广州地铁盾构机选型参考
复杂条件下盾构施工技术(1)-选型及砂卵石地层
盾构选型中的地质因素: 广州地铁沿线的工程地质、水文地质条件比较复杂,其中最重要的特点是工程范围内的岩土均一性差,物理力学特性差异大。地铁围岩既有十分松软富水的淤泥质土、中细沙层,又有较坚硬的砂砾岩、花岗片麻岩、混合岩,以及介于上述两类岩土之间具不同风化程度的软塑~ 硬塑状粘性土层。软硬相间的红色砂泥岩是地铁隧道施工的主要地层。因此选择用于广州地铁施工的盾构时,要求它必须有与上述地质条件相匹配的性能。
7
转速控制 (微调性)
好
差
好
A:由于变频,可控制转速和进行微调 B:由于采用离合器,不能实现无级调速 C:控制液压泵排量,可控制转速和进行微调
8
噪音
小
小
大
C:液压系统的噪音一般大于电动机系统
9
盾构内 温度
低
较低
较高
C:液压系统功耗大,故温度较高
10
维护保养
易
易
较困难
B:维护保养工作较少 C:液压系统的维护和保养一般较复杂,要求较高。
3.盾构机选型的其它条件 除了地质条件以外的盾构机选型的制约条件还很多,如工期、造价、环境因素、基地条件等。 工期制约条件 因为手掘式与半机械式盾构机使用人工较多,机械化程度低,所以施工进度慢。其余各类型盾构机因为都是机械化掘进和运输,平均掘进速度比前者快。 造价制约因素 一般敞口式盾构机的造价比密闭式盾构机低,主要原因是敞口式盾构机个象密闭式盾构机那样有复杂的后配套系统,在地质条件允许的情况下,从降低造价考虑,宜优先选用敞口式盾构机。 环境因素的制约 敞口型的盾构机引起的地表沉降大于网格式盾构,更大于密闭式的掘进机。
盾构类型与颗粒级配的关系
一般来说,细颗粒含量多,碴土易形成不透水的塑流体,容易充满土仓,在土仓中可以建立压力,平衡开挖面的土体。粗颗粒含量高的碴土塑流性差,实现土压平衡困难。 盾构类型与颗粒级配的关系详见下图,图中蓝色区域为淤泥粘土区,为土压平衡盾构适应范围,绿色区域为粗砂、细砂区,即可使用泥水盾构,也可经土质改良后使用土压平衡盾构,黄色区域为卵石砾石粗砂区,为泥水盾构适用的颗粒级配范围。
广州地铁隧道施工中的盾构选型及盾构改进应用
地质 条件 需选 用不 同 的盾构 型式 ,如在 砂性土 中一 般采 用泥 水平 衡盾 构 ,而在 粘性 土层 中一般采 用土 压 平衡盾 构 。 但大 多数 城市地 质 条件往 往 比较 复杂 , 不 是单 一 的地层 ,既 有砂性 土 也有粘 性土 ,甚至有 强 度较 高 的风 化岩层 。对 于 复杂 的地质条 件 ,采 用 盾 构 施工 时必 须进 行充 分 的研 究 与分析 ,否则会 给 盾构 施 工带 来 极 为不 利 的影 响【 。本 文结合 广 州 l ~I 地铁 二 号线某 区间隧道 的旌 工 ,分析 了盾构选 型需 考虑 的因素 ,提 出 了盾 构选 型 的流程 ,阐述 了刀盘
根据岩样测试 ,本区间内,处于隧道断面中的
作 者 丁志 诚 简介 :男 .5 岁 ,高 级工程 师 ,现 工作 于上海 隧道 工程股 份有 限 公司 .主要 从事 隧道 的施 工 、管理及 科 研工 作 . l
维普资讯
第2卷 l
第 l 期 2
丁志诚等.广州地铁隧道施工 中的盾构选型及盾 构改进应用
泥质粉砂岩和粉质泥岩 的饱和抗压强度 均处于 0 ̄1 a " 5MP 。图 1为该 区 间隧道 地质剖 面及 隧道 轴
线分布图。
I 场 地 条 调 I 地 质件 查
围 的环境 影响 较小 而得 到 日益广泛 的应 用 。不 同的
隧道 工程 是广州 地铁二 号线 的重 要组 成部 分 。区 间 隧道包 括左线 和右线 各一 条 ,单线长 8 0m,隧道 4 衬 砌外 径为 60 .m,内径 为 54 .m,隧道 坡度 最大 为 2.7 ,竖 曲线 R=300m,500m 不等 ,平 6 ‰ 7 0 0 面 曲线 R=60m,200m,300m不 等 ,隧道覆 0 0 0 土在珠 江 中间最 浅处约 55 在海 珠 广场 站 出洞 口 .m, 覆土约 l.m。隧道衬砌每环 宽 1 82 .m,厚 3 2 0c m。 22 工程 地质 条件 .
