雷云的产生和雷电放电过程

雷云的产生和雷电放电过程
雷云的产生和雷电放电过程

雷云的产生和雷电放电过程

1.1.1 雷电发生机理

雷电是由雷云放电引起的,关于雷云的聚集和带电至今还没有令人满意的解释,目前比较普遍的看法是:热气流上升时冷凝产生冰晶,气流中的冰晶碰撞后分裂导致较轻的部分带负电荷并被风吹走形成大块的雷云;较重的部分带正电荷并可能凝聚成水滴下降,它们在重力作用下下落的速度大,并在下落过程中与其他水份粒子发生碰撞,结果一部分被另一水生成物捕获,增大水成物的体积,另一部分云粒子被反弹回去,这些反弹回去的云粒子通常带正电荷,悬浮在空中形成一些局部带正电的云区,而水生成物带上负电荷。由于水成物下降的速度快,而云粒子的下降速度慢,因而正、负电荷的微粒逐惭分离,最后形成带正电的云粒在云的上部,而带负电的水成物在云的下部。整块雷云里边可以有若干个电荷中心。负电荷中心,离地大约500~10000m。它在地面上感应出大量的正电荷。

随着雷云的发展和运动,一旦空间电场强度超过大气游离放电的临界电场强度(大气中约为30kV/cm,有水滴存在时约为10kV/cm)时,就会发生云间或对大地的火花放电。雷电放电包括雷云对大地,雷云对雷云和雷云内部的放电现象。大多数雷云放电都是在雷点与雷云之间进行的,只有少数是对地进行的。在防雷工程中,主要关心的是雷云对大地的放电,如图1-1所示。

图1-1云对地放电(用彩色)

雷云对大地放电通常分为先导放电、主放电和辉光放电三个阶段。云一地之

间的线状雷电在开始时往往从雷云边缘向地面发展,以逐级推进方式向下发展。每级长度约10~200m,每级的伸展速度约107m/s,各级之间有10~100μs的停歇,所以平均发展速度只有(1~8)×105m/s,这种放电称为先导放电,如图1-3所示。当先导接近地面时,地面上一些高耸的物体(如塔尖或山顶)因周围电场强度达到了能使空气电离的程度,会发出向上的迎面先导。当它与下行先导相遇时,就出现了强烈的电荷中和过程,出现极大的电流(数十到数百千安),伴随着雷鸣和闪光,这就是雷电的主放电阶段。主放电的过程极短,只有50~100μs,它是沿着负的下行先导通道,由下而上逆向发展,故又称“回击”,其速度高达2×107~1.5×108m/s。以上是负电荷雷云对地放电的基本过程,可称为下行负雷闪;对应于正电荷雷云对地放电的下行正雷闪所占的比例很小,其发展过程亦基本相似。主放电完成后,云中剩余的电荷沿着原来的主放电通道继续流入大地,看到的是一片模糊的发光,这就是辉光放电。

从旋转相机拍下的光学照片显示,大多数云对地雷击是重复的,即在第一次雷击形成的放电通道中,会有多次放电尾随,放电之间的间隔大约为0.5~500ms。主要原因是:在雷云带电的过程中,在云中可形成若干个密度较高的电荷中心,第一次先导一主放电冲击泄放的主要是第一个电荷中心的电荷。在第一次冲击完成之后,主放电通道暂时还保持高于周围大气的电导率,别的电荷中心将沿已有的主放电通道对地放电,从而形成多重雷击。第二次及以后的放电,先导都是自上而下连续发展的,没有停顿现象。放电的数目平均为2~3次,最多观测到42次。通常第一次冲击放电的电流最大,以后的电流幅值都比较小。图1-2所示为用旋转相机和高压示波器拍摄和记录的负雷云对地放电的典型过程和电流波形。

时间

图1-2雷电放电的发展过程和雷电流的波形

若地面上存在特别高的导电性能良好的接地物体时,也可能首先从该物体顶端出发,发展向上的先导,称上行雷。但上行雷先导到达雷云时,一般不会发生主放电进程,这是因为雷云的导电性能比大地差得多,难以在极短的时间内提供为中和先导通道中电荷所需要的主放电电流,而只能向雷云深处发展多分支的云中先导。通过宽广区域的电晕流洼,从分散的水性质点上卸下电荷,汇集起来,以中和上行先导中的部分电荷。这样电流放电过程显然只能是较缓和的,而不可能有大冲击电流的特性。其放电电流一般不足千安,而延续时间则较长,可能长达10-1s。此外,上行先导从一开始就出现分支的概率较大。

1.1.2雷击时的等值电路

雷击地面发生主放电的开始,可以用图1-3中开关S的闭合来表示。图中Z 是被击物与大地(零电位)之间的阻抗,σ是先导放电通道中电荷的线密度,S 闭合之前相当于先导放电阶段。S突然闭合,相当于主放电开始,如图1-3(b)所示。发生主放电时,将有大量的正、负电荷沿先导通道逆向运动,并中和雷云中的负电荷。由于电荷的运动形成电流i,因此雷击点A的电位也突然发生变化(u=iZ)。雷电流i的大小与先导通道的电荷密度以及主放电的发展速度有关(i=σv)。

在防雷研究中,最关心的是雷击点A的电位升高,而可以不考虑主放电速度、先导电荷密度及具体的雷击物理过程,因此可以从A点的电位出发来把雷电放电过程简化为一个数学模型,如图1-3(c)所示;进而得到其彼得逊等值电路,如图1-3中(d)、(e)所示。图中,Z0表示雷电通道的波阻抗(我国规程建议取300~400Ω)。需要说明的是:尽管雷云有很高的初始电位才可能导致主放电,但地面被击物体的电位并不取决于这一初始电位,而是取决于雷电流与被击物体阻抗的乘积。所以,从电源的性质看,雷电具有电流源的性质。

------------

A s -S

)(a )(b s (c)

(a )先导放电;(b )主放电;(c )计算模型;(d )电压源等值电路;(e )电流源等值电路Z 0o o 0Z

图1-3雷电放电模型和等值电路

在雷击点A 与地中零电位面之间串接着一个阻抗,它可以代表被击中物体的接地电阻R ,也可以代表被击物体的波阻抗Z 。从图1-3(e )中可以看出,当Z =0时,i=2i 0;若Z <

雷电放电有单通道放电,如图1-4所示,和多通道,如图1-5所示,先导放电是不规则的树枝状(如图1-4所示),但它还是具有分布参数的特征,作为粗略估计一般假设它是一个具有均匀电感、电容等分布参数的导电通道,即可以假设其波阻抗是均匀的。

图1-4单通道雷电放电过程(用彩色)

图1-5多通道雷电放电

雷电放电涉及气象、地貌等自然条件,随机性很大,关于雷电特性的诸参数因此具有统计的性质,需要通过大量实测才能确定,防雷保护设计的依据即来源于这些实测数据。在防雷设计中,最关心的是雷电流波形、幅值分布及落雷密度等参数。

1.1.3 雷电流幅值和波形

(1) 幅值分布的概率

雷电流是单极性的脉冲波。对一般地区,我国现行标准推荐雷电流幅值分布的概率如下:

88lg I

P -= (1-1)

其中,I 为雷电流幅值(kA );P 为幅值大于I 的雷电流概率。例如,当雷击时,出现幅值大于50kA 雷电流的概率为33%,大于88kA 的概率为10%。该公式是从1025个有效的雷电流观测数据中归纳出来的。

对年雷暴日数小于20的地区(我国除陕南以外的西北地区、内蒙古的部分地区),雷电流幅值较小,P 可按下式计算:

44lg I

P -= (1-2)

(2) 波形和极性

虽然雷电流的幅值随各国气象条件相差很大,但各国测得的雷电流波形却是基本一致的。根据实测统计,雷电流的波头时间大多为1~5μs ,平均为2~2.5μs 。我国的防雷规程建议雷电流的波头时间取2.6μs ,此时雷电流的平均波头陡度a 与幅值成正比,即

6.2I

a = kA/μs (1-3)

雷电流的波长大多为20~100μs ,平均约为50μs ,大于50μs 的仅占18~30%。因此,在保护计算中,雷电流的波形可以采用2.6/50μs 的双指数波。

