高中物理传送带专题题目与问题详解
高中物理【传送带问题】(含经典习题)
牛顿第二定律的应用---传送带问题一、传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向二、传送带模型的一般解法①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
难点疑点:传送带与物体运动的牵制。
牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。
分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
一、水平放置运行的传送带1.如图所示,物体A从滑槽某一高度滑下后又滑上粗糙的水平传送带,传送带静止不动时,A滑至传送带最右端的速度为v1,需时间t1,若传送带逆时针转动,A滑至传送带最右端的速度为v2,需时间t2,则()A.1212,v v t t><B.1212,v v t t<<C.1212,v v t t>>D.1212,v v t t==2.如图7所示,一水平方向足够长的传送带以恒定的速度v1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v2沿直线向左滑向传送带后,经过一段时间又反回光滑水平面,速率为v2′,则下列说法正确的是:()A.只有v1= v2时,才有v2′= v1B.若v1 >v2时, 则v2′= v2C.若v1 <v2时, 则v2′= v2D.不管v2多大,v2′= v2.3.物块从光滑斜面上的P点自由滑下通过粗糙的静止水平传送带后落到地面上的Q点.若传送带的皮带轮沿逆时针方向匀速转动,使传送带随之运动,如图所示,物块仍从P点自由滑下,则()A.物块有可能落不到地面B.物块将仍落在Q点C.物块将会落在Q点的左边D.物块将会落在Q点的右边PQ4.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查右图为一水平传送带装置示意图,绷紧的传送带A、B始终保持v=1m/s的恒定速率运行;一质量为m=4kg的行李无初速地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,AB间的距离l=2m,g取10m/s2.(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处.求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.二、倾斜放置运行的传送带5.如图所示,传送带与地面倾角θ=37°,从AB长度为16m,传送带以10m/s的速率逆时针转动.在传送带上端A无初速度地放一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为0.5.(sin37°=0.6,cos37°=0.8)求:物体从A运动到B需时间是多少?(思考:物体从A运动到B在传送带上滑过的痕迹长?)6.如图所示,传送带两轮A、B的距离L=11 m,皮带以恒定速度v=2 m/s运动,现将一质量为m的物块无初速度地放在A端,若物体与传送带间的动摩擦因数为μ=0.8,传送带的倾角为α=37°,那么物块m从A端运到B端所需的时间是多少?(g取10 m/s2,cos37°=0.8)三、组合类的传送带7.如图所示的传送皮带,其水平部分AB长s AB=2m,BC与水平面夹角θ=37°,长度s BC=4m,一小物体P与传送带的动摩擦因数 =0.25,皮带沿A至B方向运行,速率为v=2m/s,若把物体P放在A点处,它将被传送带送到C点,且物体P不脱离皮带,求物体从A点被传送到C点所用的时间.(sin37°=0.6,g=l0m/s2)牛顿第二定律的应用----传送带问题参考答案一、水平放置运行的传送带1.D 提示:物体从滑槽滑至末端时,速度是一定的.若传送带不动,物体受摩擦力方向水平向左,做匀减速直线运动.若传送带逆时针转动,物体受摩擦力方向水平向左,做匀减速直线运动.两次在传送带都做匀减速运动,对地位移相同,加速度相同,所以末速度相同,时间相同,故D .2.B3.B 提示:传送带静止时,物块能通过传送带落到地面上,说明滑块在传送带上一直做匀减速运动.当传送带逆时针转动,物块在传送带上运动的加速度不变,由2202t v v as =+可知,滑块滑离传送带时的速度v t 不变,而下落高度决定了平抛运动的时间t 不变,因此,平抛的水平位移不变,即落点仍在Q 点.4.【答案】(1)4N ,a =lm/s 2;(2)1s ;(3)2m/s解析:(1)滑动摩擦力F =μmg① 以题给数值代入,得F =4N② 由牛顿第二定律得F =ma ③代入数值,得a =lm/s 2 ④(2)设行李做匀加速运动的时间为t ,行李加速运动的末速度v=1m /s .则 v =at ⑤代入数值,得t =1s⑥(3)行李从A 匀加速运动到B 时,传送时间最短.则2min 12l at = ⑦代入数值,得min 2s t =⑧ 传送带对应的运行速率V min =at min ⑨代人数据解得V min =2m/s⑩ 二、倾斜放置运行的传送带5.【答案】2s解析:物体的运动分为两个过程,一个过程在物体速度等于传送带速度之前,物体做匀加速直线运动;第二个过程是物体速度等于传送带速度以后的运动情况,其中速度相同点是一个转折点,此后的运动情况要看mgsinθ与所受的最大静摩擦力,若μ<tanθ,则继续向下加速.若μ≥tanθ,则将随传送带一起匀速运动,分析清楚了受力情况与运动情况,再利用相应规律求解即可.本题中最大静摩擦力等于滑动摩擦力大小.物体放在传送带上后,开始的阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F ,物体受力情况如图所示.物体由静止加速,由牛顿第二定律得a 1=10×(0.6+0.5×0.8)m/s 2=10m/s 2物体加速至与传送带速度相等需要的时间1110s=1s 10v t a ==, t 1时间内位移21115m 2s a t ==.由于μ<tanθ,物体在重力情况下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力F .此时物体受力情况如图所示,由牛顿第二定律得:222sin cos ,2m/s mg mg ma a θμθ-==.设后一阶段物体滑至底端所用的时间为t 2,由 222212L s vt a t -=+,解得t 2=1s ,t 2=-11s (舍去).所以物体由A→B 的时间t=t 1+t 2=2s .6.解析:将物体放在传送带上的最初一段时间内物体沿传送带向上做匀加速运动 由牛顿第二定律得μmg cos37°-mg sin37°=ma则a =μg cos37°-g sin37°=0.4 m/s 2物体加速至2 m/s 所需位移s 0=v 22a =222×0.4m =5 m<L 经分析可知物体先加速5 m再匀速运动s =L -s 0=6 m.匀加速运动时间t 1=v a =20.4s =5 s. 匀速运动的时间t 2=s v =62s =3 s. 则总时间t =t 1+t 2=(5+3) s =8 s.答案:8 s三、组合类的传送带7.【答案】2.4s解析:物体P 随传送带做匀加速直线运动,当速度与传送带相等时若未到达B ,即做一段匀速运动;P 从B 至C 段进行受力分析后求加速度,再计算时间,各段运动相加为所求时间.P 在AB 段先做匀加速运动,由牛顿第二定律11111,,N F ma F F mg v a t μμ====, 得P 匀加速运动的时间110.8s v v t a gμ===. 22111112110.8m,22AB s a t gt s s vt μ===-=, 匀速运动时间120.6s AB s s t v-==. P 以速率v 开始沿BC 下滑,此过程重力的下滑分量mg sin37°=0.6mg ;滑动摩擦力沿斜面向上,其大小为μmg cos37°=0.2mg .可见其加速下滑.由牛顿第二定律233cos37cos37,0.44m/s mg mg ma a g μ︒-︒===,233312BC s vt a t =+,解得t 3=1s (另解32s t '=-,舍去). 从A 至C 经过时间t =t 1+t 2+t 3=2.4s .。
高中物理传送带专题题目与答案(精选.)