盾构管片选型技术
不同的隧道工程所使用的管片的超前量是不 同的,超前量的大小在隧道管片设计上是最 重要的设计内容。一般超前量的大小起码要 能够适应隧道最小转弯半径的要求。但如果 超前量设计的过大,施工中很容易造成管片 错台和管片失圆,不但给管片拼装带来很大 困难,更影响隧道的防水和美观。
5 KL 6
CL BL BL
盾构机管片选型技术
目录
一、盾构机管片选型原则 二、盾构机管片选型依据 三、盾构机电脑管片选型
一、盾构机管片选型原则
管片拼装时,通过转弯环与标准环的组合来 适应不同的曲线要求。管片拼装时按照以下 以下两个原则: 第一,要适合隧道设计线路; 第二,要适应盾构机的姿态。 这两者相辅相成,通过正确的管片选型和选 择正确的拼装点位,将隧道的实际线路调整 在设计线路的允许公差±50mm内。
管片对圆曲线段隧道的拟合计算步骤如下:
θ=2γ=2arctgδ/D 式中: θ---转弯环的偏转角 δ---转弯环的最大楔形量的一半 D----管片直径 将数据带入得出θ=0.3629 根据圆心角公式: α=180L/πR 式中:L---一段线路中心线的长度 R----曲线半径,取400m θ=α,将之代入,取得L=2.282
根据盾尾间隙进行管片选型
如果盾尾间隙过小,盾壳上的力直接作用在管 片上,则盾构机在掘进过程中盾尾将会与管片 发生摩擦、碰撞。轻则增加盾构机向前掘进的 阻力,降低掘进速度,重则造成管片错台(通 过调整盾构间隙,可以大大减少管片错台量), 盾构一边间隙过小,另一边相应变大,这时盾 尾尾刷密封效果降低,在注浆压力作用下,水 泥浆很容易渗漏出来,破环盾尾的密封效果。
同时也可以看出如果继续拼装标准环的话, 下部的盾尾间隙将会进一步减小。通常我们 以各组油缸行程的差值的大小来判断是否应 该拼装转弯环,在两个相反的方向上的行程 差值超过40mm时,就应该拼装转弯环进行 纠偏。
盾构机附属配套设备选型方案(搅拌站)
砂浆设备的选型【工程概述】 广州市轨道交通三号线北延段土建11标〖矮岗~新机场南盾构区间〗,土建工程从矮岗站始发井始发,最后到达机场南盾构吊出井,工程总长3536.735m 。
隧道为双线,其中明挖为296.246m ,盾构区间为3240.489m 。
单线盾构区间长度1620.350m 。
线路水平最小曲线半径为1000m ,隧道埋深4~13m ,最大纵坡为25‰。
隧道主要在〈3-1〉、〈3-2〉、〈3-1〉、〈4-1〉、〈7〉、〈8C-2〉层中穿过。
盾构区间施工,采用德国海瑞克公司EPB-Sheild φ6250mm 土压平衡盾构机进行盾构施工。
一、砂浆设备的选型:A 、盾构机同步注浆需用量的确定盾构机开挖面直径为:φ盾构机外经=6280mm ,φ管片外经=6000mm ,每环管片宽B =1.5m ,注浆扩散系数K 取1.5。
则Q 同步注浆=K L Q Q ⨯⨯⎪⎪⎭⎫ ⎝⎛-422管片外经盾构机外π =6.07(m 3)考虑部分消耗,所以取每环的Q同步注浆=6.5m 3。
B 、搅拌机按施工能力选型双线掘进,每小时按两环考虑,则需砂浆搅拌能力为2×6.5=13m3/h。
保险系数取2(理论与实际操作相差较大),则需搅拌站能力为13×2=24 m3/h;可按30 m3/h考虑设计能力。
初步选用HZS35搅拌站,其中搅拌机为JS750强制性搅拌机,配料斗为HPJ1200A(砂石称最大称量值2000kg、配料精度±2%;粉料称最大称量值360kg、配料精度±1%;水称最大称量值300kg、配料精度±1%)。
C、水泥罐的选型良好地质,双线可掘进30环,则需要砂浆量为30×6.5=195m3。
而每m3中约含水泥300kg,则每天需要水泥量为58.5T。
需用80-100T水泥罐。
80T,直径为2.8m。
即100T水泥罐,可持续隧道掘进51.3环同步注浆用量。
盾构机管片选型和安装
盾构管片选型和安装林建平在盾构法施工中,管片的选型和安装好坏直接影响着隧道的质量和使用寿命。
本文根据广州地铁三号线客~大区间的实际施工情况,就盾构管片选型和安装技术做总结分析。
一、工程概况客~大盾构区间分为两条平行的分离式单线圆形盾构隧道,总长度为3016.933米,管片生产与安装2011环。
管片外径6000mm,内径5400mm,宽度1500mm,防渗等级S10,砼C50。
依据配筋将管片分为A、B、C三类,C类配筋最高、B类配筋最低;管片的楔形量38mm,分左转、右转、标准三类。
二、管片的特征1、管片的拼装点位本区间的管片拼装分10个点位,和钟表的点位相近,分别是1、2、3、4、5、7、8、9、10、11。
管片划分点位的依据有两个:管片的分块形式和螺栓孔的布置。
拼环时点位尽量要求ABA(1点、11点)形式。
在广州盾构隧道管片要求错缝拼装,相邻两环管片不能通缝。
管片拼装点位有很强的规律,管片的点位可划分为两类,一类为1点、3点、5点、8点、10点;二类为11点、2点、4点、7点、9点。
同一类管片不能相连,例如1点后不能跟3、5、8、10这四个点位,只能跟11、2、4、7、9五个点位。
在成型隧道里两联络通道之间的奇数管片是同一类,偶数管片是同一类。
(竖列表示拼装好的管片,横向:√-表示可选后续的管片;×-表示不可选后续的管片)2、隧道管片排序鉴于管片拼装的规律性,所以盾构施工前必须对隧道管片做好排序,并根据设计,模拟出联络通道和泵房位置,管片拼到联络通道处时,点位要正好和设计点位符合,否则联络通道位置会被改变。
