陕西理工学院 概率论与数理统计试卷及答案

合集下载

概率论及数理统计习题解答(第2章).doc

概率论及数理统计习题解答(第2章).doc

概率论及数理统计习题解答(第2章).doc习题⼆(A )三、解答题1.⼀颗骰⼦抛两次,以X 表⽰两次中所得的最⼩点数 (1) 试求X 的分布律; (2) 写出X 的分布函数.解: (1)分析:这⾥的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中⾄少有⼀点数为1,其余⼀个1⾄6点均可,共有1-612?C (这⾥12C 指任选某次点数为1,6为另⼀次有6种结果均可取,减1即减去两次均为1的情形,因为612?C 多算了⼀次)或1512+?C 种,故{}36113615361-611212=+?=?==C C X P ,其他结果类似可得.(2)≥<≤=+=+=+=+=<≤=+=+=+=<≤=+=+=<≤=+=<≤=<=6165}5{}4{}3{}2{}1{54 }4{}3{}2{}1{43 }3{}2{}1{32}2{}1{21}1{1 0 )(x x X P X P X P X P X P x X P X P X P X P x X P X P X P x X P X P x X P x x F ,,,,,,,≥<≤<≤<≤<≤<≤<=6 165363554 363243 36273236202136111 0 x x x x x x x ,,,,,,,2.某种抽奖活动规则是这样的:袋中放红⾊球及⽩⾊球各5只,抽奖者交纳⼀元钱后得到⼀次抽奖的机会,然后从袋中⼀次取出5只球,若5只球同⾊,则获奖100元,否则⽆奖,以X 表⽰某抽奖者在⼀次抽取中净赢钱数,求X 的分布律.解:注意,这⾥X 指的是赢钱数,X 取0-1或100-1,显然{}1261299510===C X P . 3.设随机变量X 的分布律为0;,2,1,0,! }{>===λλΛk k ak X P k为常数,试求常数a .解:因为1!==-∞=∑λλae k ak k,所以λ-=e a .4.设随机变量X 的分布律为(1) 求X 的分布函数;(2) 求}21{≤X P ,}2523{≤解:(1)≥<≤<≤-<=??≥<≤=+-=<≤--=<=3x 13 2432141-1x 03x 132}2{}1{21}1{-1x 0)(,,,,,,,,x x x X P X P x X P x f ,(2) {}41121=-==≤X p X P 、 {}2122523===≤<x p="" x="" ,="" {}{}{}{}{}{}4<="" bdsfid="126">。

2020-2021大学《概率论与数理统计》期末课程考试试卷A4(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A4(含答案)

2020-2021《概率论与数理统计》期末课程考试试卷A4适应专业:软件 考试时间: 考试类型:闭卷考试所需时间:120分钟 考试成绩:一. 单项选择题(每小题2分,共12分)1. 设离散型随机变量X 的可能取值为3,2,1,相应的概率依次为a a a a +22,7,, 则a =( ) .(A) 1/4 (B) -1/2 (C) 1/2 (D) -1/42. 设随机变量X ~)1,2(N ,)1,1(~N Y ,令Y X Z +=2,则)(Z E =( ). (A) 4 (B) 2 (C) 1 (D) 53. 已知6/1)(,3/1)(,2/1)(===AB P B P A P ,则事件A 与B ( ).(A) 相互独立 (B) 互斥 (C) 相等 (D) 互为对立事件4. 设随机变量),(~2σμN X ,则概率}1{μ+≤X P ( ).(A) 随μ增加而变大 (B) 随μ增加而减小 (C) 随σ增加而不变 (D) 随σ增加而减小5. 设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)|(B A P ( ). (A) 0.2 (B) 0.4 (C) 0.6 (D) 0.86. 设样本n X X X ,,21来自正态总体),(2σμN ,在进行假设检验时,当( )时,一般采用统计量nX Z /0σμ-=(其中σ为标准差)(A) μ未知,检验202σσ= (B) μ已知,检验202σσ= (C) 2σ已知,检验0μμ= (D) 2σ未知,检验0μμ=二. 填空题(每空2分,共18分)1. 设A 、B 、C 是三个事件,用A 、B 、C 的运算表示A 、B 、C 三个事件中至 少有一个发生 .2. 已知3/1)(,2/1)(==B P A P ,如果事件A 与B 互斥,则=)(B A P ,如果事件A 与B 独立,则=)(B A P .3. 设由来自正态总体X~)9.0,(2μN 的容量为9的简单随机样本,得样本均值5=x , 则未知参数μ的置信水平为0.95的置信区间是 。