在线路防雷设计中,一般可取斜角平顶波头以简化计算,我国规程规定雷电波的波头时间采用2.6μs 。而在特高塔的防雷设计中,为更接近于实际,可取半余弦波头,其表达式为

)cos 1(2t I i ω-= (1-4)

其中,I 为雷电流幅值;ω为角频率。

对半余弦波头,其最大陡度出现在t=τf/2时,其值为平均陡度的π/2倍。

根据国内外的实测统计,75~90%的雷电流是负极性的。因此电气设备的防雷保护和绝缘配合一般都按负极性雷进行研究。

1.1.4 雷暴日和雷暴小时

为了表征不同地区的雷电活动频繁程度,常用年平均雷暴日作为计量单位。雷暴日是一年中有雷电的天数,在一天内只要听到雷声就算一个雷暴日。我国各地雷暴日的多少和纬度及距海洋的远近有关。海南岛及广东的雷州半岛雷电活动频繁而强烈,平均年雷暴日高达100~133。北回归线(北纬23.5?)以南一般在80以上(但台湾省只有30左右),北纬23.5?到长江一带约为40~80,长江以北大部地区(包括东北)多在20~40,西北多在20以下。西藏沿雅鲁藏布江一带约达50~80。我国把年平均雷暴日不超过15的叫少雷区,超过40的叫多雷区,超过90的叫强雷区。在防雷设计中,要根据雷暴日的多少因地制宜。

雷暴小时是一年中有雷暴的小时数,在一小时内只要听到雷声就算一个雷电小时。据统计,我国大部分地区雷暴小时与雷暴日之比约为3。

我国规程建议采用雷暴日作为计算单位。

1.1.5 地面落雷密度和输电线路落雷次数

雷暴日和雷暴小时中,包含了雷云之间的放电,而防雷实际中关心的是云—地之间的放电。地面落雷密度表征了雷云对地放电的频繁程度,其定义为每平方公里每雷暴日的对地落雷次数,用γ表示。世界各国根据各自的具体情况,γ的取值不同。根据我国标准规定,对雷暴日T=40的地区,γ=0.07次/平方公里?雷暴日。

输电线路的存在,改变了雷云—地之间的电场分布,有引雷作用。根据模拟试验及运行经验,线路每侧的引雷宽度为2h(h为避雷线的平均高度,m)。因此,对雷暴日T=40 地区,避雷线或导线平均高度为h的线路,每100km每年雷击的次数

)4(28.01001000)4(h b T h b N +=???+=γ 次 (1-5)

其中,b 为两根避雷线之间的距离,m 。

1.1.6 雷电冲击电压作用下气体的击穿

由雷电造成冲击电压的幅值高、陡度大、作用时间极短,在冲击电压作用下空气间隙的击穿特性有着许多新的特点,并且雷电冲击电压与操作冲击电压下的特性也有很大不同。下面我们讨论在雷电冲击电压下空气间隙的击穿特性。

一、雷电冲击电压标准波形

为了检验绝缘耐受冲

击电压的能力,在高压试验室中利用冲击电压发生

器产生冲击电压,以模拟

雷闪放电引起的过电压。

过去,各国、各地不同的实验室用各自产生的冲击

电压进行试验,因为波形不同,击穿电压也不同,所得结果无法互相比较。为使实验结果具有可比性和实用价值,国际电工委员会(IEC )规定了雷电冲击电压的标准波形参数。标准波形是根据大量实测到的雷电冲击电压波形制订的。如图1-6所示。雷电冲击电压是非周期性指数衰减波,波形由波头时间和波尾时间加以确定。由于波形的原点较为模糊,波峰附件较为平缓,因此波形的原点和波峰的位置不易确定,为此取幅值的0.3倍和0.9倍两点连成直线,这条直线与横坐标的交点定义为视在原点,这条直线的延长线与幅值的交点定义为波峰点,从视在原点到波峰点的时间定义为视在波头时间,从视在原点到幅值的一半所对于的点定义为视在波尾时间。IEC 规定:视在波头时间T 1=1.2μs ,容许偏差±30%;视在波尾时间T 2=50μs ,容

许偏差±20%;通常表示为±1.2/50μs 波,±符号表示波的极性。我国国家标准规定的波形参数与IEC 相同。

二、放电时延

雷电冲击电压是变化速度很快、作用时间很短的波,其有效作用时间是以微

u /图1-6标准雷电冲击电压波形

秒计的。实验表明:对空气间隙施加冲击电压,要使间隙击穿不仅需要足够幅值的电压,有引起电子崩并导致流注和主放电的有效电子,而且需要电压作用一定的时间让放电得以发展以至击穿。设对间隙施加冲击电压,当经过时间t1后,电压升高到持续作用电压下的击穿电压Us (称为静态击穿电压)时,间隙并不立即击穿,而需要经过一定时间间隔tlag ,才能击穿。因这时间隙中可能尚未出现有效电子,间隙中受到外界因素的作用出现自由电子需要一定时间,从t1开始到间隙中出现第一个有效电子所需的时间ts 称为统计时延,这一电子的出现的所需时间是具有统计性的。从有效电子出现时刻起到产生电子崩、形成流注和发展到主放电,乃至间隙击穿完成所需的时间tf 称为放电形成时延,它同样具有统计性。所以,冲击放电所需的全部时间为

f

t t t t s 1b ++= (1-6) 式中,

f t t s +称为放电时延,记为tla

g ,它是统计时延和放电形成时延的总

和。 研究表明:短间隙(几厘米内)中,特别是电场较均匀时,间隙中的电场到处都很强,放电发展速度快,放电形成时延短,此时ts>>tf ,这种情况下tlag 主要决定于ts 。为了减小ts ,一方面可提高外施电压使气隙中出现有效电子的

图1-18 冲击放电时间的组成

图1-7冲击放电时间的组成

概率增加,另一方面可采用人工光源照射,使阴极释放出更多电子。如用较小的球隙测冲击电压通常采取照射措施就是一例。在较长间隙中,电场不均匀,局部场强高,出现有效电子的概率增加,统计时延短,放电时延往往主要决定于tf,且电场越不均匀tf越长。

三、雷电50%冲击击穿电压(U50%)

在持续电压作用下,当气体状态不变时,间隙距离一定,击穿电压就具有确定的数值,当间隙上所加电压达到击穿电压时,间隙就被击穿。

在冲击电压作用下,保持冲击电压波形不变,逐渐提高冲击电压的幅值,在幅值很低时,虽然多次重复施加冲击电压,但间隙均不击穿;随着幅值增高,间隙有时击穿而有时不击穿,这是因为随着外加电压的升高,放电时延缩短;当电压幅值增加到某一定值时,由于放电时延有分散性,对于较短的放电时延,击穿已有可能发生,而较长的放电时延,击穿则不发生。也就是说,在多次施加同一电压值时,有时击穿,有时不击穿;随着电压幅值继续升高,间隙击穿的百分比越来越增加;最后,当电压超过某一值后,间隙百分之百击穿。

由于冲击电压作用下放电有分散性,所以很难准确得到一个使间隙击穿的最低电压值,因此工程上采用50%冲击击穿电压(U50%)来描述间隙的冲击击穿特性,即在多次施加同一电压时,用间隙击穿概率为50%的电压值来反映间隙的耐受冲击电压的特性。

采用50%冲击击穿电压决定绝缘距离时,应根据击穿电压分散性的大小,留有一定 的裕度。在均匀电场和稍不均匀电场中,击穿电压分散性小,其U 50%和静态击穿电压U s 相差不大,因此冲击系数β(U 50%与U s 之比)接近1。而在极不均匀电场中,由于放电时延较长,其冲击系数β均大于1,击穿电压分散性也大一些,其标准偏差可取±3%。

实验表明:“棒-棒”和“棒-板”在间隙距离不很大时(几百厘米内)的冲击击穿特性有极性效应,气隙距离较大时同样存在极性效应,图1-8给出了“棒-棒”和“棒-板”长空气间隙的雷电50%冲击击穿电压和极间距离的关系,可以看出:“棒-板”气隙有明显的极性效应,“棒-棒”气隙也有极性效应。