传 送 带 问 题一、传送带问题中力与运动情况分析 1、水平传送带上的力与运动情况分析例1 水平传送带被广泛地应用于车站、码头,工厂、车间。
如图所示为水平传送带装置示意图,绷紧的传送带AB 始终保持v 0=2 m/s 的恒定速率运行,一质量为m 的工件无初速度地放在A 处,传送带对工件的滑动摩擦力使工件开始做匀加速直线运动,设工件与传送带间的动摩擦因数为μ=0.2 ,AB 的之间距离为L =10m ,g 取10m/s 2 .求工件从A 处运动到B 处所用的时间.例2: 如图甲所示为车站使用的水平传送带的模型,传送带长L =8m ,以速度v =4m/s 沿顺时针方向匀速转动,现有一个质量为m =10kg 的旅行包以速度v 0=10m/s 的初速度水平地滑上水平传送带.已知旅行包与皮带间的动摩擦因数为μ=0.6 ,则旅行包从传送带的A 端到B 端所需要的时间是多少?(g =10m/s 2 ,且可将旅行包视为质点.)例3、如图所示为车站使用的水平传送带装置的示意图,绷紧的传送带始终保持3.0m /s 的恒定速率运行,传送带的水平部分AB 距水平地面的高度为h=0.45m.现有一行李包(可视为质点)由A 端被传送到B 端,且传送到B 端时没有被及时取下,行李包从B 端水平抛出,不计空气阻力,g 取10 m/s 2(1) 若行李包从B 端水平抛出的初速v =3.0m /s ,求它在空中运动的时间和飞出的水平距离;(2) 若行李包以v 0=1.0m /s 的初速从A 端向右滑行, 包与传送带间的动摩擦因数μ=0.20,要使它从B 端飞出的水平距离等于(1)中所 求的水平距离,求传送带的长度L 应满足的条件?例4一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为 。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动,经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
运动与力的关系专题之传送带问题(典型例题分析+专项训练)附详细解析
牛顿第二定律的运用之传送带问题一、传送带水平放,传送带以一定的速度匀速转动,物体轻放在传送带一端,此时物体可能经历两个过程——匀加速运动和匀速运动。
【例题1】在民航和火车站可以看到用于对行李进行安全检查的水平传送带,当旅客把行李放到传送带上时,传送带对行李的摩擦力使行李开始运动,最后行李随传送带一起前进,设传送带匀速前进的速度为0.6m/s,质量为4.0kg的皮箱在传送带上相对滑动时,所受摩擦力为24N,那么,这个皮箱无初速地放在传送带上后,求:(1)经过多长时间才与皮带保持相对静止?(2)传送带上留下一条多长的摩擦痕迹?【答案】分析:(1)行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动(2)传送带上对应于行李最初放置的一点通过的位移与行李做匀加速运动直至与传送带共同运动时间内通过的位移之差即是擦痕的长度解答:解:(1)设皮箱在传送带上相对运动时间为t,皮箱放上传送带后做初速度为零的匀加速直线运动,由牛顿运动定律:皮箱加速度:a==m/s2=6m/s2由v=at 得t==s=0.1s(2)到相对静止时,传送带带的位移为s1=vt=0.06m皮箱的位移s2==0.03m摩擦痕迹长L=s1--s2=0.03m(10分)所以,(1)经0.1s行李与传送带相对静止(2)摩擦痕迹长0.0.03m二、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的最低端,只要物体与传送带之间的滑动摩擦系数μ≥tanθ,那么物体就能被向上传送。
此时物体可能经历两个过程——匀加速运动和匀速运动。
【例题2】如图2—4所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B的长度L=50m,则物体从A到B需要的时间为多少?解:物体放上传送带后,开始一段时间t1内做初速度为0的匀加速直线运动,对小物体受力分析如下图所示:可知,物体所受合力F合=f-Gsinθ又因为f=μN=μmgcosθ所以根据牛顿第二定律可得:此时物体的加速度a===m/s2=1.2m/s2当物体速度增加到10m/s时产生的位移x===41.67m因为x<50m所以=8.33s所以物体速度增加到10m/s后,由于mgsinθ<μmgcosθ,所以物体将以速度v做匀速直线运动故匀速运动的位移为50m-x,所用时间所以物体运动的总时间t=t1+t2=8.33+0.83s=9.16s答:物体从A到B所需要的时间为9.16s.三、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的顶端,物体被向下传送。
高中物理必修一 涉及到传送带问题解析 (含练习解析)
涉及到传送带问题解析【学习目标】能用动力学观点分析解决多传送带问题【要点梳理】要点一、传送带问题的一般解法1.确立研究对象;2.受力分析和运动分析,逐一摩擦力f大小与方向的突变对运动的影响;⑴受力分析:F的突变发生在物体与传送带共速的时刻,可能出现f消失、变向或变为静摩擦力,要注意这个时刻。
⑵运动分析:注意参考系的选择,传送带模型中选地面为参考系;注意判断共速时刻并判断此后物体与带之间的f变化从而判定物体的受力情况,确定物体是匀速运动、匀加速运动还是匀减速运动;注意判断带的长度,临界之前是否滑出传送带。
⑶注意画图分析:准确画出受力分析图、运动草图、v-t图像。
3.由准确受力分析、清楚的运动形式判断,再结合牛顿运动定律和运动学规律求解。
要点二、分析物体在传送带上如何运动的方法1、分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。
具体方法是:(1)分析物体的受力情况在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。
在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。
(2)明确物体运动的初速度分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。
(3)弄清速度方向和物体所受合力方向之间的关系物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。
2、常见的几种初始情况和运动情况分析(1)物体对地初速度为零,传送带匀速运动,(也就是将物体由静止放在运动的传送带上)物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V20是物体对地运动初速度。
高中物理 传送带模型 典型例题(含答案)【经典】
难点形成的原因: 1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清; 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。
1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.绷紧的传送带AB 始终保持恒定的速率v =1 m/s 运行,一质量为m =4 kg 的行李无初速度地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处,求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.解析 (1)行李刚开始运动时,受力如图所示,滑动摩擦力:F f =μmg =4 N 由牛顿第二定律得:F f =ma 解得:a =1 m/s 2(2)行李达到与传送带相同速率后不再加速,则:v =at ,解得t =v a =1 s(3)行李始终匀加速运行时间最短,且加速度仍为a =1 m/s 2,当行李到达右端时,有:v 2min =2aL 解得:v min =2aL =2 m/s故传送带的最小运行速率为2 m/s 行李运行的最短时间:t min =v min a=2 s 2:如图所示,传送带与地面成夹角θ=37°,以10m/s 的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A →B 的长度L=50m ,则物体从A 到B 需要的时间为多少?【解析】物体放上传送带以后,开始一段时间,其运动加速度2m/s 2.1sin cos =-=m mg mg a θθμ。
(完整word版)高考物理——传送带问题专题归类(含答案解析)
传送带问题归类分析传送带是运送货物的一种省力工具,在装卸运输行业中有着广泛的应用,本文收集、整理了传送带相关问题,并从两个视角进行分类剖析:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析;二是从传送带的形式来剖析.(一)传送带分类:(常见的几种传送带模型)1.按放置方向分水平、倾斜和组合三种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
(二)传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。
(三)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。
突变有下面三种:1.滑动摩擦力消失;2.滑动摩擦力突变为静摩擦力;3.滑动摩擦力改变方向;(四)运动分析:1.注意参考系的选择,传送带模型中选择地面为参考系;2.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?3.判断传送带长度——临界之前是否滑出?(五)传送带问题中的功能分析1.功能关系:W F=△E K+△E P+Q。
传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。
因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。
2.对W F 、Q 的正确理解(a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f·S 相对(c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q=2mv 21传 。
一对滑动摩擦力做的总功等于机械能转化成热能的值。
而且这个总功在求法上比一般的相互作用力的总功更有特点,一般的一对相互作用力的功为W =f 相s 相对,而在传送带中一对滑动摩擦力的功W =f 相s ,其中s 为被传送物体的实际路程,因为一对滑动摩擦力做功的情形是力的大小相等,位移不等(恰好相差一倍),并且一个是正功一个是负功,其代数和是负值,这表明机械能向内能转化,转化的量即是两功差值的绝对值。
(完整版)高中物理传送带模型典型例题(含答案)【经典】,推荐文档
难点形成的原因:1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。