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

《概率论与数理统计》试卷A(考试时间:90分钟; 考试形式:闭卷)(注意:请将答案填写在答题专用纸上,并注明题号。

答案填写在试卷和草稿纸上无效)一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。

概率论与数理统计习题及答案

概率论与数理统计习题及答案

概率论与数理统计习题及答案习题一1.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C(1)A发生,B,C都不发生;(2)A与B发生,C(3)A,B,C都发生;(4)A,B,C(5)A,B,C都不发生;(6)A,B,C(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3..4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,(1)在什么条件下P(AB(2)在什么条件下P(AB【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=14+14+13-112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C 8.(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59..见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P PP m m n mn M N M n N --由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11..见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C ==(2) 1342111C ()()22245/325p == 16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x-y|>30.如图阴影部分所示.22301604P==22.0,1)中随机地取两个数,求:(1)两个数之和小于65的概率;(2)两个数之积小于14的概率.【解】设两数为x,y,则0<x,y<1.(1)x+y<65.11441725510.68125p=-==(2) xy=<14.1111244111d d ln242xp x y⎛⎫=-=+⎪⎝⎭⎰⎰23.P(A)=0.3,P(B)=0.4,P(A B)=0.5,求P(B|A∪B)【解】()()()()()()()()P AB P A P ABP B A BP A B P A P B P AB-==+-0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.取出一球,若发现这球为白球,试求箱【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯29..统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯= 31.0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n≤ 故 n ≥11 至少必须进行11次独立射击. 32.P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立. 33.15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.45835.25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 310110C(0.35)(0.65)0.5138k k k k p -===∑(2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =-(2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.[0,a ]【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--=== 40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,CP (AB )+P (AC )-P (BC )≤P (A). 【证】 ()[()]()P A P A BC P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+- 42.3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22nn n P A =-44.n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k kn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212r rr m m m n m n m nm n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

概率论与数理统计习题解答全稿(1-7)

概率论与数理统计习题解答全稿(1-7)