在本工程中,是从左线始发,第325、326环处是联络通道,此处拼装点位是11点,将标准块A3块拼到洞门位置。
盾构始发时的负环是6环,1环零环。
从负环到325环共332环,第325环是11点,相当于第332环是11点,那么负环第一环点位应该是1点,或3点、5点、8点、10点。
管片排序时,要优化洞门的长度,在广州洞门长度要求在400mm以上,一环管片的长度是1500mm,在条件允许的条件下,通过调整始发负环的位置,把每节隧道两端的洞门长度之和控制在1500mm以内,当隧道长度除以管片长度的余数大于两倍最小洞门宽度800mm(各地洞门的最小宽度要求不同)时,就取余数的一半为洞门长度。
广州地铁修建中的盾构选型_白中仁
无完全成功经验
软硬混合地层
碴土 改良 系统 、可 靠 的铰 接系 统 、人仓 加 压系统 、超前钻孔
掘进 困 难 , 需 要 带 压 进 仓换刀 或加 固地 层后 维 护刀盘
无完全成功经验
势 。 其中取得的经验教训为以后盾构在广州地铁中 的推广应用积累了经验 。
(2)二号线越秀 ~ 三元里区间 该区间主要为白垩系红砂岩地层 , 其间穿越走马 岗断裂 。区间隧道施工采用两台土压平衡式盾构 。盾 构设计总推力 33 000 kN , 盾构刀盘部分重 55 t , 几乎 是一号线盾构刀盘重量的两 倍 , 刀盘开口率 28 %; 配备可更换齿刀的双刃滚刀 13 把 , 仿形刀 1 把 , 小 齿刀 64 把 , 刮刀 8 把 , 中心刀 6 把 ;刀盘驱动采用全 液压设 计 , 额定 扭 矩 4 500 kNm , 最大 扭 矩 5 300 kNm , 大大超过了一号线盾构的水平 。 该盾构的其他先进之处还有 :大直径(D900)的 螺旋输送机 ;全液压驱动的高速管片安装机 , 6 个自
成功范例 二 号线 越 -三 区 间 , 江 -鹭区间 二 号线 越 -三 区 间 , 江 -鹭区间 二 号线 越 -三 区 间 , 江 -鹭区间
三号线大 -汉区间
花岗岩 、 混合岩
微风化岩层 混合地层
硬岩 上软下硬岩层
坚固 的刀 盘 Байду номын сангаас重型 滚 掘进困难 , 刀具磨损大 刀
无完 全 成 功 范 例 , 经 济 范围内 盾构只 能短 距离 掘进
第 2
04D01O4卷I 年:1第02.11月38期 07/ j .c nki .m tt . 200 4. 01. 003 M
odern
现代隧道技术 T unnelling Technolog
盾构机选型标准
盾构机选型标准(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、盾构机选型依据地铁区间,线路总长:隧道埋深9~13米。
隧道洞身大部分处于残积层中,局部地段穿越花岗岩、辉绿岩全、强风化带或断层破碎带,结构松散,易软化、变形,产生坍塌。
花岗岩层面起伏大,存在差异风化现象。
地下水按赋存条件分为第四系孔隙潜水和基岩裂隙水,砂层中具承压性。
主要补给来源为大气降水。
地下水埋深~米。
盾构隧道内径:5400mm,管片厚度:300mm,隧道外径:6000mm。
标准管片宽度:1200mm,分块数:6块。
本盾构隧道区间采用两台盾构机。
盾构机由站西端下井始发,推进至站东站起吊出井。
隧道地质情况、工程要求、环境保护要求、经济比较、地面施工场地大小等因素是盾构选型的基本依据。
根据国内外盾构施工经验与实例,我们认为,盾构机的选型必须满足以下几个要求:必须确保开挖空间的安全和稳定支护;保证隧道土体开挖顺利;保证永久隧道衬砌的安装质量;保证隧道开挖碴土的清除;确保盾构机械的作业可靠性和作业效率;保证地面沉降量在要求范围内;满足施工场地及环保要求。
2、不同开挖模式的工作原理盾构机的型式与工作特点目前世界上流行的盾构机按开挖模式主要可以分为两大类:敞开式与密闭式。
敞开式指盾构机的开挖面与机内的工作室间无隔板或隔板的某处设置可调节开口面积的出土口。
开挖面基本依靠开挖土体的自立保持稳定。
敞开式适用于地层条件简单、自立性好且无地下水的地层。
密闭式盾构机是在盾构机的开挖面与机内的工作室间设置隔板,刀盘旋转将开挖下来的碴土送入开挖面和隔板间的刀盘腔内,由泥水压力或土压或气压提供足以使开挖面保持稳定的压力。
密闭式盾构机适用于地层变化复杂、自立条件较差、地下水较丰富的地层,因为采用密闭式掘进可以有效地保证开挖面的自立与稳定,保证施工安全。
密闭式盾构机主要分为泥水平衡式、土压平衡式两类,代表了不同的出土方式和不同工作面土体平衡方式的特点,但适用地质与范围有一定的区别。
【2019年整理】广州地铁盾构机选型参考
广州地区地铁隧道施工用盾构机选型1.1选型依据本标段的盾构选型主要依据广州地铁三号线【AA站一BB站盾构区间】(以下简称【A— B】区间)盾构工程招标文件和岩土工程勘察报告,参考国内外已有盾构工程实例及相关的盾构技术规范,按照适用性、可靠性、先进性、经济性相统一的原则进行盾构机的选型。
1.1.1工程条件AA站〜BB站区间隧道左右线总长6002.210m,其中盾构隧道左线长3000.010m,右线长3002.200m, 最小转弯半径800m最大坡度29.2%;隧道内径4 5400mm管片外径4 6000mm管片环宽1500mm本标段隧道采用两台盾构机施工,先后由AA站始发,向BB站掘进,施工隧道右、左线,掘进到达BB站后拆除。
