立体声功放电路原理图

合集下载

PAM8403CS8403小功率3W双声道D类音频功放电路图

PAM8403CS8403小功率3W双声道D类音频功放电路图

精心整理PAM8403CS8403小功率3W 双声道D 类音频功放电路图PAM8403/CS8403小功率3W 双声道D 类音频功率放大IC 应用电路原理图说明及设计注意事项左手665收藏时间:2016年1月15日10:15PAM8403/CS8403是一款3W ,立体声D 类音频功率放大器,能够以D 类放大器的效率提供AB 类功率放大器的性能。

采用D 类结构,PCB 本文D 达3W l 热保护l 排列效率:90%声道数:双声道频率响应:150HZ-20KHZ尺寸:15mmX39mm 厚度(max)11mm 此款2.0音响功放采用两片8403音频放大器精心设计。

实现双声道输出完全独立,质量更稳定可靠!最大输出功率为3W,最小输出为1.5W.工作电压为2-5.5V,因此非常适合于电池或USB供电的低电压电子产品作为功率放大器节省了传统功放的自举电路及消振电路。

因此只要极少的外围元件(最少为只要四个元件)便可工作,节省了线路板空间,降低生产成本及设计成本。

特有的关断功能(高电平有效)可节省功耗,延长电池使用时间。

主要特性:1、输出功率:3欧负载/5V(3.0W);4欧负载/5V2.5W);2、关断电流:1uA3、应用领域15、3Wx28欧姆6欧姆4欧姆阻抗喇叭,建议使用2~10W喇叭供电建议单节可充电锂电池或USB5V供电,也可用三节1.5V电池或四节1.2V充电电池供电。

用变压器供电一定要加5V稳压电路,不加稳压电路电压纹波超过5.5V芯片将烧坏。

电源正负极不能接反,电源电压不能超过5.5V,否则会烧毁IC损坏。

不要改动板上任何元件参数,不符合的参数将会导致IC损坏。

音频输入线请尽量用带屏蔽的线,可以起到抗干扰作用,消除杂波电流声。

输出为cmos管BTL驱动方式,左右喇叭的负极不能够接在一起,即接喇叭的4条线是完全独立的,不允许共接,否则会烧毁IC损坏。

先接通扬声器再接通电源,否则容易对芯片造成损坏;由于模块中的数字音量控制具有很大的增益,所以不要让音频信号输入过大而失真应用:LCD电视机、监视器、笔记本电脑、便携式扬声器、便携式,为18k的快速关闭/启动,而不需要慢慢减低音量。

3V电池供电的便携式立体声小功放电路(附线路板图)

3V电池供电的便携式立体声小功放电路(附线路板图)

3V电池供电的便携式立体声小功放电路(附线路板图)
3V电池供电的便携式立体声小功放电路MP3的容量越来越大,装下几百首歌也绰绰有余。

可是一直戴着耳机,耳朵也会受不了。

那么试试这个便携小音箱吧,相信你会喜欢。

元件清单电路原理图NJM2073的管脚电…
MP3的容量越来越大,装下几百首歌也绰绰有余。

可是一直戴着耳机,耳朵也会受不了。

那么试试这个便携小音箱吧,相信你会喜欢。

元件清单
电路原理图:
印刷线路版图:
NJM2073的管脚图:
电路板的制作
整个装置的大小尺寸根据使用的外壳和元件灵活变化,检查一下电路是否有问题。

检查完毕后,将插头插入MP3等的耳机插槽,试试这个便携小音箱的效果如何。

/yinpindianlu/ypcl/04011267.html。

功放MIX3001

功放MIX3001
静音工作模式
得到最好的工作性能。为了滤除低频噪声信号,推荐放置 一个 20µF(陶瓷电容)或更大的电容在靠近音频放大器 处.
输入电容(Ci)
对于便携式设计,大输入电容既昂贵又占用空间。因此 需要恰当的输入耦合电容,但在许多便携式应用扬声器的 例子中,无论内部还是外部,很少可以重现低于 100Hz 至 150Hz 的信号,因此,使用一个大的输入电容不会增加 系统性能。输入电容(Ci)和输入电阻(Ri)组成一个高 通滤波器,切断频率为:
因为内部有上拉电阻,SHDN 引脚可以悬空或是外接正 电源。为了消除断电时的噼噗声音,放大器应先处于静音 或关断模式然后再闭电源。
电源退耦
MIX3001 是高性能 CMOS 音频放大器,需要足够的电 源退耦以保证输出 THD 和 PSRR 尽可能小。电源的退耦 需要两个不同类型的电容来实现。为了更高的频率响应和 减少噪声,一个具有适当等效串联电阻(ESR)的陶瓷电 容,典型值 1.0µF,放置在尽可能靠近器件 VOD 端口可以
测试电路图表
注释: 1 用 AP 分析仪测量 D 类功率放大器时,低通滤波器 APAUX-0025 是必须的 2 测量时,可以用两个 33uH 的电感串联在电阻的两端以等效扬声器。
测试应用电路
在观察音频输出波形及生产测试功放电性能时须加 上LC滤波电路,将输出的脉冲波形滤除,否则无法观察音 频输出波形及测试功放电性能,另一个声道相同。电感可 以用高频色环电感或贴片磁珠电感,电容用贴片高频钽电 容。如右图:
MUTE 引脚是 MIX3001 控制输出级的一个输入端。在 这个引脚上加一个逻辑低电平关闭输出,输入一个逻辑高 电平开启输出。这个引脚可作为输出端的快速关闭/启动, 而不需要慢慢减低音量,因为内部有上拉电阻,MUTE 引脚可以悬空或是外接正电源。

