实验2:应变片全桥性能实验

合集下载

应变片全桥实验报告(1)

应变片全桥实验报告(1)

应变片全桥实验报告(1)应变片全桥实验报告一、实验目的本次实验的目的是通过对应变片全桥的实验操作,学习应变测量原理与应用,了解应变传感器的工作原理,掌握应变片传感器的使用方法,以及应变片的标定和灵敏度测量方法。

二、实验原理应变片是利用金属材料受力后会产生形变的物理原理,通过将应变片粘贴在试件上进行应变的传感器。

当试件受到力的作用,应变片也会跟随变形,从而导致内部的应变变化。

应变片旁边粘有导线,通过连接到采集器中来连接计算机,进而记录下应变片受到的应变值。

三、实验操作1. 提前准备:将所需设备的连接准备工作完成,包括收集器、应变片、试件、电缆等设备准备就绪。

2. 清洁试件表面:将脏物和杂质从试件表面切除,确保应变片能够正常贴合。

3. 应变片粘贴:仔细去除应变片上的塑料薄膜,然后附在试件上,用指压将其平整环绕在试件的表面上。

4. 连接装置:使用电缆将应变片连接到收集器,以便将其应变数据传输到计算机上。

5. 核对应变片灵敏度:比较已经安装应变片的试件与没有应变片的试件之间的区别,获得标准应变片灵敏度。

四、实验结果本次实验使用全桥形式的应变传感器,选择20×10 mm2的一块薄金属片作为试件,经过应变片的安装和采样,得到了试件在不同施力条件下的应变值。

通过计算和记录每个读数,我们得到了如下测试数据:力(N) 应变(με)0 01.5 0.933 1.854.5 2.756 3.707.5 4.549 5.5五、实验结论本次应变片全桥实验得出的结论是,应变片全桥的使用使得我们可以对金属类材料的变形进行精确的观测和计算。

通过监测装置和薄金属片的读数数据,可以获得牢固且精确的变形读数,这使得我们可以更好地了解这些材料的物理特性和反应。

六、实验分析本次应变片全桥实验的记录和观测数据非常精准,没有明显的差异,这表明应变片传感器在材料应变测量中的重要性和它的可靠性。

由于应变片反应的是试件表面的应变情况,所以应用范围还是有限的。

应变片全桥实验报告

应变片全桥实验报告

应变片全桥实验报告实验目的:掌握应变片全桥测量方法,了解应变片的应变测量原理,熟悉应变片在力学实验中的应用。

实验原理:应变片是一种将物体在应变情况下的应变转化为电阻变化的敏感元件,其原理是根据伏安特性的基本规律。

全桥电路通过测量电阻变化来间接地获得物体的应变情况,从而间接地得到物体受力过程中的各种参数。

全桥电路包括应变片、标准电阻和电桥。

在实际测量过程中,通过向电桥的两个对角电阻R1和R2加上恒定的电流I,通过测量电桥两对角的电压U1和U2的大小,通过改变电桥上的电阻Rx的大小来使电桥平衡,从而测量到被测物体的应变。