右、左线隧道盾构始发时间相差一个月。
1.1.2地质概况(1)岩性特点根据岩土工程勘测报告,本区地层由第四系、白垩系下统组成,中间缺失第三系,第四系( Q)厚8〜18米。
上部为第四系人工填土,厚0〜4米,全新统海陆交互相沉积的淤泥或淤泥质土、淤泥质砂,厚0〜7.9米;下部为上更新统陆相冲洪积形成的砂土层,厚0〜8.2米;底部基岩残积形成的粘性土层,厚0〜17.3米。
白垩系下统白鹤洞组广岗段(K1b2)厚400〜450米,由紫红色钙质粉砂岩,泥质粉砂岩、粉砂质泥岩夹浅灰色泥灰岩、泥岩组成,微层理发育,含方解石,常见钙质斑块及少量斑点状石膏。
洞身穿过的围岩有<3-2>、<4-1>、<4-2>、<5-1>、<5-2>、<6>、<7>、<8>、<9>各岩土层,洞身范围内主要为<7>、<8>、<9>岩土层,稳定性较好。
在隧道靠车站两端的YK13+824.2〜YK15+95CM YK12+25S YK14+344.7段隧道直接穿越淤泥层和砂层,隧道在该段埋深最浅(约为6.4m),且YK13+87SYK13+95般地表有淋砂涌通过,隧道在该段埋深最浅,与涌河内地表水存在较强的水力联系,在掘进过程中极易坍塌,还可能发生喷砂、喷涌,是盾构机选型时考虑的重点。
广州地铁盾构机选型参考
广州地区地铁隧道施工用盾构机选型1.1选型依据本标段的盾构选型主要依据广州地铁三号线【AA站—BB站盾构区间】(以下简称【A-B】区间)盾构工程招标文件和岩土工程勘察报告,参考国内外已有盾构工程实例及相关的盾构技术规范,按照适用性、可靠性、先进性、经济性相统一的原则进行盾构机的选型。
1.1.1工程条件AA站~BB站区间隧道左右线总长6002.210m,其中盾构隧道左线长3000.010m,右线长3002.200m,最小转弯半径800m,最大坡度29.2‰;隧道内径φ5400mm,管片外径φ6000mm、管片环宽1500mm。
本标段隧道采用两台盾构机施工,先后由AA站始发,向BB站掘进,施工隧道右、左线,掘进到达BB站后拆除。
右、左线隧道盾构始发时间相差一个月。
1.1.2地质概况(1)岩性特点)厚根据岩土工程勘测报告,本区地层由第四系、白垩系下统组成,中间缺失第三系,第四系(Q48~18米。
上部为第四系人工填土,厚0~4米,全新统海陆交互相沉积的淤泥或淤泥质土、淤泥质砂,厚0~7.9米;下部为上更新统陆相冲洪积形成的砂土层,厚0~8.2米;底部基岩残积形成的粘性土层,b2)厚400~450米,由紫红色钙质粉砂岩,泥质粉砂岩、厚0~17.3米。
白垩系下统白鹤洞组广岗段(K1粉砂质泥岩夹浅灰色泥灰岩、泥岩组成,微层理发育,含方解石,常见钙质斑块及少量斑点状石膏。
洞身穿过的围岩有<3-2>、<4-1>、<4-2>、<5-1>、<5-2>、<6>、<7>、<8>、<9>各岩土层,洞身范围内主要为<7>、<8>、<9>岩土层,稳定性较好。
在隧道靠车站两端的YK13+824.2~YK15+950及YK12+250~YK14+344.7段隧道直接穿越淤泥层和砂层,隧道在该段埋深最浅(约为6.4m),且YK13+870~YK13+950段地表有淋砂涌通过,隧道在该段埋深最浅,与涌河内地表水存在较强的水力联系,在掘进过程中极易坍塌,还可能发生喷砂、喷涌,是盾构机选型时考虑的重点。
论地铁盾构管片选型
论地铁盾构管片选型世界经济的迅猛发展加速了城市化建设,城市人口和建筑密度的不断增加,加快了城市水电管网及轨道交通的建设。
在城市隧道施工中,由于地面及周边环境复杂,基本上都采用现在已经比较成熟的盾构法施工。
由于城市(重要)建构筑物、桥梁等较多,为节省投资资金,避免风险,保护建构筑物等,盾构隧道的曲线越来越多,半径越来越小,多管片的拼装质量要求越来越高,对管片选型技术要求也越高。
本文结合几个案例分析探讨盾构管片选型技术。
一、管片的结构与拼装形式过去,广州市盾构每环管片由六块管片组成(L1、L2、L3、B、C、K),分为标准环、左转弯、右转弯环,拼装时主要靠调节K块的位置来确定管片的转向,重而与设定的轴线进行耦合。
首先,介绍管片的点位的由来。
考虑管片的受力情况,一般采用错缝拼装的形式进行,由于管片的横向螺栓有十套,因此,管片通常的点位就按10个点位来区分。
如下图所示:图一图二管片的具体形式决定每块管片的角度,任意相邻两点所对应的夹角为36°(图一所示)。
但是,1点和11点中间夹着12点,那么,1点和12点的夹角就是18°,11点和12点的夹角也是18°,同理可证5点和7点的角度是18°。
其次,偏移量的计算公式。
从图二中可得转弯环的管片最大楔形量为38(mm),管片的外径是6000(mm)。
根据Tanа=38/6000=0°21′46.33″ ∵а=в可得到:∴偏移量=Tanв×1500=9.5(mm)通过计算结果得出转弯环的最大偏移量是9.5(mm)。
再次回到正面点位图,可以看出只有12点、3点、6点、9点的时候是最大偏移量的位置,而管片的点位中没有12点和6点,即得3点和9点位置是管片偏移量最大的位置(9.5mm)。
举个例子,左转弯环的管片拼在1点位时,管片的偏移量是如何计算的。
其实1点位的时候,正好是偏离12点位18°,假如左转弯是拼装在12点,根据左手定则(食指和拇指撑开呈90°)可知,食指做指向的方向是代表点位,拇指的方向是最大楔形量的位置(右转弯则用右手定则)。