1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.绷紧的传送带AB 始终保持恒定的速率v =1 m/s 运行,一质量为m =4 kg 的行李无初速度地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处,求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.解析 (1)行李刚开始运动时,受力如图所示,滑动摩擦力:F f =μmg =4 N 由牛顿第二定律得:F f =ma 解得:a =1m/s 2(2)行李达到与传送带相同速率后不再加速,则:v =at ,解得t ==1 sv a (3)行李始终匀加速运行时间最短,且加速度仍为a =1 m/s 2,当行李到达右端时,有:v =2aL 解得:v min ==2 m/s 2min2aL 故传送带的最小运行速率为2 m/s 行李运行的最短时间:t min ==2 sv mina 2:如图所示,传送带与地面成夹角θ=37°,以10m/s 的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B 的长度L=50m ,则物体从A 到B 需要的时间为多少?【解析】物体放上传送带以后,开始一段时间,其运动加速度2m/s 2.1sin cos =-=m mg mg a θθμ。
2024年新高一物理初升高衔接《传送带问题和滑块——木板问题》含答案解析
专题04传送带问题和滑块—木板问题【必备知识】1.传送带问题(1)水平传送带问题当传送带水平时,应特别注意摩擦力的突变和物体运动状态的变化。
摩擦力的突变,常常导致物体的受力情况和运动性质的突变。
静摩擦力达到最大值,是物体和传送带恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,物体与传送带的速度达到相同时,滑动摩擦力要发生突变(滑动摩擦力为0或变为静摩擦力)。
(2)倾斜传送带问题当传送带倾斜时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ对受力的影响,从而正确判断物体的速度和传送带速度相等时物体的运动性质。
2.滑块—木板问题(1)滑块—木板问题至少涉及滑块和木板两个物体(有时不止一个滑块,有时木板受地面的摩擦力),物体间经常存在相对滑动。
由于摩擦力的突变,所以一般是多过程运动,各物体所受的摩擦力和运动情况比较复杂。
(2)常见的两种运动关系①滑块从初始位置滑到木板一端的过程中,若它们向同一方向运动,则滑块与木板的位移大小之差等于初始时滑块到木板这一端的距离。
②滑块从初始位置滑到木板一端的过程中,若它们向相反方向运动,则滑块与木板的位移大小之和等于初始时滑块到木板这一端的距离。
注意:如果滑块恰好没有脱离木板,则除了上述的位移关系外,滑块的末速度还与木板的相同。
【核心考点精准练】考向一: 传送带问题【例1】(多选)如图所示,水平传送带A、B两端点相距x=4 m,以v0=2 m/s的速度(始终保持不变)顺时针运转。
今将一小煤块(可视为质点)无初速度地轻放至A点处,已知小煤块与传送带间的动摩擦因数为0.4,g取10 m/s2。
由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕。
则小煤块从A运动到B的过程中( )A.运动时间是2 s B.运动时间是2.25 sC.划痕长度是4 m D.划痕长度是0.5 m【巩固1】如图所示,A、B间的距离l=3.25 m,传送带与水平面成θ=30°角,轮子转动方向如图所示,传送带始终以2 m/s的速度运行。
高中物理水平传送带练习题解析
3.10水平传送带教师一、单选题1.如图甲所示,一水平传送带沿顺时针方向旋转,在传送带左端A 处轻放一可视为质点的小物块,小物块从A 端到B 端的速度—时间变化规律如图乙所示,t =6s 时恰好到B 点,则( )A .AB 间距离为20mB .小物块在传送带上留下的痕迹是8mC .物块与传送带之间动摩擦因数为μ=0.5D .若物块速度刚好到4m/s 时,传送带速度立刻变为零,则物块不能到达B 端【答案】B【详解】A .由图可知,4s 后物体与传送带的速度相同,故传送带速度为4m /s ;图中图像与时间轴所围成的面积表示位移,故AB 的长度26416m 2x +⨯==() A 错误;B .小物体在传送带上留下的痕迹是44448m 2l ⨯=⨯-= B 正确;C .由图乙可知,加速过程的加速度2Δ41m/s Δ4v a t === 由牛顿第二定律可知mga g m μμ==联立解得0.1μ=C 错误;D .物块速度刚好到4m/s 时,传送带速度立刻变为零,物块由于惯性向前做匀减速直线A.B.C.D.运动的位移x =2A v v +t 1=5.75 m <8 m 则工件在到达B 端前速度就达到了13 m/s ,此后工件与传送带相对静止,因此工件先加速运动后匀速运动,根据牛顿第二定律可得合力F =ma 先不变后为零,故B 正确,A 、C 、D 错误。
故选B 。
3.如图所示,绷紧的水平传送带始终以恒定速度04m /s v =顺时针运行,小物块以16m /s v =的初速度从传送带右端滑上传送带。
已知物块与传送带间的动摩擦因数为0.2,传送带的长度为10m ,重力加速度210m /s g =,考虑小物块滑上传送带到离开传送带的过程,下列说法正确的是( )A .小物块从传送带左端滑离传送带B .小物块滑离传送带时的速度大小为6m /sC .小物块从滑上传送带到滑离传送带经历的时间为6.25sD .小物块在传送带上留下的划痕长度为17m【答案】C【详解】A .物块在传送带上的加速度22m/s a g μ==向左减速到零的时间113s ==v t a向左运动的最大距离 2119m 10m 2v x L a==<= 故物块不会从左端滑离传送带,故A 错误;B .物块向左减速到零后,向右加速,但只能加速到04m /s v =,故B 错误;C .物块向左加速到04m /s v =用时022s v t a==二、多选题4.如图所示,水平传送带A、B两端相距x=3.5m,工件与传送带间的动摩擦因数μ=0.1。
“传送带”模型中的动力学问题(解析版)—2025年高考物理一轮复习
运动和力的关系“传送带”模型中的动力学问题素养目标:1.掌握传送带模型的特点,了解传送带问题的分类。
2.会对传送带上的物体进行受力分析和运动状态分析,能正确解答传送带上物体的动力学问题。
1.(2024·北京·高考真题)水平传送带匀速运动,将一物体无初速度地放置在传送带上,最终物体随传送带一起匀速运动。
下列说法正确的是( )A.刚开始物体相对传送带向前运动B.物体匀速运动过程中,受到静摩擦力C.物体加速运动过程中,摩擦力对物体做负功D.传送带运动速度越大,物体加速运动的时间越长考点一 水平传送带中的动力学问题水平传送带问题的常见情形及运动分析滑块的运动情况情景传送带不足够长(滑块最终未与传送带相对静止)传送带足够长一直加速先加速后匀速v 0<v 时,一直加速v 0<v 时,先加速再匀速v 0>v 时,一直减速v 0>v 时,先减速再匀速滑块一直减速到右端滑块先减速到速度为0,后被传送带传回左端若v 0≤v ,则返回到左端时速度为v 0;若v 0>v ,则返回到左端时速度为v例题1. 如图所示,足够长水平传送带逆时针转动的速度大小为1v ,一小滑块从传送带左端以初速度大小0v 滑上传送带,小滑块与传送带之间的动摩擦因数为μ,小滑块最终又返回到左端。
已知重力加速度为g )A .小滑块的加速度向右,大小为μgB .若01vv <,小滑块返回到左端的时间为1v v g m +C .若01v v >,小滑块返回到左端的时间为01v v gm +D .若01v v >,小滑块返回到左端的时间为()20112v v gv m +【答案】D【解析】A .小滑块相对于传送带向右滑动,滑动摩擦力向左,加速度向左,根据牛顿第二定律得:mg ma m =解得:a gm =1.若01v v >,先匀减速再反方向加速,反方向加速只能加速到1v ,不能加速到0v 。
高考物理——传送带问题专题归类(含答案解析)
传送带问题归类分析传送带是运送货物的一种省力工具,在装卸运输行业中有着广泛的应用,本文收集、整理了传送带相关问题,并从两个视角进行分类剖析:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析;二是从传送带的形式来剖析.(一)传送带分类:(常见的几种传送带模型)1.按放置方向分水平、倾斜和组合三种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
(二)传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。
(三)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。
突变有下面三种:1.滑动摩擦力消失;2.滑动摩擦力突变为静摩擦力;3.滑动摩擦力改变方向;(四)运动分析:1.注意参考系的选择,传送带模型中选择地面为参考系;2.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?3.判断传送带长度——临界之前是否滑出?(五)传送带问题中的功能分析1.功能关系:W F=△E K+△E P+Q。
传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。
因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。
2.对W F 、Q 的正确理解(a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f·S 相对(c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q=2mv 21传 。
一对滑动摩擦力做的总功等于机械能转化成热能的值。
而且这个总功在求法上比一般的相互作用力的总功更有特点,一般的一对相互作用力的功为W =f 相s 相对,而在传送带中一对滑动摩擦力的功W =f 相s ,其中s 为被传送物体的实际路程,因为一对滑动摩擦力做功的情形是力的大小相等,位移不等(恰好相差一倍),并且一个是正功一个是负功,其代数和是负值,这表明机械能向内能转化,转化的量即是两功差值的绝对值。
传送带问题讲解及例题集锦
Q f s
对皮带
思考题、一传送带装置示意如图,其中传送带经过AB区域时是 水平的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,未画 出),经过CD区域时是倾斜的,AB和CD都与BC相切。现将大量 的质量均为m的小货箱一个一个在A处放到传送带上,放置时初 速为零,经传送带运送到D处,D和A的高度差为h。稳定工作时 传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L。 每个箱子在A处投放后,在到达B之前已经相对于传送带静止, 且以后也不再滑动(忽略经BC段时的微小滑动)。已知在一段相当 长的时间T内,共运送小货箱的数目为N。这装置由电动机带动, 传送带与轮子间无相对滑动,不计轮轴处的摩擦。求电动机的 平均输出功率P。
t2 1s
思考:μ=0.8呢?
