2018年广东省中山市教育联合体中考数学一模试卷
2018年中考数学一模考试卷及答案
2018年中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD •DB=AE •ECB .AD •AE=BD •EC C .AD •CE=AE •BD D .AD •BC=AB •DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sinα B .i=cosα C .i=tanα D .i=cotα4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3 B .y=(x+2)2﹣3 C .y=(x ﹣2)2+3 D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图形图①图②图③图④图⑤绝对高度1.52.01.22.4?0 0 0 绝对宽度2.001.502.503.60?A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 .15.如图,正方形ABCD 的边EF在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A.B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度2.01.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD 的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM ∥CD 交AD 、EF 于M 、N 两点,将问题转化到△ABM 中,利用相似三角形的判定与性质求EN ,由EF=EN+NF=EN+AD 进行求解;(2)由=、=得BC=AD ,EB=AB ,根据=可得答案.【解答】解:(1)作BM ∥CD 交AD 、EF 于M 、N 两点,又AD ∥BC ,EF ∥AD ,∴四边形BCFN 与MNFD 均为平行四边形.∴BC=NF=MD=2,∴AM=AD ﹣MD=1.又=2,∴=,∵EF ∥AD ,∴△BEN ∽△BAM ,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD ,EB=AB ,∴==, ==,则==+. 【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC 中,∠ACB=90°,AB=5,tanA=,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E ;(1)求△ABC 的面积;(2)求sin ∠CBE 的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A 的正切用BC 表示出AC ,再利用勾股定理列方程求出BC ,再求出AC ,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x ,表示出AE ,再根据翻折变换的性质可得BE=AE ,然后列方程求出x ,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC ,在Rt △ABC 中,BC 2+AC 2=AB 2,即BC 2+4BC 2=25,解得BC=,所以,AC=2,△ABC 的面积=AC •BC=××2=5;(2)设CE=x ,则AE=AC ﹣CE=2﹣x ,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
2018年广东省中山市中考数学试卷(试卷+答案+解析)
d2018年广东省中山市中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是( )13A .0B .C .﹣3.14D .2132.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A .1.442×107B .0.1442×107C .1.442×108D .0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是( )A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是( )A .4B .5C .6D .75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A .圆B .菱形C .平行四边形D .等腰三角形6.(3分)不等式3x ﹣1≥x +3的解集是( )A .x ≤4B .x ≥4C .x ≤2D .x ≥27.(3分)在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则△ADE 与△ABC 的面积之比为( )A .B .C .D .121314168.(3分)如图,AB ∥CD ,则∠DEC =100°,∠C =40°,则∠B 的大小是( )A .30°B .40°C .50°D .60°9.(3分)关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围是( )A .m <B .m ≤C .m >D .m ≥9494949410.(3分)如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A →B →C →D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )h A.B.C.D. 二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知所对的圆心角是100°,则所对的圆周角是 .AB AB 12.(3分)分解因式:x 2﹣2x +1= .13.(3分)一个正数的平方根分别是x +1和x ﹣5,则x = .14.(3分)已知+|b ﹣1|=0,则a +1= .a ‒b 15.(3分)如图,矩形ABCD 中,BC =4,CD =2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y =(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点3x A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点B 6的坐标为 .三、解答题17.(6分)计算:|﹣2|﹣20180+()﹣11218.(6分)先化简,再求值:•,其中a =.2a 2a +4a 2‒16a 2‒4a 3219.(6分)如图,BD 是菱形ABCD的对角线,∠CBD =75°,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求∠DBF 的度数.20.(7分)某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为 人:(2)把条形统计图补充完整;的员工有多少人?(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;是等腰三角形.(2)求证:△DEF23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;的坐标;若不存在,请说明理由.(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;的长.(3)在(2)条件下,连接BD交⊙O于点F,连接EF,若BC=1,求EF25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?2018年广东省中山市中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是( )13A .0B .C .﹣3.14D .213【考点】2A :实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,13所以最小的数是﹣3.14.故选:C . 2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A .1.442×107B .0.1442×107C .1.442×108D .0.1442×108【考点】1I :科学记数法—表示较大的数.【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A . 3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是( )A.B.C.D.【考点】U 2:简单组合体的三视图.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B 中的图形,故选:B . 4.(3分)数据1、5、7、4、8的中位数是( )A .4B .5C .6D .7【考点】W 4:中位数.【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B . 5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A .圆B .菱形C .平行四边形D .等腰三角形【考点】P 3:轴对称图形;R 5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、是轴对称图形,也是中心对称图形,故此选项错误;B 、是轴对称图形,也是中心对称图形,故此选项错误;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项正确.故选:D . 6.(3分)不等式3x ﹣1≥x +3的解集是( )A .x ≤4B .x ≥4C .x ≤2D .x ≥2【考点】C 6:解一元一次不等式.【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x ﹣x ≥3+1,合并同类项,得:2x ≥4,系数化为1,得:x ≥2,故选:D . 7.(3分)在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则△ADE 与△ABC 的面积之比为( )A .B .C .D .12131416【考点】KX :三角形中位线定理;S 9:相似三角形的判定与性质.【分析】由点D 、E 分别为边AB 、AC 的中点,可得出DE 为△ABC 的中位线,进而可得出DE ∥BC 及△ADE ∽△ABC ,再利用相似三角形的性质即可求出△ADE 与△ABC 的面积之比.【解答】解:∵点D 、E 分别为边AB 、AC 的中点,∴DE 为△ABC 的中位线,∴DE ∥BC ,∴△ADE ∽△ABC ,∴=()2=.S △ADES △ABC DE BC 14故选:C .8.(3分)如图,AB ∥CD ,则∠DEC =100°,∠C =40°,则∠B 的大小是( )A .30°B .40°C .50°D .60°【考点】JA :平行线的性质.【分析】依据三角形内角和定理,可得∠D =40°,再根据平行线的性质,即可得到∠B =∠D =40°.【解答】解:∵∠DEC =100°,∠C =40°,∴∠D =40°,又∵AB ∥CD ,∴∠B =∠D =40°,故选:B . 9.(3分)关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围是( )A .m <B .m ≤C .m >D .m ≥94949494【考点】AA :根的判别式.【分析】根据一元二次方程的根的判别式,建立关于m 的不等式,求出m 的取值范围即可.【解答】解:∵关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,∴△=b 2﹣4ac =(﹣3)2﹣4×1×m >0,∴m <.94故选:A . 10.(3分)如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A →B →C →D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A.B.C.D.【考点】E 7:动点问题的函数图象.