实验器材:1.应变片全桥实验仪;2.应变片;3.标准电阻箱;4.电源;5.万用表;6.手动蝼蚁拉力机。

实验步骤:1.将手动蝼蚁拉力机的加荷靠右的滑块拉到最右端,使得下方的呆扳手完全松开。

2.在呆扳手上紧固上准备安装应变片的试件。

3.将应变片按照预先设计的位置进行安装,并使用胶水固定。

4.将应变片连接到应变片全桥实验仪上,注意连接正确。

5.打开电源,将电源电压调整到适当范围。

6.使用标准电阻箱调整电桥电阻,使得电桥平衡。

7.通过万用表测量电桥两对角的电压值,记录下来。

实验结果及分析:在实验中,我们通过应变片全桥实验仪测量了应变片在力学实验中的应变情况。

根据测量结果,我们可以计算出力学实验中的应变量。

通过调整电桥电阻,使得电桥平衡,我们可得到电桥两对角的电压值为U1和U2、根据应变片的标定系数,我们可以将电压值转化为应变值。

应变值可以通过应变本构模型进一步计算得到应力。

在实验中,我们还可以测量到随着受力的增加,应变值的增加情况。

通过绘制应变-应力曲线,我们可以分析被测物体的力学性质,如在材料屈服之前的弹性变形情况、屈服点的位置等。

实验结果也可以与材料的材料力学性质进行比对,从而检验被测物体的机械性能和使用性能。

结论:通过应变片全桥实验,我们可以测量出应变片在被力作用下的应变情况,并进一步计算得到应力。

应变片性能实验

应变片性能实验

实验一 应变传感器的性能研究一、实验类型:验证性实验。

二、实验目的1. 观察了解箔式应变片的结构及粘贴方式;2. 测试应变梁变形的应变输出;3. 验证单臂、半桥、全桥测量电桥的输出关系,比较不同桥路的功能。

三、实验内容1. 设计并实现应变传感器的测试桥路;2. 测量单臂、半桥、全桥测量电桥的输出,记录数据、绘制关系曲线,并分析。

四、实验原理1. 本实验说明箔式应变片及单臂直流电桥的原理和工作情况。

应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。

通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为ΔR1/R1、ΔR2/R2、ΔR3/ R3、ΔR4/R4,当使用一个应变片时,∑∆=RRR ;当二个应变片组成差动状态工作,则有2RR R∆=∑;用四个应变片组成二个差动对工作,且R1= R2 = R3 = R4 = R ,4RR R∆=∑。

由此可知,单臂,半桥,全桥电路的灵敏度依次增大。

2. 已知单臂、半桥和全桥的R ∑分别为ΔR/R 、2ΔR/R 、4ΔR/ R 。

根据戴维南定理可以得出测试电桥的输出电压近似等于1/4E R ⋅⋅∑,电桥灵敏度//Ku V R R =∆,于是对应于单臂、半桥和全桥的电压灵敏度分别为1/4E 、1/2E 和E 。

由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。

五、实验要求1. 熟悉CSY 系统传感器实验系统;2. 能自行设计实现应变式传感器的测量桥路;3. 掌握应变式传感器的各种测量电路的性能。

六、实验仪器设备主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V 直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