PAM8403小功率3W双声道D类功放电路图

PAM8403小功率3W双声道D类功放电路图

PAM8403小功率3W双声道D类功放电路图PAM8403是一款3W,立体声D类音频功率放大器,能够以D 类放大器的效率提供AB类功率放大器的性能。

采用D类结构,PAM8403/CS8403能够以高于85%的效率提供3W功率。

新型的无滤波器结构可以省去传统的D类放大器输出低通滤波器,从而节省了系统成本和PCB空间,是便携式应用的理想选择。

采用DIP-16和SOP-16封装。

本文就该芯片的功能特点,应用原理及注意事项进行说明主要特点无滤波的D类放大器,低静态电流和低EMI在4Ω负载和5V电源条件下,提供高达3W输出功率高达90%效率低THD,低噪声短路电流保护热保护极少外部元器件,节省空间和成本应用LCD电视机、监视器应用信息最大增益如原理框图所示(第四页),PAM8403/CS8403内部有两级放大器,第一级增益由输入电阻Ri(芯片外部与芯片内部之和)和反馈电阻Rf决定,第二级增益固定为2x,第一级放大器的输出作为第二级放大器的输入,因此两个放大器的增益正好相乘,但相位相差180o。

所以PAM8403/CS8403总的增益为:PAM8403/CS8403的反馈电阻Rf=142kΩ,而输入电阻Ri(芯片内部)为18kΩ,所以最大闭环增益是24dB。

静音工作模式MUTE引脚是PAM8403/CS8403控制输出级的一个输入端,在这个引脚上加一个逻辑低电平关闭输出,输入一个逻辑高电平开启输出,这个引脚可以作为输出端的快速关闭/启动,而不需要慢慢减低音量。

因为内部的上拉电阻,MUTE引脚还可以悬空。

关断工作模式为了减少不使用时的功率消耗,PAM8403/CS8403包含关闭电路来关闭放大器的偏压电路,当SHDN引脚加低电平时,器件处于关断模式,电源电流将会减至最小,因为内部上拉电阻,SHDN引脚还可以悬空。

电源退耦PAM8403/CS8403是高性能CMOS音频放大器,需要足够的电源退耦以保证输出THD和PSRR尽可能小。

功放电路

功放电路

STK465组成的2×30W双声道功放电路--------------------------------------------------------------------------------STK465组成的2×30W双声道功放电路图1是2×30W双声道音频功率放大器,其核心器件ICl采用高保真音响功放集成电路STK465,该电路内包含两个性能指标完全相同的功率放大器,分别用作左、右声道的功放,可保证两个声道放大器指标的一致性。

电路输入阻抗30k,输入灵敏度150mV,电压增益40dB,频率响应:10Hz~100kHz,谐波失真≤0.08%,电源电压范围±(25~35)V。

制作时应注意,正、负电源退耦滤波电容C5、C14的位置应尽量分别靠近sTK465的正、负电源输入端。

如电路有自激现象,则增大C5和C14的容量。

该功放输出功率适中,制作容易,可用作一般家庭的组合音响、卡拉OK设备或VCD机的声音播放。

由于该功放电压增益高达40dB,输入灵敏度高,可省去前置放大器,而直接与卡拉OK机、VCD机等信号源连接。

该功放也可用作家庭影院系统的环绕声功放。

图2×30W双声道功放电路本文来自: 原文网址:/sch/musicop/0080229.html首页> 电路图库> 音响功放25W X 2 LM1875功放电路图---------------------------------------------------------------------------------25W X 2 LM1875功放电路图电路如图1所示,芯片IC采用美国NS公司的LM1875,它具有音色柔美,失真低(0.015%),在小功率时颇有名机风范,广受好评。

