路中心线的长度 R----曲线半径,取400m θ=α,将之代入,取得L=2.282
根据盾尾间隙进行管片选型
如果盾尾间隙过小,盾壳上的力直接作用在管 片上,则盾构机在掘进过程中盾尾将会与管片 发生摩擦、碰撞。轻则增加盾构机向前掘进的 阻力,降低掘进速度,重则造成管片错台(通 过调整盾构间隙,可以大大减少管片错台量), 盾构一边间隙过小,另一边相应变大,这时盾 尾尾刷密封效果降低,在注浆压力作用下,水 泥浆很容易渗漏出来,破环盾尾的密封效果。
同时也可以看出如果继续拼装标准环的话, 下部的盾尾间隙将会进一步减小。通常我们 以各组油缸行程的差值的大小来判断是否应 该拼装转弯环,在两个相反的方向上的行程 差值超过40mm时,就应该拼装转弯环进行 纠偏。

盾构机械设备的性能及选型分析

盾构机械设备的性能及选型分析

盾构机械设备的性能及选型分析1. 引言盾构机作为现代地下隧道施工的重要设备,在城市建设和基础设施建设中发挥着重要作用。

本文将对盾构机械的性能和选型进行详细分析,以帮助工程设计师和施工方在选择合适的盾构机械设备时做出明智的决策。

2. 盾构机械设备性能分析2.1 掘进能力盾构机械设备的掘进能力是评估其性能的一个重要指标。

掘进能力取决于盾构机的驱动力、推进速度以及其刀盘的结构设计和材料选择。

在选型过程中,需根据隧道的地质条件、长度和直径等因素综合考虑,选择具备充足掘进能力的盾构机。

2.2 安全性能盾构机械设备在施工过程中需要保证施工人员的安全。

因此,选型时应关注盾构机的安全性能表现,如智能监测系统、紧急停车装置、防震减振装置等。

这些装置的应用将最大程度地减少事故发生的可能性,确保施工人员的生命安全。

2.3 自动化程度近年来,随着科技的发展和智能化水平的提高,盾构机械设备的自动化程度越来越高。

自动化程度的提升不仅可以提高施工效率,还可以降低人工操作的风险。

选型时需根据具体工程需求和施工条件,选择自动化程度适宜的盾构机械设备。

2.4 维护保养成本盾构机械设备的维护保养成本包括设备的维修费用、易损件的更换费用以及设备故障停机带来的经济损失等。

选型时应考虑设备维护保养的难易程度、易损件的价格和更换周期等因素,并综合评估维护保养成本的经济性。

3. 盾构机械设备选型分析3.1 地质条件分析地质条件对盾构机械设备的选型至关重要。

需要考虑的地质因素包括地层稳定性、岩性和土壤类型等。

对于不同地质条件,应选择适宜的盾构机械设备,如硬岩盾构机、软土盾构机或土压平衡盾构机等。

3.2 隧道长度和直径隧道长度和直径直接影响到盾构机械设备的选型。

隧道长度较短、直径较小的工程可选择较小、灵活的盾构机械设备,而对于长隧道和大直径隧道的工程,则需要选择大型、高性能的盾构机械设备。

3.3 工期和成本工期和成本是盾构机械设备选型时需要综合考虑的因素。

盾构机选型方案

盾构机选型方案

2.1.7.2.6盾构选型研究(1)选型原则及依据盾构选型时主要遵循下列原则:1)应对工程地质、水文地质有较强的适应性,首先要满足施工安全的要求。

2)安全适应性、技术先进性、经济性相统一,在安全可靠的情况下,考虑技术先进性和经济合理性。

3)满足隧道外径、长度、埋深、施工场地、周围环境等条件。

4)满足安全、质量、工期、造价及环保要求。

5)后配套设备的能力与主机配套,满足生产能力与主机掘进速度相匹配,同时具有施工安全、结构简单、布置合理和易于维护保养的特点。

6)盾构制造商的知名度、业绩和技术服务。

根据以上原则,对盾构的形式及主要技术参数进行研究分析,以确保盾构法施工的安全、可靠,选择最佳的盾构施工方法和选择最适宜的盾构类型。

盾构选型是盾构法施工的关键环节,直接影响盾构隧道的施工安全、施工质量、施工工艺及施工成本,为保证工程的顺利完成,盾构的选型工作应非常慎重。

盾构选型应以工程地质、水文地质为主要依据,综合考虑周围环境条件、隧道断面尺寸、施工长度、埋深、线路的曲率半径、沿线地形、地面及地下构筑物等环境条件,以及周围环境对地面变形的控制要求的工期、环保等因素,同时,参考国内外已有盾构工程实例及相关的盾构技术规范、施工规范及相关标准,对盾构类型、驱动方式、功能要求、主要技术参数,辅助设备的配置等进行研究。

选型时的主要依据如下:1)工程地质、水文地质条件:颗粒分析及粒度分布,单轴抗压强度,含水率,砾石直径,液限及塑限,黏聚力、内摩擦角,土粒子相对密度,孔隙率及孔隙比,地层反力系数,压密特性,弹性波速度,孔隙水压,渗透系数,地下水位(最高、最低、平均),地下水的流速、流向情况等。