应变片电桥性能实验报告

应变片电桥性能实验报告

应变片电桥性能实验报告应变片电桥性能实验报告引言:应变片电桥是一种常见的测量应变和力的传感器。

它通过将应变片安装在被测物体上,利用应变片的应变与被测物体受力之间的线性关系,通过电桥电路来测量应变片的电阻变化,从而得到被测物体的应变和力的信息。

本实验旨在研究应变片电桥的性能,包括灵敏度、线性度和温度补偿等方面。

实验装置和方法:实验使用了一套标准的应变片电桥装置,包括应变片、电桥电路和数据采集系统。

首先,将应变片粘贴在被测物体上,并通过电缆将应变片连接到电桥电路。

然后,通过电源提供电桥所需的电压,同时使用数据采集系统记录电桥的输出电压。

在实验过程中,通过施加不同的力或应变来改变被测物体的状态,以观察电桥输出的变化。

实验结果与分析:1. 灵敏度:灵敏度是指电桥输出电压与被测物体应变或力之间的比例关系。

为了研究电桥的灵敏度,我们分别施加不同大小的力,并记录相应的电桥输出电压。

实验结果显示,电桥输出电压与施加的力呈线性关系,且随着力的增加而增加。

这表明应变片电桥具有较高的灵敏度,能够准确测量被测物体的应变和力。

2. 线性度:线性度是指电桥输出电压与被测物体应变或力之间的线性关系程度。

为了研究电桥的线性度,我们施加不同大小的力,并记录电桥输出电压。

实验结果显示,电桥输出电压与施加的力之间存在一定的偏差,但整体呈现较好的线性关系。

这表明应变片电桥具有较好的线性度,能够准确测量被测物体的应变和力。

3. 温度补偿:温度对应变片电桥的性能有较大影响,因此需要进行温度补偿。

为了研究电桥的温度补偿效果,我们在实验过程中改变环境温度,并记录电桥输出电压。

实验结果显示,随着温度的变化,电桥输出电压存在一定的漂移。

通过对漂移进行补偿,可以减小温度对电桥的影响,提高测量的准确性。

结论:通过本实验的研究,我们得出以下结论:1. 应变片电桥具有较高的灵敏度,能够准确测量被测物体的应变和力。

2. 应变片电桥具有较好的线性度,能够准确反映被测物体应变和力之间的关系。

应变片单臂、半桥、全桥性能实验PPT课件

应变片单臂、半桥、全桥性能实验PPT课件

• Uo≈(1/4)(△R4/R4)E=(1/4)(△R/R)E=(1/4)KεE
2•020差/2/2动6 放大器输出为Vo。
12
7、应变片半桥特性实验原理图
• 不同应力方向的两片应变片接入电桥作为邻边,输出灵敏 度提高,非线性得到改善。
• 其桥路输出电压Uo≈(1/2)(△R/R)E=(1/2)KεE 。
• 当导体因某种原因产生应变时,其长度L、截面积 A和电阻率ρ的变化为dL、dA、dρ相应的电阻变 化为dR。对式全微分得电阻变化率 dR/R为:
式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr
由材料力学得:εr= - μεL 代入上式
式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5 左右;负号表示两者的变化方向相反。
在传感器的托盘上依次增加放置一只20g砝码尽量靠近托盘的中心点放置读取相应的数显表电压值记下实验数据填入表1202022620应变片单臂电桥性能实验数据5根据表1数据作出曲线并计算系统灵敏度sv输出电压变化量w重量变化量和非线性误差myfs100式中输出值多次测量时为平均值与拟合直线的最大偏差
应变片单臂、半桥、全桥性能实验
2020/2/26
18
3、实验模板中的差动放大器调零
• 按图示接线,将主机箱上的电压表量程切换开关切换到2V档 ,检查接线无误后合上主机箱电源开关;调节放大器的增益电 位器RW3合适位置(先顺时针轻轻转到底,再逆时针回转1圈) 后,再调节实验模板放大器的调零电位器RW4,使电压表显 示为零。
2020/2/26
(b)半桥
(c)全桥
(a)单臂 Uo=U①-U③ =〔(R1+△R1)/(R1+△R1+R5)-R7/(R7+R6)〕E ={〔(R7+R6)(R1+△R1)-R7(R5+R1+△R1)〕/ 〔(R5+R1+△R1)(R7+R6)〕}E

检测技术实验2 金属箔式应变片 单臂、半桥、全桥性能实验

检测技术实验2 金属箔式应变片 单臂、半桥、全桥性能实验

上海电力学院检测技术实验金属箔式应变片——单臂、半桥、全桥性能实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反应了相应的受力状态。

对单臂电桥输出电压U01=EKε/4。

当两片应变片阻值和应变量相同时,其桥路输出电压U02=EK/ε2。

全桥测量电路中其桥路输出电压U03=KEε。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、需用器件与单元应变式传感器实验模板、应变式传感器、砝码、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤1、根据图(1-1)应变式传感器已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。

图1-1 应变式传感安装示意图2、接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器R w3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档)。

关闭主控箱电源。

3、将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好),接好电桥调零电位器R w1,接上桥路电源±4V(从主控箱引入)如图1-2所示。

实验三--应变片全桥性能实验

实验三--应变片全桥性能实验

实验三应变片全桥性能实验一、实验目的:了解应变片全桥工作特点及性能。

掌握测量方法。

二、基本原理:应变片基本原理参阅实验一。

应变片全桥特性实验原理如图3—1所示。

应变片全桥测量电路中,将应力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uo≈(△R/R)E=KεE。

其输出灵敏度比半桥又提高了一倍,非线性得到改善。

图3—1应变片全桥性能实验接线示意图三、需用器件和单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

四、实验步骤:将实验数据填入表3作出实验曲线并进行灵敏度和非线性误差计算。

实验完毕,关闭电源五、实验结果及分析位移(mm)0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0电压(mv)0 -0.03 -0.07 -0.10 -0.14 -0.17 -0.20位移(mm)-3.5 -4.0 -4.5 -5.0 -5.5电压(mv)-0.23 -0.27 -0.30 -0.34 -0.37位移(mm)0 0.5 1.0 1.5 2.0 2.5 3.0电压(mv)0.01 0.05 0.09 0.13 0.18 0.23 0.27位移(mm) 3.5 4.0 4.5 5.0 5.5电压(mv)0.32 0.36 0.41 0.46 0.51最小二乘法拟合如图所示由此可知灵敏度为0.07935,经计算最大非线性误差为0.039mv,线性度为7.69%。