【分析】设菱形的高为h ,即是一个定值,再分点P 在AB 上,在BC 上和在CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P 在AB 边上时,如图1,设菱形的高为h ,y =AP •h ,12∵AP 随x 的增大而增大,h 不变,∴y 随x 的增大而增大,故选项C 不正确;②当P 在边BC 上时,如图2,y =AD •h ,12AD 和h 都不变,∴在这个过程中,y 不变,故选项A 不正确;③当P 在边CD 上时,如图3,y =PD •h ,12∵PD 随x 的增大而减小,h 不变,∴y 随x 的增大而减小,∵P 点从点A 出发沿在A →B →C →D 路径匀速运动到点D ,∴P 在三条线段上运动的时间相同,故选项D 不正确;故选:B .a e二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知所对的圆心角是100°,则所对的圆周角是 50° .AB AB【考点】M5:圆周角定理.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.12.(3分)分解因式:x2﹣2x+1= (x﹣1)2 .【考点】54:因式分解﹣运用公式法.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= 2 .【考点】21:平方根.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.14.(3分)已知+|b﹣1|=0,则a+1= 2 .a‒b【考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,a‒b∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为 π .(结果保留π)me ah【考点】LB :矩形的性质;MC :切线的性质;MO :扇形面积的计算.【分析】连接OE ,如图,利用切线的性质得OD =2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD =2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S扇形EOD =22﹣=4﹣π,90⋅π⋅22360∴阴影部分的面积=×2×4﹣(4﹣π)=π.12故答案为π.16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y =(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点3x A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点B 6的坐标为 (2,0) .6【考点】G 6:反比例函数图象上点的坐标特征;KK :等边三角形的性质.【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B 2、B 3、B 4的坐标,得出规律,进而求出点B 6的坐标.【解答】解:如图,作A 2C ⊥x 轴于点C ,设B 1C =a ,则A 2C =a ,3OC =OB 1+B 1C =2+a ,A 2(2+a ,a ).3∵点A 2在双曲线y =(x >0)上,3x ∴(2+a )•a =,33解得a =﹣1,或a =﹣﹣1(舍去),22∴OB 2=OB 1+2B 1C =2+2﹣2=2,22∴点B 2的坐标为(2,0);2作A 3D ⊥x 轴于点D ,设B 2D =b ,则A 3D =b ,3OD =OB 2+B 2D =2+b ,A 2(2+b ,b ).223i n∵点A 3在双曲线y =(x >0)上,3x ∴(2+b )•b =,233解得b =﹣+,或b =﹣﹣(舍去),2323∴OB 3=OB 2+2B 2D =2﹣2+2=2,2233∴点B 3的坐标为(2,0);3同理可得点B 4的坐标为(2,0)即(4,0);4…,∴点B n 的坐标为(2,0),n ∴点B 6的坐标为(2,0).6故答案为(2,0).6 三、解答题17.(6分)计算:|﹣2|﹣20180+()﹣112【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂.【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3. 18.(6分)先化简,再求值:•,其中a =.2a 2a +4a 2‒16a 2‒4a 32【考点】6D :分式的化简求值.【分析】原式先因式分解,再约分即可化简,继而将a 的值代入计算.【解答】解:原式=•2a 2a +4(a +4)(a ‒4)a (a ‒4)=2a ,当a =时,32原式=2×=.323 19.(6分)如图,BD 是菱形ABCD 的对角线,∠CBD =75°,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求∠DBF 的度数.【考点】KG :线段垂直平分线的性质;L 8:菱形的性质;N 2:作图—基本作图.【分析】(1)分别以A 、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;12(2)根据∠DBF =∠ABD ﹣∠ABF 计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD 是菱形,∴∠ABD =∠DBC =∠ABC =75°,DC ∥AB ,∠A =∠C .12∴∠ABC =150°,∠ABC +∠C =180°,∴∠C =∠A =30°,∵EF 垂直平分线段AB ,∴AF =FB ,∴∠A =∠FBA =30°,∴∠DBF =∠ABD ﹣∠FBE =45°. 20.(7分)某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?【考点】B 7:分式方程的应用.【分析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.【解答】解:(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得:=,3120x ‒94200x 解得:x =35,经检验,x =35是原方程的解,∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:26a +35(200﹣a )=6280,解得:a =80.答:购买了80条A 型芯片. 21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为 800 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【考点】V 5:用样本估计总体;VB :扇形统计图;VC :条形统计图.【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+40)=280人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.280800 22.(7分)如图,矩形ABCD 中,AB >AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:△ADE ≌△CED ;(2)求证:△DEF 是等腰三角形.【考点】KD :全等三角形的判定与性质;LB :矩形的性质;PB :翻折变换(折叠问题).【分析】(1)根据矩形的性质可得出AD =BC 、AB =CD ,结合折叠的性质可得出AD =CE 、AE =CD ,进而即可证出△ADE ≌△CED (SSS );(2)根据全等三角形的性质可得出∠DEF =∠EDF ,利用等边对等角可得出EF =DF ,由此即可证出△DEF 是等腰三角形.【解答】证明:(1)∵四边形ABCD 是矩形,∴AD =BC ,AB =CD .由折叠的性质可得:BC =CE ,AB =AE ,m∴AD =CE ,AE =CD .在△ADE 和△CED 中,,{AD =CE AE =CDDE =ED ∴△ADE ≌△CED (SSS ).(2)由(1)得△ADE ≌△CED ,∴∠DEA =∠EDC ,即∠DEF =∠EDF ,∴EF =DF ,∴△DEF 是等腰三角形.23.(9分)如图,已知顶点为C (0,﹣3)的抛物线y =ax 2+b (a ≠0)与x 轴交于A ,B 两点,直线y =x +m 过顶点C 和点B .(1)求m 的值;(2)求函数y =ax 2+b (a ≠0)的解析式;(3)抛物线上是否存在点M ,使得∠MCB =15°?若存在,求出点M 的坐标;若不存在,请说明理由.【考点】HF :二次函数综合题.【分析】(1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可;(3)分M 在BC 上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y =x +m ,可得:m =﹣3;(2)将y =0代入y =x ﹣3得:x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:,{b =‒39a +b =0解得:,{a =13b =‒3所以二次函数的解析式为:y =x 2﹣3;13(3)存在,分以下两种情况:i m①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45°+15°=60°,∴OD =OC •tan 30°=,3设DC 为y =kx ﹣3,代入(,0),可得:k =,33联立两个方程可得:,{y =3x ‒3y =13x 2‒3解得:,{x 1=0y 1=‒3,{x 2=33y 2=6所以M 1(3,6);3②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°﹣15°=30°,∴OE =OC •tan 60°=3,3设EC 为y =kx ﹣3,代入(3,0)可得:k =,333联立两个方程可得:,{y =33x ‒3y =13x 2‒3解得:,{x 1=0y 1=‒3,{x 2=3y 2=‒2所以M 2(,﹣2),3综上所述M 的坐标为(3,6)或(,﹣2).33 24.(9分)如图,四边形ABCD 中,AB =AD =CD ,以AB 为直径的⊙O 经过点C ,连接AC 、OD 交于点E .(1)证明:OD ∥BC ;(2)若tan ∠ABC =2,证明:DA 与⊙O 相切;(3)在(2)条件下,连接BD 交⊙O 于点F ,连接EF ,若BC =1,求EF 的长.【考点】MR :圆的综合题.【分析】(1)连接OC ,证△OAD ≌△OCD 得∠ADO =∠CDO ,由AD =CD 知DE ⊥AC ,再由AB 为直径知BC ⊥AC ,从而得OD ∥BC ;(2)根据tan ∠ABC =2可设BC =a 、则AC =2a 、AD =AB ==,证OE 为中位线知OE =a 、AE =CE =AC =a ,进一步AC 2+BC 25a 1212求得DE ==2a ,再△AOD 中利用勾股定理逆定理证∠OAD =90°即可得;AD 2‒AE 2(3)先证△AFD ∽△BAD 得DF •BD =AD 2①,再证△AED ∽△OAD 得OD •DE =AD 2②,由①②得DF •BD =OD •DE ,即=,结DF OD DEBD 合∠EDF =∠BDO知△EDF ∽△BDO ,据此可得=,结合(2)可得相关线段的长,代入计算可得.EF OB DEBD【解答】解:(1)连接OC ,在△OAD 和△OCD 中,∵,{OA =OC AD =CD OD =OD ∴△OAD ≌△OCD (SSS ),∴∠ADO =∠CDO ,又AD =CD ,∴DE ⊥AC ,∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠ACB =90°,即BC ⊥AC ,∴OD ∥BC ;(2)∵tan ∠ABC ==2,ACBC ∴设BC =a 、则AC =2a ,∴AD =AB ==,AC 2+BC 25a ∵OE ∥BC ,且AO =BO ,∴OE =BC =a ,AE =CE =AC =a ,121212在△AED 中,DE ==2a ,AD 2‒AE 2在△AOD中,AO 2+AD 2=()2+(a )2=a 2,OD 2=(OE +DE )2=(a +2a )2=a 2,5a2525412254∴AO 2+AD 2=OD 2,∴∠OAD =90°,则DA 与⊙O 相切;(3)连接AF ,∵AB 是⊙O 的直径,∴∠AFD =∠BAD =90°,∵∠ADF =∠BDA ,∴△AFD ∽△BAD ,∴=,即DF •BD =AD 2①,DF AD ADBD 又∵∠AED =∠OAD =90°,∠ADE =∠ODA ,∴△AED ∽△OAD ,∴=,即OD •DE =AD 2②,AD OD DEAD 由①②可得DF •BD =OD •DE ,即=,DF OD DEBD 又∵∠EDF =∠BDO ,∴△EDF ∽△BDO ,∵BC =1,∴AB =AD =、OD =、ED =2、BD =、OB =,5521052t i e a∴=,即=,EF OB DEBD EF52210解得:EF =.22 25.