四、伏秒特性

由于雷电冲击电压持续时间短,间隙的击穿存在放电时延现象,所以仅靠U 50%冲击击穿电压来表征间隙击穿特性是不够的,还必须将击穿电压值与放电时间联系起来确定间隙的击穿特性,也就是伏秒特性,它是表征气隙击穿特性的另一种方法。 01234561.0

1.5

2.0

2.5

3.0

3.5

0.51

2

34

图1-19 “棒-棒”和“棒-板”长空气间隙的雷电50%冲击击穿电压和极间距离的关系%50U )

(MV )

(m d

图1-8“棒-棒”和“棒-板”长空气间隙的雷电50%冲击击穿电压和

极间距离的关系

1-正极性“棒-板”;2-正极性“棒-棒”;3-负极性“棒-棒”;4-负极

性“棒-板”;

图1-9表示通过实验绘制气隙伏秒特性的方法,其步骤是保持间隙距离不变、保持冲击电压波形不变,逐级升高电压使气隙发生击穿,记录击穿电压波形,读取击穿电压值U 与击穿时间t 。注意到当电压不很高时击穿一般在波尾时间发生,当电压很高时,击穿百分比将达100%,放电时间大大缩短,击穿可能在波头时间发生。以图1-9三个坐标点为例说明绘制方法:击穿发生在波前时,U 与t 均取击穿时的值(图中2、3坐标点);击穿发生在波尾时,U 取波峰值,t 取击穿时对应值(图中1坐标点);将1、2、3各点连接起来,即可得到伏秒特性曲线。

间隙的伏秒特性曲线的形状与间隙中的电场分布有关。在均匀电场和稍不均匀电场中,击穿时平均场强较高,放电发展较快,放电时延较短,伏秒特性曲线

图1-9 气隙伏秒特性曲线的绘制方法(虚线表示原始冲击电压

波形) b

U t 1

2

3

4

图1-10 伏秒特性带与50%伏秒特性

1-上包线, 2-50%伏秒特性,3-下包线, 4-U 50%

平坦;在极不均匀电场中,平均击穿场强较低,放电时延较长,放电分散性大,伏秒特性曲线较为陡峭。

实际上,放电时间有分散性,即在每级电压下可测得不同的放电时间,所以伏秒特性是如图1-10所示的以上、下包线为界的带状区域。工程上为方便起见,通常用平均伏秒特性或50%伏秒特性曲线表征气隙的冲击击穿特性,在绝缘配合中伏秒特性具有重要意义。

图1-11表示被保护设备绝缘的伏秒特性1与保护间隙的伏秒特性2配合的情况,这种配合可达到完全保护,因为伏秒特性1的下包线时时都在伏秒特性2的上包线之上,即任何情况下保护间隙都会先动作从而保护了电气设备的绝缘。为了节约被保护设备的绝缘造价,应使伏秒特性1与伏秒特性2的间隔不致过大,要求保护间隙2的伏秒特性低而平坦。

用伏秒特性表征气隙的冲击击穿特性较为全面和准确,但其制作相当费时。在某些情况下,只用某一特定的,如50%冲击击穿电压值就够了。

图1-11 伏秒特性的正确配合

雷电的种类及危害

编号:SM-ZD-93504 雷电的种类及危害 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

雷电的种类及危害 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 l.雷电种类 雷电分为直击雷、感应雷和球雷。 直击雷是带电积云接近地面至一定程度时,与地面目标之间的强烈放电。直击雷的每次放电含有先导放电、主放电、余光三个阶段。大约50%的直击雷有重复放电特征。每次雷击有三、四个冲击至数十个冲击。 感应雷也称作雷电感应,分为静电感应雷和电磁感应雷。静电感应雷是由于带电积云在架空线路导线或其他导电凸出物顶部感应出大量电荷,在带电积云与其他客体放电后,感应电荷失去束缚,以大电流、高电压冲击波的形式,沿线路导线或导电凸出物的传播。电磁感应雷是由于雷电放电时,巨大的冲击雷电流在周围空间产生迅速变化的强磁场在邻近的导体上产生的很高的感应电动势。 球雷是雷电放电时形成的发红光,橙光、白光或其他颜色光的火球。从电学角度考虑,球雷应当是一团处在特殊状

雷电有哪些危害

1.雷电有哪些危害 答案:雷电放电过程中,呈现出电磁效应、热效应以及机械效应,对于建筑物和电气设备有很大的危害性。 (1)雷电的电磁效应:雷云对地放电时,在雷击点主放电的过程中,位于雷击点附近的导线上,将产生感应过电压。 过电压的伏值一般可达几十万伏,它会使电气设备绝缘发生闪 络或击穿,甚至引起火灾和爆炸,造成人身伤亡。 (2)雷电的热效应:雷电流通过导体时,会产生很大的热量。实践证明,在雷电流的作用下,会使导体熔化。在实际 运行中观察到的送电线路接闪线的断股现象,与雷电流的热效 应有关。 (3)雷电的机械效应:雷云对地放电时,强大的雷电流的机械效应表现为击毁杆塔和建筑物,劈裂电力线路的电杆和 横担等。 此外,由于雷电流的伏值很大,所以雷电流流过接地装置时,所造成的电压降可能达到数十万伏至数百万伏。此外,接地装置相连接的电气设备外壳、杆塔及架构等处于很高的电位,从而使电气设备的绝缘发生闪络,通常称为反击。 为了防止雷电带来的危害,我们应对电气设备和建筑物采取必要的防雷措施。 2.简述屋面彩灯,航空障碍灯的防雷设计要点。 答案:(1)屋顶彩灯防雷:①彩灯一般都安装在建筑物最上部和

建筑物外侧边缘的轮廓线上,如果建筑物没有接闪带,它实际上会起接闪带的接闪作用。无论采取哪种安装方法,当雷击接闪带时,雷击点附近10m左右的灯泡都可能损坏,穿在铁管中的线路可以得到保护,而不穿铁管的明装线或穿入非金属管的线路,都会遭到不同程度的破坏。即使在彩灯上面安装了接闪带,彩灯电源仍有受到雷击电波破坏的危险。因此,对彩灯的电源,必须采取防止事故扩大的措施。 ②对于采用暗装接闪网作为防雷装置的高层建筑物,可将彩灯的配电线路用铁管或铅皮电缆敷设,电缆的外导体在上端与接闪网就近接连,下端与共用的接地系统连接。应在建筑物上部将彩灯的芯线和电缆外导体之间接以电涌保护器或放电间隙,借以控制放电部位,减少线路损坏。 ③此外,最好用隔离变压器供电,如不用隔离变压器,则低压配电柜要加装SPD保护,并加强进线端的保护措施。 (2)航空障碍灯的防雷:①航空障碍灯的金属配管应与接闪带相连,且金属配管进入室内后应断开,避免把雷电流引入室内;②安装接闪杆保护;③若航空障碍灯的电源线需考虑防雷时,只要在电源线上装设SPD,SPD的接地端与接闪带相连。 当航空灯采用光导纤维传送光时,则不必采取上述措施。 3.加装SPD为什么要采用多级 答案:要点:(1)防雷分区要求;(2)逐级分流,降低残压 4.接地电阻就是接地极电阻,这种讲法是否正确 答案:电流从接地极向周围大地流散时,土壤呈现的电阻成为接

雷云的产生和雷电放电过程

雷云的产生和雷电放电过程 1.1.1 雷电发生机理 雷电是由雷云放电引起的,关于雷云的聚集和带电至今还没有令人满意的解释,目前比较普遍的看法是:热气流上升时冷凝产生冰晶,气流中的冰晶碰撞后分裂导致较轻的部分带负电荷并被风吹走形成大块的雷云;较重的部分带正电荷并可能凝聚成水滴下降,它们在重力作用下下落的速度大,并在下落过程中与其他水份粒子发生碰撞,结果一部分被另一水生成物捕获,增大水成物的体积,另一部分云粒子被反弹回去,这些反弹回去的云粒子通常带正电荷,悬浮在空中形成一些局部带正电的云区,而水生成物带上负电荷。由于水成物下降的速度快,而云粒子的下降速度慢,因而正、负电荷的微粒逐惭分离,最后形成带正电的云粒在云的上部,而带负电的水成物在云的下部。整块雷云里边可以有若干个电荷中心。负电荷中心,离地大约500~10000m。它在地面上感应出大量的正电荷。 随着雷云的发展和运动,一旦空间电场强度超过大气游离放电的临界电场强度(大气中约为30kV/cm,有水滴存在时约为10kV/cm)时,就会发生云间或对大地的火花放电。雷电放电包括雷云对大地,雷云对雷云和雷云内部的放电现象。大多数雷云放电都是在雷点与雷云之间进行的,只有少数是对地进行的。在防雷工程中,主要关心的是雷云对大地的放电,如图1-1所示。 图1-1云对地放电(用彩色) 雷云对大地放电通常分为先导放电、主放电和辉光放电三个阶段。云一地之