2)隧道长度、隧道平纵断面及横断面形状和尺寸等设计参数。

3)周围环境条件:地上及地下建构筑物分布,地下管线埋深及分布,沿线河流、湖泊、海洋的分布,沿线交通情况、施工场地条件,气候条件,水电供应情况等。

4)隧道施工工程筹划及节点工期要求。

盾构选型的原则

盾构选型的原则

盾构选型一般遵循原则归纳如下:(l)以开挖面稳定为核心,盾构选型应在充分把握地层条件的基础上进行。

(2)应考虑土的塑性流动性、土的渗透系数等,这对开挖面的稳定非常重要。

塑性流动性直接影响土的顺畅排出,若地层透水性太高,地下水则可能通过开挖腔室和螺旋输送机内的废渣流入隧道。

一般认为,10m/d的渗透系数是土压平衡盾构作业的经验上限值。

(3)应考虑地下水的含量及水压,这往往要与土的塑性流动性及透水性结合考虑,高水压、高渗透性的情况是非常不利的。

这涉及到是选用泥水盾构还是土压盾构以及盾尾密封的选型。

在日本,特别是饱和砂土层中泥水盾构的使用占绝大多数。

(4)应视地层中有无砂砾和大卵石,这直接影响到土的渗透性、切削刀盘的磨耗、切削刀开挖时对地层的扰动范围、刀盘的开口率、对卵石的破碎方式及其排出方式。

(5)应考虑土层的粒径分布,一般都采用土层颗粒曲线来界定不同盾构的适用土层总的来说,粒径大时宜采用泥水盾构,粒径小时宜采用土压盾构。

(6)隧道的线形和转弯半径也是应考虑的因素,盾构机本体的长度与直径比及盾尾间隙直接影响盾构的转弯及纠偏能力。

一般,长度与直径之比(UD)应妻1.0。

当转弯半径过小时可考虑采用铰接式盾构。

(7)盾构选型时,必须根据土质条件决定切削刀的形状、材质和配置。

必要时同时配置切削刀和滚刀,形成盾构和TBM的混合刀盘。

(8)刀盘的装备扭矩也与盾构选型有关,盾构装备扭矩T=aD3(D为盾构外径,a为扭矩系数,对泥水盾构a=9一15;土压盾构a=8一23)。

显然,采用泥水盾构有利于减小刀盘切削阻力,从而减轻主轴承的负荷。

(9)盾构施工对周围环境的影响也是盾构选型时应考虑的因素。

比如地层变形的许可程度、有无地下构筑物等,再比如泥水处理以及废渣的倾倒是否对环境有污染等。

(10)盾构的选型还应考虑对工作环境的影响。

比如,盾构的刀盘驱动是液压驱动还是电动驱动。

液压驱动效率低,噪声大,洞内温度上升快,而电动驱动效率高,洞内环境好(噪声小、温度低)网。

盾构机设备选型及适应性分析

盾构机设备选型及适应性分析

盾构机设备选型及适应性分析发布时间:2023-02-22T05:54:19.984Z 来源:《工程管理前沿》2022年19期作者:罗军[导读] 盾构法施工技术已在城市轨道交通隧道工程广泛应用。

罗军中冶南方武汉工程咨询管理有限公司摘要:盾构法施工技术已在城市轨道交通隧道工程广泛应用。

盾构法的实施关键因素在于盾构机选型成功与否。

本文结合某地铁区间工程,对土压平衡盾构机的选型进行阐述,以为类似条件的工程提供参考。

关键字:盾构机、设备选型、土压平衡一、盾构机选型依据1、承包合同文件对盾构机功能要求:根据本工程的总体布置、工程地质及水文地质条件、沿线建筑设施及地下管线等环境条件、盾构隧道衬砌结构、施工条件及工期等多方面要求,并考虑可能的地质变化情况,对盾构提出如下特殊要求:1)承包商需充分考虑盾构机穿越本工程的地质情况和地下障碍物,盾构机必需有良好的适应性;2)盾构机最大推进速度不低于6cm/min;盾构机最大生产能力须达到300m/月以上;3)盾构机能顺利掘进300米曲线半径的隧道;4)盾构机应按不低于0.6Mpa的静水压设计,保证在此压力下盾体、密封装置等性能可靠并能正常工作;5)盾构机须配备良好的渣土改良系统和刀盘冲刷系统,确保掘进顺利;6)盾构机须配备气体检测报警系统和刀盘(含刀具)磨损检测报警系统;7)盾构机须配备开挖仓压缩空气自动保压系统,以满足可在恶劣地质条件下可进行带压进仓作业;8)应能快速、精确、安全地拼装管片,并能有效防止盾构机推进油缸的顶推使管片端部产生裂纹或破损,推进油缸的行程应与管片封顶块的安装要求相匹配;9)具备防止地层经由螺旋机、铰接处以及盾尾处出现涌水、涌沙等情况的安全装置与处理设施,在出现涌水、涌砂等情况下,盾构机能够正常掘进。

2、《盾构法隧道施工及验收规范》(GB 50446-2017)相关规定:第 4.3.1 条盾构选型与配置应适用、可靠、先进、经济,配置应包括刀盘、推进液压油缸、管片拼装机、螺旋输送机、泥水循环系统、铰接装置、渣土改良系统和注浆系统等。