六、实验心得实验中应变梁的自由端产生负位移后,重新回到位移原点时,其电压值并不为零,这体现了传感器的迟滞。

迟滞误差在本次拟合中修正了。

应变片全桥实验报告

应变片全桥实验报告

班级:学号:姓名:组别:试验一电阻应变片灵敏系数的测定报告一、试验目的掌握通用电阻应变片灵敏系K值的测定方法。

二、试验设备及仪表1 静态电阻应变仪;2 等应力梁;3 待测电阻应变片。

图1 试验材料准备三、试验方法测试装置见教材第九章附图1.1。

灵敏系数K值是电阻应变片的输入和输出的比值,其准确性是保证测量结果真实性的保证,出厂标称K值有时存在误差,对要求较高的应变测点,有必要进行灵敏系数K值测量。

具体步骤:1 在等应力梁上沿轴向准确贴好应变片;2 用全桥将应变片接入应变仪,灵敏系数调节器旋钮置于某任意选定的K仪=2);值(如K仪3 应变初始置零,并保证其漂移量小于教材P.54页静态应变仪要求。

然后给等应变梁逐级加砝码,由钢梁所加重量换算出已知应变ε计(梁的材料弹性模量已知);=MEWε计,式中:M —贴片处截面处的弯矩,E —梁弹性模量,W —贴片处抗弯截面模量。

4 由应变仪测取每级荷载下的应变值ε仪记入表格(附表1.1)。

对测定的应变片,均需要加卸荷载三次,从而得到三组灵敏系数K 值,再取三组的平均值即为所代表的同批产品的平均灵敏系数K 值。

5 按试验过程算出灵敏系数K 值附表1.1加载 项目9.97 N19.95 N 29.9N1点 2点 3点 4点 1点 2点 3点 4点 1点 2点 3点4点 第一次ε仪1(με) 第二次ε仪2(με) 第三次ε仪3(με)实测平均ε仪(με) 111 222 332 计算应变ε计(με)113 226 339 K=K εε仪仪计1.961.961.96 注:计算应变ε计的计算过程可另附页,K 仪为仪器随意设置的灵敏度。

现场试验完成图长:363 mm 厚:4.5 mm 宽:46 mm g:10 N/kg E:2.06*10^11 paW=1/6*0.046*0.0045^2=1.5525*10^(-7) N/(M^2)M=9.97*0.363=3.61911 N·M ε=3.61911/(2.06*10^11*(1.5525*10^(-7)))*10^6=113 1M=19.95*0.363=7.24185 N·M ε=7.24185/(2.06*10^11*(1.5525*10^(-7)))*10^6=226 2M=29.9*0.363=10.8537 N·M ε=10.8537/(2.06*10^11*(1.5525*10^(-7)))*10^6=339 3K=111/113*2=1.961K=222/226*2=1.962K=332/339*2=1.963%=(113-111)/111*100%=1.8%1%=(226-222)/222*100%=1.8%2%=(339-332)/332*100%=2.1%3实验心得班级: 学号:姓名:组别这次实验做的是关于电阻应变片的实验,反映的是应变片对所测地方发生形变时测量出的数据的灵敏程度。

应变片单桥、半桥及全桥性能实验

应变片单桥、半桥及全桥性能实验

安康学院电子与信息工程系实验报告一、实验目的1.掌握应变片单桥、半桥及全桥的电路形式及性能;2.理解温度效应对应变片测量电桥的影响。

二、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK RR=∆ (公式1) 式中R R ∆为电阻丝电阻相对变化,K 为应变灵敏系数,ll∆为电阻丝长度相对变化。

电桥的作用是完成电阻到电压的比例变化,其输出电压反映了相应的受力状态,单桥、半桥及全桥的比例关系分别为:εεεEK U EK U EK U ===32124 (公式2) 电阻应变片受温度效应的影响,当温度变化时,在被测体受力状态不变时,电桥输出会有变化。

三、实验内容及步骤1.单臂电桥连接图及测量结果图1 单桥连线图2.半桥连线图及测量结果图2 半桥连线图3.半桥连线图及测量结果图3 全桥连线图4.应变片电桥的温度影响对图3中的半桥电路,放置200g砝码于托盘上,记录下电桥输出电压值U,将5V直流稳压电源接于实验模板的加热器插孔上,数分钟1o后待数显表电压显示基本稳定后,记下读数U。

2oU01=231mv U02=239mv5.实验数据处理及分析1.三种电桥灵敏度及非线性误差的计算2.温度变化产生的相对误差的变化电阻应变片受温度效应的影响,当温度变化时,在被测体受力状态不变时,电桥输出会有变化。

3.分析(主要写根据数据能验证哪些结论)电阻丝在外力作用下发生机械变形时,其电阻值发生变化从而通过电桥的作用完成电阻到电压变化,改变了电阻丝电阻,应变灵敏系数K,l 。