练习1、如图所示,传送带与地面成夹角θ=37o,以速度10m/s顺 时针转动,在传送带下端轻轻地放一个m=0.5㎏的物体,它与传 送带间的动摩擦因数μ=0.9,已知传送带从A→B的长度L=50m, 则物体从A到B需要的时间为多少?
a
mg cos mg sin
m
1.2m/s 2
v 10 t 1 s 8.33s, a 1.2
t2 s2 0.833 s, v
t总 8.33s 0.833 s 9.163s
物体的位移为传送带位移的一半 就是图乙中的A'、B'间的距离,即传送带比物体多运动的距 离,也就是物体在传送带上所留下的划痕的长度。
力学专题:
传送带问题
即墨市实验高级中学 孙绪山
难点分析: 1、力的问题 物体与传送带之间的相互作用力 2、运动的问题 物体相对地面、相对传送带的运动情况 3、能量的问题 物体在传送带上运动过程中的能量问题
高中物理微专题二传送带问题练习含解析第一册
微专题二传送带问题必备知识基础练进阶训练第一层知识点一水平方向传送带1.如图所示,水平放置的传送带以速度v=2 m/s向右运行,现将一小物体轻轻地放在传送带A端,物体与传送带间的动摩擦因数μ=0。
2,若A端与B端相距4 m,则物体由A运动到B 的时间和物体到达B端时的速度是(g取10 m/s2)()A.2.5 s,2 m/s B.1 s,2 m/sC.2。
5 s,4 m/s D.1 s,4 m/s知识点二倾斜方向传送带2.如图所示,粗糙的传送带与水平方向夹角为θ,当传送带静止时,在传送带上端轻放一小物块,物块下滑到底端时间为T,则下列说法正确的是()A.当传送带顺时针转动时,物块下滑的时间可能大于T B.当传送带顺时针转动时,物块下滑的时间可能小于T C.当传送带逆时针转动时,物块下滑的时间等于TD.当传送带逆时针转动时,物块下滑的时间小于T关键能力综合练进阶训练第二层一、单项选择题1.应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图所示的模型,紧绷的传送带始终保持v=1 m/s的恒定速率运行.旅客把行李无初速度地放在A处,设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离x=2 m,g取10 m/s2.若乘客把行李放到传送带上的同时也以v=1 m/s的恒定速率平行于传送带运动到B处去取行李,则()A.乘客与行李同时到达B处B.乘客提前0.5 s到达B处C.行李提前0。
5 s到达B处D.若传送带速率足够大,行李最快也要4 s才能到达B处2.传送带与水平面夹角为37°,传送带以10 m/s的速率运动,传送轮沿顺时针方向转动,如图所示.今在传送带上端A处无初速度地放上一个质量为m=0.5 kg的小物块,它与传送带间的动摩擦因数为0.5,若传送带A到B的长度为16 m,g取10 m/s2,sin37°=0。
6,cos37°=0.8,则小物块从A运动到B的过程中()A.小物块先加速后匀速B.小物块加速度大小为2 m/s2C.小物块到达B点的速度为10 m/sD.小物块全程用时2 s二、多项选择题3.如图甲所示,水平传送带始终以恒定速率v1沿顺时针方向转动,初速度大小为v2的小物块向左从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图像(以地面为参考系)如图乙所示.已知v2>v1,下列说法正确的是()A.t2时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离达到最大C.0~t2时间内,小物块受到的摩擦力方向始终向右D.0~t3时间内,小物块相对传送带的位移大小为错误!t2三、非选择题4.如图所示,水平传送带AB长L=10 m,向右匀速运动的速度v0=4 m/s.一质量为1 kg的小物块(可视为质点)以v1=6 m/s的初速度从传送带右端B点冲上传送带,物块与传送带间的动摩擦因数μ=0。
(完整版)高考物理——传送带问题专题归类(含答案解析)
传送带问题归类分析传送带是运送货物的一种省力工具,在装卸运输行业中有着广泛的应用,本文收集、整理了传送带相关问题,并从两个视角进行分类剖析:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析;二是从传送带的形式来剖析.(一)传送带分类:(常见的几种传送带模型)1.按放置方向分水平、倾斜和组合三种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
(二)传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。
(三)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。
突变有下面三种:1.滑动摩擦力消失;2.滑动摩擦力突变为静摩擦力;3.滑动摩擦力改变方向;(四)运动分析:1.注意参考系的选择,传送带模型中选择地面为参考系;2.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?3.判断传送带长度——临界之前是否滑出?(五)传送带问题中的功能分析1.功能关系:W F=△E K+△E P+Q。
传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。
因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。
2.对W F 、Q 的正确理解(a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f·S 相对(c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q=2mv 21传 。
一对滑动摩擦力做的总功等于机械能转化成热能的值。
而且这个总功在求法上比一般的相互作用力的总功更有特点,一般的一对相互作用力的功为W =f 相s 相对,而在传送带中一对滑动摩擦力的功W =f 相s ,其中s 为被传送物体的实际路程,因为一对滑动摩擦力做功的情形是力的大小相等,位移不等(恰好相差一倍),并且一个是正功一个是负功,其代数和是负值,这表明机械能向内能转化,转化的量即是两功差值的绝对值。
传送带(解析版)--动力学中的九类常见问题
动力学中的九类常见问题传送带【模型精讲】1.水平传送带问题情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v 0>v 时,可能一直减速,也可能先减速再匀速(2)v 0<v 时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v 0>v 返回时速度为v ,当v 0<v 返回时速度为v 0解题关键:关键在于对传送带上的物块所受的摩擦力进行正确的分析判断。
(1)若物块的速度与传送带的速度方向相同,且v 物<v 带,则传送带对物块的摩擦力为动力,物块做加速运动。
(2)若物块的速度与传送带的速度方向相同,且v 物>v 带,则传送带对物块的摩擦力为阻力,物块做减速运动。
(3)若物块的速度与传送带的速度方向相反,传送带对物块的摩擦力为阻力,物块做减速运动;当物块的速度减为零后,传送带对物块的摩擦力为动力,物块做反向加速运动。
(4)若v 物=v 带,看物块有没有加速或减速的趋势,若物块有加速的趋势,则传送带对物块的摩擦力为阻力;若物块有减速的趋势,则传送带对物块的摩擦力为动力。