盾构机类型和选用原则

盾构机类型和选用原则

盾构机类型和选用原则
盾构机是一种用于隧道挖掘的工程机械,根据不同的工程需求和地质条件,盾构机可以分为以下几种类型:
1. 泥水式盾构机:适用于软弱的土层或泥水地层,通过泥水压力平衡掌子面的水土压力。

2. 土压平衡式盾构机:适用于粘性土层或砂土质地层,通过土压力平衡掌子面的水土压力。

3. 硬岩盾构机:适用于坚硬的岩石地层,通过刀具切割岩石实现掘进。

4. 混合式盾构机:适用于地质条件复杂的地层,可以同时使用泥水式和土压平衡式两种方式进行掘进。

在选用盾构机时,需要考虑以下原则:
1. 地质条件:根据隧道穿越的地质条件,选择适合的盾构机类型。

2. 工程规模:根据隧道的长度、直径和曲率等工程规模,选择适当的盾构机尺寸和性能。

3. 施工环境:考虑施工现场的环境条件,如地下水位、周边建筑物等,选择适合的盾构机类型。

4. 工程进度:根据工程进度要求,选择能够满足施工进度的盾构机。

5. 经济效益:综合考虑盾构机的购置成本、运行成本和维护成本等因素,选择经济效益最佳的盾构机。

选用合适的盾构机对于隧道工程的顺利进行和施工质量至关重要,需要根据具体情况进行综合考虑和决策。

盾构机设计选型依据

盾构机设计选型依据

泥水式
开胸式
复合式盾构
结构模式
土压平衡式
硬岩掘进机
泥水盾构 (单一隔板)
Tunnelvortriebstechni k
泥水盾构 (水量大的情况)
硬岩盾构
Tunnelvortriebstechni k
土压平衡 技术
土压平衡盾构
碴土的渗透性
Cobbles 卵石 Coarse Gravel 粗砂砾 Medium gravel 中细砂砾 Fine gravel 细砂砾 Coarse sand 粗砂
Atterberg Limits
consistency: IC = (wP - w) / (wL - wP)
收缩极限: wS 液态极限: wL pulpy liquid
塑性极限: wP
可塑性范围 固体
semi solid
stiff
soft
Consistency index Water content
11 air
FER 1:12
1 liquid
Foam Generation
900 - 950 litres Air 1000 litres Foam
Liquid 50-100 lit
Foam Generator 30-60% of excavated material 99,3 - 94% 0,5 - 5% 0,2 - 1%
Foam Injection Rate
Depending on the soil porosity n in the working chamber Soil type Sand pure graded Sand gravel wide graded Loam, till Clay hard Clay soft Porosity n 30% - 50% 25% - 35% 25% - 30% 20% - 35% 50% - 70%

盾构机选型标准

盾构机选型标准

盾构机选型标准(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、盾构机选型依据地铁区间,线路总长:隧道埋深9~13米。

隧道洞身大部分处于残积层中,局部地段穿越花岗岩、辉绿岩全、强风化带或断层破碎带,结构松散,易软化、变形,产生坍塌。

花岗岩层面起伏大,存在差异风化现象。

地下水按赋存条件分为第四系孔隙潜水和基岩裂隙水,砂层中具承压性。

主要补给来源为大气降水。

地下水埋深~米。

盾构隧道内径:5400mm,管片厚度:300mm,隧道外径:6000mm。

标准管片宽度:1200mm,分块数:6块。

本盾构隧道区间采用两台盾构机。

盾构机由站西端下井始发,推进至站东站起吊出井。

隧道地质情况、工程要求、环境保护要求、经济比较、地面施工场地大小等因素是盾构选型的基本依据。

根据国内外盾构施工经验与实例,我们认为,盾构机的选型必须满足以下几个要求:必须确保开挖空间的安全和稳定支护;保证隧道土体开挖顺利;保证永久隧道衬砌的安装质量;保证隧道开挖碴土的清除;确保盾构机械的作业可靠性和作业效率;保证地面沉降量在要求范围内;满足施工场地及环保要求。

2、不同开挖模式的工作原理盾构机的型式与工作特点目前世界上流行的盾构机按开挖模式主要可以分为两大类:敞开式与密闭式。

敞开式指盾构机的开挖面与机内的工作室间无隔板或隔板的某处设置可调节开口面积的出土口。

开挖面基本依靠开挖土体的自立保持稳定。

敞开式适用于地层条件简单、自立性好且无地下水的地层。

密闭式盾构机是在盾构机的开挖面与机内的工作室间设置隔板,刀盘旋转将开挖下来的碴土送入开挖面和隔板间的刀盘腔内,由泥水压力或土压或气压提供足以使开挖面保持稳定的压力。