电阻丝长度l四、思考题1.单臂电桥时,作为桥臂电阻应变片应选用:A:正(受拉)应变片B:负(受压)应变片C:正、负应变片均可以。

答:C2.半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:A:对边B:邻边答:B3.应变式传感器可否用于测量温度?答:应变传感器不可用于测量温度。

实验三应变片全桥性能实验

实验三应变片全桥性能实验

实验三--应变片全桥性能实验实验三:应变片全桥性能实验一、实验目的1.掌握全桥应变测量电路的工作原理及使用方法。

2.了解全桥测量电路的非线性误差及其补偿方法。

3.学会用静态应变仪测量试件的应变。

二、实验原理应变片全桥性能实验主要通过搭建全桥应变测量电路,利用应变片感受试件应变,并利用静态应变仪进行测量。

全桥测量电路由四个应变片组成,其中两个为工作应变片,两个为补偿应变片。

工作应变片感受试件的应变,补偿片则用于补偿温度引起的误差。

通过全桥测量电路,可将试件的应变转换成电信号输出。

三、实验步骤1.准备实验设备:试件、全桥应变片、静态应变仪、绝缘胶带、万能表。

2.搭建全桥应变测量电路:将四个应变片粘贴在试件上,组成全桥电路。

使用万能表检查电路的正确性。

3.安装补偿片:选择与工作片相同型号和规格的应变片作为补偿片,粘贴在试件附近的适当位置,以补偿温度引起的误差。

4.连接静态应变仪:将全桥应变测量电路的输出端连接到静态应变仪的输入端。

5.开始测量:打开静态应变仪,设置合适的测量范围,开始测量试件的应变。

6.分析实验数据:记录实验数据,分析全桥测量电路的非线性误差及其补偿方法。

7.整理实验器材:完成实验后,将所有设备恢复原状,整理实验器材。

四、实验结果与分析1.实验结果:记录实验中测得的应变值,与理论值进行比较,分析误差。

2.结果分析:对实验数据进行线性拟合,分析全桥测量电路的非线性误差。

如果误差较大,需要考虑补偿方法。

常见的补偿方法有温度补偿和电桥平衡补偿。

温度补偿可以通过粘贴温度传感器来实现,以监测环境温度的变化。

电桥平衡补偿可以通过调整电桥的电阻值来实现,以使电桥在零载条件下达到平衡状态。

五、结论通过本次实验,我们掌握了全桥应变测量电路的工作原理及使用方法,了解了全桥测量电路的非线性误差及其补偿方法,并学会了用静态应变仪测量试件的应变。

这些技能和方法对于工程实践中的结构健康监测和损伤识别具有重要的应用价值。

应变片全桥实验报告

应变片全桥实验报告

班级:学号:姓名:组别:试验一电阻应变片灵敏系数的测定报告一、试验目的掌握通用电阻应变片灵敏系K值的测定方法。

二、试验设备及仪表1 静态电阻应变仪;2 等应力梁;3 待测电阻应变片。

图1 试验材料准备三、试验方法测试装置见教材第九章附图1.1。

灵敏系数K值是电阻应变片的输入和输出的比值,其准确性是保证测量结果真实性的保证,出厂标称K值有时存在误差,对要求较高的应变测点,有必要进行灵敏系数K值测量。

具体步骤:1 在等应力梁上沿轴向准确贴好应变片;2 用全桥将应变片接入应变仪,灵敏系数调节器旋钮置于某任意选定的K仪=2);值(如K仪3 应变初始置零,并保证其漂移量小于教材P.54页静态应变仪要求。

然后给等应变梁逐级加砝码,由钢梁所加重量换算出已知应变ε计(梁的材料弹性模量已知);=MEWε计,式中:M —贴片处截面处的弯矩,E —梁弹性模量,W —贴片处抗弯截面模量。

4 由应变仪测取每级荷载下的应变值ε仪记入表格(附表1.1)。

对测定的应变片,均需要加卸荷载三次,从而得到三组灵敏系数K 值,再取三组的平均值即为所代表的同批产品的平均灵敏系数K 值。

5 按试验过程算出灵敏系数K 值附表1.1加载 项目9.97 N19.95 N 29.9N1点 2点 3点 4点 1点 2点 3点 4点 1点 2点 3点4点 第一次ε仪1(με) 第二次ε仪2(με) 第三次ε仪3(με)实测平均ε仪(με) 111 222 332 计算应变ε计(με)113 226 339 K=K εε仪仪计1.961.961.96 注:计算应变ε计的计算过程可另附页,K 仪为仪器随意设置的灵敏度。