2.倾斜传送带问题情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a 1加速后再以a 2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a 1加速后再以a 2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能先减速,再反向加速,最后匀速(5)可能一直减速 求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。
如果受到滑动摩擦力作用应进一步确定滑动摩擦力的大小和方向,然后根据物体的受力情况确定物体的运动情况。
当物体速度与传送带速度相同时,物体所受的摩擦力的方向有可能发生突变。
人教版必修一 专题练:传送带问题(解析版)
必修一专题练:传送带问题(解析版)一、选择题1.如图所示,物块m在传送带上向右运动,两者保持相对静止.则下列关于m所受摩擦力的说法中正确的是()A.皮带传送速度越大,m受到的摩擦力越大B.皮带传送的加速度越大,m受到的摩擦力越大C.皮带速度恒定,m质量越大,所受摩擦力越大D.无论皮带做何种运动,m都一定受摩擦力作用【答案】B【解析】物块若加速运动,其合外力由传送带给它的摩擦力来提供,故加速度大,摩擦力大,B正确;当物块匀速运动时,物块不受摩擦力,故A、C、D错误.2.如图所示,足够长的水平传送带以v0=2 m/s的速率顺时针匀速运行.t=0时,在最左端轻放一个小滑块,t=2 s时,传送带突然制动停下.已知滑块与传送带之间的动摩擦因数为μ=0.2,取g=10 m/s2.下列关于滑块相对地面运动的v-t图象正确的是()A. B. C. D.【答案】B【解析】刚被放在传送带上时,滑块受到滑动摩擦力作用做匀加速运动,a=μg=2 m/s2,滑块运动到与传送带速度相同需要的时间t1==1 s,然后随传送带一起匀速运动的时间t2=t-t1=1 s,当传送带突然制动停下时,滑块在传送带摩擦力作用下做匀减速运动直到静止,a′=-a=-2 m/s2,运动的时间t3==s=1 s,选项B正确.3.如图所示,一条足够长的浅色水平传送带自左向右匀速运行.现将一个木炭包无初速度地放在传送带的最左端,木炭包在传送带上将会留下一段黑色的径迹.下列说法中正确的是()A.黑色的径迹将出现在木炭包的左侧B.此时木炭包相对于传送带向右运动C.木炭包的质量越大,径迹的长度越短D.木炭包与传送带间的动摩擦因数越大,径迹的长度越短【答案】D4.如图甲所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示.已知v2>v1,则()A.0~t2时间内,小物块受到的摩擦力方向先向右后向左B.0~t3时间内,小物块始终受到大小不变的摩擦力作用C.t2时刻,小物块离A处的距离达到最大D.t2时刻,小物块相对传送带滑动的距离达到最大【答案】D【解析】0~t2时间内,小物块受到的摩擦力方向始终向右,且大小不变,故A错误;t2~t3小物块做匀速直线运动,此时受力平衡,小物块不受摩擦力作用,故B错误;在0~t1时间内小物块向左减速,受向右的摩擦力作用,在t1~t2时间内小物块向右加速运动,受到向右的摩擦力作用,t1时刻小物块向左运动到速度为零,离A处的距离达到最大,故C错误;t2时刻前小物块相对传送带向左运动,之后相对静止,则知t2时刻小物块相对传送带滑动的距离达到最大,故D正确.5.如图所示,倾角为θ的传送带沿逆时针方向以加速度a加速转动时,小物体A与传送带相对静止,重力加速度为g.则().A.只有a>g sinθ,a才受沿传送带向上的静摩擦力作用B.只有a<g sinθ,a才受沿传送带向上的静摩擦力作用C.只有a=g sinθ,a才受沿传送带向上的静摩擦力作用D.无论a为多大,a都受沿传送带向上的静摩擦力作用【答案】B【解析】A与传送带相对静止,倾角为θ的传送带沿逆时针方向以加速度a加速转动时,A 有沿斜面向下的加速度a,对A受力分析可知只有a<g sinθ,A才受沿传送带向上的静摩擦力作用,B正确.6.如图所示,在以速度v逆时针匀速转动的、与水平方向倾角为θ的足够长的传送带的上端轻轻放置一个质量为m的小物块,小物块与传送带之间的动摩擦因数为μ(μ<tanθ),则下列图象中能够客观反映出小物块的速度随时间变化关系的是()【答案】C【解析】刚放上去的时候,物块受重力,支持力,摩擦力方向向下,物块做加速运动,故由牛顿第二定律:mg sinθ+μmg cosθ=ma1解得:a1=g sinθ+μg cosθ,物块做加速运动,当物块速度大于传送带速度后,摩擦力变为向上,由于μ<tanθ,即μmg cosθ<mg sinθ,物块做加速运动,则由牛顿第二定律:mg sinθ-μmg cosθ=ma2解得:a2=g sinθ-μg cosθ由于a1>a2,故选C.7.如图,传送带两轮间距为L,传送带运动速度为v0,今在其左端静止地放一个木块,设木块与传送带之间的动摩擦因数为μ,放上木块后传送带速率不受影响,则木块从左端运动到右端的时间可能是()A. B.+ C. D.【答案】BCD【解析】若木块沿着传送带的运动是一直加速,根据牛顿第二定律,有μmg=ma①根据位移时间公式,有L=at2②由①②解得t=,故C正确;若木块沿着传送带的运动是先加速后匀速,根据牛顿第二定律,有μmg=ma③根据速度时间公式,有v0=at1④根据速度位移公式,有v=2ax1⑤匀速运动过程,有L-x1=v0t2⑥由③④⑤⑥解得t=t1+t2=+故B正确;如果物体滑到最右端时,速度恰好增加到v0,根据平均速度公式,有L=t=t,得t=.故D正确;木块放在传送带后做的不是匀速直线运动,时间不可能等于,故A错误.8.(多选)如图所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,P与定滑轮间的绳水平,t=t0时刻P 离开传送带.不计定滑轮质量和滑轮与绳之间的摩擦,绳足够长.正确描述小物体P速度随时间变化的图象可能是()A. B. C. D.【答案】BC【解析】若P在传送带左端时的速度v2小于v1,则P受到向右的摩擦力,当P受到的摩擦力大于绳的拉力时,P做加速运动,则有两种可能:第一种是一直做加速运动,第二种是先做加速度运动,当速度达到v1后做匀速运动,所以B正确;当P受到的摩擦力小于绳的拉力时,P做减速运动,也有两种可能:第一种是一直做减速运动,从右端滑出;第二种是先做减速运动再做反向加速运动,从左端滑出.若P在传送带左端具有的速度v2大于v1,则小物体P受到向左的摩擦力,使P做减速运动,则有三种可能:第一种是一直做减速运动,第二种是速度先减到v1,之后若P受到绳的拉力和静摩擦力作用而处于平衡状态,则其以速度v1做匀速运动,第三种是速度先减到v1,之后若P所受的静摩擦力小于绳的拉力,则P将继续减速直到速度减为0,再反向做加速运动并且摩擦力反向,加速度不变,从左端滑出,所以C正确.9.如图,水平传送带A、B两端相距s=3.5 m,工件与传送带间的动摩擦因数μ=0.1.工件滑上A端的瞬时速度v A=4 m/s,达到B端的瞬时速度设为v B,则()A.若传送带不动,则v B=3 m/sB.若传送带以速度v=4 m/s逆时针匀速转动,vB=3 m/sC.若传送带以速度v=2 m/s顺时针匀速转动,vB=3 m/sD.若传送带以速度v=2 m/s顺时针匀速转动,vB=2 m/s【答案】ABC【解析】若传送带不动,工件的加速度a=μg=1 m/s2,由v-v=2as,得v B==3 m/s,选项A正确;若传送带以速度v=4 m/s逆时针转动,工件的受力情况不变,由牛顿第二定律知,工件的加速度仍为a=μg,工件的运动情况跟传送带不动时的一样,则v B=3 m/s,选项B正确;若传送带以速度v=2 m/s顺时针匀速转动,工件滑上传送带时所受的滑动摩擦力方向水平向左,做匀减速运动,工件的加速度仍为a=μg,工件的运动情况跟传送带不动时的一样,则v B=3 m/s,选项C正确,D错误.10.