密闭式盾构机适用于地层变化复杂、自立条件较差、地下水较丰富的地层,因为采用密闭式掘进可以有效地保证开挖面的自立与稳定,保证施工安全。

密闭式盾构机主要分为泥水平衡式、土压平衡式两类,代表了不同的出土方式和不同工作面土体平衡方式的特点,但适用地质与范围有一定的区别。

盾构选型的原则

盾构选型的原则

盾构选型的原则
盾构选型的原则主要包括以下几点:
1. 管道要求:根据盾构隧道的设计要求和工程环境的条件,选择合适的盾构机型。

包括盾构机的直径范围和适应的地质环境,如软土、硬岩、岩溶地带等。

2. 地质条件:根据隧道地质条件的复杂性和预测精度,选择适应的盾构机型。

较复杂和不可预知的地质条件一般需要选择具有灵活性的盾构机型,能够根据地质环境的变化进行调整。

3. 施工效率:根据工程进度和施工期限,选择具有高效率和高生产率的盾构机型。

例如,对于大型隧道工程和紧迫的工期要求,可以选择大口径、大推力和高性能的盾构机。

4. 经济性:盾构机的选型应考虑施工成本和机械投资之间的平衡。

应选择具有较低工程成本和维护成本的盾构机,同时能够满足工程质量和效益要求。

5. 技术可行性:在选择盾构机型时需要考虑施工技术的成熟度和可靠性。

应选择经过验证并在类似工程中取得成功的盾构机型,以降低施工风险。

6. 环境保护:在盾构选型中需要考虑对环境的影响,选择符合环保要求和节能减排的盾构机,降低施工对周围环境的影响。

总的原则是根据具体项目要求,综合考虑工程地质、施工进度、经济性和环保要求等因素,选择最适合的盾构机型进行施工。

(完整版)盾构机选型

(完整版)盾构机选型

第1章.第2章.第3章.第4章.第5章.第6章.第7章.第8章.第9章.第10章.盾构、配套设备与管模10.1.盾构机选型10.1.1.选型原则盾构机的性能及其对地质条件的适应性是盾构隧道施工成败的关键。

本合同段盾构区间工程的盾构机选型按照性能可靠、技术先进、经济适用相统一的原则,依据招标文件、颐和园站-圆明园站和圆明园站-成府路站区间岩土工程勘察报告等资料,并参考国内外已有盾构工程实例及相关的技术规范进行。

10.1.2.选型依据盾构机选型具体依据如下:(1)本合同段盾构工程施工条件隧道长度:3032+2044.286单线延米;线路间距:8~19m;隧道覆土厚度最小:6m,最大:15.4m;平面最小曲线半径:350m;最大坡度:20.801‰;隧道衬砌管片内径:5400mm 外径:6000mm(2)工程施工环境特点本工程施工环境具有如下特点对盾构机施工有一定的影响:本合同段区间隧道沿线地下管线、建(构)筑物密集。

颐和园-圆明园区间线路下穿颐和园、圆明园,与万泉河高架桥相交;圆明园~成府路站区间线路通过成府小学、化工研究院,下穿万泉河。

区间线路与万泉河高架桥相交时,隧道外轮廓与桩基距离最小为5m,下穿圆明园一座池塘时覆土厚度仅6m,万泉河底部区域隧道覆土厚度为9m。

本合同段区间线路主要沿颐和园路、清华西路布置,与中关村北大街相交,所经道路尤其是中关村北大街交通繁忙、车流量大。

(3)区间地质特点本合同段区间隧道穿越地层主要有粉质粘土、粉土层,局部夹有砂层、卵石圆砾等。

具体的地质统计表见表10-1-1和图10-1-1。

10.1.3. 本工程地质特点对盾构机功能的要求针对以上工程地质条件及特点,盾构应具备以下功能: (1)盾构机对地层条件的适应性要求本合同段隧道地层主要由粉质粘土、粉土层、卵石圆砾层组成,局部夹有砂层,所以盾构对软土地层的适应性应是重点考虑的问题。

盾构在软土地段的施工时应重点考虑以下功能:具备土压平衡掘进功能; 足够的推力和刀盘驱动扭矩; 良好的加泥、加泡沫等碴土改良能力; 合理的刀盘及刀具设计; 具有完善的防喷涌功能; 能够有效防止中心泥饼的生成; 较好的人员仓条件;圆明园-成府路站区间颐和园-圆明园站区间图10-1-1 盾构区间隧道洞身主要地质比例图超前地质钻探及管片壁后同步注浆功能。