地铁施工用盾构机选型及施工组织-最新文档
地铁施工用盾构机选型及施工组织. 前言新世纪的发展使得我国在地铁建设方面也得到了迅猛发展,地铁逐步成为人们生活和工作中必须的交通工具。
地铁高效、节能、环境好,不仅能解决城市交通拥挤的问题,还能反映出城市的发展水平,在我国持续发展道路中起到了很大的作用。
经济越发展,地铁的发展前景就越广阔。
要使得地铁能够安全可靠,就要在其施工方面多加注意,同时在施工时要选购合适的机型才能完全保证在整个过程中地铁顺利建成。
二.盾构机概述盾构机全名为盾构隧道掘进机,其主要集中了控制、遥控、传感器、导向、测量、探测、通讯等技术,是一种隧道掘进的专用工程机械,广泛用于地铁、铁路、公路、市政、水电等隧道工程。
盾构机是由动力机构、切削刀盘、液压顶进机构、岩土排运机构及检测导向机构等多个相互配合的部分组成的一种隧道掘进机械。
它较适用于砾石、软土、硬岩等不同地质构造的隧道暗挖,具有较好的施工稳定性和掘进性能。
盾构机在一个可以有效支撑地层压力,并且可以在地层中推进的圆形、矩形或马蹄形等特殊形状的钢筒结构的掩护下,完成挖掘、出土、隧道支护等工作。
这种施工方式具有施工速度快、自动化程度高、节省人力、经济合理、减少对地面建筑物的影响和不影响地面交通等特点。
三. 盾构法的介绍我国应用盾构法修建隧道始于二十世纪五六十年代的上海。
最初是用于修建城市地下排水隧道, 采用的是比较老式的盾构机如网格式、压气式、插板式等),八十年代末、九十年代初开 始采用土压式、 泥水式等现代盾构修筑地铁区间隧道。
盾构法具 有安全、可靠、快速、环保等优点,目前,该方法已经在我国的地铁建设中得到了迅速的发展。
据不完全统计, 我国各城市地铁 采用的盾构机已有近 300 多台,只要掌握在中国中铁、 等国有大型企业手中,大多是土压平衡盾构机。
随着盾构法研究的深入、 工程应用的增多, 盾构法施工技术 部采用盾构法修建, 除区间单圆盾构外, 目前正在使用双圆盾构 一次施工两条平行的区间隧道, 此外还试验采用了方形断面盾构 修建地下通道;采用直径 15.43m 的泥水盾构建成了上海长江隧 道,这也是目前我国最大直径乃至世界最大直径的盾构机。
盾构工程方案及技术措施
盾构工程方案及技术措施1 盾构机选型1.1 盾构机提供方式经过多方调查及全面比选,我公司在本标段拟投入两台新购海瑞克复合式土压平衡盾构机(设备编号S-813、S-814)进行施工,其中右线采用S-813盾构机,左线采用S-814盾构机。
我单位已与海瑞克公司签订了盾构设备购置意向书,如我单位中标,立即与海瑞克公司签订设备购置合同,即刻开始盾构机制造,盾构机生产周期为7-9个月,完全能够满足广州市轨道交通二十一号线工程【施工15标】土建工程盾构施工工期要求。
所选盾构机详细情况详见“附件——盾构性能和参数”。
1.2 盾构机选型依据1.2.1 盾构机选型原则盾构机的选型就是针对工程地质和环境的特点,选择经济合理的盾构机型式,使之既能适应于工程的地质条件、环境要求和技术要求,又能在复杂困难的地段中具有应变能力。
在复合地层中施工,盾构机选型主要考虑三大系统:刀盘、添加剂和人闸。
1.2.2 盾构机选型流程图盾构机选型流程图见图1.2-1 盾构机选型流程图1.2.3 区间隧道设计特点①区间线路平面最小曲线半径600m;②最大纵坡度25‰;③隧道外径6.0m;④隧道内径5.4m;⑤环宽1.5m;⑥埋深67~57.5m;⑦掘进方向误差不超过±50mm;⑧盾构掘进施工地表面允许隆陷值为+10/-30mm。
1.2.4 区间工程地质、水文地质特点区间隧道主要穿越地层<3-2>中粗砂层、<4-2B>淤泥质粉质粘土、<5Z-2>砂质黏性土、<6Z>全风化花岗片麻岩、<7Z>强风化花岗片麻岩、<9Z>微风化花岗片麻岩、<F>断层破碎带。
地下水稳定水位埋藏深度 1.50~23.40m,标高28.31~64.34m。
地下水按赋存方式分为第四系松散层孔隙水,块状基岩裂隙水。
其中松散层孔隙水多为潜水,局部具微承压性;块状基岩裂隙水为承压水。
1.2.5 本工程特点、难点对盾构机的选型要求根据以往土压平衡盾构机的使用情况,结合广州地铁地质条件的特点,施工中有以下一些特点、重点、难点以及遇到时所相应需要采取的措施。
(完整版)盾构机选型计算书
设计依据:1.《广州市轨道交通五号线工程区庄至动物园南门区间详细勘察阶段岩土勘察报告》2.《广州市轨道交通五号线工程动物园南门至杨箕区间详细勘察阶段岩土工程勘察报告》3.《广州市轨道交通五号线首期工程(滘口至文冲段)设计技术要求》4.广州市轨道交通五号线首期工程(滘口至文冲段)区庄站至动物园站区间招标设计及投标设计文件5. 广州市轨道交通五号线首期工程(滘口至文冲段)动物园站到杨箕站区间招标设计及投标设计文件6.《广州市轨道交通五号线首期工程(滘口至文冲段)施工图设计结构防水工程技术要求》7.《广州市轨道交通五号线[区庄站~动物园站~杨箕站区间]盾构工程设计合同》8.广州市地铁五号线总包总体部下发的工作联系单9.采用规范:1)《人民防空工程设计规范》(GB50225-1995)2)《盾构法隧道施工与验收规范》(GB50446-2008)3)《建筑结构荷载规范》(GB50009-2001)4)《地铁设计规范》(GB50157-2003)5)《混凝土结构设计规范》(GB50010-2002)6)《地下工程防水技术规范》(GB50108-2001)7)《铁路隧道设计规范》(TB10003-2005)8)《建筑抗震设计规范》(GB50011-2001)9)《锚杆喷射混凝土支护技术规范》(GB50007-2002)10)《建筑地基基础设计规范》(GB50007-2002)11)《铁路桥涵设计基本规范》(TB10002.1—2005)12)《地下铁道工程施工及验收规范》(GB50299—1999)2003年版13)其他相关规范、规程工程概况本工程含区庄站~动物园站及动物园站到杨箕站两个盾构区间,盾构始发井设于杨箕站,盾构机于动物园站过站,盾构吊出井设于区庄站东侧。