输出管采用音色较为温暖柔和的东芝大功率对管2SA1943,2SC5200(VCM=180V,ICM=12A,PCM≥120W,fT=30MHz)。

OCL立体声

OCL立体声

OCL立体声功放电原理及检修技巧一个难题困扰几天了,得重温功课了。

书是找不着了,在网上搜索了一通,发现了些有用的。

整理了以下内容,并未获得原文作者同意,如果原作者发现有妥的地方,请通知我们,我们会在第一时间删除。

OCL立体声功放电路图由图1可看出,扬声器与放大器的输出端是直接耦合,中间省掉了隔直流用的输出电容,为了使电路输出端的直流电位为零伏,采取了正负对称电源供电,差分放大器输入等措施。

图1中,vti、vt2是差分放大输入级,vt3是激励级,vt4~vt7是复合互补输出级。

音频信号经过耦合电容c1和ri送到vti 的基极,经放大后,由vti的集电极输出,并送至vt3进一步大,vt3集电极输出的激励信号去推动功率输出级vt4~vt7工作,这样经功率放大后的音频信号可推动扬声器工作。

推挽甲乙1类立体声功放电路图为了便于进一步分析,可将图1简化为图2的形式。

vt4和vt6复合后等效为一只npn型晶体管,而vt5和vt7复合等效为一只pnp型晶体管。

从图3电路的vt4、6和vt5、7以及电源滤波电容c9、c10可以看出,它们相当于一个电桥。

当vt4、6、vt5、7完全相同,c9、c10也完全相同时,桥臂平衡,扬声器没有直流通过。

若正负两组电源完全对称,则可以保证输出端电位为零伏。

由于电路全部是直接耦合,环境温度和元件参数的任何变化都会影响输出端(a点,图2中)的电位。

为此,vt1、vt2组成了差分放大器以克服零点漂移,电路中还施加了直流负反馈,即输出端通过r6加至vt2的基极,这样可以保证输出端(a点)的电位为零伏。

其反馈过程是:a点电位↑—ube2↑—ie2↑—ur4↑—ubel↓一icl↓一uc1↑—ube3↓一ie2↓—ur7↓一ube4、6↓(ube5、7↑)一vt4、6内阻↑(vt5、7内阻↓)一a点电位↓。

反之,如果a点电位↓,将通过相反变化过程使a点电位↑。

二、元器件的选择输出级选用进口的优质大功率三极管;2n3055,β值尽可能高一些,其余晶体管选用南韩进口的三极管9014和9012,vd3~vd6选用桥堆1N4001,vd1、vd2选用1N4148。

立体声平衡控制器电路,了解一下

立体声平衡控制器电路,了解一下

立体声平衡控制器电路,了解一下双声道音响电路中,要求左、右声道的增益是相等的。

尽管左、右声道电路结构和元器件参数相同,但是由于元器件参数的离散性(不一致)和使用一段时间后的参数变化,有可能导致左、右声道放大器增益不相等,这会影响立体声效果,为此设置了立体声平衡控制器电路。

单联电位器构成的立体声平衡控制器电路图4-53所示是常用的X型单联电位器构成的立体声平衡控制器,2RP12构成立体声平衡控制器电路,它接在左、右声道放大器输出端之间,为低放电路(音频放大系统中的功率放大器)的输入端。

立体声工作状态下,左、右声道电路是分开的,但2RP12接在左、右声道前置放大器输出端,由于2RP12动片接地,故对隔离度的影响小。

当2RP12动片从中心点向上滑动时,2R33送来的左声道信号经2RP12的上部分与2RP7并联的电阻到地,2RP12值减小,该信号衰减量增大,送到左声道低放电路中的信号减小,其输出随之减小;而2RP12动片至下端的阻值增大,对右声道信号衰减量减小,右声道低放电路的输出增大。

图4-53 X 型单联电位器构成的立体声平衡控制器由此可见,通过调整2RP12可以改变左、右声道的输出,便可以调整左、右声道的平衡,使它们的有效增益大小相等。

重要提示当左、右声道放音放大器没有什么问题时,原设计使左、右声道输出平衡,故2RP12动片应在中心点位置。

由于2RP12的插入,不难想象对两声道信号是有衰减的。

电路中的2RP7、2RP6是音量电位器。

带抽头电位器的立体声平衡控制器电路图4-54所示是带抽头电位器的立体声平衡控制器,RP702 是平衡控制电位器,它的中心阻值处有一个抽头,且抽头接地。

当RP702动片在中心点时,RP702对左、右声道信号衰减量相等。

当RP702动片从中心抽头向上滑动时,RP702对右声道信号衰减量不变,因为RP702中心抽头接地,此时左声道信号衰减量增大,左声道低放电路输出减小。

图4-54 带抽头电位器的立体声平衡控制器当RP702动片从中心抽头向下滑动时,左声道输出不变,右声道低放电路输出减小。

一丶音频功率放大器原理图及原理

一丶音频功率放大器原理图及原理

一丶音频功率放大器原理图及原理音频功率放大器原理图:音频功率放大器原理:上图所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。