间的线状雷电在开始时往往从雷云边缘向地面发展,以逐级推进方式向下发展。每级长度约10~200m,每级的伸展速度约107m/s,各级之间有10~100μs的停歇,所以平均发展速度只有(1~8)×105m/s,这种放电称为先导放电,如图1-3所示。当先导接近地面时,地面上一些高耸的物体(如塔尖或山顶)因周围电场强度达到了能使空气电离的程度,会发出向上的迎面先导。当它与下行先导相遇时,就出现了强烈的电荷中和过程,出现极大的电流(数十到数百千安),伴随着雷鸣和闪光,这就是雷电的主放电阶段。主放电的过程极短,只有50~100μs,它是沿着负的下行先导通道,由下而上逆向发展,故又称“回击”,其速度高达2×107~1.5×108m/s。以上是负电荷雷云对地放电的基本过程,可称为下行负雷闪;对应于正电荷雷云对地放电的下行正雷闪所占的比例很小,其发展过程亦基本相似。主放电完成后,云中剩余的电荷沿着原来的主放电通道继续流入大地,看到的是一片模糊的发光,这就是辉光放电。 从旋转相机拍下的光学照片显示,大多数云对地雷击是重复的,即在第一次雷击形成的放电通道中,会有多次放电尾随,放电之间的间隔大约为0.5~500ms。主要原因是:在雷云带电的过程中,在云中可形成若干个密度较高的电荷中心,第一次先导一主放电冲击泄放的主要是第一个电荷中心的电荷。在第一次冲击完成之后,主放电通道暂时还保持高于周围大气的电导率,别的电荷中心将沿已有的主放电通道对地放电,从而形成多重雷击。第二次及以后的放电,先导都是自上而下连续发展的,没有停顿现象。放电的数目平均为2~3次,最多观测到42次。通常第一次冲击放电的电流最大,以后的电流幅值都比较小。图1-2所示为用旋转相机和高压示波器拍摄和记录的负雷云对地放电的典型过程和电流波形。 时间 图1-2雷电放电的发展过程和雷电流的波形

雷电的产生与危害方式

雷电产生与危害方式 1 背景 雷电是自然界中极为普遍而又蔚为壮观的声、光、电现象,这不仅是由于它那特有的划破长空的耀眼闪电和震耳欲聋的霹雳声,更重要的还在于它给人类生存和生产活动带来巨大影响。雷电促成的有机物合成可能对地球的生命形成起到过一定的作用,雷电引起的森林火灾可能启发了远古人类对火的发现和利用。在现代生活中,雷电仍然对人畜的生命安全有所威胁,对航空,通讯,电力,建筑等国防和国民经济的许多部门造成重大的危险影响。 上世纪80年代以来,雷电灾害出现新特点。随着通讯信息技术和微电子技术高度发展和广泛应用于各个领域,使雷害对象发生了转移,从对建筑物本身的损害转移到对室内网络设备、电子设备等信息设备的损害,随之防雷对象和防雷重点也由强电向弱电转移。 2 雷电现象 能够产生雷电的云,称之为雷雨云,通常又称雷暴。1752年,美国科学家富兰克林首先揭开了“雷暴”的本质,认为它实际上是一种大气电现象,此后人们对雷电活动进行了大量的观察研究。为了说明雷电的形成和发展的规律和机理,提出过许多的起电机制,从微观的物理过程到宏观的大气物理对雷云的形成和发展过程中的电荷产生、电荷分离、电荷聚焦、雷云电场生成等现象进行分析和推测,力图对雷电的形成和发展机理进行解释。其中最具代表性的起电机制有Elster和Geitel的感应起电机制、Brook的温差起电机制、Lenard的破碎起电机制、Workman和Reynolds的融化、冻结起电机制。 图1 感应起电机理

与起电一样,雷暴云的放电也是一十分复杂的物理过程。当雷云中的电荷负值增加到一定数量时,使空气中的电场强度增加,达到使空气足以电离,产生游离态离子时,就产生了雷云的放电。按照闪电的外观形状,可将其分为:线状闪电、带状闪电、片状闪电、连珠闪电和球状闪电等,其中以线状闪电最为常见。按闪电发生的空间位置可将其分为:云内闪电、云际闪电、云地闪电等。云地闪电简称地闪,俗称落地雷,其走向多垂直于地面,危害大,是防雷设计应该注意的重点。云闪定义为所有没有到达地面的闪电放电,它的危害主要体现在雷击电磁脉冲。 通常,地闪放电可以划分为以下几个过程:预击穿过程(Preliminary breakdown process)、梯级先导(stepped leader)、回击(return stroke)等。预击穿过程是在地闪通道伸延出云底之前发生于云内的弱电离过程和放电过程。其持续时间从几毫秒到几百毫秒不等,典型值为几十毫秒。梯级先导是地闪放电的初始阶段,它为回击过程开辟通道,是地闪中的主要物理过程之一,闪电放电电流的路径是电阻最小的路径。在地闪的对地放电过程中,先导与回击之间的过程被称为连接过程(attachment process)。回击过程是地闪中对地面输送大量电荷因而产生大电流和强电磁辐射的阶段。回击常常形成很大的电流,发出很强的光,并形成光柱。所以回击常被称为主放电或主闪击。回击的推进速度比先导要快得多,平均约为,变化范围为s cm /1059×()s cm /102~102109××。回击通道的直径为,平均为几厘米,峰值电流可达以上。电流很大,通道的温度迅速升高,可达数量级,空气骤然膨胀因而产生了雷声。 ()cm 23~1.0A 410K 410 云电荷分布 t = 0 预击穿过程 t = 1.00ms 梯级先 导t = 1.10ms t = 1.15ms t = 1.20ms t = 19.00ms t = 20.00ms t = 20.10ms t = 20.15ms t = 20.20ms 图2 一次负地闪所包含的各种物理过程随时间的发展示意图

雷电对矿设备的危害及预防措施

雷电对矿设备的危害及 预防措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

雷电对矿设备的危害及预防措施1 雷电的产生 雷电是自然界中一种常见的放电现象对辊破。关于雷电的产生有多种解释理论,通常我们认为由于大气中热空气上升,与高空冷空气产生摩擦,从而形成了带有正负电荷的小水滴复合式破碎机。当正负电荷累积达到一定的电荷值时,会在带有不同极性的云团之间以及云团对地之间形成强大的电场,从而产生云团对云团和云团对地的放电过程,这就是通常所说的闪电和响雷磨粉设备。具体来说,冰晶的摩擦、雨滴的破碎、水滴的冻结、云体的碰撞等均可使云粒子起电。一般云的顶部带正电,底部带负电,两种极性不同的电荷会使云的内部或云与地之间形成强电场,瞬间剧烈放电爆发出强大的电火花,也就是我们看到的闪电移动式破碎机超细粉碎机。在闪电通道中,电流极强,温度可骤升至2万摄氏度,气压突增,空气剧烈膨胀,人们便会听到爆炸似的声波振荡,这就是雷声。 2 雷电危害的种类 雷击的危害主要有三方面:第一是直击雷锤式打沙机。是指雷云对大地某点发生的强烈放电水泥厂设备。它可以直接击中设备,雷电击中架空线,如电力线,电话线等冲击破。雷电流便沿着导线进入设备,从而造成损坏。第二是感应雷复合破石料生产线。它可以分为静电感应及电磁感应。当带电雷云(一般带负电)出现在导线上空时,由于静电感应作用,导线上束缚了大量的相反电荷陶瓷球磨机。一旦雷云对某目标放