(9分)已知Rt △OAB ,∠OAB =90°,∠ABO =30°,斜边OB =4,将Rt △OAB 绕点O 顺时针旋转60°,如图1,连接BC .(1)填空:∠OBC = 60 °;(2)如图1,连接AC ,作OP ⊥AC ,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在△OCB 边上运动,M 沿O →C →B 路径匀速运动,N 沿O →B →C 路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,△OMN 的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【考点】RB :几何变换综合题.【分析】(1)只要证明△OBC 是等边三角形即可;(2)求出△AOC 的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x ≤时,M在OC 上运动,N 在OB 上运动,此时过点N 作NE ⊥OC 且交OC83于点E .②当<x ≤4时,M 在BC 上运动,N 在OB 上运动.83③当4<x ≤4.8时,M 、N 都在BC 上运动,作OG ⊥BC 于G .【解答】解:(1)由旋转性质可知:OB =OC ,∠BOC =60°,∴△OBC 是等边三角形,∴∠OBC =60°.故答案为60.(2)如图1中,∵OB =4,∠ABO =30°,∴OA =OB =2,AB =OA =2,1233∴S △AOC =•OA •AB =×2×2=2,121233∵△BOC 是等边三角形,∴∠OBC =60°,∠ABC =∠ABO +∠OBC =90°,∴AC ==2,AB 2+BC 27∴OP ===.2S △AOC AC 43272217an (3)①当0<x ≤时,M在OC 上运动,N 在OB 上运动,此时过点N 作NE ⊥OC 且交OC 于点E .83则NE =ON •sin 60°=x ,32∴S △OMN =•OM •NE =×1.5x ×x ,121232∴y =x 2.338∴x =时,y有最大值,最大值=.83833②当<x ≤4时,M 在BC 上运动,N 在OB 上运动.83作MH ⊥OB 于H .则BM =8﹣1.5x ,MH =BM •sin 60°=(8﹣1.5x ),32∴y =×ON ×MH =﹣x 2+2x .123383当x =时,y取最大值,y <,83833③当4<x ≤4.8时,M 、N 都在BC 上运动,作OG ⊥BC 于G .MN =12﹣2.5x ,OG =AB =2,3∴y =•MN •OG =12﹣x ,123532当x =4时,y 有最大值,最大值=2,3综上所述,y 有最大值,最大值为.833 。
2018年广东省中考数学模拟试题及答案(一模定稿)
市城生卫建 创 第5题2018年广东省中考数学模拟试题(一模定稿)姓名 班级一.选择题(每题3分,共30分)1.6-的倒数是( ).A .6-B .6C .16-D .162.2011年11月30日,“海峡号”客滚轮直航台湾旅游首发团正式起航。
“海峡号”由福建海峡高速客滚航运有限公司斥资近3亿元购进,将3亿用科学记数法表示正确 的是( )A .8103⨯B .9103⨯C .10103⨯D .11103⨯ 3.下列计算中,正确的是( ).A .23x y xy +=B .22x x x ⋅=C .3262()x y x y =D .623x x x ÷=4.已知一个等腰三角形的一边长是3,另一边长为7,则这个等腰三角形的周长为( )A .13B . 17C . 13或17D . 4 5.如图,该图形经过折叠可以围成一个正方体,折好以后与“城”字相对的字是( ) A .生 B .创 C .城 D .卫6.将二次函数y =2(x -1)2-3的图像向右平移3个单位,则平移后的二次函数的顶点是( ) A .(-2,-3)B .(4,3)C .(4,-3)D .(1,0)7.如图,□MNEF 的两条对角线ME ,NF 交于原点O , 点F 的坐标是(3,2),则点N 的坐标为( )A (-3,-2)B (-3,2)C (-2,3)D (2,3)8.已知12n 是整数,则满足条件的最小正整数n 是( ).A .2B .3C .4D .59.有2名男生和2名女生,王老师要随机地、两两一对地排座位, 一男一女排在一起的概率是( )A. 14B. 13C. 12D. 23 10.若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( )A. a >0B. a =0C. a >4D. a =4二、填空题(每题4分,共24分)11.如图,已知直线21//l l ,135︒∠=,那么2∠= .12.经过点A (1,2)的反比例函数的解析式为:___ ___。
2018年广东省中山市初三中考数学真题试卷及答案
2018年广东省中山市中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0B.C.﹣3.14D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×108 3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4B.5C.6D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4B.x≥4C.x≤2D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△P AD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)同圆中,已知所对的圆心角是100°,则所对的圆周角是.12.(4分)分解因式:x2﹣2x+1=.13.(4分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(4分)已知+|b﹣1|=0,则a+1=.15.(4分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(4分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中山市中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B =∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C和D不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项B正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△P AD的面积的表达式是解题的关键.二、填空题(共6小题,每小题4分,满分24分)11.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a,b的值是解题关键.15.【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD﹣S扇形EOD计算由弧DE、线段EC、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A3(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);以此类推…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题17.【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,且符合题意,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+40)=280人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴∠OCE=60°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE 为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再在△AOD中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OE+DE)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB 上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为:60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,∴S△AOC=•OA•AB=×2×2=2,∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,∴S△OMN=•OM•NE=×1.5x×x,∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y =•MN•OG=12﹣x,当x=4时,y有最大值,∵x>4,∴y最大值<2,综上所述,y 有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.第21页(共21页)。
中山市中考数学一模试卷
中山市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·松滋模拟) 下列实数中最大的数是()A . 3B . 0C .D . ﹣42. (2分)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A . 6.5×10-5B . 6.5×10-6C . 6.5×10-7D . 65×10-63. (2分)已知,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A . 53°B . 63°C . 73°D . 83°4. (2分)(2019·孝感模拟) 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .5. (2分) (2019九下·温州竞赛) 我校七年级开展了“你好!阅读“的读书话动。
为了解全段699名学生的读书情况,随机调查了本年级50名学生平均每月读书的册数,统计数据如下表所示:关于这组数据,下列说法正确的是()册数01234人数41216171A . 中位数是2B . 众数是17C . 平均数是2D . 方差是26. (2分)如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A . cmB .C .D . 1cm7. (2分) (2016九上·扬州期末) 如图,点C是以点O为圆心,AB为直径的半圆上的动点(点C不与点A,B重合),AB=4.设弦AC的长为x,△ABC的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A .B .C .D .8. (2分)(2016·丹东) 如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE 分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=4S△ADF .其中正确的有()A . 1个B . 2 个C . 3 个D . 4个9. (2分)如图是某市某月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天.则此人在该市停留期间有且仅有1天空气质量重度污染的概率是()A .B .C .D .10. (2分) (2019八下·邓州期中) 如图,甲、乙两人以相同路线前往距离单位10km的培训中心参加学习,图中1,分别表示甲、乙两人前往目的地所走的路程S(千米)随时间(分)变化的函数图象,以下说法:①甲比乙提前12分钟到达;②甲的平均速度为15千米/小时;③甲、乙相遇时,乙走了6千米;④乙出发6分钟后追上甲,其中正确的是()A . ①②B . ③④C . ①③④D . ②③④二、填空题 (共6题;共7分)11. (1分)(2018·沾益模拟) 函数中自变量x的取值范围是________.12. (1分)分解因式a3﹣a的结果是________ .13. (2分) (2016九上·滨海期中) 如图,△ABC是等边三角形,点D在BC边上,将△ABD绕点A按逆时针方向旋转得到△ACE,连接DE,则图中与∠BAD相等的角,除∠CAE外,还有角________.(用三个字母表示该角)14. (1分)(2017·淮安模拟) 关于x的方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1 , x2 ,且x12+x22=3,则m=________.15. (1分) (2018九下·宁河模拟) 如图,在每个小正方形的边长为1的网格中,点A,B均在格点上.