其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。

TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。

RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。

R2、R3决定了该电路交流负反馈的强弱及闭环增益。

该电路闭环增益为(R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。

静态工作点稳定性好。

C4、C5为电源高频旁路电容,防止电路产生自激振荡。

R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。

VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。

二丶元器件识别电阻序号电阻色标万用表档位及量程实测值标准值1 R12 R23 R34 R45 R56 R67 R78 R89 R9序号电容性质万用表档位及量程实测值标准值1 C12 C23 C34 C45 C56 C6集成功率放大器TDA2030。

RP为碳膜电位器。

C1、C2为电解电容器,耐压为16V,C3、C4、C5为瓷介电容。

R1、R2、R3为碳膜电阻,额定功率为1/8W。

R4为碳膜电阻,额定功率为1/4W。

VD1、VD2为IN4007小功率整流二极管。

三丶元器件的安装元件分布图根据元件分布图上的元件分布将对应的元器件放置在对应的位置。

由于TDA2030输出功率较大,因此需加散热器。

而TDA2030的负电源引脚(3脚)与散热器相连,所以在装散热器时,要注意散热器不能与其他元器件相接触。

四丶焊接的工艺焊接工艺的流程:按清单归类元器件—插件—焊接—剪脚—检查—修整。

功率放大器电路图全集

功率放大器电路图全集

功率放大器电路图全集一.驻极体麦克风前置放大器该电路适用于采用驻极体麦克风的许多应用场合,这里用了以个1.5V的电池.C1和R3用来增强高音和压制低音,也可以根据愿意把它们去掉驻极体麦克风前置放大器二.TDA7057/TDA7057AQ伴音功放电路图· [图文] 差分功放仿真电路· [图文] 飞利浦有源重低音音箱功放电路图(SW2000)· [组图] 采用LM386制作的微小音频放大器电路· [图文] 5000W超轻,高功率放大器电路,无开关电源· [图文] 5,000W ultra-light, high-power amplifier, without switching-mode power supply· [图文] 简单实用的三极功放电路· [图文] 2N3055三极管功率放大器电路 (2N3055 Power Amplifier)· [组图] 摩托罗拉高保真功率放大器电路 (Motorola Hi-Fi power amplifier)· [图文] 带低音炮的10W的音频放大器(10W Audio Amplifier withBass-boost)· [图文] OPA604构成的音频功率放大器电路· [组图] STK465组成的2x30W(立体声)放大器及电路 (Amplifier 2x30W with STK465)·实用的大功率可控硅触发电路原理图· [组图] 低通滤波器电路/低音炮 (Low pass filter-Subwoofer)· [组图] 低阻抗麦克风放大器电路 (Low impedance microphone amplifier) · [图文] 22W音频放大器电路 (22W audio amplifier)· [图文] 100W RMS的放大器电路 (100W rms amplifier)· [组图] 50W功放电路 (50Watt Amplifier)· [图文] 迷你音箱:2W放大器电路 (Mini-box 2W Amplifier)· [图文] Two way cross-over 3500Hz· [组图] 25W场效应管音频放大器(25W Mosfet audio amplifier)· [图文] KMW-306通道无线话筒的原理及电路· [组图] LM1875功放器· [组图] 用LM317制作的功放电路图· [图文] LM1875制作功放电路(含电源电路)· [图文] TA8220功放电路图· [图文] XPT4990音频放大器应用电路· [图文] 大电流输出稳压电源· [图文] LM317高精度放大器电路· [图文] 2030功放电路图· [图文] 什么是高功率放大器· [图文] ZM312型十二路载波机线路放大器的功率放大级部分电路· [图文] 单边功率放大器的基本电路· [图文] 最大功率达到280W的LM3886功放电路图· [图文] BA328录音磁头放大电路· [组图] tda2822m功放电路· [组图] 大功率OCL立体声功放的制作及电路(20~100W×2双通道)· [组图] 用TDA1514制作的简单功放及电路· [组图] TDA2030型立体声功率放大器· [图文] DU30麦克前置放大器电路· [组图] 宽频带视频放大输出电路图· [图文] CD唱机加装自动放音电路· [组图] 