两区间均属珠江三角洲平原,沿线路面交通繁忙,为密集的建筑物、高架桥桩基区,地下管线密布。
动物园站~杨箕站区间隧道下穿内环放射线黄埔大道A2标以及内环—梅东—中山—立交桩基,同时距东风广场会所及环风变电桩基较近。
广州市轨道交通六号线盾构六标(水天盾构区间)案例分析
同地层掘进速度不同;换刀等异常时间的考虑。
管片生产的开始时间是否满足盾构掘进速度要求。 盾构机制造、管模制造、门吊制造安装、联络通道管片制造安装等是否预留了 足够时间。
2、前期准备
3、总施组编制的针对性 (1)应结合现场的实际情况,编制有针对性的施工控制措施; (2)施工工艺和措施应该详细、具体,并具有可操作性,要有针对工程重难点的分析 和认识,并有针对性措施; (3)施工平面的布置与现场地貌环境、建筑平面协调一致,并符合紧凑合理、文明、 安全、节约方便的原则; (4)优先选用目前先进成熟的施工技术,而新技术的使用应对本工程的质量、安全与 造价有利; (5)网络图的合理性和均衡性,能否满足总进度计划需求,能否做到均衡连续施工; (6)施工机械的选用、配备应经济合理,满足工期与质量等要求。
广园路
盾构隧道
广州大道
广九铁路 沙河涌 基坑
禺东西高架
11
管片堆放区
充电区
仓库
冷却塔
2、前期准备
2、工程总进度计划编制 (1)关键节点的确定。盾构机进场、盾构始发、盾构到达、盾构过站、附属结构施 工、工程验收。 (2)几个需要注意的问题: 联络通道施工时间与盾构掘进施工时间的冲突。 洞门施工时间与隧道掘进时间的冲突。 端头加固时间的确定。 掘进过程:始发、到达段与正常段掘进速度不同;长距离后掘进速度不同;不
车站承包商提供接入点,单独安装水、电表,按时将水电费交付给车站承包商。
2、前期准备
五、接口协调工作 2)地面施工场地的移交 (1)移交内容:移交范围的场地、场地内的地下管线、场地内的监测点、水电接入点、场 地内的临时建筑、临时道路、场地范围的地面主体结构及地表其他构造物等。 (2)注意事项:对于周边需要保护的建筑物,在盾构掘进期间可能受影响的,如果没有第
地铁盾构隧道施工管片选型技术研究
地铁盾构隧道施工管片选型技术研究摘要:以广州地铁隧道1.5米管片,左转、右转、标准三种管片型号为例,介绍盾构隧道掘进管片选型技术。
关键词:盾构机、管片、盾尾间隙1. 线路设计:地铁隧道设计,受车站、地表与地下地质情况的限制,基本上所有线路都要插入不同曲线半径的圆曲线来转弯,圆曲线的前后采用缓和曲线过度,如何用预制好的管片来拟合线路曲线,成了隧道掘进施工的一个重要的基础工作。
2. 管片设计:广州地铁管片设计一般采用长1.5米管片,分左转(L)、右转(R)、标准(P)三种管片型号,管片内径为5.4米,外径为6米,一环管片共有六块组成,分别为A1、A2、A3、B、C、K块。
标准环管片长度为1.5米,左、右转弯环管片为楔型,最宽的位置与最窄的位置相差38mm(图1)。
3. 盾构机相关部位简介:与管片选型有关的两个重要指标为千斤顶行程与盾尾间隙,千斤顶指的是盾构推进千斤顶,千斤顶行程是指千斤油缸的伸出长度(海瑞克机千斤顶最大行程为2m,一般掘进施工伸长到1.8米就可以满足安装管片的要求)。
盾尾间隙指的是管片外弧面与盾构机后体内壳之间的间隙(海瑞克盾构机的设计盾尾间隙为75mm)(图2)4. 管片选型管片选型:指的是采用那种类型的管片?K块安装在什么位置?(一般K 块的位置与钟表的点位相对应,比如P11,P指标准环,K块安装位置在11点钟。
)。
选型时要考安装纵缝的错缝拼装。
管片的选型决定了左右转弯的幅度,即线路的走向。
如上面的管片设计与拼装图。
管片选型的原则是:盾构机开到哪里,管片就安装在哪里。
管片选型方法:管片选型的主要依据是千斤顶行程与盾尾间隙,选型采用左、右手定则。
左侧千斤顶较长,盾尾间隙较小,管片选用右转环,采用右手定则;右侧千斤顶行程较长,盾尾间隙较小,选用左转环,采用左手定则。
千斤顶行程与盾尾间隙均衡则采用标准环。
左右手定则为:伸出左或右手,掌心朝自己,大拇指与其余四指(其余四指并拢)垂直,四指指向千斤顶行程最长的位置即管片最宽的位置,那么大拇指所指的点位即K块的位置。
盾构工程中的管片选型
管片选型培训讲义结合广州地铁四号线和南京地铁盾构三标的实际情况,详细介绍管片选型的原则、方法以及影响管片选型的其他因素,并根据实际的施工情况,介绍了一些管片选型的实例,供从事盾构施工的技术人员参考。
管片选型标准环转弯环盾尾间隙油缸行程差在国内城市地铁隧道工程中,目前已越来越多地开始使用盾构机来掘进区间隧道,用预制混凝土管片作为永久衬砌。
管片通常由专业的厂家提前制作,按其功能又通常分为两种,即标准环和转弯环。
顾名思义,标准环是用于直线段,转弯环是用于曲线段。