电,雷云上的负电荷便瞬间消失,此时导线上的大量正电荷依然存在,并以雷电波的形式沿着导线经设备入地,引起设备损坏锤式打沙机。当雷电流沿着导体流入大地时,由于频率高,强度大,在导体的附近便产生很强的交变电磁场,如果设备在这个场中,便会感应出很高的电压,以致损坏高压微粉磨。对于灵敏的电子设备,尤需注意。第三是地电位提高水泥机械水泥机械。当10kA的雷电流通过下导体入地时,我们假设接地电阻为10Ω,根据欧姆定律,我们可知在入地点A处电压为100kV。因A点与B、C、D点相连,所以这几点电压都为100kV磁选设备。而E点接地,其电压值为0,设备的D点与E点间有100kV的电压差,足以将设备损坏石料生产线。据有关统计表明:直击雷的损坏仅占15%,感应雷与地电位提高的损坏占85%移动式破碎机。目前,直击雷造成的灾害已明显减少,而随着城市经济的发展,感应雷和雷电波侵入造成的危害却大大增加。一般建筑物上的避雷针只能预防直击雷,而强大的电磁场产生的感应雷和脉冲电压却能潜入室内危及电视、电话及联网微机等弱电设备高强磨粉机对辊破。 3 防雷的方法和技术 在科学技术日益发展的今天,虽然人类不可能完全控制暴烈的雷电,但是经过长期的摸索与实践,已积累起很多有关防雷的知识和经验,形成一系列对防雷行之有效的方法和技术。 (1)接闪接闪就是让在一定范围内出现的闪电能量按照人们设计的通道泄放到大地中去颚式破石机。把一定保护范围的闪电放电捕获到,纳入预先设计的对地泄放的合理途径之中粗碎机。避雷针是一种主

雷电基本知识(完整篇)

编号:SY-AQ-07844 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 雷电基本知识(完整篇) Basic knowledge of lightning

雷电基本知识(完整篇) 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 雷云是如何形成的? 雷电放电是由带电荷的雷云引起的。雷云带电原因的解释很多,但还没有获得比较满意的一致认识。一般认为雷云是在有利的大气和大地条件下,由强大的潮湿的热气流不断上升进入稀薄的大气层冷凝的结果。强烈的上升气流穿过云层,水滴被撞分裂带电。轻微的水沫带负电,被风吹得较高,形成大块的带负电的雷云;大滴水珠带正电,凝聚成雨下降,或悬浮在云中,形成一些局部带正电的区域。实测表明,在5—l0km的高度主要是正电荷的云层,在1—5km的高度主要是负电荷的云层,但在云层的底部也有一块不大区域的正电荷聚集。雷云中的电荷分布很不均匀,往往形成多个电荷密集中心。每个电荷中心的电荷约为0.1库仑~10库仑,而一大块雷云同极性的总电荷则可达数百库仑。这样,在带有大量不同极性或不同数量电荷的雷云之间,或雷云和大地之间就形成了强大的

电场。随着雷云的发展和运动,一旦空间电场强度超过大气游离放电的临界电场强度(大气中的电场强度约为30kV/cm,有水滴存在时约为lOkV/cm)时,就会发生云间或对地的火花放电;放出几十乃至几百千安的电流;产生强烈的光和热(放电通道温度高达15000℃—20000℃),使空气急剧膨胀震动,发生霹雳轰鸣。这就是闪电伴随雷鸣叫做雷电的原故。 试述关于乌云起电的三种理论? 乌云起电机理有三种理论: (1)水滴破裂效应:云中的水滴受强烈气流的摩擦产生电荷,而且使小的水滴带负电,小水滴容易被气流带走形成带负电的云;较大的水滴留下来形成带正电的云。 (2)吸收电荷效应:由于宇宙射线的作用,大气中存在着两种离子,由于空间存在自上而下的电场,该电场使得云层上部聚集负电荷,下部聚集正电荷,在气流作用下云层分离从而带电。 (3)水滴冰冻效应:雷云中正电荷处于冰晶组成的云区内,而负电荷处于冰滴区内。因此,有人认为,云所以带电是因为水在结冰

雷电的形成与危害

雷电是由雷云(带电的云层)对地面建筑物及大地的自然放电引起的。在天气闷热潮湿的时候,地面上的水受热变为蒸汽,并且随地面的受热空气而上升,在空中与冷空气相遇,使上升的水蒸汽凝结成小水滴,形成积云。云中水滴受强烈气流吹袭,分裂为一些小水滴和大水滴,较大的水滴带正电荷,小水滴带负电荷。细微的水滴随风聚集形成了带负电的雷云;带正电的较大水滴常常向地面降落而形成雨,或悬浮在空中。由于静电感应,带负电的雷云,在大地表面感应有正电荷。这样雷云与大地间形成了一个大的电容器。当电场强度很大,超过大气的击穿强度时,即发生了雷云与大地间的放电,就是一般所说的雷击 雷电的形成 雷电是云内、云与云之间或云与大地之间的放电现象。夏季的午后,由于太阳辐射的作用,近地层空气温度升高,密度降低,产生上升运动,在上升过程中水汽不断冷却凝结成小水滴或冰晶粒子,形成云团,而上层空气密度相对较大,产生下沉运动,这样的上下运动形成对流。在对流过程中,云中的小水滴和冰晶粒子发生碰撞,吸附空气中游离的正离子或负离子,这样水滴和冰晶就分别带有正电荷和负电荷,一般情况下,正电荷在云的上层,负电荷在云的底层,这些正负电荷聚集到一定的量,就会产生电位差,当电位差达到一定程度,就会发生猛烈的放电现象,这就是雷电的形成过程。雷电电荷在放电过程中,产生很强的雷电电流,雷电电流将空气击穿,形成一个放电通道,出现的火光就是闪电。在放电通道中空气突然加热,体积膨胀形成爆炸的冲击波产生的声音就是雷声 雷电的危害雷电的危害雷电的危害雷电就是巨大的电火花。雷电流总是选择距离最近、最易导电的路径向大地泄放,凡是空气中导电微粒较多、地面上高耸物体、地面与地下的电阻率较小的地段容易落雷。一般说来,地面导电性能好,有突出的高大物体等,都易遭受雷击。例如导电性能好的金属矿物质条件就比一般地质条件更易遭雷击;湿土的雷击机会就比干土、沙地和岩石地面要多;水面比旱地易遭雷击;高楼、烟囱这些突出建筑物就比平地易遭雷击;山地也比谷地易遭雷击。直接被雷电击中会受伤害,但有时,即使未被雷电直接击中,由于离雷击点很近也会造成事故。这是因为强大的雷电电流向地里泄放时,由于地电阻的存在,使近雷击点处的电压值要比远离雷击点处的电压值大得多。因此,人若两脚分开站立,一脚离雷击点近,另一脚离雷击点远,就产生一定的电位差,这就是常说的“跨步电压”。一部分雷电电流由于“跨步电压”而流过人体,同样会造成伤害。雷电灾害的严重性表现在它具有巨大的破坏性上。它给人类社会带来极大的危害,如造成人员伤亡、财产损失等。雷电灾害波及面广,人类社会活动、农业、林业、牧业、建筑、电力、通信、航空航天、交通运输、石油化工、金融证券等各行各业,几乎无所不及。 雷电的危害一般分为两类雷电的危害一般分为两类雷电的危害一般分为两类雷电的危害一般分为两类:::: 雷直接击在建筑物上发生热效应和电动力作用; 雷电二次作用,即雷电流产生静电和电磁感应。 雷电的具体危害表现如下::::1、雷电流高压效应会产生高达数万伏甚至数十万伏的冲击电压,如此巨大的电压瞬间冲击电气设备,足以击穿绝缘使设备发生短路,导致燃烧、爆炸等直接灾害。2、雷电流高热效应会放出几十至上千安的强大电流,并产生大量热能,在雷击点的热量会很高,可导致金属熔化,引发火灾和爆炸。3、雷电流机械效应主要表现为被雷击物体发生爆炸、扭曲、崩溃、撕裂等现象导致财产损失和人员伤亡。4、雷电流静电感应可使被击物导体感生出与雷电性质相反的大量电荷,当雷电消失来不及流散时,即会产生很高电压发生放电现象从而导致火灾。5、雷电流电磁感应在雷击点周围产生强大交变电磁场,感生出的电流可引起变电器局部过热而导致火灾。6、雷电波的侵入和防雷装