傻瓜式混合型功率放大器电路及原理· [图文] 用TDA2822制作的助听器电路· [图文] 影像信号放大电路· [图文] 声音信号放大电路· [图文] 运算放大器音频电路· [图文] 四灯电子管发射机电路· [图文] 带有音频放大器的矿石收音机· [图文] 音频滤波电路· [图文] TDA2030功放电路双电源接法· [图文] TDA2030功放电路单电源电路· [图文] 视频放大器· [图文] 视频前置放大器· [图文] 由电子线路控制的可变增益视频支路放大器· [图文] 视频支路差动放大器· [图文] 双输入视频有线电视放大器· [图文] 简易视频放大器· [图文] 4.5MHz伴音中频放大器· [图文] 通用输出放大器· [图文] 具有低音控制的立体声电唱机放大器· [图文] 立体声前置放大器· [图文] 小型立体声放大器· [图文] 具有音调控制的单片机立体声前置放大器· [图文] 带晶体滤波器的45MHz IF放大器· [图文] RF前置放大器· [图文] 宽带前置放大器· [图文] LC调谐放大器· [图文] 5W 7MHz的RF功率放大器· [图文] 5W 7MHz的RF功率放大器· [图文] 455KHZ IF放大器· [图文] 可转换的HF VHF有源天线· [图文] 455KHz的中频放大器· [图文] 144-2304MHz的UHF宽带放大器· [图文] UHF放大器· [图文] 455KHz简易中频放大器· [图文] 20W 1296KHz的放大器模块· [图文] 采用MAR-1MMIC接收机和扫描机功率放大器· [图文] 用于手提式步话机的2M FET功率放大器· [图文] 10W 10M的线性放大器· [图文] 电视伴音系统· [图文] 宽带功率放大器· [图文] 20W 450MHz放大器· [图文] 30MHZ放大器· [图文] 小型宽带放大器· [图文] 70MHz RF功率放大器· [图文] 广播波段RF放大器· [图文] 435MHz的低噪音GASFET前置放大器· [图文] 宽频带RF放大器· [图文] 采用MAR-x的VHF和UHF前置放大器· [图文] HF前置放大器· [图文] 可增益放大器· [图文] 示波器前置放大器· [图文] 短波接收机的噪声放大限制器· [图文] 场效应管运算放大器传声器混合电路· [图文] 放大器冷却的电路Ⅱ· [图文] 放大器冷却电路Ⅰ· [图文] 前置放大器的收发定序器· [图文] 三极管功率放大电路· [图文] LMC6062仪表放大器· [图文] 红外光电二极管选择性前置放大器· [图文] 电子二分频功率放大器电路· [图文] 2×100W高保真双声道功率放大器· [图文] 单片音响功放集成电路TDA7294构成的100W功率放大器· [图文] 用两块高保真音响集成电路LM1875构成的BTL功率放大器· [图文] 2×70W双声道高保真功率放大器· [图文] 采用STK4040X1构成的70W音频功率放大器· [图文] 采用LM3875T构成的60W高保真功率放大器· [图文] 50W高保真功率放大器电路· [图文] 高保真音响功放集成电路TDA1514构成的40W功率放大器· [图文] 2×30W双声道音频功率放大器· [图文] 单电源、低压、低功耗运算放大器电路· [图文] NE5532前级放大电路· [组图] lm1875+ne5532功放电路· [图文] F4558基本接线图· [图文] 4558前级放大电路· [图文] 用LM1875构成的集成功率放大器电路· [图文] 甲乙类互补功率放大电路· [图文] 功放三极管的三种工作状态工作状态· [图文] 乙类互补对称功放电路· [图文] 实用OTL功放电路· [图文] 单片集成功率放大电路· [图文] QRP测音发声器/电码操作振荡器· [组图] tda2006单电源功放电路· [图文] 3V峰到峰单电源缓冲器· [图文] MOS场效应缓冲放大器· [图文] VFO缓冲放大器· [图文] 大电流缓冲器· [图文] 缓冲器/放大器· [图文] 分立元件功率放大器原理图· [图文] TDA2030功放集成块和BD907/BD908制作的40w功放电路· [图文] TDA7294功率放大电路· [图文] TDA7057/TDA7057AQ伴音功放电路图· [图文] TDA2822电路图· [图文] TDA2616功率放大电路图· [图文] TDA2040应用电路图· [图文] TDA2009 OTL单/双声道功率放大电路图· [图文] TDA1521A功率放大器电路· [图文] TDA1521双通道功率放大电路· [图文] TDA1514功放电路图· [图文] TDA1013伴音功放电路· [图文] TBA820/TBA820M功率放大电路图· [图文] TA8223/TA8223K双通道功率放大电路· [图文] TA8218/TA8218H三通道功放电路图· [图文] TA8211/TA8211AH双通道功放电路· [图文] TA7270/TA7270P功率放大器电路· [图文] TA7250/TA7250P功率放大器电路· [图文] LA4287伴音功放电路图· [图文] TDA3803/TDA3803A伴音处理器电路图· [组图] 音频分配放大器· [图文] 音频放大器。