(多选)如图所示,三角形传送带以1 m/s的速度逆时针匀速转动,两边的传送带长都是2 m,且与水平方向的夹角均为37°.现有两个小物块A、B从传送带顶端都以1 m/s的初速度沿传送带下滑,两物块与传送带间的动摩擦因数都是0.5,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.下列判断正确的是()A.物块A先到达传送带底端B.物块A、B同时到达传送带底端C.传送带对物块A、B的摩擦力都沿传送带向上D.物块A下滑过程中相对传送带的位移小于物块B下滑过程中相对传送带的位移【答案】BCD【解析】传送带对物块A、B的摩擦力方向都沿传送带向上,选项C正确;物块A、B都做匀加速运动,加速度相同,aA==2 m/s2=aB,两物块的初速度相同,位移相同,则运动时间也相同,选项B正确,A错误;物块A下滑过程相对传送带的位移等于物块A的位移与传送带匀速运动的位移之差,物块B下滑过程相对传送带的位移等于物块B的位移与传送带匀速运动的位移之和,选项D正确.11.(多选)如图所示,倾斜的传送带始终以恒定速率v2运动.一小物块以v1的初速度冲上传送带.小物块从A到B的过程中一直做减速运动,则()A.如果v1>v2,小物块到达B端的速度可能等于0B.如果v1<v2,小物块到达B端的速度可能等于0C.如果v1>v2,减小传送带的速度,物块到达B端的时间可能增长D.如果v1<v2,增大传送带的速度,物块到达B端的时间可能变短【答案】ABC【解析】(1)如果v1>v2,小物块的加速度开始时为g sinθ+μg cosθ;当速度减为v2后,重力沿皮带的分量可能大于向上的摩擦力,这样合力方向向下,加速度变为g sinθ-μg cosθ,物块继续减速,到达顶端时,速度有可能正好减为零,故A正确;若减小传送带的速度,作出两种情况下的图象如图所示;由图可知,传送带速度减小后的图象如虚线所示,要达到相同的位移,用时要长,故C正确;(2)如果v1<v2,重力沿皮带的分量可能大于向上的摩擦力,这样合力方向向下,物块一直减速,到达顶端时,速度有可能正好减为零,故B正确;增大传送带速度后,物体的加速度不变,位移不变,到达B端的时间不变,故D错误.12.(多选)如图甲所示,倾角为θ的足够长的传送带以恒定的速率v0沿逆时针方向运动.t=0时将质量m=1 kg的物体(可视为质点)轻放在传送带上,物体相对地面的v-t图象如图乙所示.设沿传送带向下为正方向,取重力加速度g=10 m/s2.则()A.传送带的速率v0=10 m/sB.传送带的倾角θ=30°C.物体与传送带之间的动摩擦因数μ=0.5D.1.0~2.0 s物体不受摩擦力【答案】AC【解析】由图可知当物体速度达到v0=10 m/s前,物体沿斜面向下的加速度为10 m/s2;速度在10 m/s到12 m/s时的加速度为2 m/s2;物体沿斜面的受力为重力沿斜面的分力、传送带对物体的摩擦力,当物体速度小于传送带的速度时物体受到传送带向下的摩擦力,当物体速度等于传送带的速度后物体受到的传送带的摩擦力方向发生变化,物体向下的加速度发生变化;由上述分析可知物体速度达到v0=10 m/s时加速度变小是由于物体速度与传送带速度相同摩擦力方向变化,故传送带的速率为v0=10 m/s,即A正确,D错误;设物体速度达到v0=10 m/s前的加速度为a1,物体速度达到v0=10 m/s后的加速度为a2,则有mg sinθ+μmg cosθ=ma1①,mg sinθ-μmg cosθ=ma2②,由图可知a1=10 m/s2,a2=2 m/s2,联立①②可得sinθ=0.6,即θ=37°,μ=0.5,故B错误,C正确.二、计算题13.如图甲所示,水平传送带AB逆时针匀速转动,一个质量为M=1.0 kg的小物块以某一初速度由传送带左端滑上,通过速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块滑上传送带时为计时零点).已知传送带的速度保持不变,g取10 m/s2.求:甲乙(1)物块与传送带间的动摩擦因数μ;(2)物块在传送带上运动的时间.【答案】(1)0.2(2)4.5 s【解析】(1)由速度图象可得,物块做匀变速运动的加速度:a==2.0 m/s2由牛顿第二定律得F f=Ma得到物块与传送带间的动摩擦因数μ==0.2(2)由速度图象可知,物块初速度大小v=4 m/s、传送带速度大小v′=2 m/s,物块在传送带上滑动t1=3 s后,与传送带相对静止.前2秒内物块的位移大小x1=t=4 m,方向向右后1秒内的位移大小x2=t′=1 m,方向向左3秒内位移x=x1-x2=3 m,方向向右物块再向左运动时间t2==1.5 s物块在传送带上运动时间t=t1+t2=4.5 s14.如图所示,质量m=4 kg的物体(可视为质点)用细绳拴住,放在水平传送带的右端,物体和传送带之间的动摩擦因数μ=0.5,传送带的长度L=6 m,当传送带以v=4 m/s的速度做逆时针转动时,绳与水平方向的夹角θ=53°.已知:sin 53°=0.8,cos 53°=0.6,g=10 m/s2.求:(1)传送带稳定运动时绳子的拉力;(2)传送带对物体的摩擦力;(3)某时刻剪断绳子,则经过多少时间,物体可以运动到传送带的左端.【答案】(1)20 N(2)12 N(3)1.9 s【解析】(1)(2)对物体受力分析如甲所示,将F T正交分解;竖直方向上:F N1+F T sinθ=mg水平方向上:F T cosθ=F f1摩擦力:F f1=μF N1联立解得:F T=20 N F f1=12 N(3)剪断绳子后,对物体受力分析如图乙所示,F合=F f2=μF N2=μmg根据a=可得:加速度a=5 m/s2设物体匀加速直线运动的时间为t1,位移为x1,根据速度和时间关系:v=at1解得:t1=0.8 s根据速度和位移关系:x1=解得:x1=1.6 m设匀速直线运动的时间为t2,之后物体做匀速运动对匀速过程,有L-x1=vt2解得:t2=1.1 s总时间t=t1+t2=(0.8+1.1) s=1.9 s15.如图所示,水平传送带正在以v=4.0 m/s的速度匀速顺时针转动,质量为m=1 kg的某物块(可视为质点)与传送带之间的动摩擦因数μ=0.1,将该物块从传送带左端无初速度地轻放在传送带上(g取10 m/s2).(1)如果传送带长度L=4.5 m,求经过多长时间物块将到达传送带的右端;(2)如果传送带长度L=20 m,求经过多长时间物块将到达传送带的右端.【答案】(1)3 s(2)7 s【解析】物块放到传送带上后,在滑动摩擦力的作用下先向右做匀加速运动.由μmg=ma得a=μg,若传送带足够长,匀加速运动到与传送带同速后再与传送带一同向前做匀速运动.物块匀加速时间t1===4 s物块匀加速位移x1=at=μgt=8 m(1)因为4.5 m<8 m,所以物块一直加速,由L=at2得t=3 s(2)因为20 m>8 m,所以物块速度达到传送带的速度后,摩擦力变为0,此后物块与传送带一起做匀速运动,物块匀速运动的时间t2==s=3 s故物块到达传送带右端的时间t′=t1+t2=7 s16.如图所示,传送带与水平面的夹角θ=37°,并以v=10 m/s的速率逆时针转动,在传送带的A端轻轻地放一小物体.若已知物体与传送带之间的动摩擦因数μ=0.5,传送带A 端到B端的距离L=16 m,则小物体从A端运动到B端所需的时间为多少?(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)【答案】 2 s【解析】设小物体的质量为m,小物体被轻轻地放在传送带A端,小物体沿传送带方向速度为零,但传送带的运动速率为v=10 m/s,二者速率不相同,它们之间必然存在相对运动.传送带对小物体有沿传送带斜向下的滑动摩擦力作用,小物体的受力情况如图所示.