盾构选型与配置要求

盾构选型与配置要求

盾构选型与配置要求一、引言盾构机是一种用于地下隧道施工的机械设备,通过推进和控制盾体实现地下隧道的开挖和衬砌。

盾构机的选型与配置要求是保证工程施工顺利进行的关键。

本文将从盾构机选型与配置背景、盾构机选型要求、盾构机配置要求、技术要求等方面进行分析。

二、盾构机选型与配置背景随着城市化进程的加快和交通网络的不断扩展,地下隧道建设的需求逐渐增加,盾构机作为地下隧道施工主要设备之一,承担着巨大的施工任务。

在盾构机选型与配置时,需要考虑工程的具体需求,包括隧道的长度、直径、土层情况、地质条件等,以及施工周期、施工速度要求等因素。

三、盾构机选型要求1.适应地质条件:盾构机选型时需要根据地质条件选择合适的机型。

地质条件复杂的地区,如软黏土层、水下隧道等,需要采用具有较强适应性的盾构机。

2.考虑工程参数:盾构机选型要考虑隧道的直径、长度、弯曲半径等工程参数,选用合适的机型。

一般情况下,隧道直径较小的可以选择小型盾构机,隧道直径较大的可以选择大型盾构机。

3.考虑施工速度要求:盾构机选型时需要考虑施工周期和施工速度要求。

如果施工周期较紧迫,需要选择具有较高推进速度和装备配置的盾构机。

四、盾构机配置要求1.推进系统:盾构机的推进系统是保证施工进度的关键,需要配置具有较高推进力和推进速度的系统。

推进系统的配置要充分考虑地质条件、隧道直径等因素。

2.壁厚控制系统:盾构机的壁厚控制系统需要精确控制衬砌的厚度,以保证隧道的结构安全。

配置的壁厚控制系统要具备高精度和稳定性。

3.螺旋输送系统:盾构机的螺旋输送系统负责将挖出的土方料送出隧道,需要配置高效稳定的螺旋输送系统,以保证施工的连续性和效率。

五、技术要求1.控制系统:盾构机的控制系统需要具备高精度、高稳定性,并能保持与其他系统的协调工作。

控制系统的配置要根据盾构机的使用特点和需求进行选择。

2.故障诊断系统:盾构机的故障诊断系统可以及时发现和解决机械故障,提高施工的效率和安全性。

盾构法施工盾构机选型

盾构法施工盾构机选型

盾构法施工盾构机选型(一)盾构机选型原则采用盾构法施工的工程,首先要根据多方面的条件来统筹考虑盾构及配套设施的选型,一旦机型选定,工程开工后,想要对施工方法作出调整就相当困难。

盾构机的性能及其与地质条件的适应性是盾构隧道施工成败的关键。

本工程的盾构选型主要依据轨道交通一号线一期工程招标文件、设计图纸及地勘资料,参考国内已有盾构工程实例及相关的盾构技术规范,按照适用性、可靠性、先进性、经济性相统一的原则进行盾构机的选型。

1、适合于本工程隧道所穿越土层条件及工程的重难点;2、适合于施工长度、工期要求、设计线路要求;3、后配设备、始发设施等施工设备必须要满足盾构开挖能力;4、充分考虑施工环境。

(二)盾构机选型要点在仔细分析区间勘查设计资料的基础上,结合我司既有盾构施工经验,及轨道交通1~3号线盾构机选型及施工经验,本工程盾构机选型分析如下:1、盾构机的可靠性盾构机的生产厂商必须为国内知名厂商,中铁装备品牌盾构机有较大的用户群,其企业信誉及设备性能已得到充分验证,能够满足地铁施工的需要。