(Ⅰ)线段AB的长为________.(Ⅱ)请利用网格,用无刻度的直尺在AB上作出点P,使AP= ,并简要说明你的作图方法(不要求证明).________.16. (1分)在一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在25%.那么估计a大约有________ 个.三、解答题 (共13题;共95分)17. (5分) (2020八上·息县期末) 计算下列各题:(1);(2) .18. (5分)(2017·黄冈模拟) 解不等式组.19. (5分) (2018八上·番禺月考) 如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.20. (5分)(2020·哈尔滨模拟) 先化简,再求值:,其中x=4sin45°-2sin30°21. (5分) (2018八上·阿城期末) 为了顺利通过“国家文明城市”验收,市政府拟对部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完成工程,又能使工程费用最少?22. (10分) (2011八下·建平竞赛) 在四边形ABCD中,对角线相交于点O;E、F、G、H分别是AD、BD、 BC、AC的中点.(1)说明四边形EFGH是平行四边形;(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并说明理由.23. (10分)(2016·安顺) 如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.24. (6分) (2020七上·宿州期末) 2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.25. (2分)(2011·泰州) 如图,以点O为圆心的两个同心圆中,矩形ABCD的边BC为大圆的弦,边AD与小圆相切于点M,OM的延长线与BC相交于点N.(1)点N是线段BC的中点吗?为什么?(2)若圆环的宽度(两圆半径之差)为6cm,AB=5cm,BC=10cm,求小圆的半径.26. (6分) (2016九上·海南期中) 已知二次函数y=x2﹣4x+3.(1)该函数的顶点坐标是________,与x轴的交点坐标是________;(2)在平面直角坐标系中,用描点法画出该二次函数的图象;(3)根据图象回答:当0≤x<3时,y的取值范围是________27. (10分)(2017·吉林) 《函数的图象与性质》拓展学习片段展示:(1)【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a=________.(2)【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.(3)【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.(4)【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m 的取值范围.28. (15分)(2018·深圳模拟) 已知:如图,抛物线y=ax2+bx+6交x轴于A(﹣2,0),B(3,0)两点,交y轴于点C.(1)求a,b的值;(2)连接BC,点P为第一象限抛物线上一点,过点A作AD⊥x轴,过点P作PD⊥BC于交直线AD于点D,设点P的横坐标为t,AD长为d,求d与t的函数关系式(请求出自变量t的取值范围);(3)在(2)的条件下,DP与BC交于点F,过点D作DE∥AB交BC于点E,点Q为直线DP上方抛物线上一点,连接AP、PC,若DP=CE,∠QPC=∠APD时,求点Q坐标.29. (11分)(2019·石景山模拟) 如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共13题;共95分)17-1、17-2、18-1、19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、24-4、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、27-4、28-1、28-2、29-1、29-2、29-3、第21 页共21 页。
2018年广东省中山市九年级下学期侨中中考一模数学试卷答案及详细解析
【答案】1.B2.A3.D4.A5.C6.A7.B 8.D 9.D 10.B11..12..13..14..15..16..17..18.无解.19.(1)(2)20.(1)(2)(3)21.米.22.(1)(2)23.(1)(2)(3)2018年广东省中山市九年级下学期侨中中考一模数学试卷参考答案,,,,,,,, ,,,, ,,,.. ,..;.当参演男生大于人时,购买公司服装合算,当参演男生等于人时,购买公司服装合算.反比例函数解析式为..详见解答过程.24.(1)(2)(3)25.(1)(2)【解析】1.若,则这个非负数叫做的算术平方根,根据算术平方根的定义,可得:,的算术平方根是,故选.2.俯视图:由物体上方向下做正投影得到的视图,选项:是该几何体的俯视图, 故正确;选项:是该几何体的左视图,故错误;选项:是该几何体的主视图,故错误;选项:不是该几何体的三视图,故错误,故选.3.点关于原点对称的点坐标为,与关于原点对称, ,解得:,,故选.4.科学记数法:把一个数表示成(,为整数)的形式, ,故选.5.一次函数中,随的增大而减小, ,又令,得,,直线经过,即交轴正半轴, 直线经过一、二、四象限,不经过第三象限,故选.是的切线.当为度,四边形是平行四边形. . ,. ①或时是直角三角形, ②.6.中位数:把所有的同类数据按大小的顺序排列,如果数据个数是奇数,则中间那个数据就是这组数据的中位数;如果数据的个数是偶数,则中间那个数据的算术平均值就是这组数据的中位数,众数:一组数据中出现次数最多的数据,在,,,,,中众数为,,把数据从小到大排列为:,,,,,,则中位数为,故选.7.,,,,,是直角三角形,,, ,故选.8.在与中,≌,选项:≌,,平分,故不符合题意;选项:是等腰三角形,,由等腰三角形三线合一的性质可知,是的高,中线,垂直平分,故不符合题意;选项:≌,,又,,,故不符合题意;选项:不一定与相等,四边形不一定是菱形,故符合题意;故选.9.,,即,, ,即,,,又,,与的相似比为, ,故选.10.连结,是半径,,垂直平分, ,,是直角三角形,设半径,,,在中,由勾股定理得:,即,解得,,,是直径,,是直角三角形,在中,是中点,是中点,是的中位线,, ,在中,,,由勾股定理得: ,故选.11.原式 .12.要使:有意义,则:,解得:,故答案为.13.扇形半径为,圆心角是,扇形弧长为 ,扇形弧长等于圆锥底面圆周长,设圆锥底面圆半径为,则,,解得,圆锥底面半径为.14.※,※,即,移项得,合并同类项得,系数化为“”得,故答案为.15.在中,,,, ,即,根据勾股定理得: ,垂直平分, ,,,,,,是直角三角形,在中,,,,即,,根据勾股定理得: .16.连结,如图所示:矩形绕点顺时针旋转,得矩形,,,,,,,,,均为直角三角形,,,由矩形的性质可知:,, . .在中,,,根据勾股定理可得: .在中,,,根据勾股定理可得: .中,,,根据勾股定理可得: . ,,,是直角三角形,,.17.原式 .18.方程左右两边同乘,得:,展开得:,移项得:,合并同类项得:,移项得:,系数化为,得:,检验:当时,,是该方程的增根,故原分式方程无解.19.(1)由题意可画树状如下:(2)20.(1)(2)(3)21.过点作,过点作交于,如图所示:,,, ,, ,,为直角三角形,所有情况为,,,, ,,,, ,,,, ,,,,共种. 圆和正方形既是轴对称图形又是中心对称图形即,,摸出两张纸牌均为既是轴对称图形又是中心对称图形的情况有,,,,共种,摸出两张纸牌均为既是轴对称图形,又是中心对称图形的概率为:.①反向延长至,使;反向延长至,使,②连结,即为所求,如图:观察可得:,.由⑵可观察得出:的对应点,的对应点,的对应点坐标为.,为等腰直角三角形,在中,米, 米,在中,,米, 米.答:小山东西两侧,距离为米.22.(1)(2) 23.(1)由题意可得,参演女生人数为人,购买公司服装所付的总费用为:,整理得,购买公司服装所付的总费用为:,整理得,答:;.令,即,解得,当时,购买公司服装比较合算,令,即,解得,当时,购买,服装费用相同,令,即,解得,当时,购买公司服装比较合算,答:当参演男生大于人时,购买公司服装合算,当参演男生等于人时,购买、公司服装合算,当参演男生小于人时,购买公司服装合算.设反比例函数解析式为,反比例函数图象经过,把代入得,,(2)(3),反比例函数解析式为.四边形是边长为的正方形,,,,在上,横坐标为,在反比例函数上,把代入得,,即,在直线,把代入得,,解得,直线解析式为,直线与交于,令得,解得即.,理由如下:在上取,连结,连结并延长交轴于点,四边形是正方形,,在与中,,≌,,,, ,,轴,,在与中,,24.(1)≌,,设直线解析式为,,,把、代入得,,解得,直线解析式为,令,则,解得,即,,,是直角三角形,在中,,,根据勾股定理得: ,,是等腰三角形,又,由等腰三角形三线合一的性质可知,是三角形的角平分线,平分,,,.连接,,如图所示:是直径,,,,是直角三角形,是中点,,(2)(3)是等腰三角形,,,是等腰三角形,,是直角三角形,,,,,,是的切线.当时,四边形是平行四边形,理由如下:,是等腰直角三角形,,平分,即为中点,为中点,为的中位线,,又是中点,是的中位线,,四边形是平行四边形.过点作交于,如图所示,设半径为,由⑵可得,,,是直角三角形,在中,,,根据勾股定理可得, ,25.(1)(2)是等腰直角三角形,,,,是等腰直角三角形,是直角三角形,中,,, ,在中,,, .二次函数经过,把代入得,,又当和时二次函数的函数值相等,,整理得,即,联立,解得.或时是直角三角形,理由如下:由⑴可得二次函数,令,则,解得:,,,,令,则,,,,,,是直角三角形,在中,,,根据勾股定理可得, , ,,, ,,,,,,轴,会落在轴,且是的中垂线,,, ,, , ,连结,如图所示,,是直角三角形,在中,,,根据勾股定理可得, ,当时,即是直角三角形,根据勾股定理可得,,即,解得(舍去),,当时,即是直角三角形,根据勾股定理可得,,即,解得,,当时,与重合,故舍去,综上所述,或时,是直角三角形,②令,即,得,当时,,在中,,,根据勾股定理可得, , ,即,令,即,得,当时,与 重合,当时,设与交于点,过作轴,如图,,即四边形轴,,,,,,设,则,, , ,,, ,当时,重叠部分为,如图, , , ,综上所述,.。
2018年中山市中考数学模拟试题与答案
2018年中山市中考数学模拟试题与答案(全卷满分 120 分,考试时间 120 分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.|﹣2|=()A. B.﹣2 C.2 D.2.中国水产频道报道,据统计,广东省2017年第一季度,饲料总产量6507000吨,用科学记数法表示为()A.0.6507×107吨 B.6.507×106吨 C.6.5×106吨 D.6.507×105吨3.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.如图,图中的几何体中,它的左视图是()A. B. C. D.5.某种商品进价100元,标价150元出售,但销量较小.为了促销,商场决定打折销售,若为了保证利润率不低于5%,那么最低可以打( )A.6折 B.7折C.8折D.9折6.如果关于x的一元二次方程2x2﹣x+k=0有两个实数根,那么k的取值范围是()A.k≥ B.k≤ C.k≥﹣ D.k≤﹣7.下列函数中,图象经过原点的是( )A.y=3x B.y=1-2x C.y=4xD.y=x2-18.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于( )A.20° B.25° C. 40 D.50°9.如图,已知矩形ABCD中,R是边CD的中点,P是边BC上一动点,E、F分别是AP、RP的中点,设BP的长为x,EF的长为y,当P在BC上从B向C移动时,y与x的大致图象是()A.B.C.D.10.在同一坐标系内,函数y=kx2和y=kx-2(k≠0)的图象大致如图( )二、填空题(本题共6题,每小题4分,共24分)11.分解因式:9x﹣x3= .12.不等式组的解集是.13.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为.14.某学校准备用5000元购买文学名著和辞典作为科技创新节奖品,其中名著每套65元,辞典每本35元,现已购买名著40套,最多还能购买辞典本.15.如图,在Rt△ABC中,AB=BC,∠B=90°,AC=,四边形BDEF是△ABC的内接正方形(点D、E、F在三角形的边上).