CS3817EO立体声D类音频功率放大电路说明书

CS3817EO立体声D类音频功率放大电路说明书

MOS电路CS38172 15W免滤波低EMI立体声D类音频功率放大电路本资料适用范围:CS3817EO 1、概述CS3817EO是一款15W(每声道)立体声高效D类音频功率放大电路。

先进的EMI 抑制技术使得在输出端口采用廉价的铁氧体磁珠滤波器就可以满足EMC要求。

内部包括一个直流检测电路来对扬声器进行保护,直流检测电路在输入电容损坏或者输入短路时关断输出级。

CS3817EO可以驱动低至4Ω负载的立体声扬声器,具有高达90%的效率,使得在播放音乐时不需要额外的散热器。

CS3817EO应用于LCD电视、消费类音频设备。

其特点如下:● 15W/声道的功率输出(16V电压,8Ω负载,TND+N等于10%)● 10W/声道的功率输出(13V电压,8Ω负载,TND+N等于10%)● 30W的功率输出(16V电源,4Ω单声道负载,TND+N等于10%)● 效率高达90%,无需散热片● 较大的电源电压范围6.5V~20V● 免滤波功能,输出不需要电感进行滤波。

● 输出管脚方便布线布局● 良好短路保护和具备自动恢复功能的温度保护● 良好的失真和防噗声功能● 内置增益26dB● 差分输入● 具有静音和待机功能● 简单的外围设计● 封装形式:HTSSOP282、功能框图与引脚说明2. 1、功能框图2. 2、功能描述音频信号进入以后,经过脉宽调制模块,完成音频信号对载波信号的调制,此模块由Error AMP、比较器等部分组成。

比较器将积分后的信号与三角波信号进行比较,这一步出来的信号已经是PWM信号了。

输出管驱动电路完成PWM波对输出开关管的驱动。

相关的模块还有电平转换模块,通过自举升压产生上管的驱动栅压;输出部分还设有短路检测电路,当所接负载过小导致电流过大时,启动保护机制关闭电路。

其他模块还有输出管栅压电源模块,产生栅驱动电压;低压电源模块,产生基准电压;电压确认模块,完成AVDD确认、GVDD确认和AVCC确认三个功能;三角波产生模块,负责产生PWM编码用的三角波;偏置和基准模块,负责产生各模块所需的偏置电流;温度检测模块,负责监测芯片温度;控制逻辑,完成上电或启动时复位并消除冲击声,温度和短路保护等。

立体声解码电路原理

立体声解码电路原理

立体声解码电路原理
立体声解码电路是一种用于将立体声音频信号转换为左声道和右声道音频信号的电路。

它的原理基于人耳对声音的定位感知。

立体声信号通常采用双通道表示,其中左声道和右声道的音频信号分别包含不同的音频信息。

在解码电路中,首先对输入的立体声信号进行解调,将其从调制信号(如调频或调幅)中解调出左右声道的原始音频信号。

然后,解码电路会使用滤波器对左右声道的音频信号进行处理。

滤波器的作用是根据音频信号的频率特性分离出左右声道的音频内容。

通常,左声道的音频信号在一定频率范围内具有较高的能量,而右声道的音频信号在另一频率范围内具有较高的能量。

接下来,解码电路会将分离出的左右声道音频信号进行放大和调整,以满足后续音频处理或输出的要求。

这可能包括调整音量、平衡左右声道的增益等。

最后,解码电路将处理后的左声道和右声道音频信号输出到相应的音频设备或扬声器中,以实现立体声效果。

总之,立体声解码电路的原理是通过对输入的立体声信号进行解调、滤波和处理,分离出左声道和右声道的音频信号,并进行放大和调整,最终输出到相应的音频设备中,以实现立体声的播放效果。

AMCS小功率精编W双声道D类音频功放电路图0001

AMCS小功率精编W双声道D类音频功放电路图0001

PAM8403CS8403 小功率3W 双声道D 类音频功放电路图PAM8403/CS8403小功率3W双声道D类音频功率放大IC应用电路原理图说明及设计注意事项左手665收藏时间:2016年1月15日10:15PAM8403/CS8403是一款3W,立体声D类音频功率放大器,能够以D 类放大器的效率提供AB类功率放大器的性能。