雷电的种类及危害

编订:__________________ 审核:__________________ 单位:__________________ 雷电的种类及危害 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5812-18 雷电的种类及危害 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 l.雷电种类 雷电分为直击雷、感应雷和球雷。 直击雷是带电积云接近地面至一定程度时,与地面目标之间的强烈放电。直击雷的每次放电含有先导放电、主放电、余光三个阶段。大约50%的直击雷有重复放电特征。每次雷击有三、四个冲击至数十个冲击。 感应雷也称作雷电感应,分为静电感应雷和电磁感应雷。静电感应雷是由于带电积云在架空线路导线或其他导电凸出物顶部感应出大量电荷,在带电积云与其他客体放电后,感应电荷失去束缚,以大电流、高电压冲击波的形式,沿线路导线或导电凸出物的传播。电磁感应雷是由于雷电放电时,巨大的冲击雷电流在周围空间产生迅速变化的强磁场在邻近的导体上

产生的很高的感应电动势。 球雷是雷电放电时形成的发红光,橙光、白光或其他颜色光的火球。从电学角度考虑,球雷应当是一团处在特殊状态下的带电气体 此外,直击雷和感应雷都能在架空线路或在空中金属管道上产生沿线路或管道的两个方向迅速传播的雷电冲击渡。 2.雷电危害 雷电具有雷电流幅值大(可达数十千安至数百千安)、雷电流陡度大(可达50 kA/μs)、冲击性强、冲击过电压高(可达数百千安至数千千安)的特点。其特点与其破坏性有紧密的关系。雷电有电性质、热性质、机械性质等多方面的破坏作用,均可能带来火灾和爆炸、触电、毁坏设备和设施、大规模停电等极为严重的后果。 请在这里输入公司或组织的名字 Enter The Name Of The Company Or Organization Here

雷电的形成分类与危害

雷电的形成分类与危害集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

雷电的形成、分类与危害一、雷电的形成 雷电是自然界中的一种放电现象。 雷电放电和一般电容器放电本质相同,所不同只是这个电容器两块极板,并不是人为制造的,而是自然形成的。两块极板有时是两块云块,有时一块是云块、另一块则是大地或地面上凸出的建筑物。并且这两块极板间的距离比电容器大得多,有时可达数公里。因此,可以说雷电是一种特殊的电容器放电现象。 大气中的饱和水蒸汽,由于气候的变化,发生上升或下降的对流,在对流过程中由于强烈的摩擦和碰撞,水蒸汽凝结成的水滴就被压分解成带有正负电荷的小水滴,大量的水滴聚积成带有不同电荷的雷云。随着电荷的积聚,雷云的电位逐渐升高。当带有不同电荷的两块雷云接近到一定程度时,两块雷云间的电场强度达到25-30kV/cm时,其间的空气绝缘被击穿,引起两块雷云间的击穿放电;当带电荷的云块接近地面时,由于静电感应,使大地感应出与雷云极性相反的电荷,当带电云块对地电场强度达到25-30kV/cm时,周围空气绝缘被击穿,雷云对大地发生击穿放电。放电时出现强烈耀眼的弧光,就是我们平时看到的闪电,闪电通道中大量的正负电荷瞬间中和,造成的雷电流高达数百千安,这一过程称为主放电,主放电时间仅30-50μs,放电波陡度高达 50KA/μs,主放电温度高达20000℃,使周围空气急剧加热,骤然膨胀而

发生巨响,这就是我们平时听到的雷声。闪电和雷声的组合我们称为雷电。 由于声音传播的速度比光的传播速度要慢得多,所以我们总是先看到闪电,而后听到雷声。 雷电的特点是:电压高、电流大、频率高、时间短。 二、雷电的分类 (一)直击雷 雷云对地面或地面上凸出物的直接放电,称为直击雷。也叫雷击。直击雷放电过程的展开图见图8-22。 雷云放电过程的展开图可以这样解释:当雷云对地面放电时,开始出现先驱放电,放电电流比较小,一经到达地面,就开始主放电,主放电由地面开始沿着先驱放电的通道直到云端,放电电流迅速增大。主放电时间很短,电流迅速衰减,以后是余光放电,电流变小。 由于雷云中同时存在着多个电荷积聚中心,当第一个电荷集聚中心放电后,其电位迅速下降。第二个电荷集聚中心向第一个电荷集聚中心位置移动,并沿着上一次的放电通道开始先驱放电、主放电、余光放电。紧接着再来第三次、第四次放电。我们平时看到电光闪闪、雷声隆隆就是这个原因。 当直击雷直接击于电气设备及线路时,雷电流通过设备或线路泄入大地,在设备或线路上产生过电压,称为直击雷过电压。 (二)感应雷击

雷电的种类及危害简易版

In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编订:XXXXXXXX 20XX年XX月XX日 雷电的种类及危害简易版

雷电的种类及危害简易版 温馨提示:本安全管理文件应用在平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 l.雷电种类 雷电分为直击雷、感应雷和球雷。 直击雷是带电积云接近地面至一定程度 时,与地面目标之间的强烈放电。直击雷的每 次放电含有先导放电、主放电、余光三个阶 段。大约50%的直击雷有重复放电特征。每次 雷击有三、四个冲击至数十个冲击。 感应雷也称作雷电感应,分为静电感应雷 和电磁感应雷。静电感应雷是由于带电积云在 架空线路导线或其他导电凸出物顶部感应出大 量电荷,在带电积云与其他客体放电后,感应 电荷失去束缚,以大电流、高电压冲击波的形

式,沿线路导线或导电凸出物的传播。电磁感应雷是由于雷电放电时,巨大的冲击雷电流在周围空间产生迅速变化的强磁场在邻近的导体上产生的很高的感应电动势。 球雷是雷电放电时形成的发红光,橙光、白光或其他颜色光的火球。从电学角度考虑,球雷应当是一团处在特殊状态下的带电气体此外,直击雷和感应雷都能在架空线路或在空中金属管道上产生沿线路或管道的两个方向迅速传播的雷电冲击渡。 2.雷电危害 雷电具有雷电流幅值大(可达数十千安至数百千安)、雷电流陡度大(可达50 kA/μs)、冲击性强、冲击过电压高(可达数百千安至数千千安)的特点。其特点与其破坏性有紧密的关系。

雷电的基本知识

雷云是如何形成的? 雷电放电是由带电荷的雷云引起的。雷云带电原因的解释很多,但还没有获得比较满意的一致认识。一般认为雷云是在有利的大气和大地条件下,由强大的潮湿的热气流不断上升进入稀薄的大气层冷凝的结果。强烈的上升气流穿过云层,水滴被撞分裂带电。轻微的水沫带负电,被风吹得较高,形成大块的带负电的雷云;大滴水珠带正电,凝聚成雨下降,或悬浮在云中,形成一些局部带正电的区域。实测表明,在5—l0km的高度主要是正电荷的云层,在1—5km的高度主要是负电荷的云层,但在云层的底部也有一块不大区域的正电荷聚集。雷云中的电荷分布很不均匀,往往形成多个电荷密集中心。每个电荷中心的电荷约为0.1库仑~10库仑,而一大块雷云同极性的总电荷则可达数百库仑。这样,在带有大量不同极性或不同数量电荷的雷云之间,或雷云和大地之间就形成了强大的电场。随着雷云的发展和运动,一旦空间电场强度超过大气游离放电的临界电场强度(大气中的电场强度约为30kV/cm,有水滴存在时约为lOkV/cm)时,就会发生云间或对地的火花放电;放出几十乃至几百千安的电流;产生强烈的光和热(放电通道温度高达15000℃—20000℃),使空气急剧膨胀震动,发生霹雳轰鸣。这就是闪电伴随雷鸣叫做雷电的原故。 试述关于乌云起电的三种理论? 乌云起电机理有三种理论: (1)水滴破裂效应:云中的水滴受强烈气流的摩擦产生电荷,而且使小的水滴带负电,小水滴容易被气流带走形成带负电的云;较大的水滴留下来形成带正电的云。 (2)吸收电荷效应:由于宇宙射线的作用,大气中存在着两种离子,由于空间存在自上而下的电场,该电场使得云层上部聚集负电荷,下部聚集正电荷,在气流作用下云层分离从而带电。 (3)水滴冰冻效应:雷云中正电荷处于冰晶组成的云区内,而负电荷处于冰滴区内。因此,有人认为,云所以带电是因为水在结冰时会产生电荷的缘故。如果冰晶区的上升气流把冰粒上的水带走的话,就会导致电荷的分离而带电了。 雷云的形成必须具备哪些条件? 雷云是产生雷电的基本因素,而雷云的形成必须具备下列三个条件: (1)空气中有足够的水蒸汽; (2)有使潮湿的空气能够上升并凝结为水珠的气象或地形条件; (3)具有气流强烈持久地上升的条件 雷云一般分为哪几种? 雷电过电压是由雷云放电产生的,是一种自然现象,而闪电和雷鸣是相伴出现的,因而