则此正方形的面积是.16.将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是 cm 2.三、解答题(本题共3题,每小题6分,共18分) 17.计算:. 18.先化简,再求值:,其中x=+1.19.如图,AE ∥BF ,AC 平分∠BAE ,交BF 于C .(1)尺规作图:过点B 作AC 的垂线,交AC 于O ,交AE 于D ,(保留作图痕迹,不写作法); (2)求证:AD=BC .四、解答题(二)(本大题3小题,每小题8分,共24分)20.某玩具店购进一种儿童玩具,计划每个售价36元,能盈利80%,在销售中出现了滞销,于是先后两次降价,售价降为25元. (1)求这种玩具的进价;(2)求平均每次降价的百分率(精确到0.1%).21.如图,平台AB 高为12m ,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,求楼房CD 的高度(3=1.7).第21题图22.某学校为了改善办学条件,计划购置一批实物投影仪和一批台式电脑,经投标,购买1台实物投影仪和2台电脑共用了11000元;购买2台实物投影仪和3台电脑共用了18000元.(1)求购买1台实物投影仪和1台电脑各需多少元?(2)根据该校实际情况,需购买实物投影仪和台式电脑的总数为50台,要求购买的总费用不超过180000元,该校最多能购买多少台电脑?五、解答题(三)(本大题2小题,每小题12分,共24分)23.如图,AB为⊙O直径,BC为⊙O切线,连接A、C两点,交⊙O于点D,BE=CE,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=CD•2OE;(3)若cos∠BAD=,BE=6,求OE的长.24.如图,已知抛物线y=12x2+bx与直线y=2x交于点O(0,0),A(a,12),点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.C2.B3.D4.B5. B6.B7.A8. D9. D 10. B二、填空题(本题共6题,每小题4分,共24分)11.x(3﹣x)(3+x) 12.﹣3<x≤1 13.k=0或k=-11 14.68 15.25 16.三、解答题(本题共3题,每小题6分,共18分)17.解:原式==18.解:原式=÷=•=,当x=+1时,原式=.19.(1)解:如图,OB即为所求;(2)证明:∵AE∥BF,∴∠EAC=∠BCA.∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC.∵BD⊥AO,AO平分∠BAD,∴AB=AD,∴AD=BC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.解:(1)36÷(1+80%)=20元.故这种玩具的进价为每个20元;(2)设平均每次降价的百分率为x.36(1﹣x)2=25,解得,x≈16.7%,或x≈183%(不合题意,舍去)故平均每次降价的百分率16.7%.21.解:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE=∴BE=CE•cot30°=12×=12.在Rt△BDE中,由∠DBE=45°,得DE=BE=12.∴CD=CE+DE=12(+1)≈32.4.答:楼房CD的高度约为32.4m.22.解:(1)设购买1台实物投影仪需x元,1台电脑需y元.则由题意可得,解得;答:购买1台实物投影仪需3000元,1台电脑需4000元.(2)设购买了a台电脑.由题意可得,3000(50﹣a)+4000a≤180000,a≤30.答:最少可以购买30台电脑.23.(1)解:连接BD、OD,如图,∵AB为圆O的直径,∴∠ADB=90°,在Rt△BDC中,E∵为斜边BC的中点,∴CE=DE=BE=BC , ∴∠C=∠CDE , ∵OA=OD , ∴∠A=∠ADO , ∵∠ABC=90°, ∴∠C+∠A=90°, ∴∠ADO+∠CDE=90°, ∴∠ODE=90°,∴DE ⊥OD ,又OD 为圆的半径, ∴DE 为⊙O 的切线;(2)证明:∵E 是BC 的中点,O 点是AB 的中点,∴OE 是△ABC 的中位线, ∴AC=2OE ,∵∠C=∠C ,∠ABC=∠BDC , ∴△ABC ∽△BDC , ∴BC :CD=AC :BC , 即BC 2=AC•CD. ∴BC 2=2CD•OE; (3)解:∵OE ∥AC ,∴∠BOE=∠BAD ,在Rt △OBE 中,cos ∠BOE==,设OB=3t ,OE=5t , 则BE=4t ,∴4t=6,解得t=,∴OE=5t=.24. 解:(1)∵点A(a ,12)在直线y =2x 上,∴12=2a ,即a =6.∴点A 的坐标是(6,12),又∵点A(6,12)在抛物线y =12x 2+bx 上,∴把A(6,12)代入y =12x 2+bx ,得b =-1.∴抛物线的函数解析式为y =12x 2-x(2)∵点C 为OA 的中点,∴点C 的坐标是(3,6),把y =6代入y =12x 2-x ,解得x 1=1+13,x 2=1-13(舍去),∴BC =1+13-3=13-2(3)∵点D 的坐标为(m ,n),∴点E 的坐标为(12n ,n),点C 的坐标为(m ,2m),∴点B 的坐标为(12n ,2m).把(12n ,2m)代入y =12x 2-x ,得2m =12(12n)2-(12n),即m =116n 2-14n ,∴m ,n 之间的关系式为m =116n 2-14n。
[试卷合集3套]广东省名校2018届中考数学一模数学试题及答案
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C.D.【答案】A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.2.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°【答案】C【解析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.3.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.【答案】C【解析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=1【答案】A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答. 【详解】∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选A.【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.5.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 6.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】D【解析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.7.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6【答案】D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.8.如图,四边形ABCD内接于⊙O,F是CD上一点,且DF BC=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°【答案】B【解析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵DF BC=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.9.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间【答案】A【解析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A 为停靠点,则所有人的路程的和=15×100+10×300=1(米),②以点B 为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C 为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB 之间停靠时,设停靠点到A 的距离是m ,则(0<m <100),则所有人的路程的和是:30m+15(100﹣m )+10(300﹣m )=1+5m >1,⑤当在BC 之间停靠时,设停靠点到B 的距离为n ,则(0<n <200),则总路程为30(100+n )+15n+10(200﹣n )=5000+35n >1.∴该停靠点的位置应设在点A ;故选A .【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短.10.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.二、填空题(本题包括8个小题)11.关于x的不等式组3515-12xx a->⎧⎨≤⎩有2个整数解,则a的取值范围是____________.【答案】8⩽a<13;【解析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式3x−5>1,得:x>2,解不等式5x−a⩽12,得:x⩽125a+,∵不等式组有2个整数解,∴其整数解为3和4,则4⩽125a+<5,解得:8⩽a<13,故答案为:8⩽a<13【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键12.如图,已知△ABC和△ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB=4,则OE的最小值为_____.【答案】1【解析】根据等边三角形的性质可得OC=12AC,∠ABD=30°,根据“SAS”可证△ABD≌△ACE,可得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE的最小值.【详解】解:∵△ABC的等边三角形,点O是AC的中点,∴OC=12AC,∠ABD=30°∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD当OE⊥EC时,OE的长度最小,∵∠OEC =90°,∠ACE =30°∴OE 最小值=12OC =14AB =1, 故答案为1【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键. 13.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .【答案】-2<k <12。
2018年广东省中考数学模拟试卷及答案(一)
2018年广东省中考数学模拟试卷及答案(一)2018年广东省中考数学模拟试卷(一)一、单项选择题(本题共10个小题,每小题3分,共30分)1.(3分)-3的相反数是()。
A。
3 B。
0 C。
-3 D。
无法确定2.(3分)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()。
A。
美 B。
丽 C。
广 D。
州3.(3分)2016年3月,XXX中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目。
该项目标的金额为13.09亿美元。
13.09亿用科学记数法表示为()。
A。
13.09×10^8 B。
1.309×10^10 C。
1.309×10^9 D。
1309×10^64.(3分)如图所示,几何体的主视图是()。
A。
B。
C。
D。
5.(3分)反比例函数y=k/x,则k的取值范围是()。
A。
k。
1 B。
k。
0 C。
k < 1 D。
k < 06.(3分)XXX根据演讲比赛中九位评委所给的分数作了如下表格:平均数 8.5中位数 8.3众数 8.1方差 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()。
A。
平均数 B。
众数 C。
方差 D。
中位数7.(3分)如图,⊙O是△ABC的外接圆,∠XXX°,则∠A的度数是()。
A。
42° B。
48° C。
52° D。
58°8.(3分)如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,)。
A。
4 B。
7 C。
3 D。
129.(3分)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()。
A。
48 + 5x = 720 B。