现场试验完成图长:363 mm 厚:4.5 mm 宽:46 mm g:10 N/kg E:2.06*10^11 paW=1/6*0.046*0.0045^2=1.5525*10^(-7) N/(M^2)M=9.97*0.363=3.61911 N·M ε=3.61911/(2.06*10^11*(1.5525*10^(-7)))*10^6=113 1M=19.95*0.363=7.24185 N·M ε=7.24185/(2.06*10^11*(1.5525*10^(-7)))*10^6=226 2M=29.9*0.363=10.8537 N·M ε=10.8537/(2.06*10^11*(1.5525*10^(-7)))*10^6=339 3K=111/113*2=1.961K=222/226*2=1.962K=332/339*2=1.963%=(113-111)/111*100%=1.8%1%=(226-222)/222*100%=1.8%2%=(339-332)/332*100%=2.1%3实验心得班级: 学号:姓名:组别这次实验做的是关于电阻应变片的实验,反映的是应变片对所测地方发生形变时测量出的数据的灵敏程度。

实验2:应变片全桥性能实验

实验2:应变片全桥性能实验

实验2 应变片全桥性能实验一、实验目的:了解应变片全桥工作特点及性能。

二、基本原理:1. 应变片的基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

2. 应变片的电阻应变效应:所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L 、半径为r 、材料的电阻率为ρ时,根据电阻的定义式得:2ρρπ==g L L R A r ..................(1-1) 当导体因某种原因产生应变时,其长度L 、截面积A 和电阻率ρ的变化为dL 、dA 、dρ相应的电阻变化为dR 。

对式(1—1)全微分得电阻变化率 dR/R 为:2ρρ=-+dR dL dr d R L r ..................(1-2) 式中:dL/L 为导体的轴向应变量εL ; dr/r 为导体的横向应变量εr 。

由材料力学知识可得:εL = - μεr ..................(1-3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1-3)代入式(1-2)得:()12ρμερ=++dR d R ..............(1-4),该式说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能。

3. 半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

金属箔式应变片——全桥性能实验实验报告4页

金属箔式应变片——全桥性能实验实验报告4页

金属箔式应变片——全桥性能实验实验报告4页实验目的:1. 熟悉金属箔式应变片的工作原理及其使用方法;2. 了解电桥测量原理,实现全桥测量方案设计;4. 实验中应用全桥电路,得到金属箔式应变片的应变-电压输出特性曲线。

实验仪器:1.金属箔式应变片;2.电桥测量仪;3.电压源;4.万用表;5.螺旋卡尺;6.计算机。

实验原理:金属箔式应变片的特点是:采用金属箔片的变形特性,制成微小的电阻应变片,常用的箔片材料有:钨、铂等。

当应变片在受力作用下发生形变,其电阻值也会发生变化,因此可通过测量电阻变化量,了解应变片的应变量。

校准金属箔应变片:由于金属箔片家质差异及加工差异,未校准时其输出电压未知,因此需要校准,以获得稳定的输出结果。

全桥电路:全桥电路采用4个电阻绕成的“Wheatstone电桥”,使用电压源提供电能,经过测量电桥的电阻差值、电压差值等,即可计算测量量的值。

实验步骤:1. 通过螺旋卡尺测量样品上要粘贴应变片的长度和宽度;2. 将样品清洗干净,待干;3. 粘贴金属箔式应变片,注意对粘贴区域的清洁和紧密接触;4. 使用电桥测量仪进行电路连接,根据电桥测量仪的要求连接电源,连接电阻箱;5. 按照测量仪器的测量提示,进行校准,获得标准应变值;6. 施加预测荷载,观察电荷随荷载的变化。

根据荷载下应变的变化率,计算出样品中的应力值;7. 通过计算机记录所测量的电荷值和应变值,描绘出应变—电荷输出特性曲线。

实验结果和分析:1. 实验得到的应变-电荷输出特性曲线如下:2. 通过该特性曲线可以反映金属箔式应变片在各种荷载下的响应情况,具有重要的工程应用价值;3. 实验结果证实,金属箔式应变片是一种灵敏度高、稳定性好、响应速度快的应变传感器,具有广泛的应用前景。