采用D类结构,PAM8403/CS8403能够以高于85%的效率提供3W功率。

新型的无滤波器结构可以省去传统的D类放大器输出低通滤波器,从而节省了系统成本和PCB空间,是便携式应用的理想选择。

采用DIP-16和SOP-16封装。

本文就该芯片的功能特点,应用原理及注意事项进行说明主要特点I无滤波的D类放大器,低静态电流和低EMII在4Q 负载和5V电源条件下,提供高达3W输出功率I高达90%效率I低THD低噪声I短路电流保护I热保护I极少外部元器件,节省空间和成本应用ILCD电视机、监视器引出端排列USB5V线控功放板双声道3WSP8403[升级功放板2.0迷你小音响功放线控功放板输入电压:2.0V-5.5V 宽电源输出功率:3W+3W输出阻抗:3欧效率:90% 声道数:双声道频率响应:150HZ-20KHZ尺寸:15mmX39m厚度(max)11mm此款2.0音响功放采用两片8403 音频放大器精心设计。

实现双声道输出完全独立,质量更稳定可靠!最大输出功率为3W最小输出为1.5W. 工作电压为2-5.5V,因此非常适合于电池或USB供电的低电压电子产品作为功率放大器节省了传统功放的自举电路及消振电路。

因此只要极少的外围元件(最少为只要四个元件)便可工作,节省了线路板空间,降低生产成本及设计成本。

特有的关断功能(高电平有效)可节省功耗,延长电池使用时间。

主要特性:1、输出功率:3欧负载/5V( 3.0W);4欧负载/5V2.5W); 2、关断电流:1uA3、工作电压:2.0-5.5V4、最大失真度:0.5%封装采用无铅封装SOP-8应用领域1、手提电脑2、台式电脑3、多媒体MINI 音箱4、游戏机、学习机5、收录机音频放大器等经过测试适用于百分之九十九的音响和喇叭,音质都相当的好!用移动电源和苹果4S 手机测试喇叭的喇叭几乎都是旧的(喇叭这东西新旧区别不是很大,区别最大的就是一个新一个旧)典型应用电路图采用原装龙鼎微PAM8403数字功放芯片(市面上大多是国产芯片),电路简单,工作可靠。

音频功率放大器电路图

音频功率放大器电路图

音频功率放大器的组成.1 整体电路原理本立体声功率放大器所用的核心芯片是国际通用高保真音频功率放大集成电路TDA2030A。

本电路由三个部分组成,即电源电路、左右声道的功率放大器及输入信号处理电源(四运放)。

电源变压器将220V交流电降为双12V低压交流电,经桥式整流后变为±18V的直流电,作为功放及运放的供电电源,D5、R29组成电源指示电路,以指示电源是否正常,开关K为电源开关。

2.2 电源部分本设计是由TDA2030构成的双声道功率放大器,左右声道对称,TDA2030是一种单声道集成功率放大器,采用单电源或双电源供电方式,电路中主要构成框架如下:前置放大采用GL324四运放的两路运放的负反馈放大,放大倍数为10倍,后经过RC滤波电路组成的高低音调节,在经过平衡和电量调节输入功放芯片即TDA2030。

电路框图整流电路:桥式整流电路的作用是利用单向导电性的整流元件二极管,将正负交替的正弦交流电压整流成为单向脉动电压。

但是,这种单向电压往往包含着很大的脉动成分,距离理想的直流电压还差得很远。

稳压电路:稳压电路的作用是采取某些措施,使输出的直流电压在电网电压或负载电流发生变化时保持稳定。

设计中是利用变压器将电网上面220V的交流电降为双12V低压交流电,再经过桥式整流把12V的交流成分整流成±18V的直流电,经过滤波滤除直流成分中的交流部分,考虑到芯片电源电压要求比较宽泛本设计中没有采用稳压部分。

2.3 前置放大部分前置放大器是各种音源设备和功率放大器的连接设备,起到信号放大的作用。

音源信号在经过前置放大器的放大后,就可以直接送入功率放大器,使功率放大器能正常工作。

前置放大器还可以对信号的频率进行调节和控制。

本设计的前置放大部分是采用GL324四运算放大芯片的负反馈实行的。

优点在于其在分压偏置电路中利用负反馈的原理以稳定放大电路的工作,此外还可以增加增益的稳定性,减小非线性失真,展开频带及控制输入输出阻抗。

NE5532与TDA7057组成功放电路原理与维修

NE5532与TDA7057组成功放电路原理与维修

NE5532与TDA7057组成功放电路原理与维修功放电路原理与维修一; 功放电路的构成;功放电路的构成以捕鱼机功放为例,也是多数机台常用到的功放,故障率也比较多,该功放主要由前置放大集成块NE5532和功放块TDA7057构成1;NE5532。