48x + 5 = 720 C。
720 + 5x = 48 D。
720x + 5 = 4810.(3分)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,按照此规律继续下去,则S2016的值为()。
广东省中山市数学中考一模试卷
广东省中山市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·娄星期末) 对于函数的图象,下列说法不正确的是()A . 开口向下B . 对称轴是C . 最大值为0D . 与轴不相交2. (2分) (2015八上·北京期中) 下图中的轴对称图形有()A . (1),(2)B . (1),(4)C . (2),(3)D . (3),(4)3. (2分) (2019九下·象山月考) “367 人中有 2 人同月同日生”这一事件是()A . 随机事件B . 必然事件C . 不可能事件D . 确定事件4. (2分)(2018·西华模拟) 从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为()A .B .C .D .5. (2分)方程(x﹣1)(x+3)=12化为ax2+bx+c=0的形式后,a、b、c的值为()A . 1、2、﹣15B . 1、﹣2、﹣15C . ﹣1、﹣2、﹣15D . ﹣1、2、﹣156. (2分) (2017九上·东丽期末) 函数中,当时,函数值的取值范围是()A .B .C .D .7. (2分)已知一元二次方程2x2-5x+3=0,则该方程根的情况是().A . 有两个不相等的实数根B . 有两个相等的实数根C . 两个根都是自然数D . 无实数根8. (2分)(2016·湖州) 如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A . 25°B . 40°C . 50°D . 65°9. (2分) (2018九上·丹江口期末) 如图,在△ABC中,AC=6,BC=8,AB=10,D,E分别是AC,BC的中点,则以DE为直径的圆与AB的位置关系是()A . 相切B . 相交C . 相离D . 无法确定10. (2分)(2017·广州模拟) 如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1 ,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2 ,交x轴于A2;将C2绕A2旋转180°得到C3 ,交x轴于A3;…如此进行下去,若点P(2017,m)在第1009段抛物线C1009上,则m的值为()A . ﹣1B . 0C . 1D . 不确定二、填空题 (共8题;共8分)11. (1分)关于y的一元二次方程2y2﹣4y﹣6=0的解为________.12. (1分)(2018·秀洲模拟) 如图,点P(3,4),⊙P半径为2,A(2.8,0),B(5.6,0),点M是⊙P 上的动点,点C是MB的中点,则AC的最小值是________.13. (1分) (2016九上·老河口期中) 在某次聚会上,每两人都握了一次手,所有人共握手36次,参加这次聚会的有________人.14. (1分) (2015八上·永胜期末) 学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手讲:“另两条边长为3、6或4.5、4.5”,你认为小明回答是否正确:________,理由是________.15. (1分) (2018九上·辽宁期末) 已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面圆的半径为________cm.16. (1分) (2017九下·泉港期中) 如图,⊙O是△ABC的外接圆,∠C=90°,si n∠A= ,BC=2 ,则⊙O的半径为________.17. (1分) (2020八上·长兴期末) 如图,△AOB中,∠AOB=90°,OA=OB,等腰直角△CDF的直角顶点C在边OA上,点D在边OB上,点F在边AB上,如果△CDF的面积是△AOB的面积的,OD=2,则△AOB的面积为________。
广东省中山市教育联合体2018届数学中考一模试卷及参考答案
A . 8﹣π B . C . 3+π D . π
二、填空题
10. 分解因式:xy2﹣4x=________.
11. 已知式子
有意义,则x的取值范围是________
12. 不等式组
的解集是________.
13. 如图是二次函数
和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.
14. 若x=3﹣ ,则代数式x2﹣6x+9的值为________.
三、解答题
15. 计算:|﹣2|+2﹣1﹣cos60°﹣(1﹣ )0 .
16. 先化简,再求值:先化简
÷( ﹣x+1),然后从﹣2<x< 的范围内选取一个合适的整数作为x的值
代入求值.
17. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每
广东省中山市教育联合体2018届数学中考一模试卷
一、单选题
1. ﹣5的相反数是( ) A . ﹣5 B . 5 C . ﹣ D . 2. 据2017年1月24日《中山日报》报道,三乡镇2016年财政收入突破180亿元,在中山各乡镇中排名第二.将180亿用
科学记数法表示为( ) A . 1.8×10 B . 1.8×108 C . 1.8×109 D . 1.8×1010
根据以上统计图提供的信息,请解答下列问题:
(1) m=,n=. (2) 补全上图中的条形统计图. (3) 在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红 、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率 .(解答过程中,可将小薇、小燕、小红、小梅分别用字母A、B、C、D代表) 20. 如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.
2018年广东省中山市教育联合体中考数学一模试卷
2018年广东省中山市教育联合体中考数学一模试卷2018年广东省中山市教育联合体中考数学一模试卷一、选择题(每小题3分,满分30分)1.(3分)﹣5的相反数是()A.﹣5 B.5 C.﹣D.2.(3分)据2017年1月24日《中山日报》报道,三乡镇2016年财政收入突破180亿元,在中山各乡镇中排名第二.将180亿用科学记数法表示为()A.1.8×10 B.1.8×108C.1.8×109D.1.8×10103.(3分)下列运算正确的是()A.B.(m2)3=m5C.a2•a3=a5 D.(x+y)2=x2+y24.(3分)已知正n边形的一个内角为135°,则边数n的值是()A.6 B.7 C.8 D.105.(3分)下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个6.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:金额(元)20303550100学生数(人)20105105则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元.7.(3分)小明想用一个圆心角为120°,半径为6cm的扇形做一个圆锥的侧面(接缝处忽略不计),则做成的圆锥底面半径为()A.1 cm B.2 cm C.3 cm D.4cm8.(3分)如图,P是反比例函数图象上第二象限内一点,若矩形PEOF的面积为3,则反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=9.(3分)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A.B. C.D.10.(3分)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.8﹣πB.C.3+πD.π二、填空题(本大题共有6小题,每小题4分,共24分)11.(4分)分解因式:xy2﹣4x= .12.(4分)已知式子有意义,则x的取值范围是21.(7分)纪中三鑫双语学校准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种).根据以上统计图提供的信息,请解答下列问题:(1)m= ,n= .(2)补全上图中的条形统计图.(3)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率.(解答过程中,可将小薇、小燕、小红、小梅分别用字母A、B、C、D 代表)22.(7分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.五.解答题(三)(本题共3个小题,每题9分,共27分)23.(9分)如图,抛物线y=﹣+bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)在对称轴的左侧是否存在点M使四边形OMPB的面积最大,如果存在求点M 的坐标;不存在请说明理由.24.(9分)如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当=时,延长AB至点E,使BE=AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.25.(9分)在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC=,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD 上,使RQ始终与直线BP垂直.(1)如图1,当点R与点D重合时,求PQ的长;(2)如图2,试探索:的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图3,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域.2018年广东省中山市教育联合体中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,满分30分)1.【解答】解:﹣5的相反数是5.故选:B.2.【解答】解:180亿用科学记数法表示为1.8×1010,故选:D.3.【解答】解:A、=3,本选项错误;B、(m2)3=m6,本选项错误;C、a2•a3=a5,本选项正确;D、(x+y)2=x2+y2+2xy,本选项错误,故选:C.4.【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,n=360°÷45°=8.故选:C.5.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.6.【解答】解:∵捐款金额为20元的学生数最多为20人,∴众数为20元,∵共有50位同学捐款,∴第25位同学和26位同学捐款数的平均数为中位数,即中位数为:=30元;故选:A.7.【解答】解:设底面半径为Rcm,则底面周长=2Rπcm,侧面面积=×2Rπ×6=,∴R=2cm.故选:B.8.【解答】解:由图象上的点所构成的矩形PEOF的面积为3可知,S=|k|=3,k=±3.又由于反比例函数的图象在第二、四象限,k<0,则k=﹣3,所以反比例函数的解析式为y=﹣,故选:A.9.【解答】解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BA D=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故选:D.10.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:A.二、填空题(本大题共有6小题,每小题4分,共24分)11.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)12.【解答】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+3≠0,解得:x≤1且x≠﹣3.故答案为:x≤1且x≠﹣3.13.【解答】解:解不等式x﹣1<0,得:x<1,解不等式x+2≥0,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,故答案为:﹣2≤x<1.14.【解答】解:根据图象可得出:当y1≥y2时,x的取值范围是:﹣1≤x≤2.故答案为:﹣1≤x≤2.15.【解答】解:x2﹣6x+9=(x﹣3)2,当x=3﹣时,原式=(3﹣﹣3)2=2,故答案为:2.16.