结论:本实验通过对金属箔式应变片进行实验研究,得到了该传感器的应变-电荷输出特性曲线,证实了该传感器具有一定的应变灵敏度、稳定性和相对快速的响应速度,适用于各种领域的力学性能测试和监测。

实验二电桥测试(电阻式传感器的单臂、全桥电桥性能)实验课件.doc

实验二电桥测试(电阻式传感器的单臂、全桥电桥性能)实验课件.doc
a当只有一个桥臂接应变片时称为单臂电桥桥臂r1为工作臂且工作时电阻由r变为rr其余各臂为固定电阻rr2r3r40则式4变为b若两个相邻臂接应变片时称为双臂电桥即半桥见图3即桥臂r1r2为工作臂且工作时有电阻增量r1r2而r3与r4臂为固定电阻rr3r40
实验二电桥测试
(1)电阻式传感器的单臂电桥性能实验
则Su=0.25nUO10)
式中,n为电桥的工作臂系数.
由上式可知,电桥的工作臂系数愈大,则电桥的灵敏度愈高,因此,测量时可利用电桥
的加减特性来合理组桥,以增加n及测量灵敏度.
3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R1、R2、R3为固定,R为
电阻应变片,输出电压U=EKε11)
E---电桥转换系数:单臂E=U0/4半桥(双臂)E=U0/2全桥E=U0
此时电桥的输出比单臂工作时提高了四倍,比双臂工作时提高了二倍.
(3)电桥的灵敏度
电桥的灵敏度Su是单位电阻变化率所对应的输出电压的大小
Su=U/(R/ R)= 0.25UO(R1/R1-R2/ R2+R3/ R3-R4/ R4)/ (R/ R)8)
令n=(R1/ R1-R2/R2+R3/ R3-R4/ R4)/ (R/ R)9)
(4)变为
U=0.25UO(R / R)= 0.25UOKε5)
(b)若两个相邻臂接应变片时(称为双臂电桥,即半桥),(见图3)即桥
臂R1、R2为工作臂,且工作时有电阻增量△R1、△R2,而R3和R4臂为固定电阻R
(R3=R4=0).当
两桥臂电阻同时拉伸或同时压缩时,则有△R1=△R2=△R,由式(4)可得△U=0.当
此后调零电位器RP2旋钮不再调节,根据实验适当调节增益电位器RP1。

金属箔式应变片单臂、半桥、全桥性能比较实验

金属箔式应变片单臂、半桥、全桥性能比较实验

金属箔式应变片单臂、半桥、全桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应工作原理和性能, 比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压Uo= EKε/4。

半桥测量电路中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。

当应变片阻值和应变量相同时,其桥路输出电压U o=EKε/2。

全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

其桥路输出电压U o=KE ε。

三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘砝码。

四、实验步骤:应变传感器实验模板简介:实验模板中的R1、R2、R3、R4 为应变片,没有文字标记的5 个电阻符号下面是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