我部对1号线盾构机使用情况进行了调查,主要采用铁建重工品牌的盾构机。

盾构机使用寿命应满足本工程区间施工需求,已施工长度加本工程区间设计长度不得超过盾构机的设计推进里程,以不超过10km为宜。

2、对隧道结构的适应性本工程盾构区间隧道衬砌采用钢筋混凝土预制管片,外径6000mm,内径5400mm,环宽1500mm。

盾构机的尺寸需能够满足管片安装需求。

3、对区间地质的适应性本工程盾构区间穿越地层主要为:从南至北主要地层为:全风化砾岩及圆砾卵石以及强风化板岩,均属于软弱地层,自稳性较差。

盾构机刀盘应具备足够的开口率,利于切削后的土体进入土仓,刀盘刀具配置以滚压为主,切削为辅,刀盘刀具均应有相应的耐磨设计。

根据轨道交通1号线经验多数采用辐条+面板式的复合刀盘,开口率>30%。

软硬岩刀具刀座相同,根据不同的地质条件可以合理配置刀具,所有刀具均可由刀盘背面进行更换。

盾构机选型的方法和步骤

盾构机选型的方法和步骤

盾构机选型的方法和步骤盾构机是隧道施工中的重要设备,正确的选型对于工程的顺利实施至关重要。

以下为盾构机选型的方法和步骤:1.确定隧道类型首先需要确定隧道工程的类型。

根据隧道的设计要求,可以分为交通隧道、水利隧道、市政隧道等。

不同类型的隧道对盾构机的需求和性能要求不同。

2.确定隧道尺寸根据隧道的设计要求,需要确定隧道的尺寸。

这包括隧道的直径、长度以及曲率半径等。

盾构机的尺寸必须与隧道尺寸相匹配,以满足施工要求。

3.确定地质条件地质条件是选择盾构机的重要因素之一。

需要对工程场地的地质条件进行详细勘察和分析,包括土质类型、地下水位、岩石强度等。

根据地质条件,选择适合的盾构机和刀具。

4.确定推进速度推进速度是盾构机的重要参数之一。

需要根据隧道施工的要求和盾构机的性能,确定合适的推进速度。

推进速度过快可能导致盾构机控制难度增加,过慢则可能影响施工效率。

5.确定出土方式盾构机在挖掘过程中需要将土石运出隧道。

根据工程需要和场地条件,可以选择不同的出土方式,如机械出土、水力出土等。

选择合适的出土方式有助于提高施工效率和质量。

6.确定控制系统控制系统是盾构机的核心部分之一。

需要根据盾构机的性能和施工要求,选择合适的控制系统。

控制系统应具有稳定性、可靠性和灵活性等特点,能够实现对盾构机的精确控制。

7.确定辅助系统辅助系统是盾构机的重要组成部分,包括注浆系统、通风系统、照明系统等。

需要根据隧道施工的要求和场地条件,选择合适的辅助系统,以提高施工效率和质量。

8.确定刀具和盾构材料最后需要确定盾构机的刀具和材料。

刀具的类型和数量应根据地质条件和隧道尺寸来确定。

同时,盾构机的材料也应根据工程需要和场地条件进行选择,如钢铁、合金等。

综上所述,盾构机的选型需要综合考虑隧道类型、尺寸、地质条件、推进速度、出土方式、控制系统、辅助系统和刀具及盾构材料等多个方面因素。

只有在全面了解并分析这些因素后,才能选择出最适合工程需求的盾构机,从而确保隧道施工的顺利进行和质量要求的达成。

盾构选型及参数计算方法

盾构选型及参数计算方法

盾构选型及参数计算方法1.1、序言盾构是一种专门用于隧道工程的大型高科技综合施工设备,它具有一个可以移动的钢结构外壳(盾壳),盾构内装有开挖、排土、拼装和推进等机械装置,进行土层开挖、碴土排运、衬砌拼装和盾构推进等系列操作,使隧道结构施工一次完成。

它具有开挖快、优质、安全、经济、有利于环境保护和降低劳动强度的优点,从松散软土、淤泥到硬岩都可应用,在相同条件下,其掘进速度为常规钻爆法的4~10倍。

较长地下工程的工期对经济效益和生态环境等方面有着重大影响,而且隧道工程掘进工作面又常常受到很多限制,面对进度、安全、环保、效益等这些问题,使用盾构机无疑是最好的选择。

些外,对修建穿越江、湖、海底和沼泽地域隧道,采用盾构法施工,也具有十分明显的技术和经济优势。

采用盾构法施工,盾构的选型及配置是隧道施工中关键环节之一,盾构选型应根据工程地质水文情况、工期、经济性、环境保护、安全等综合考虑。

盾构的选型及配置是一种综合性技术,涉及地质、工程、机械、电气及控制等方面。

1.2盾构机选型主要原则1.2.1盾构的选型依据盾构选型主要应考虑以下几个因素:1)工程地质、水文条件及施工场地大小。

2)业主招标文件中的要求。

3)管片设计尺寸与分块角度。

4)盾构的先进性、适应性与经济性。

5)盾构机厂家的信誉与业绩。

6)盾构机能否按期到达现场。

1.2.2 盾构的型式1)敞开式型盾构敞开式型盾构是指盾构内施工人员可以直接和开挖面土层接触,对开挖面工况进行观察,直接排除开挖面发生的故障。

这种盾构适用于能自立和较稳定的土层施工,对不稳定的土层一般要辅以气压或降水,使土层保持稳定,以防止开挖面坍塌。

有人工开挖盾构、半机械开挖盾构、机械开挖盾构。

2)部分敞开式型盾构部分敞开式型盾构是在盾构切口环在正面安装挤压胸板或网格切削装置,支护开挖面土层,即形成挤压盾构或网格盾构,施工人员可以直接观察开挖面土层工况,开挖土体通过网格孔或挤压胸板闸门进入盾构。

盾构机选型要点及盾构施工条件与现场布置

盾构机选型要点及盾构施工条件与现场布置

【考点】盾构机选型要点一、盾构类型与适用条件(一)盾构类型(1)按支护地层的形式分类,主要分为自然支护式、机械支护式、压缩空气支护式、泥浆支护式、土压平衡支护式5种类型(见图1K413031-1)。

(2)按开挖面是否封闭划分,可分为密闭式和敞开式两类。

按平衡开挖面土压与水压的原理不同,密闭式盾构又可分为土压式(常用泥土压式)和泥水式两种。

敞开式盾构按开挖方式划分,可分为手掘式、半机械挖掘式和机械挖掘式三种(见图1K413031-2)。

(3)按盾构的断面形状划分,有圆形和异型盾构两类,其中异型盾构主要有多圆形、马蹄形、类矩形和矩形,目前在国内轨道交通建设中,已有双圆马蹄形、矩形和类矩形盾构应用。

(二)盾构机的刀盘配置盾构的刀盘主要由刀盘体、刀具、磨损检测器、搅拌棒、泡沫及膨润土管路等零部件组成。

刀盘体由钢结构焊接而成,刀具可分为:滚刀、切刀、边缘刮刀、仿形刀、保径刀、先行刀、中心刀等。

刀盘是机械化盾构的掘削部件,刀盘结构应根据地质适应性的要求进行设计,以适合围岩条件,并保证开挖面稳定的前提下,提高掘进速度。

刀盘设计时,应充分考虑刀盘的结构形式、支承方式、开口率、开口大小和分布、刀具的布置等因素。

刀盘具有三大功能:(1)开挖功能。

刀盘旋转时,刀具切削隧道开挖面的土体,对开挖面的岩土层进行开挖,开挖后的渣土通过刀盘的开口进入土仓。

(2)稳定功能。

支撑开挖面,具有稳定开挖面的功能。

(3)搅拌功能。

对于土压平衡盾构,刀盘对土仓内的渣土进行搅拌,使渣土具有一定的塑性、流动性并在一定程度上避免形成“泥饼”的作用。

盾构的刀盘结构形式与工程地质情况有着密切的关系,不同的地层应采用不同的刀盘结构形式:土压平衡盾构的刀盘有两种形式——面板式和辐条式。

(1)面板式刀盘开口率相对较小,面板直接支撑面,有挡土功能,有利于切削面稳定,但在开挖黏土层时,易发生黏土粘附面板表面影响开挖效率的情况,防止措施是注入改良材料等。