雷电的危害性分析及其预防措施

雷电的危害性分析及其预防措施 雷电是自然界中雷云之间或是雷云与大地之间的一种放电现象。其特点是电压很高、电流很大、能量释放时间短,具有很大的危害性。雷电会造成电力系统大面积停电、森林大面积烧毁、建筑物毁坏、油库爆炸起火、通讯系统瘫痪以及家电设备损坏等等。 1雷电理论 1.1雷云结构和雷电的放电机理 雷云的典型结构是中部有强烈的上升气流,在这种气流的作用下,带正电的冰晶与带负电的水滴开始分离,形成一部分带正电荷,一部分带负电荷的雷云。由于异性电荷的不断积累,不同极性的云块之间电场强度不断增大,当某处的电场强度超过空气可能承受的击穿强度时,就形成了云间放电。不同级性的电荷通过一定的电离通道互相中和,产生强烈的光和热,并发出一种强光,称之为“闪”,所发出的热,使附近的空气突然膨胀,发出霹雳的轰鸣,称之为“雷”。 由于雷云负电的感应、使附近地面积聚正电荷,从而使地面与雷云之间形成强大的电场。当某处积聚的电荷密度很大,造成电场强度达到雷云与地面之间空气游离的临界值时,就为雷云对地放电打到地面上的闪电即为“落雷”。如果落雷击中人员、建筑物、机电设备和森林树木而造成的危害,这种现象为“雷击事故”。 1.2雷电活动强度 雷电活动的强度是因地区而异的,有的地区强,有的地区弱,某

一地区的雷电活动强度通常用“年平均雷电日”这一数字表示。我国年平均雷电日分布大致可划分4个区域,其中长江以北大部分地区年平均雷电日在15~40d。年平均雷电日这一数字只能给人们提供某一地区雷电活动的概括情况,雷电活动的强弱程度与落雷概率是两个不同的概念。事实上,即使是在同一地区,雷电活动也是有所不同的,有些地方受局部气象条件的影响,雷电活动可能比邻近地区强得多。 1.3雷击的选择性 雷害事故的统计资料说明,雷击的地点和建筑物遭受雷击的部位是有一定规律的,这个规律称为雷击的选择性。 地面上建筑物的性质和形状对雷电的发展是有影响的,当地面上电场不断增强时,在高大建筑物的尖顶和边缘上电场强度最大,构成雷电发展的良好条件。在旷野中,即使建筑物并不很高,但是由于它比较孤立、突出,因而较容易遭受雷击。金属结构的建筑物或内部有大型或大量金属物体的厂房,由于具有良好的导电性能,也较易遭受雷击。

雷电的种类及危害(2021版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 雷电的种类及危害(2021版)

雷电的种类及危害(2021版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 l.雷电种类 雷电分为直击雷、感应雷和球雷。 直击雷是带电积云接近地面至一定程度时,与地面目标之间的强烈放电。直击雷的每次放电含有先导放电、主放电、余光三个阶段。大约50%的直击雷有重复放电特征。每次雷击有三、四个冲击至数十个冲击。 感应雷也称作雷电感应,分为静电感应雷和电磁感应雷。静电感应雷是由于带电积云在架空线路导线或其他导电凸出物顶部感应出大量电荷,在带电积云与其他客体放电后,感应电荷失去束缚,以大电流、高电压冲击波的形式,沿线路导线或导电凸出物的传播。电磁感应雷是由于雷电放电时,巨大的冲击雷电流在周围空间产生迅速变化的强磁场在邻近的导体上产生的很高的感应电动势。 球雷是雷电放电时形成的发红光,橙光、白光或其他颜色光的火球。从电学角度考虑,球雷应当是一团处在特殊状态下的带电气体

雷电的危害及预防措施

雷电是大自然中最壮观的自然现象之一,它是一把锋利无比的双刃剑,具有巨大的能量及破坏力。其电压可高达几十万伏甚至数百万伏,瞬时电流可高达数十万安培,放电时温度高达30000℃。世界各地每年遭受雷击而造成破坏的重大事故不计其数,仅我国每年就有数万人遭受雷击伤亡。因此,我们必须了解和掌握防雷知识,采取切实可行的防雷措施,才能有效地避免或减少雷电事 故的发生。 雷电的主要危害 根据雷电产生的危害特点,它的破坏作用主要是雷电流引起的。通常雷电以三种形式出现,即直接雷击、感应雷击和雷电波。一般人所说的雷击是由直接雷造成的,由于它瞬间放出的电流相当大,产生的高温高压引起爆炸、火灾和建筑物倒塌,造成人畜伤亡事故。1998年6月30日南京市栖霞区一农民受雷击身亡;次日江苏大丰滩涂的雷击事故中2人死亡、7人受伤;7月10日贵州省威宁县云贵乡50多名农民在临街新建的砖房中避雨时遭受雷击,造成14人当场死亡、42人受伤的惨剧;这几起雷击事故都是因直接雷造成的。 感应雷的主要危害是由电流沿着金属导线或导体形成雷电冲击波,并进入建筑物内造成用户的仪器设备或家用电器的损坏,在一定的条件下还会造成人员伤亡和火灾等重大雷击事故。在雷击事故中90%是感应雷造成的,例如,十年前震惊中外的山东黄岛油库大火就是由感应雷引起的。随着现代化高科技的迅速发展,在电子设备、供电设备、通信广播、计算机网络的信息传输 等领域都是感应雷的主要袭击对象。 雷电波是由于雷击而在架空线路或空中金属管道上产生的冲击电压,沿线路或管道的两个方面迅速传播,其传播速度为300m/us(在电缆中为150m/us),若侵入建筑内可造成配电装置和电气线路绝缘层击穿产生短路或使建筑物的易燃易爆物品燃烧和爆炸。1994年5月广州市《南方日报》社近百台微机被雷击毁就是因为雷电波侵入所致。 造成雷电击事频繁发生的原因,除了不可抵御的自然现象外,人们的防知识缺乏、防雷意识淡薄是主要原因。有的人认为避雷针是万能的灵丹妙药,有了它就会任凭电闪雷鸣而安然无恙,有的单位舍不得花这笔钱来搞防雷工程,有的单位即使安装了避雷设施,但安置不规范或长期得不到维护、保养,成了引雷入室的祸根;雷雨期间,野外作业及行走不能及时地离开所处环境的最高点;有人甚至跑到大树下、屋檐下躲雨,室内人员甚至打开门窗观赏雨景或收看电视、打电话,对家用电器电源插头不及时拨掉,从而导致雷电击伤亡悲剧频发。 预防雷击事故的措施 为了避免或减少雷击事故的发生,保证人畜及建筑物的安全,对建筑物而言,首先把好建筑设计第一关,按建筑物的功能综合考虑防雷避雷设施,特别要考虑清理到室外附加在屋顶上的霓虹灯、广告牌、金属旗杆、微波塔及共用天线等潜在的不安全因素;其次把好施工质量检查监督及竣工关,严格按照国家规定的标准验收建筑物的避雷设施。对共用天线、居民住宅楼的总电源、电子计算机网络用户以及架空电话线用户等应加装专用避雷器,并在每年雷雨季节到来之前,对 这些避雷装置进行一次安全性能检测维修。 对于个人和家庭而言,首先要多了解防雷知识,增强防雷意识,积极采取预防措施,避免雷电击伤人。其次,要用自已已掌握到的防雷知识,宣传教育身边的人;雷雨期内,在野外行走时,要尽量离开所处环境的最高点,跑到低洼处或干脆趴下,不要在大树、电线杆、高架铁塔、烟囱