【解答】解:∵直线y=x+1和y轴交于A1,∴A1的坐标(0,1),即OA1=1,∵四边形C1OA1B1是正方形,∴OC1=OA1=1,把x=1代入y=x+1得:y=2,∴A2的坐标为(1,2),同理A3的坐标为(3,4),…∴An的坐标为(2n﹣1﹣1,2n﹣1),∴A5的坐标是(25﹣1﹣1,25﹣1),即(15,16),故答案为:(15,16).三.解答题(一)(本大题3小题,每小题6分,共18分)17.【解答】解:原式=2+﹣﹣1=2﹣1=1.18.【解答】解:原式=÷[﹣]=÷=•=﹣,∵﹣2<x<且x+1≠0,x﹣1≠0,x≠0,x是整数,∴x=2,当x=2时,原式=﹣.19.【解答】解:设每个支干长出x小分支,则1+x+x2=91,解得:x1=9,x2=﹣10,答:每个支干长出9小分支.四.解答题(二)(本大题3小题,每小题7分,共21分)20.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.21.【解答】解:(1)由题意m=30÷30%=100,排球占×100%=5%,则n=5,故答案为100,5.(2)足球的人数是:100﹣30﹣20﹣10﹣5=35人,条形图如图所示,(3)根据题意画树状图如下:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(B、C两人进行比赛)==.22.【解答】(1)证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四边形ADEF是平行四边形;(2)解:过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DG=BD=×4=2,∵BE=DE,∴BH=DH=2,∴BE==,∴DE=,∴四边形ADEF的面积为:DE•DG=.五.解答题(三)(本题共3个小题,每题9分,共27分)23.【解答】解:(1)设直线AB的解析式为y=px+q,把A(3,0),B(0,2)代入得,解得,∴直线AB的解析式为y=﹣x+2;把A(3,0),B(0,2)代入y=﹣+bx+c得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)∵M(m,0),MN⊥x轴,∴N(m,﹣m2+m+2),P(m,﹣m+2),∴NP=﹣m2+4m,PM=﹣m+2,而NP=PM,∴﹣m2+4m=﹣m+2,解得m1=3(舍去),m2=,∴N点坐标为(,);(3)在对称轴的左侧不存在点M使四边形OMPB的面积最大,理由如下:B(0,2),M(m,0),MN⊥x轴,∴P(m,﹣m+2),S梯形OMPB=(PM+OB)•OM=(﹣m+2+2)m=﹣m2+2m=﹣(m﹣3)2+3∵对称轴是x=﹣=,M在对称轴的左侧,∴0<m<,∴m的值无法确定,在对称轴的左侧不存在点M使四边形OMPB的面积最大.24.【解答】解:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===2;(2)①证明:如图3,连接OD,交CB于点F,连接BD,∵=,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.25.【解答】解:(1)由题意,得AB=BC=CD=AD=8,∠C=∠A=90°,在Rt△BCP中,∠C=90°,∴,∵,∴PC=6,∴RP=2,∴,∵RQ⊥BQ,∴∠RQP=90°,∴∠C=∠RQP,∵∠BPC=∠RPQ,∴△PBC∽△PRQ,∴,∴,∴;(2)的比值随点Q的运动没有变化,如图1,∵MQ∥AB,∴∠1=∠ABP,∠QMR=∠A,∵∠C=∠A=90°,∴∠QMR=∠C=90°,∵RQ⊥BQ,∴∠1+∠RQM=90°、∠ABC=∠ABP+∠PBC=90°,∴∠RQM=∠PBC,∴△RMQ∽△PCB,∴,∵PC=6,BC=8,∴,∴的比值随点Q的运动没有变化,比值为;(3)如图2,延长BP交AD的延长线于点N,∵PD∥AB,∴,∵NA=ND+AD=8+ND,∴,∴,∴,∵PD∥AB,MQ∥AB,∴PD∥MQ,∴,∵,RM=y,∴又PD=2,,∴,∴,如图3,当点R与点A重合时,PQ取得最大值,∵∠ABQ=∠NBA、∠AQB=∠NAB=90°,∴△ABQ∽△NAB,∴=,即=,解得x=,则它的定义域是.。
广东省中山市中考数学一模试卷
广东省中山市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共46分)1. (4分)下列算式中正确的是()A . (-0.001)0=-1B . (a2b5)5÷(-ab2)10=b5C . (4x)-2=D .3.24×10-3=0.0003242. (4分)下列计算正确的是()A . +=B . a3÷a2=aC . a2•a3=a6D . (a2b)2=a2b23. (4分)观察下图中各组图形,其中不是轴对称的是()A .B .C .D .4. (4分) 2012年,义乌市城市居民人均可支配收入约为44500元,居全省县级市之首,数字44500用科学计数法可表示为()A .B .C .D .5. (2分)(2018·聊城) 如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A . 110°B . 115°C . 120°D . 125°6. (4分)(2019·青海模拟) 下表是某公司员工月收入的资料:月收入/元45000180001000055005000340033001000人数111361111能够反映该公司全体员工月收入水平的统计量是()A . 平均数和众数B . 平均数和中位数C . 中位数和众数D . 平均数和方差7. (4分)如图,圆O的内接四边形ABCD中,BC=DC,∠BOC=130°,则∠BAD的度数是()A . 120°B . 130°C . 140°D . 150°8. (4分)(2017·鄂州) 对于不等式组,下列说法正确的是()A . 此不等式组的正整数解为1,2,3B . 此不等式组的解集为﹣1<x≤C . 此不等式组有5个整数解D . 此不等式组无解9. (4分)已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A . 一、二、三象限B . 一、二、四象限C . 一、三、四象限D . 一、二、三、四象限.10. (4分) (2016八上·大同期末) 小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A .B .C .D .11. (4分) (2019九上·硚口月考) 二次函数的图象如图所示,对称轴为直线,下列结论不正确的是()A .B . 当时,顶点的坐标为C . 当时,D . 当时,y随x的增大而增大12. (4分)(2019·泰山模拟) 如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,,BD与CF相交于点给出下列结论:①BE=2AE;②△DFP∽△BPA:③ :④DP2=PH.PC 其中正确的是()A . ①②③④B . ①③④C . ②③D . ①②④二、填空题 (共6题;共24分)13. (4分)(2017·大连) 关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为________.14. (4分)(2018·遵义模拟) 如图,两条抛物线y1=- x2+1、y2=- x2-1与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线圈成的阴影部分的面积为________.15. (4分)(2017·市北区模拟) 如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=________度.16. (4分) (2017九上·虎林期中) 如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为________.17. (4分)如图所示,在△ABC中,AB=AC,D,E分别是AB,AC的中点,G,H为BC上的点连接DH,EG.若AB=5cm,BC=6cm,GH=3cm,则图中阴影部分的面积为________.18. (4分)(2018·江津期中) 如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点Ai ,交直线于点Bi .则 =________.三、解答题 (共7题;共78分)19. (8分)计算:(3x﹣2)(2x+3)﹣(x﹣1)2;20. (10.0分) (2016九上·思茅期中) 在云南省某市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为:“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.你结合图中信息,解答下列问题:(1)本次共调查了________名学生;(2)被调查的学生中,最喜爱丁类图书的学生有________人,最喜爱甲类图书的人数占本次被调查人数的________ %;扇形统计图中甲类部分的圆心是________.(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生2400人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人?21. (11.0分) (2018·天津) 在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,, .(1)如图①,当点落在边上时,求点的坐标;(2)如图②,当点落在线段上时,与交于点 .①求证;②求点的坐标.(3)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).22. (12分)(2017·徐州模拟) 在▱ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则▱ABCD应满足什么条件?(不需要证明)23. (12分)(2018·东莞模拟) 学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?24. (12分)(2019·丹东) 已知:在△ABC外分别以AB,AC为边作△AEB与△AFC.(1)如图1,△AEB与△AFC分别是以AB,AC为斜边的等腰直角三角形,连接EF.以EF为直角边构造Rt△EFG,且EF=FG,连接BG,CG,EC.求证:①△AEF≌△CGF;②四边形BGCE是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在△ABC外分别以AB,AC为斜边作Rt△AEB与Rt△AFC,并使∠FAC=∠EAB=30°,取BC的中点D,连接DE,EF后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出的值及∠DEF的度数.(3)小颖受到启发也做了探究:如图3,在△ABC外分别以AB,AC为底边作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB=90°,取BC的中点D,连接DE,EF后发现,当给定∠EAB=α时,两者间也存在一定的数量关系且夹角度数一定,若AE=m,AB=n,请你帮助小颖用含m,n的代数式直接写出的值,并用含α的代数式直接表示∠DEF的度数.25. (13.0分)(2019·台州模拟) 如图,已知抛物线y=ax +bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若B是线段AD上的一个动点(E与A.D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由。
最新-广东省中山市三乡镇初级中学2018年中考数学第一
广东省中山市三乡镇初级中学2018年中考数学第一次模拟考试试题(无答案) 人教新课标版说明:全卷共22大题,4页。
考试时间90分钟,满分120分。
一、选择题(本大题共5小题,每小题3分,满分15分)1.抛物线()322+-=x y 的顶点坐标是( ) A (-2,3) B (2,3) C (-2,-3) D (2,-3)2. 下列四个几何体中,俯视图是圆的几何体共有( )1个 B. 2个 C. 3个 D. 4个3. 如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE 的值为( )A .32B .41C .31D .21 4. 如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形( )A 、 1对B 、 2对C 、3对D 、4对5.直角坐标平面上将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( )A.(0,0)B.(1,-2)C.(0,-1)D.(-2,1)二、填空题(本大题共5小题,每小题4分,满分20分)6、如图,已知Rt△ABC 中,斜边BC 上的高AD =4,cosB =54,则AC =____________。