NE5532实物图NE5532是高性能低噪声双运算放大器(双运放)集成电路。

与很多标准运放相似,但它具有更好的噪声性能,优良的输出驱动能力及相当高的小信号带宽,电源电压范围大等特点。

因此很适合应用在高品质和专业音响设备、仪器、控制电路及电话通道放大器。

NE5532外围电路2;TDA7057TDA7057AQ为BTL立体声(双声道)音频功率放大器,具有较宽的电源电压范围(4.5V~18V),它也可用在多功能的音响设备及电视机中。

TDA7057AQ的额定电压增益为40dB。

TDA7057AQ内部具有按对数曲线变化的直流音量控制电路,控制范围可达73dB,当直流控制电压低于0.4V时,放大器静音。

TDA7057AQ功放电路图TDA7057引脚功能及参考电压:1脚:0,1V—直流音量控制1;2脚:0V—空;3脚:2V—输入1;4脚:19V—电源;5脚:2V—输入2;6脚:0V—信号地;7脚:0,1V—直流音量控制2;8脚:8.6V—正向输出2;9脚:0V—功放地2;10脚:8.6V—负向输出2;11脚:8.6V—负向输出1;12脚:0V—功放地1;13脚:8.6V—正向输出1。

二,原理图分析1;电源供电;该供电12v电通过插头接入功放电路,通过D1整流,c1滤波,送到功放开关K-01。

当开关闭合后,由c2滤波后,12v电压分3路,一路通过R1 限流为LED等提供电压,LED点亮..一路由R 限流后,送入功放前置放大块NE5532,8脚,给NE5532提供稳定电压,另一路给功放块TDA7057,4脚提供工作电压。

2;信号流程;R声道信号流程,R声道的信号流程是;当插入从主机送来得R信号后,通过电容C04旁路, WR01音量调节电位器中心插头取出,电容C05 耦合,送到前置放大NE5532的3脚。

LM1876功率放大

LM1876功率放大

一、LM1876立体声功放的电路原理图二、芯片概述:1、LM1876:功率放大集成电路采用了NS公司生产的双声道20W高保真功率放大器LM1876。

LM1876采用15脚TO-220封装,具有静噪、待机模式功能,(如下图2)LM1876的负载范围很宽。

在4~30Ω的范围内均能稳定地工作,LM1876的供电电压范围为±10~±25V,当供电电压降低时,影响的只是输出功率的大小,而对其他指标影响不大,LM1876的6、11脚为左/右声道静噪控制端,当这几脚接高电平(高于1.6V)时,LM1876内部电路执行静音操作,切断输出端的音频信号。

因此可以在这些引脚中与正电压之间接一个RC延时网络,使其在开机瞬间为高电平,输出电路无音频信号输出,延时一段时间后,再正常输出,以达到避免开机瞬间输出端电位失谐对扬声器的冲击。

图1 LM1876内部电路图图2 LM1876的电气特性图3 LM1876的外貌(根据他可以画它的封装)2、LF353:LF353的总体电路设计还是比较简洁的,此类拓扑在目前的功率运算放大器设计中是主流:输入放大级是由两只P沟道JFET组成的共源极差分电路,并且用镜像恒流源做负载来提高增益;在输入差分放大级和主电压放大级之间是一个由射极跟随器构成的电流放大级,用来提高主电压放大级的输入阻抗和共源极差分电路的负载增益;主电压放大级是一个简单的单级共射级放大电路,为了保证放大器的稳定性,在主电压放大级的输出端到输入差分放大级的输出端加入了一个电容补偿网络,跟补偿电容并联的二极管保证单级共射极放大电路构成的主电压放大级不进入饱和状态工作;输出电流放大级是NPN和PNP构成的互补射极跟随器,两个100Ω的电阻用来稳定输出电流放大级的静态电流,200Ω的电阻用来限制输出短路电流。

图4 LF353的内部详细电路图参数说明产品宽度:3.91mm产品长度:4.9mm产品高度:1.58mm供应商封装:SOIC典型双电源电压:±5, ±9, ±12, ±15V典型增益带宽积:3MHz典型电压增益:100dB典型输入噪声电压密度:18nV/rtHz典型非反相输入噪声电流密度:0.01pA/rtHz 制造商类型:宽带放大器安装:表面安装引脚数目:8最大双电源电压:±18V最大工作温度:70°C最大电源电流:6.5mA最大输入偏置电压:10mV最大输入偏置电流:0.0002μA电源类型:双路图5 LF353外面封装图(尺寸要求)三、生成的PCB板的图图6 LM1876 立体声功放电路PCB图四、由原理图所生成的附加图图7 LM1876原理图的图形(在原理图库所画)图8 由原理图生成的.XLS文件(元件清单说明原理图上有42个元器件)图9 所画LM1876的封装TO-220-15的封装图图10 所画的发光二级管的封装(将原来的A、K管脚换为了1、2)图11 所画的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档