标准环与转弯环配合使用就可以拼装各种线性的隧道。
管片选型直接关系到隧道线路、隧道质量等一系列隧道的关键指标,所以管片选型是否正确,将决定盾构工程的成败。
以下就管片选型的问题,结合广州地铁四号线琶大区间的实际情况谈一谈笔者的体会。
1、管片选型的原则管片选型的原则有两个,第一:管片选型要适合隧道设计线路;第二:管片选型要适应盾构机的姿态。
这两者相辅相成。
1.1 管片选型要适合隧道设计线路当一个盾构工程开工之前,就要根据设计线路对管片作一个统筹安排,通常把这一步骤叫管片排版。
通过管片排版,就基本了解了这段线路需要多少转弯环(包括左转弯、右转弯),多少标准环,曲线段上标准环与转弯环的布置方式。
现根据广州地铁四号线琶大区间的情况简要介绍一下管片排版。
琶大区间管片技术参数表广州地铁四号线琶大区间,分布三组圆曲线,半径分别为450米、800米、竖曲线3000米。
依照曲线的圆心角与转弯环产生的偏转角的关系,可以计算出区间线路曲线段的转弯环与标准环的布置方式。
θ―――转弯环的偏转角δ―――转弯环的最大楔形量的一半D―――管片直径将数据代入得出θ=0.3629根据圆心角的计算公式:α=180L/πR式中:L―――一段线路中心线的长度R―――曲线半径,取800m而θ=α,将之代入,得出L=5.067m上式表明,在800m的圆曲线上,每隔5.067m要用一环转弯环,广州地铁的管片长度为1.5m,就是说,在800m的圆曲线上,标准环与转弯环的拼装关系为2环标准环+1环转弯环。
浅谈地铁施工用盾构机的选型方案18
浅谈地铁施工用盾构机的选型方案摘要:针对广东地铁一号线二标的地质特征:密实中砂,级配不良,主要成份为石英、长石、云母及少量暗色矿物,含5%~10%的砾、卵石,提出了相应的盾构选型方案及盾构的设计特点。
关键词:盾构选型;土压平衡;辐条+小面板式刀盘1盾构机概述盾构是集机械、液压、电控等一体的自动化程度较高的地下隧道施工机械。
主要由盾体、刀盘、刀盘驱动、螺旋输送系统、管片拼装等系统组成,配备了机电一体化的液压驱动系统、同步注浆系统、工业空气系统、电控系统、泡沫设备、膨润土注入设备及激光导向等设备。
在主控室内可对盾构的掘进姿态实时监控,还可在地面监控室对盾构实时监控。
由于盾构在城市地铁施工具有安全、快速、高效、对施工周围环境影响小等优点,在城市地铁隧道施工中被广泛采用。
盾构作为城市地铁盾构法施工的专用机械设备,盾构的选型合理与否不仅关系到盾构施工的成本和效益,还关系到盾构施工的质量与技术水平,可见盾构选型的重要性。
2工程概况2.1工程概况广东地铁一号线一期工程(后围寨 -汉城路)TJSG-2共包含:后围寨明挖车站、后围寨站~三桥站、三桥镇站~皂河站两个盾构区间。
后围寨站~三桥镇站区间,起讫里程YDK6+859.163~YDK8+657.787,全长:1 798.624 m。
该区间从后围寨车站出发,沿世纪大道、三桥路下行,先后穿越后围寨立交,三桥机械市场,下穿阿房宫信用社,向东到达三桥车站。
三桥站~皂河站区间,起讫里程YDK8 +851.687~YDK10+662.000,全长:1 810.313 m。
该区间从三桥站出发,下穿三桥供销社砖混 4层楼房、后建章路和三桥路交叉口、枣园路立交、皂河桥及穿越一个箱涵底部到达皂河站。
区间总长度为:3 608.937m。
2.2区间地质水文情况本标段为全断面砂层,盾构基本在地层2-5-中砂层中穿过,2-5-2的地质为:密实中砂,级配不良,主要成份为石英、长石、云母及少量暗色矿物,含5%~10%的砾、卵石。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州地区地铁隧道施工用盾构机选型
1.1选型依据
本标段的盾构选型主要依据广州地铁三号线【AA站—BB站盾构区间】(以下简称【A-B】区间)盾构工程招标文件和岩土工程勘察报告,参考国内外已有盾构工程实例及相关的盾构技术规范,按照适用性、可靠性、先进性、经济性相统一的原则进行盾构机的选型。
1.1.1工程条件
AA站~BB站区间隧道左右线总长6002.210m,其中盾构隧道左线长3000.010m,右线长3002.200m,最小转弯半径800m,最大坡度29.2‰;隧道内径φ5400mm,管片外径φ6000mm、管片环宽1500mm。
本标段隧道采用两台盾构机施工,先后由AA站始发,向BB站掘进,施工隧道右、左线,掘进到达BB站后拆除。
右、左线隧道盾构始发时间相差一个月。
1.1.2地质概况
(1)岩性特点
)厚根据岩土工程勘测报告,本区地层由第四系、白垩系下统组成,中间缺失第三系,第四系(Q
4
8~18米。
上部为第四系人工填土,厚0~4米,全新统海陆交互相沉积的淤泥或淤泥质土、淤泥质砂,厚0~7.9米;下部为上更新统陆相冲洪积形成的砂土层,厚0~8.2米;底部基岩残积形成的粘性土层,
b2)厚400~450米,由紫红色钙质粉砂岩,泥质粉砂岩、厚0~17.3米。
白垩系下统白鹤洞组广岗段(K
1
粉砂质泥岩夹浅灰色泥灰岩、泥岩组成,微层理发育,含方解石,常见钙质斑块及少量斑点状石膏。
洞身穿过的围岩有<3-2>、<4-1>、<4-2>、<5-1>、<5-2>、<6>、<7>、<8>、<9>各岩土层,洞身范围内主要为<7>、<8>、<9>岩土层,稳定性较好。