7.函数s =2t-t 2,当t=___________时有最大值,最大值是__________.8.已知cosB=23,则∠B=__________。
9.若ABC △的周长为20cm ,点D E F ,,分别是ABC △三边的中点,则DEF △的周长为_____________。
10.函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是 。
三、解答题(共12个小题,满分85分)11.计算(5分)22cos45°-cot 230°+33 sin 60°12.(每题5分,共10分)已知下列条件,求二次函数的解析式.(1)经过(1,0),(0,2),(2,3)三点.(2)图象与x 轴一交点为(-1,0),顶点(1,4).13.(5分)如图,△ABC 中,90,60,C B ∠=∠=BC=6,求A ∠及b 、c 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年广东省中山市教育联合体中考数学一模试卷2018年广东省中山市教育联合体中考数学一模试卷一、选择题(每小题3分,满分30分)1.(3分)﹣5的相反数是()A.﹣5 B.5 C.﹣D.2.(3分)据2017年1月24日《中山日报》报道,三乡镇2016年财政收入突破180亿元,在中山各乡镇中排名第二.将180亿用科学记数法表示为()A.1.8×10 B.1.8×108C.1.8×109D.1.8×10103.(3分)下列运算正确的是()A.B.(m2)3=m5C.a2•a3=a5 D.(x+y)2=x2+y24.(3分)已知正n边形的一个内角为135°,则边数n的值是()A.6 B.7 C.8 D.105.(3分)下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个6.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:金额(元)20303550100学生数(人)20105105则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元.7.(3分)小明想用一个圆心角为120°,半径为6cm的扇形做一个圆锥的侧面(接缝处忽略不计),则做成的圆锥底面半径为()A.1 cm B.2 cm C.3 cm D.4cm8.(3分)如图,P是反比例函数图象上第二象限内一点,若矩形PEOF的面积为3,则反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=9.(3分)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A.B. C.D.10.(3分)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.8﹣πB.C.3+πD.π二、填空题(本大题共有6小题,每小题4分,共24分)11.(4分)分解因式:xy2﹣4x= .12.(4分)已知式子有意义,则x的取值范围是13.(4分)不等式组的解集是14.(4分)如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是.15.(4分)若x=3﹣,则代数式x2﹣6x+9的值为.16.(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A5的坐标是.三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:|﹣2|+2﹣1﹣cos60°﹣(1﹣)0.18.(6分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.19.(6分)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?四.解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.21.(7分)纪中三鑫双语学校准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种).根据以上统计图提供的信息,请解答下列问题:(1)m= ,n= .(2)补全上图中的条形统计图.(3)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率.(解答过程中,可将小薇、小燕、小红、小梅分别用字母A、B、C、D 代表)22.(7分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.五.解答题(三)(本题共3个小题,每题9分,共27分)23.(9分)如图,抛物线y=﹣+bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)在对称轴的左侧是否存在点M使四边形OMPB的面积最大,如果存在求点M 的坐标;不存在请说明理由.24.(9分)如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当=时,延长AB至点E,使BE=AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.25.(9分)在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC=,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD 上,使RQ始终与直线BP垂直.(1)如图1,当点R与点D重合时,求PQ的长;(2)如图2,试探索:的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图3,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域.2018年广东省中山市教育联合体中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,满分30分)1.【解答】解:﹣5的相反数是5.故选:B.2.【解答】解:180亿用科学记数法表示为1.8×1010,故选:D.3.【解答】解:A、=3,本选项错误;B、(m2)3=m6,本选项错误;C、a2•a3=a5,本选项正确;D、(x+y)2=x2+y2+2xy,本选项错误,故选:C.4.【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,n=360°÷45°=8.故选:C.5.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.6.【解答】解:∵捐款金额为20元的学生数最多为20人,∴众数为20元,∵共有50位同学捐款,∴第25位同学和26位同学捐款数的平均数为中位数,即中位数为:=30元;故选:A.7.【解答】解:设底面半径为Rcm,则底面周长=2Rπcm,侧面面积=×2Rπ×6=,∴R=2cm.故选:B.8.【解答】解:由图象上的点所构成的矩形PEOF的面积为3可知,S=|k|=3,k=±3.又由于反比例函数的图象在第二、四象限,k<0,则k=﹣3,所以反比例函数的解析式为y=﹣,故选:A.9.【解答】解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故选:D.10.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:A.二、填空题(本大题共有6小题,每小题4分,共24分)11.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)12.【解答】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+3≠0,解得:x≤1且x≠﹣3.故答案为:x≤1且x≠﹣3.13.【解答】解:解不等式x﹣1<0,得:x<1,解不等式x+2≥0,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,故答案为:﹣2≤x<1.14.【解答】解:根据图象可得出:当y1≥y2时,x的取值范围是:﹣1≤x≤2.故答案为:﹣1≤x≤2.15.【解答】解:x2﹣6x+9=(x﹣3)2,当x=3﹣时,原式=(3﹣﹣3)2=2,故答案为:2.16.【解答】解:∵直线y=x+1和y轴交于A1,∴A1的坐标(0,1),即OA1=1,∵四边形C1OA1B1是正方形,∴OC1=OA1=1,把x=1代入y=x+1得:y=2,∴A2的坐标为(1,2),同理A3的坐标为(3,4),…∴An的坐标为(2n﹣1﹣1,2n﹣1),∴A5的坐标是(25﹣1﹣1,25﹣1),即(15,16),故答案为:(15,16).三.解答题(一)(本大题3小题,每小题6分,共18分)17.【解答】解:原式=2+﹣﹣1=2﹣1=1.18.【解答】解:原式=÷[﹣]=÷=•=﹣,∵﹣2<x<且x+1≠0,x﹣1≠0,x≠0,x是整数,∴x=2,当x=2时,原式=﹣.19.【解答】解:设每个支干长出x小分支,则1+x+x2=91,解得:x1=9,x2=﹣10,答:每个支干长出9小分支.四.解答题(二)(本大题3小题,每小题7分,共21分)20.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.21.【解答】解:(1)由题意m=30÷30%=100,排球占×100%=5%,则n=5,故答案为100,5.(2)足球的人数是:100﹣30﹣20﹣10﹣5=35人,条形图如图所示,(3)根据题意画树状图如下:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(B、C两人进行比赛)==.22.【解答】(1)证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四边形ADEF是平行四边形;(2)解:过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DG=BD=×4=2,∵BE=DE,∴BH=DH=2,∴BE==,∴DE=,∴四边形ADEF的面积为:DE•DG=.五.解答题(三)(本题共3个小题,每题9分,共27分)23.【解答】解:(1)设直线AB的解析式为y=px+q,把A(3,0),B(0,2)代入得,解得,∴直线AB的解析式为y=﹣x+2;把A(3,0),B(0,2)代入y=﹣+bx+c得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)∵M(m,0),MN⊥x轴,∴N(m,﹣m2+m+2),P(m,﹣m+2),∴NP=﹣m2+4m,PM=﹣m+2,而NP=PM,∴﹣m2+4m=﹣m+2,解得m1=3(舍去),m2=,∴N点坐标为(,);(3)在对称轴的左侧不存在点M使四边形OMPB的面积最大,理由如下:B(0,2),M(m,0),MN⊥x轴,∴P(m,﹣m+2),S梯形OMPB=(PM+OB)•OM=(﹣m+2+2)m=﹣m2+2m=﹣(m﹣3)2+3∵对称轴是x=﹣=,M在对称轴的左侧,∴0<m<,∴m的值无法确定,在对称轴的左侧不存在点M使四边形OMPB的面积最大.24.【解答】解:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===2;(2)①证明:如图3,连接OD,交CB于点F,连接BD,∵=,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.25.【解答】解:(1)由题意,得AB=BC=CD=AD=8,∠C=∠A=90°,在Rt△BCP中,∠C=90°,∴,∵,∴PC=6,∴RP=2,∴,∵RQ⊥BQ,∴∠RQP=90°,∴∠C=∠RQP,∵∠BPC=∠RPQ,∴△PBC∽△PRQ,∴,∴,∴;(2)的比值随点Q的运动没有变化,如图1,∵MQ∥AB,∴∠1=∠ABP,∠QMR=∠A,∵∠C=∠A=90°,∴∠QMR=∠C=90°,∵RQ⊥BQ,∴∠1+∠RQM=90°、∠ABC=∠ABP+∠PBC=90°,∴∠RQM=∠PBC,∴△RMQ∽△PCB,∴,∵PC=6,BC=8,∴,∴的比值随点Q的运动没有变化,比值为;(3)如图2,延长BP交AD的延长线于点N,∵PD∥AB,∴,∵NA=ND+AD=8+ND,∴,∴,∴,∵PD∥AB,MQ∥AB,∴PD∥MQ,∴,∵,RM=y,∴又PD=2,,∴,∴,如图3,当点R与点A重合时,PQ取得最大值,∵∠ABQ=∠NBA、∠AQB=∠NAB=90°,∴△ABQ∽△NAB,∴=,即=,解得x=,则它的定义域是.。