(2)辐条式刀盘开口率大,土砂流动顺畅,不易堵塞,土仓压力能有效作用于开挖面,但一般不能安装滚刀,且中途换刀安全性较差。

盾构机的适应性与选型

盾构机的适应性与选型

1
效率
电能直接转化为机械能驱动刀盘,效率高。
电能转化为机械能,机械能转化为液压能,再由液压能 转换为机械能驱动刀盘,效率低。
2
经济性
由于效率高,电能节约,更经济。
效率低,能耗大,相对使用成本较高。
3
机械维修 维修简单。
由于液压系统管路复杂,密封容易出问题,维护复杂。
使用变频技术的使用,对调节控制的反应更灵
2. 断面
断面形式有:圆形、双圆、三圆、矩形、类矩形、马蹄形。 断面的选择主要与隧道的用途有关,比如说共同沟、电力管道等即可采用矩形断面。
表 10.1 隧道地质与所采用的盾构类型
隧道围岩特点
软基
黏土、粉土、砂
砾石、卵石
软岩
硬基
硬岩
盾构类别
泥水加压盾构 土压平衡盾构
混合式盾构或 TBM
开敞式 TBM
3.选型的主要内容
~5~
图 10.1 土压和泥水式盾构渗透性的适应范围 粒径分布对盾构机选型的影响
图 10.2 盾构的适应性级配曲线 对于图 10.2 所示的几个级配区间,对于盾构施工措施来说主要如下: I 区:如果最大不排水抗剪强度 Sumax>80-100kPa,或者(SPT)Nmax>8-10 便可使用敞开式盾构;II 区: 由于土体过粘需要改良 ;III 区:EPB 的比较理想的地层,基本不需要对土体改良;IV 区:由于摩擦系数高, 需要对渣土进行减摩改良;V 区:基本不适于 EPB 的区域。 总之,从大的方向总结来说: ★ 越大直径,选择泥水盾构的越多,对近年来国内外 46 个大直径盾构项目的统计(详见第 6 章,国内 外大直径盾构统计表),46 个项目中,采用泥水加压平衡盾构的有 34 个,占比 74%,土压平衡盾构有 13

盾构机选型方案

盾构机选型方案

盾构机选型方案盾构机是一种用于地下隧道施工的机械设备,其选型方案涉及多个因素,包括隧道长度、地质条件、工期要求、施工环境等。

以下是一个完整的盾构机选型方案,包括机械选型、设备配置、施工参数等。

首先,根据隧道长度确定盾构机的类型。

通常情况下,盾构机可分为硬岩盾构机、软土盾构机和混合地质盾构机。

对于隧道长度较短且地质情况良好的项目,可以选择硬岩盾构机。

而对于地质条件复杂、隧道长度较长的项目,则需要选择适合软土和围岩的盾构机,如可转体和伸缩型盾构机。

其次,根据地质条件和工期要求确定盾构机的口径。

盾构机的口径通常与隧道的设计口径相对应,一般在地质勘察报告中会给出推荐的盾构机口径范围。

根据隧道工程的方案设计,选择适当的盾构机口径,以保证施工质量和施工效率的平衡。

再次,根据施工环境确定盾构机的工作方式。

盾构机的工作方式可分为开挖式和顶管式两种。

开挖式盾构机适用于较稳定的地下环境,可以直接在地下开挖隧道;而顶管式盾构机适用于地下环境不稳定的工程,需要同时进行隧道开挖和管片施工。

根据工程要求选择合适的工作方式,确保施工的平稳进行。

然后,确定盾构机的设备配置。

盾构机的设备配置包括刀盘结构和推进机构。

刀盘结构可根据地质条件选择不同类型的刀盘,如开盘式刀盘、密闭式刀盘和改良刀盘等。

推进机构则包括盾构机的推进系统和液压系统,需要根据工程要求选择推进速度和施工压力等参数。

最后,确定盾构机的施工参数。

盾构机的施工参数包括推进速度、土压平衡和泥水平衡等。

推进速度主要根据工期要求和施工效率确定。

土压平衡用于在软土或水中施工,通过对推进腔进行注浆,保持盾构机的平衡。

泥水平衡则用于固化土层或固结液中施工,通过在推进腔内与土层或固结液之间形成一层平衡泥浆,来实现施工。

综上所述,盾构机的选型方案需要综合考虑隧道长度、地质条件、工期要求和施工环境等多个因素,并根据工程要求确定机械选型、设备配置和施工参数等。

选择合适的盾构机和施工方案,可以提高施工效率,保证施工质量,降低工程风险。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Clay 粘土
EPB
Use of EPB injection materials
- 10-10 - 10-11 - 10-12
分布曲线粒径
粘土
fine
砂质粘土
midium coarse fine