在隧道靠车站两端的YK13+824.2~YK15+950及YK12+250~YK14+344.7段隧道直接穿越淤泥层和砂层,隧道在该段埋深最浅(约为6.4m),且YK13+870~YK13+950段地表有淋砂涌通过,隧道在该段埋深最浅,与涌河内地表水存在较强的水力联系,在掘进过程中极易坍塌,还可能发生喷砂、喷涌,是盾
构机选型时考虑的重点。
隧道洞身范围围岩的天然最大抗压强度为58.7MPa。
按围岩类别划分,在本标段内,洞身范围内包含了Ⅰ~Ⅳ类围岩,按单线隧道长度统计计算,左线各类围岩长度比例为:隧底—Ⅱ类围岩长696米,占27.6%;Ⅲ类围岩长175米,占6.9%;Ⅳ类围岩长1650米,占65.5%;隧顶—Ⅰ类围岩长696米,占27.6%;Ⅱ类围岩长175米,占6.9%;Ⅲ类围岩长1210米,占48%;Ⅳ类围岩长440米,占17.5%。
右线各类围岩长度比例为:隧底—Ⅱ类围岩长436米,占17.3%;Ⅲ类围岩长540米,占21.4%;Ⅳ类围岩长1545米,占61.3%;隧顶—Ⅰ类围岩长705.5米,占28%;Ⅱ类围岩长270米,占10.7%;Ⅲ类围岩长1450米,占57.5%;Ⅳ类围岩长95米,占3.8%(洞身穿过地段各类围岩长度及分布情况见表7-1、7-2、7-3、7-4)。
(2)水文地质
根据地层的富水程度及储水介质的不同,本区间(AA至BB区间)地下分第四系孔隙水及基岩裂隙水两种类型。
第四系孔隙水主要赋存于淤泥质砂及冲洪积砂层中,地下水埋深0~3米,为饱水层,根据抽水试验及渗透系数数值分析,水量丰富。
由大气降水及河、涌、珠江水补给。
基岩裂隙水主要赋存于基岩强风化、中等风化带的裂隙中,地下水埋深随基岩面的起伏而不同,一般为10~20米,由于岩性及裂隙发育程度的差异,其富水程度与渗透性也不尽相同。
根据地质剖面,<4-1>、<4-2>、<5-1>、<5-2>、<6>、<9>为不透水~微透水层,岩体中基本无水,可视为隔水层,渗透系数K=4.6~5.7m/d;<3-2>是冲、洪积形成的中、细砂层,为中等透水层,渗透系数K=4.6~5.7m/d; <7>、<8>是岩层强风化、中等风化带,岩性为泥质粉砂岩、粉砂质泥岩、泥岩,为弱~中等透水层,渗透系数K=0.75~1.45m/d。
1.1.3线路的地面、周边环境
隧道覆土变化大,最大为29.4m,最小为6.6m左右。
该标段区间线路在接近后滘涌以南从多栋建筑物下穿过。
1.1.4 地面沉降量控制及掘进方向控制误差
(1)沉降量控制在+10~-30mm范围内,能满足穿越密集建筑物地区的需求。
(2)设有自动导向系统,具有足够的掘进方向控制能力及自动纠偏能力,掘进方向误差不超过±50mm。
1.1.5盾构机寿命
主要部件寿命应大于9000m,主轴承寿命10000h,主轴承密封寿命大于6000h。
1.1.6施工工期要求
本标段盾构区间的盾构机掘进施工工期安排如下:
2003.5.15 第一台盾构机到达广州港
2003.6.15 第二台盾构机到达广州港
2003.5.16~2003.7.4第一台盾构机下井组装调试;
2003.7.5第一台盾构机从AA站右线始发;
2003.11.28~2003.12.17盾构机过右线矿山法段,再次始发;
2004.6.15第一台盾构机到达右线掘进终点;
2003.6.16~2003.8.4第二台盾构机下井组装调试;
2003.8.5第二台盾构机从AA站左线始发;
2003.12.28~2004.1.17盾构机过左线矿山法段,再次始发;
2004.6.28第二台盾构机到达左线盾构掘进终点;
2004.6.16~2004.7.30右、左线盾构机解体、吊出;
为了满足施工工期要求,考虑初始掘进和到达掘进及盾构维修保养时间等,单台盾构正常掘进时每月平均掘进速度为230.2m/月左右,平均掘进时按5~6环/天。
1.2盾构机选型确定
盾构机的选型必须做到针对不同的工程,不同的地质特点进行“量体裁衣”式设计和选型,才能使盾构机更好的适应工程施工要求。
根据盾构施工法的特点,盾构机选型主要取决于盾构经过的地层的地质情况,同时,所选盾构机必须具有与工期相适应的掘进速度,而且能够满足隧道施工的要求。
根据本区间地质特点,对盾构机有如下要求:
(1)盾构机必须具备较强的稳定开挖面、防止开挖面坍塌的能力。
(2)要具有能够适应不同地层的刀盘。
(3) 在地质复杂区段中,有必要的手段能够对前方地层进行超前探测,以便及时采取相应的施工技术措施。
(4)能够防止突发地下水和开挖面坍塌的袭击,应设置紧急关闭土仓的装置。
(5)盾构机有良好的密封性能。
(6)导向系统精度高,导向准确。
(7)为能及时更换刀具,人员必须进入土仓,应提供可靠的安全装置保护人员安全。
从目前国内外各种类型盾构机资料比较:盾构的主要类型有泥水式、插刀式(敞开式)盾构、土压平衡式、复合型盾构等。
其中复合式盾构能够适应较大的地质范围与地质条件,既能用于粘结性、非粘结性、有水或无水、软土或硬岩等多种复杂的地层,同时又具有土压平衡盾构的功能,施工速度较高,能有效的控制地表沉降。
根据广州地铁二号线各盾构工程的施工经验总结,具有复合式性能的盾构机
是广州地铁三号线盾构施工的首选机型较为广泛的使用在复合地层中。
针对广州地铁三号线AA站至BB站盾构区间工程地质条件、线路及周边环境以及施工、工期等要求,先后与德国海瑞克公司、德国维尔特公司、加拿大拉瓦特公司等盾构机生产厂家进行多次技术交谈,他们提供的盾构机设计方案都选用了复合式盾构机。