雷电的基础知识

雷电的基础知识 在带有不同电荷雷云之间,或在雷云及由其感应而生的不同电荷之间发生击穿放电,即为雷电。 雷电是自然界中一种特殊的、极为壮观的声、光、电现象—伴随有闪电和雷鸣的一种恐怖而雄伟壮观的自然现象。 一、雷电的成因及其特性参数⑴、雷云和雷电①雷云: 能发生闪电的云为雷云。 层积云、雨层云、积云、积雨云均与闪电有关,其中积雨云则最为重要。 ②闪电: 积雨云形成过程中,在大气电场以及温差起电效应、破碎起电效应的同时作用下,正负电荷分别在云的不同部位积聚。 当电荷积聚到一定程度,就会在云与云之间或云与地之间发生放电,即“闪电”。 闪电的形状: 枝状、球状、片状、带状。 闪电的形式有云天闪电、云间闪电、云地闪电。 ⑵、雷电的成因①雷电: 带有电荷的云层向下靠近地面时,地面上的凸出物、金属等,会被感应出异性电荷,随着电场强度的逐步增强,雷云向下形成下行先导,地面的物体形成向上闪流,两者相遇即形成对地放电。 ②闪电:

带负电荷的雷云在大地表面会感应出正电荷,这样雷云与大地间形成一个大的电容器,当电场强度超过大气被击穿的强度时,就发生了雷云与大地之间的放电,即常说的闪电,或者说是雷击。 ③雷云放电过程: 雷云——雷电先导——迎雷先导——主放电阶段——余辉放电⑶、雷电的特性参数①雷电日(T): 一年中发生雷电放电的天数,(衡量雷电活动频繁的程度)。 ②雷电流: 雷击电流大致呈单极性的脉冲波。 主要可采用三个参数来表示,即雷电流的幅值、波头时间和半幅值时间。 ③雷电过电压: 主要决定于雷电流陡度和雷电流通道的阻抗,它的大小可按下式来计算: U=IR+L(式中: I—雷电流幅值kA;i—随时间变化的雷电流kA;R—接地电阻Ω;L—雷电流通道的电感H)。 二、雷电的种类主要分为直击雷、感应雷、雷电波入侵、雷球、雷击电磁脉冲。 ⑴、直击雷指雷电直接击在建筑物构架、动植物上,因电效应、热效应和机械效应等造成建筑物等损坏以及人员的伤亡。 ⑵、感应雷也称为雷电感应或感应过电压。 它分为静电感应雷和电磁感应雷。 ①静电感应雷:

雷电危害题库1-0-5

雷电危害题库1-0-5

问题: [单选]雷电的种类有直击雷、闪电感应和球雷。一次直击雷的全部放电时间一般不超过ms。 A.A.100 B.B.200 C.C.500 D.D.1000 直击雷。雷云与大地目标之间的一次或多次放电称为对地闪击。闪击直接击于建筑物、其他物体、大地或外部防雷装置上,产生电效应、热效应和机械力者称为直击雷。直击雷的每次放电过程包括先导放电、主放电、余光三个阶段。大约50%的直击雷有重复放电特征。每次雷击有三四个冲击至数十个冲击。一次直击雷的全部放电时间一般不超过500ms。

问题: [多选]雷电是大气中的一种放电现象。雷电具有的特点。 A.A.雷电流幅值大 B.B.雷电流陡度大 C.C.冲击性强 D.D.放电速度极快 E.E.冲击过电压高 雷电是大气中的一种放电现象。雷电具有雷电流幅值大、雷电流陡度大、冲击性强、冲击过电压高的特点。雷电具有电性质、热性质和机械性质等三方面的破坏作用。

问题: [多选]雷电能量释放所形成的破坏力可带来极为严重的后果。常见的事故后果有。 A.A.火灾和爆炸 B.B.带来狂风暴雨 C.C.触电 D.D.设备和设施毁坏 E.E.大规模停电 雷电能量释放所形成的破坏力可带来极为严重的后果。 1火灾和爆炸。直击雷放电的高温电弧、二次放电、巨大的雷电流、球雷侵入可直接引起火灾和爆炸,冲击电压击穿电气设备的绝缘等可间接引起火灾和爆炸。 2触电。积云直接对人体放电、二次放电、球雷打击、雷电流产生的接触电压和跨步电压可直接使人触电;电气设备绝缘因雷击而损坏,也可使人遭到电击。 3设备和设施毁坏。雷击产生的高电压、大电流伴随的汽化力、静电力、电磁力可毁坏重要电气装置和建筑物及其他设施。 4大规模停电。电力设备或电力线路破坏后可能导致大规模停电。

第一节 雷电种类及危害

《电气防火及火灾监控》电子教材
第一节 雷电种类及危害
雷电是自然界的一种大气放电现象。当地面上的建筑物和电力系统内的电气设备遭受直接雷击 或雷电感应时,其放电电压可达数百万伏至数千万伏,电流达几十万安培,远远大于发、供电系统 的正常值。因此,其破坏性极大。不仅能击毙人畜,劈裂树木,击毁电气设备,破坏建筑物及各种 工农业设施,还能引起火灾和爆炸事故。 我国每年雷击死亡约 3000 人,受伤致伤约 6000 人,由于雷击引发的火灾、设备损毁等带来的 经济损失约 70 亿人民币。《重庆晚报》载 2004 年 6~11 月,仅重庆市因雷击损失 2 个亿,《江南 时报》载南京市每年雷击损失 1 亿元。
一、雷电起因
雷云是产生雷电的基本条件。雷云的形成必须是具备以下三个基本条件: (1)空气中应有足够的水蒸气; (2) 有使潮湿的空气能够有上升并开始凝结为水珠 的气象或地形条件; (3)使气流能强烈持久地上升。 在闷热的天气里,空气中的水蒸气已接近饱和,地 面的气温变化不均, 使带有大量水蒸气的空气强烈上升, 在气流上升过程中,水珠就会分裂为水滴。在快速分裂 过程中, 水滴就带上了电荷, 如图 7—1 所示, 使带正(或 负)电荷的水滴下降,带负(或正)电荷的水滴上升。等到 一定数量的电荷聚集在一个区域时,这个区域的电势就逐渐上升,在它附近的电场强度达到足以使 附近空气绝缘破坏的强度(约 25~30 kV/cm)时,就发生强烈的放电现象,出现耀眼的闪光。 以上简述,是雷云电荷分离过程一个称为“雨滴分裂作用”理论,这个分离过程是重复好多次, 也就是说水滴可以分裂,再增大,再分裂等等。 还有其他理论、学说等等。但到目前为止,还没有一个理论,可以将全部雷电现象解释清楚。 只有将不同理论综合起来,才能对雷电现象给以较完善的解释。 图 7—1 雷云中水滴分裂带电的过程
二、雷电种类
(一)直击雷 有时雷云较低,周围又没有带异性电荷的云层,而在地面 上突出物(树木或建筑物)感应出异性电荷, 雷云就会通过这些物 体与大地之间放电,这就是通常所说的雷击。这种直接击在建 筑物或其他物体上的雷电叫做直击雷。如图 7—2 所示。由于受 直接雷击,被击物产生很高的电位,而引起过电压,流过的雷电 流又很大(达几十千安甚至几百千安), 这样极易使设备或建筑物 损坏,并引起火灾或爆炸事故。当雷击于对地绝缘的架空导线 上时,会产生很高的电压(可高达几千千伏),不仅会常常引起线 路的闪络放电,造成线路发生短路事故,而且这种过电还会以 图 7-2 雷云对烟筒放电
- 200 -

相关文档
最新文档