midium coarse
砂砾
粒径分布曲线: 粘土 淤泥 细砂 砂质粘土 粗砂 砂砾
粒径分布曲线
过滤分析 d > 0,1 mm
Adhesive tendency depending on plasticity and consistency
1,50 1,40 1,30
hard
Consistency Index IC
1,20 1,10 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0
C
semihard
100 Clay Sand / S ilt y S and
90 Clay
80
Sand / S ilt y S and 70 370m
- 10
-1
Permeability Factor k (m/s)
- 10-1 - 10-2 - 10-3 - 10-4 - 10-5 - 10-6 - 10-7 - 10-8 10-9
Slurry
中细砂 Medium sand 细砂 Fine sand 含砂粘土 Sandy, silty clay 淤泥 Silt
F in e F in e Silt Med ium -Co ars e Sie ve Size F in e San d Med ium-Co ars e - F in e Gr ave l Med ium - Co ars e-
• Valencia • Madrid • Bangkok • Izmir • Singapore • Buenos Aires • Glatt Stollen • Socatop
Foam Injection Rate
Depending on the soil porosity n in the working chamber Soil type Sand pure graded Sand gravel wide graded Loam, till Clay hard Clay soft Porosity n 30% - 50% 25% - 35% 25% - 30% 20% - 35% 50% - 70%
泥水式
开胸式
复合式盾构
结构模式
土压平衡式
硬岩掘进机
泥水盾构 (单一隔板)
Tunnelvortriebstechni k
泥水盾构 (水量大的情况)
硬岩盾构
Tunnelvortriebstechni k
土压平衡 技术
土压平衡盾构
碴土的渗透性
Cobbles 卵石 Coarse Gravel 粗砂砾 Medium gravel 中细砂砾 Fine gravel 细砂砾 Coarse sand 粗砂
盾构机设计选型及依据
选择盾构机时,必须综合考虑,以获得经济、安 全、可靠的施工方法。盾构机机型是工程成功与否的 重要因素,选择时,必须注意以下几点: ① 适用于本工程围岩的机; ④ 后续设备、始发基地等施工设备能与盾构机的开挖 能力配套; ⑤ 工作环境。 为了减少辅助工法并保证施工安全可靠,选择能保 持开挖面稳定和适应围岩条件的盾构机型非常重要。
porosity
Types of water in the ground: 1 ground water 2 ground water table 3 confined kapillary water 4 free capillary water 5 adhesive water 6 pore angle water 7 air 8 grain with adsorbed water 9 seepage water
1 2 3 4 5
TBM Shield
1. Control station - main control panel 2. Mixing tank 3. Regulating pump 4. Polymer mixing tank 5. Pump 6. Reservoir tank 7. Feed pump 8. Compressor 9. Pneumatic regulating unit 10. Tank 11. Foam injection lance 12. Control station - main control panel 13. Injection pumps
Atterberg Limits
consistency: IC = (wP - w) / (wL - wP)
收缩极限: wS 液态极限: wL pulpy liquid
塑性极限: wP
可塑性范围 固体
semi solid
stiff
soft
Consistency index Water content
Consistency characteristics characteristics suspension squeezes through finger light ductile high ductile friable when rolling dried out, light coloured pulpy soft stiff semi solid solid plastic consistency liquid
Atterberg Limits
塑性指数: IP = (wL - wP)
常见碴土类型的塑性指数 碴土类型 条件 non-plastic low plastic good plastic high plastic depending
举例
Limit of IP
砂 淤泥 粘土 粘土 有机质土壤 膨润土
Index Properties of London Clay
EPB Injection Materials
Advantages of foam: • Low density • Optimum mixing with soil • Low percentage of chemical additives • Separation plants not necessary • Reduction of wear
Mixsh ield Op er atio n (Slurr y Mo de )
10 20 30 40 50 60 70 80 90 100
20 .0 60 ,0
0,001 0,002
0,006
0,02
0,06
0,2
0,6
2,0
6,0
Particle size in m m Geological Profile - Taipei
Foam Injection Rate
Flow rate foam (Q foam ) FIR = Flow rate soil (Q soil )
Qsoil = A face × vTBM Q foam = FIR × Qsoil
Foam Expansion Rate
Flow rate foam (Q foam ) FER = Flow rate liquid (Q liquid )
100% Liquid : Water Foaming agent Polymer
Foam Air Pressure
Depending on the working chamber pressure
Qair = ( FER − 1) × Qliquid × ( Pchamber + 1)
Foam Injection Schematic
EPB Operation
Face pressure controlled by: • • • Shield advance rate Screw conveyor discharge rate Muck pump discharge rate
EPB Face Support
• Separation plant not required • Slurry pumping system not required • Fine particle size materials easily handled
EPB Injection Materials
• Bentonite • Water • Polymers • Foam
EPB Injection Materials
• Reduce internal friction and cutting wheel torque • Reduce soil adhesion to metal of shield / cutting wheel • Reduce soil permeability
water content (W): plastic limit (PL): liquid limit (LL): plastic index (PI):
22% – 32% 20% – 33% 58% – 78% 33% – 49%
Consistency: (LL-W)/PI = 0,94 - 1,33 (stiff to hard)
密度
岩石
沙 粘土
淤泥
渗透性
恒定压力
渗出量
压力递减
渗透性
渗透性 参照 DIN 18130
条件 很低的渗透性 低渗透性 有渗透 高渗透性 非常高的渗透性 K值对照 (after Petermann) at 10°C 粗砂 细砂 超细砂 含砂粘土 粘土 灰质粘土
Atterberg Limits
粘结系数: IC = (wP - w) / (wL - wP)
相关文档
最新文档