应变式传感器(电子秤传感器)已装于应变传感器模板上。

传感器中的4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4 和加热器上。

传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。

当传感器托盘支点受压时,R1、R3 阻值增加,R2、R4 阻值减小,可用四位半数显万用表2K 电阻档进行测量判别。

应变片全桥实验报告

应变片全桥实验报告

应变片全桥实验报告应变片全桥实验报告一、引言应变片是一种用于测量物体应变变化的传感器,广泛应用于工程、材料科学以及生物医学等领域。

本实验旨在通过应变片全桥实验,探究应变片的工作原理、测量方法以及应变片在不同应变条件下的性能表现。

二、实验原理1. 应变片工作原理应变片是一种金属或半导体材料制成的细小传感器,当物体受到外力作用时,会引起其形状和尺寸的微小变化,从而改变材料内部的电阻或电容。

应变片全桥利用应变片的电阻变化来测量物体的应变程度。

2. 应变片全桥电路应变片全桥电路由四个应变片组成,分别连接在电桥的四个臂上。

其中两个应变片处于拉伸状态,另外两个处于压缩状态。

当物体受到外力作用时,拉伸和压缩的应变片的电阻值会发生变化,从而导致电桥的电势差发生变化。

3. 应变片的测量方法通过测量电桥的电势差变化,可以计算出应变片的应变程度。

常用的测量方法有电压法和电流法。

电压法通过测量电桥两端的电压差来计算应变片的应变值,而电流法则通过测量通过电桥的电流大小来计算应变片的应变值。

三、实验步骤1. 搭建应变片全桥电路根据实验要求,搭建应变片全桥电路,确保电桥的四个臂上分别连接了四个应变片。

2. 调整电桥平衡通过调节电桥上的可变电阻,使得电桥平衡,即电桥两端的电势差为零。

3. 施加外力在已搭建好的电桥上施加外力,可以通过拉伸或压缩物体来引起应变片的应变变化。

4. 测量电势差变化使用电压表或电流表,测量电桥两端的电势差变化。

记录不同外力条件下的电势差值。

5. 计算应变值根据测得的电势差值,利用已知的公式计算应变片的应变值。

四、实验结果与分析根据实验数据,我们可以绘制应变片的应变-电势差曲线。

通过分析曲线的趋势,可以得出以下结论:1. 应变片的应变与电势差呈线性关系,即应变越大,电势差变化越大。

2. 应变片的灵敏度与材料的选择有关,不同材料的应变片具有不同的灵敏度。

3. 在一定应变范围内,应变片的灵敏度基本稳定,超过该范围后,灵敏度会下降。

应变片电桥性能实验

应变片电桥性能实验

应变片电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂、半桥、全桥电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK R R =∆/式中R R /∆为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压U O14/εEK =。

三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表、±15V 电源、±4V 电源、万用表(自备)。

四、实验内容及步骤:1、根据图1-1应变式传感器已装于应变传感器模块上。

传感器中各应变片已接入模块的左上方的R 1、R2、R3、R 4。

加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。

2、实验模块差动放大器调零。

接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器Rw 3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi 相连,调节实验模块上调零电位器Rw 4,使数显表显示为零(数显表的切换开关打到2V 档)。

关闭主控箱电源。

图1-1 应变式传感器安装示意图实验一单臂电桥实验将应变式传感器的其中一个应变片R1(即模块左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入)如图1-2所示。

检查接线无误后,合上主控箱电源开关。

调节Rw1,使数显表显示为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验2 应变片全桥性能实验
一、实验目的:了解应变片全桥工作特点及性能。

二、基本原理:
1. 应变片的基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

2. 应变片的电阻应变效应:所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L 、半径为r 、材料的电阻率为ρ时,根据电阻的定义式得:
2
ρρπ==g L L R A r ..................(1-1) 当导体因某种原因产生应变时,其长度L 、截面积A 和电阻率ρ的变化为dL 、dA 、dρ相应的电阻变化为dR 。

对式(1—1)全微分得电阻变化率 dR/R 为:
2ρρ
=-+dR dL dr d R L r ..................(1-2) 式中:dL/L 为导体的轴向应变量εL ; dr/r 为导体的横向应变量εr 。

由材料力学知识可得:
εL = - μεr ..................(1-3)
式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1-3)代入式(1-2)得:()12ρμερ
=++dR d R ..............(1-4),该式说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能。

3. 半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

半导体材料之所以具有较大的电阻变化率,是因为它有远比金属导体显著得多的压阻效应。

在半导体受力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应 。

不同材质的半导体材料在不同受力条件下产生的压阻效应不同,可以是正(使电阻增大)的或负(使电阻减小)的压阻效应。

也就是说,同
样是拉伸变形,不同材质的半导体将得到完全相反的电阻变化效果。

半导体材料的电阻应变效应主要体现为压阻效应,其灵敏度系数较大,一般在100到200左右。

4.测量电路:应变片全桥特性实验原理如图1—1所示。

应变片全桥测量电路中,将应力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uo≈(△R/R)E=KεE。

其输出灵敏度比半桥又提高了一倍,非线性得到改善。

图1—1应变片全桥性能实验接线示意图
5.箔式应变片的基本结构:金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或金属箔制成,如图1—2所示:
(a) 丝式应变片(b) 箔式应变片
图1—2应变片结构图
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。

电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

三、需用器件和单元:
主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

四、实验步骤:
实验步骤与方法(除了按图1—3示意接线外),将实验数据填入表1做出实验曲线,并计算系统灵敏度S=ΔV/ΔW(ΔV输出电压变化量,ΔW重量变化量)。

实验完毕,关闭电源。

图1—3 应变片全桥性能实验接线示意图
表3全桥性能实验数据
重量(g)
电压(mV)
五、思考题:
测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥?。

相关文档
最新文档