设小物体的加速度为a1,则由牛顿第二定律有mg sinθ+F f1=ma1①F N=mg cosθ②F f1=μF N③联立①②③式并代入数据解得a1=10 m/s2小物体速度大小达到传送带速率v=10 m/s时,所用的时间t1==1 s在1 s内小物体沿传送带的位移x1=a1t=5 m小物体的速度大小与传送带速率相同的时刻,若要跟随传送带一起运动,即相对传送带静止,它必须受到沿传送带向上的摩擦力F f=mg sinθ=6m的作用,但是此时刻它受到的摩擦力是F f2=μmg cosθ=4m,小于F f.因此,小物体与传送带仍有相对滑动,设小物体的加速度为a2,这时小物体的受力情况如图所示.由牛顿第二定律有mg sinθ-μmg cosθ=ma2,解得a2=2 m/s2.设小物体速度大小达到10 m/s后又运动时间t2才到达B端,则有x2=L-x1=vt2+a2t代入数据解得t2=1 s,t2′=-11 s(舍去)小物体从A端运动到B端所需的时间t=t1+t2=2 s.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传 送 带 问 题一、传送带问题中力与运动情况分析 1、水平传送带上的力与运动情况分析例1 水平传送带被广泛地应用于车站、码头,工厂、车间。
如图所示为水平传送带装置示意图,绷紧的传送带AB 始终保持v 0=2 m/s 的恒定速率运行,一质量为m 的工件无初速度地放在A 处,传送带对工件的滑动摩擦力使工件开始做匀加速直线运动,设工件与传送带间的动摩擦因数为μ=0.2 ,AB 的之间距离为L =10m ,g 取10m/s 2 .求工件从A 处运动到B 处所用的时间.例2: 如图甲所示为车站使用的水平传送带的模型,传送带长L =8m ,以速度v =4m/s 沿顺时针方向匀速转动,现有一个质量为m =10kg 的旅行包以速度v 0=10m/s 的初速度水平地滑上水平传送带.已知旅行包与皮带间的动摩擦因数为μ=0.6 ,则旅行包从传送带的A 端到B 端所需要的时间是多少?(g =10m/s 2 ,且可将旅行包视为质点.)例3、如图所示为车站使用的水平传送带装置的示意图,绷紧的传送带始终保持3.0m /s 的恒定速率运行,传送带的水平部分AB 距水平地面的高度为h=0.45m.现有一行李包(可视为质点)由A 端被传送到B 端,且传送到B 端时没有被及时取下,行李包从B 端水平抛出,不计空气阻力,g 取10 m/s 2(1) 若行李包从B 端水平抛出的初速v =3.0m /s ,求它在空中运动的时间和飞出的水平距离;(2) 若行李包以v 0=1.0m /s 的初速从A 端向右滑行, 包与传送带间的动摩擦因数μ=0.20,要使它从B 端飞出的水平距离等于(1)中所 求的水平距离,求传送带的长度L 应满足的条件?例4一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为 。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动,经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度.BA Lh图 甲2、倾斜传送带上的力与运动情况分析例4.如图所示,传送带与水平方向夹37°角,AB 长为L =16m 的传送带以恒定速度v =10m/s 运动,在传送带上端A 处无初速释放质量为m =0.5kg 的物块,物块与带面间的动摩擦因数μ=0.5,求: (1)当传送带顺时针转动时,物块从A 到B 所经历的时间为多少? (2)当传送带逆时针转动时,物块从A 到B 所经历的时间为多少? (sin37°=0.6,cos37°=0.8,取g =10 m/s 2).3、水平和倾斜组合传送带上的力与运动情况分析例5 如图甲所示的传送带,其水平部分ab 的长度为2 m ,倾斜部分bc 的长度为4 m ,bc 与水平面的夹角θ=37°,现将一小物块A (可视为质点)轻轻放在传送带的a 端,物块A 与传送带之间的动摩擦因数μ=0.25.传送带沿图甲所示方向以v =2 m/s 的速度匀速运动,若物块A 始终未脱离传送带,试求小物块A 从a 端被传送到c 端所用的时间?(取g =10m/s 2 ,sin37°=0.6 ,cos37°=0.8 )例6如图所示的传送带以速度V=2m/s 匀速运行,AB 部分水平,BC 部分与水平面之间的夹角为30°,AB 间与BC 间的距离都是12m ,工件与传送带间的动摩擦因数为 63=μ,现将质量为5kg 的工件轻轻放在传送带的A 端,假设工件始终没有离开传送带,求: (1)工件在AB 上做加速运动过程中的位移 (2)工件在滑到C 点时的速度大小4、变形传送带上的力与运动情况分析例7、 如图所示10只相同的轮子并排水平排列,圆心分别为O 1、O 2、O 3…O 10,已知O 1O 10=3.6m ,水平转轴通过圆心,所有轮子均绕轴以π4r/s 的转速顺时针转动。
现将一根长0.8m 、质量为2.0kg 的匀质木板平放在这些轮子的左端,木板左端恰好与O 1竖直对齐,木板与轮缘间的动摩擦因数为0.16,试求:.木板水平移动的总时间(不计轴与轮间的摩擦,g 取10m/s 2).图甲370 ABO 1O 2O 3O 10二、传送带问题中能量转化情况的分析 1、水平传送带上的能量转化情况分析例8、 如图所示,水平传送带以速度v 匀速运动,一质量为m 的小木块由静止轻放到传送带上,若小木块与传送带之间的动摩擦因数为μ,当小木块与传送带相对静止时,系统转化的内能是( ) A 、mv 2 B 、2mv 2C 、241mvD 、221mv2、倾斜传送带上的能量转化情况分析例9、如图所示,电动机带着绷紧的传送带始终以v 0=2 m/s 的速度运动,传送带与水平面的夹角θ=30°,现把一质量为m =10kg 的工件轻轻地放在皮带的底端,经过一段时间后,工件被送到高h =2m 的平台上,已知工件与皮带之间的动摩擦因数μ=23,除此之外,不记其他损耗。
求电动机由于传送工件多消耗的电能。
(取g =10 m/s 2)例10、 “潮汐发电”是海洋能利用中发展最早、规模最大、技术较成熟的一种方式。
某海港的货运码头,就是利用“潮汐发电”为皮带式传送机供电,图1所示为皮带式传送机往船上装煤。
本题计算中取sin18°=0.31,cos18°=0.95,水的密度233/10,/100.1s m g m kg =⨯=ρ。
(1)皮带式传送机示意图如图2所示,传送带与水平方向的角度︒=18θ,传送带的传送距离为L=51.8m ,它始终以v=1.4m/s ,、的速度运行。
在传送带的最低点,漏斗中的煤自由落到传送带上(可认为煤的初速度为0),煤与传送带之间的动摩擦因数4.0=μ求:从煤落在传送带上到运至传送带最高点经历的时间t ; (2)图3为潮汐发电的示意图。
左侧是大海,中间有水坝,水坝下装有发电机,右侧是水库,当涨潮到海平面最高时开闸,水由通道进入海湾水库,发电机在水流的推动下发电,待库内水面升至最高点时关闭闸门;当落潮到海平面最低时,开闸放水发电。
设某汐发电站发电有效库容V=3.6×106m 3,平均潮差△h=4.8m ,一天涨落潮两次,发电四次。
水流发电的效率%101=η。
求该电站一天内利用潮汐发电的平均功率P ; (3)传送机正常运行时,1秒钟有m=50kg 的煤从漏斗中落到传送带上。
带动传送带的电动机将输入电能转化为机械能的效率%802=η,电动机输出机械能的20%用来克服传送带各部件的摩擦(不包括传送带与煤之间的摩擦)以维传送带的正常运行。
若用潮汐发电站发出的电给传送机供电,能同时使多少台这样的传送机正常运行?300 AB3、水平和倾斜组合传送带上的能量转化情况分析例11、一传送带装置示意如图,其中传送带经过AB区域时是水平的,经过BC区域时变为圆孤形(圆孤由光滑模板形成,未画出),经过CD区域时是倾斜的,AB和CD都与BC相切。
现将大量的质量均为m的小货箱一个一个在A处放到传送带上,放置时初速为零,经传送带运送到D处,D和A的高度差为h.稳定工作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L.每个箱在A处投放后,在到达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BC段时的微小滑动).已知在一段相当长的时间T内,共运送小货箱的数目为N.这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦.求电动机的平均输出功率P.4、变形传送带上的能量转化情况分析例12、如图所示,用半径为r=0.4m的电动滚轮在长薄铁板上表面压轧一道浅槽。
薄铁板的长为L=2.8m、质量为m=10kg。
已知滚轮与铁板、铁板与工作台面间的动摩擦因数分别为μ1=0.3和μ2=0.1。
铁板从一端放入工作台的滚轮下,工作时滚轮对铁板产生恒定的竖直向下的压力为N=100N,在滚轮的摩擦作用下铁板由静止向前运动并被压轧出一浅槽。
已知滚轮转动的角速度恒为ω=5rad/s,g取10m/s2。
求:加工一块铁板电动机要消耗多少电能?(不考虑电动机自身的能耗)滚轮铁板例1解答 设工件做加速运动的加速度为a ,加速的时间为t 1 ,加速运动的位移为l ,根据牛顿第二定律,有:μmg=ma 代入数据可得:a =2 m/s 2 工件加速运动的时间t 1=av 0代入数据可得: t 1=1s此过程工件发生的位移l =12at 12 代入数据可得:l =1m 由于l <L ,所以工件没有滑离传送带设工件随传送带匀速运动的时间为t 2 ,则t 2=vlL - 代入数据可得:t 2=4.5s所以工件从A 处运动到B 处的总时间t =t 1+t 2=5.5 s例2:解答 设旅行包在传送带上做匀加速运动的时间为t 1 ,即经过t 1时间,旅行包的速度达到v =4m/s ,由牛顿第二定律,有: μmg=ma代入数据可得:a =6 m/s 2 t 1=avv -0 代入数据可得:t =1s此时旅行包通过的位移为s 1 ,由匀加速运动的规律,有 s 1=gv v μ2220-=7 m代入数据可得:s 1=7 m <L可知在匀加速运动阶段,旅行包没有滑离传送带,此后旅行包与传送带一起做匀速运动,设做匀速运动的时间为t 2 ,则t 2=vs L 1- 代入数据可得:t =0.25 s故:旅行包在传送带上运动的时间为t =t 1+t 2=1.25 s例3、(1)设行李包在空中运动时间为t ,飞出的水平距 离为s ,则 h=1/2 gt 2 ① s =v t ②代入数据得:t =0.3s ③ s =0.9m ④(2)设行李包的质量为m ,与传送带相对运动时的加速度为a ,则滑动摩擦力 ⑤代入数据得:a =2.0m/s 2 ⑥要使行李包从B 端飞出的水平距离等于(1)中所求水平距离,行李包从B 端飞出的水平抛出的初速度v=3.0m/s 设行李被加速到时通过的距离为s 0,则 2as 0 =v 2-v 02 ⑦ 代入数据得 s 0=2.0m ⑧ 故传送带的长度L 应满足的条件为:L ≥2.0m 例4解法1 力和运动的观点根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a 小于传送带的加速度a 0。
根据牛顿第二定律,可得g a μ= ①设经历时间t ,传送带由静止开始加速到速度等于v 0,煤块则由静止加速到v ,有t a v 00= ②at v = ③由于0a a <,故0v v <,煤块继续受到滑动摩擦力的作用。
再经过时间t ',煤块的速度由v 增加到v 0,有t a v v '+=0 ④此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹. 设在煤块的速度从0增加到v 0的整个过程中,传送带和煤块移动的距离分别为s 0和s ,有 t v t a s '+=020021⑤ av s 220= ⑥ 传送带上留下的黑色痕迹的长度s s l -=0 ⑦由以上各式得ga g a v l 00202)(μμ-=⑧ 解法2 v t -图象法t00v 0μg作出煤块、传送带的v t -图线如图所示,图中标斜线的三角形的面积,即为煤块相对于传送带的位移,也即F mgmaμ==传送带上留下的黑色痕迹的长度.012l v t =⋅∆ ① 000v v t g a μ∆=- ②由①②解得2000()2v a g l a gμμ-=③ 例4.解析 (1) 当传送带顺时针转动时,设物块的加速度为 a ,物块受到传送带给予的滑动摩擦力μmgcos37°方向沿斜面向上且小于物块重力的分力mg sin37°,根据牛顿第二定律,有: mg sin37°- μmgcos37°=ma 代入数据可得: a =2 m/s 2物块在传送带上做加速度为a =2 m/s 2的匀加速运动,设运动时间为t , t =aL2 代入数据可得:t =4s(2)物块放上传送带的开始的一段时间受力情况如图甲所示,前一阶段物块作初速为0的匀加速运动,设加速度为a 1 ,由牛顿第二定律,有 mgsin37°+μmgcos 37°=ma 1 , 解得:a 1 =10m/s 2,设物块加速时间为t 1 ,则t 1 =1a v, 解得:t 1=1s 因位移s 1=21121t a =5m <16m ,说明物块仍然在传送带上. 设后一阶段物块的加速度为a 2, 当物块速度大于传送带速度时,其受力情况如图乙所示. 由牛顿第二定律,有:mg sin37°- μmgcos37°=ma 2 , 解得a 2=2m/s 2,设后阶段物块下滑到底端所用的时间为t 2. 由L -s =v t 2+a 2t 22/2, 解得t 2=1s另一解-11s 不合题意舍去.所以物块从A 到B 的时间为:t =t 1+t 2=2s例5 解答 设物块在水平传送带上加速的过程中的加速度为a 1, 根据牛顿第二定律有:μmg =ma 1 解得 : a 1=2.5m/s 2图乙图丙设物块A 做运加速运动的时间为t 1 ,t 1=1a v解得: t 1=0.8 s设物块A 相对传送带加速运动的位移为s 1,则s 1=21-vt 解得: t 1=0.8 m当A 的速度达到2 m/s 时,A 将随传送带一起匀速运动,A 在传送带水平段匀速运动的时间为t 2 ,t 2=vs s ab 1-=0.6s解得: t 2=0.6sA 在bc 段受到的摩擦力为滑动摩擦力,其大小为μmg cos37°,设A 沿bc 段下滑的加速度为a 2,根据牛顿第二定律有, mg sin37°-μmg cos37°=ma 2 解得:a 2=4 m/s 2根据运动学的关系,有: s bc =v t 3+2321at 其中s bc =4 m ,v =2 m/s , 解得 :t 3=1s ,另一解t 3=-2s (不合题意,舍去)所以物块A 从传送带的a 端传送到c 端所用的时间t =t 1+t 2+t 3=2.4s例6、解:(1)设工件在传送带上时的加速度为a 1,加速运动过程中的位移为s 1 由牛顿定律得:1ma mg =μ 所以g a μ=1 ①m m a V s 69.0153610632222121==⨯⨯== ② (2)设当工件滑到BC 部分上时物体的加速度为a 2.则 230cos 30sin ma mg mg =-μ ③ 22/5.230cos 30sin s m g g a =-=μ ④ 所以,由V 02 -V 2 = 2a 2L 得V 0 = 8m/s ⑤ ①②各4分,③④得3分,⑤2分,共16分例7、解答(1)设轮子的半径为r ,由题意O 1O 10=3.6m ,得轮子的半径r =11092oo⨯=0.2m.。