习题一1.设C B A ,,为随机试验的三个随机事件,试将下列事件用C B A ,,表示出来.(1)仅仅A 发生;(2)所有三个事件都发生;(3)A 与B 均发生,C 不发生;(4)至少有一个事件发生;(5)至少有两个事件发生;(6)恰有一个事件发生;(7)恰有两个事件发生;(8)没有一个事件发生;(9)不多于两个事件发生.解:(1)C B A ;(2)ABC ;(3)C AB ;(4)C B A ;(5)AC BC AB ;(6)C B A C B A C B A ;(7)C AB C B A BC A ;(8)C B A ;(9)ABC .2.写出下列随机试验的样本空间(1)同时掷三颗骰子,记录三颗骰子的点数之和;(2)将一枚硬币抛三次,观察出现正反面的各种可能结果;(3)对一目标进行射击,且到击中5次为止,记录射击的次数;(4)将一单位长的线段分为三段,观察各段的长度;(5)从分别标有号码1,2, ,10的10个球中任意取两球,记录球的号码.解:(1){3,4,5, ,18};(2){}TTT THT TTH THH HTT HTH HHT HHH ,,,,,,,;(3) {5,6,7, };(4) }{1,0,0,0:),,(=++>>>z y x z y x z y x ;(5)}{n m n m n m ≠≤≤≤≤,101,101:),(.3.将12个球随机地放入20个盒子,试求每个盒子中的球不多于1个的概率.解:设)(A P 表式所求的概率,则:12122020!12.)(C A P =≈0.01473. 4.将10本书任意地放在书架上,其中有一套4卷成套的书,求下列事件的概率:(1)成套的书放在一起;(2)成套的书按卷次顺序排好放在一起.解: (1)设)(A P 表示所求的概率,则:)(A P =301!10!4!7=⋅. (2)设)(B P 表示所求的概率,则:)(B P =7201!10!7=. 5.一辆公共汽车出发前载有5名乘客,每一位乘客独立的在七个站中的任一个站离开,试求下列事件的概率:(1)第七站恰好有两位乘客离去;(2)没有两位及两位以上乘客在同一站离去. 解:5名乘客在七个站中的任意一个站离开的结果总数57=n .(1)第七站恰好有两位乘客离去,其方法数3256⋅=C m ,故设)(A P 为所求概率,则:1285.076)(5325=⋅=C A P . (2)设=B {没有两位及两位以上乘客在同一站离去},则:1499.07!5)(557=⋅=C B P . 6.有一个随机数发生器,每一次等可能的产生9,,2,1,0 十个数字,由这些数字随机编成的n 位数码(各数字允许重复),从全部n 位数码中任意选取一个,其最大数字不超过k (9≤k )的概率.解:设)(A P 表式所求的概率,则由全部n 位数码的总数为n10,得:n nk A P 10)1()(+=. 7.一元件盒中有50个元件,期中25件一等品,15件二等品,10件次品,从中任取10件,求:(1)恰有两件一等品,两件二等品的概率;(2)恰有两件一等品的概率;(3)没有次品的概率.解:(1)设)(A P 为所求概率,则:41050610215225104397.6)(-⨯=⋅⋅=C C C C A P . (2)设)(B P 为所求概率,则:03158.0)(1050825225=⋅=C C C B P . (3)设)(C P 为所求概率,则:0825.0)(10501040==C C C P . 8.有10个人分别佩戴者标号从1号到10号的纪念章,任意选出3人,记下其纪念章的号码,试求:(1)最小的号码为5的概率;(2)最大的号码为5的概率.解:从10人中任意选3人纪念章号码的总数为310C n =,(1)最小号码为5,则余下2个在6—10中选,即25C m =,设)(A P 为所求概率,则: 083.0)(31025==C C A P . (2)同理设)(B P 为所求概率,则:05.0)(31024==C C A P . 9.设事件B A ,及B A 的概率分别为q p ,和r ,试求:)(),(),(),(B A P B A P B A P AB P . 解:r q p B A P B P A P AB P -+=-+=)()()()( ;p r A P A B P A B P B A P -=-=-=)()()()( (单调性); q r B P B A P B A P B A P -=-=-=)()()()( (单调性);r B A P B A P B A P -=-==1)(1)()( .10.一批产品共100件,其中5件不合格.若抽检的5件产品中有产品不合格,则认为整批产品不合格,试问该批产品被拒绝接收的概率是多少?解:(法一)设i A ={抽检的5件产品中第i 件不合格},i =1,2,3,4,5则所求概率为:∑===5151)()(i i i i A P A P )()()()()(54321A P A P A P A P A P ++++= 2304.0510055510019545510029535510039525510049515≈++++=C C C C C C C C C C C C C C . (法二) 2304.01)(1)(5100595051≈-=-==C C A P A P i i . 11.设A 和B 是试验E 的两个事件,且21)(,31)(==B P A P ,在下述各种情况下计算概率)(A B P :(1)B A ⊂;(2)A 和B 互不相容;(3)81)(=AB P . 解:(1)613121)()()()(=-=-=-=A P B P A B P A B P .(2)21)()(==B P A B P . (3)838121)()()()(=-=-=-=AB P B P A B P A B P . 12.现有两种报警系统A 与B ,每种系统单独使用时,系统A 有效的概率为0.92,系统有效的概率为0.93 .装置在一起后,至少有一个系统有效的概率则为0.988,试求装置后:(1)两个系统均有效的概率;(2)两个系统中仅有一个有效的概率.解:(1)所求概率为)(AB P ,得:)()()()(B A P B P A P AB P -+=862.0988.093.092.0=-+=;(2)所求概率为)(B A B A P ,得:)(B A B A P )()(B A P B A P +=)()()()(AB P B P AB P A P -+-=126.0862.0293.092.0=⨯-+=.13.10把钥匙上有3把能打开门,今任取2把,求能打开门的概率.解:(法一)从10把钥匙中任取2把的试验结果总数45210==C n ,能打开门意味着取到的二两把钥匙至少有一把能打开门,其取法数24171323=+=C C C m ,故设)(A P 为所求概率,则:158)(210231713=+=C C C C A P .(法二)记A 为“能打开门”,则=A “两把钥匙皆开不了门”,于是158452111)(1)(21027=-=-=-=C C A P A P . 14.一个盒子中有24个灯泡,其中有4个次品,若甲从盒中随机取走10个,乙取走余下的14个,求4个次品灯泡被一人全部取走的概率.解:设=A {次品灯泡全部被甲取走},=B {次品灯泡全部被乙取走},则B A ,互不相容,所求概率为:)()()(B P A P B A P += 1140.0424414424410=+=C C C C . 15.设将5个球随意地放入3个盒子中,求每个盒子内至少有一个球的概率.解:5个球随意地放入3个盒子中事件总数53=n ,3个盒子中一个或两个盒子中有球数为332533153p C p C m ++=,设所求概率为)(A P ,则:8150331)(533253315=++-=p C p C A P . 16.已知1A 和2A 同时发生,则A 必发生,证明:1)()()(21-+≥A P A P A P . 证明:由已知,A A A ⊂21,再由单调性,)()(21A P A A P ≤,则)()()()()(212121A A P A P A P A A P A P -+=≥,1)(021≤≤A A P .1)()()()()()()(21212121-+≥-+=≥∴A P A P A A P A P A P A A P A P .17.掷一枚均匀硬币直到出现三次正面才停止,问正好在第六次停止的情况下,第五次也是正面的概率是多少?解:设=A {第五次出现正面},=B {第六次停止},则:52)21()21()()()|(256146===C C B P AB P B A P . 18.证明:0)()|(>>A P B A P ,则)()|(B P A B P >. 证明:)()|()()()()|(B P B A P AB P A P AB P A B P =>=,即证. 19.设事件B A ,互不相容,且0)(>B P ,试证:)(1)()|(B P A P B A P -=. 证明:)(1)()()()|(B P A P B P B A P B A P -=互不相容. 20.将两颗均匀骰子同时掷一次,已知两个骰子的点数之和是奇数,求两个骰子的点数之和小于8的概率.解:此事件的样本空间由36个样本点组成,设=A {两个骰子的点数之和小于8},=B {两个骰子的点数之和是奇数},则3618)(=B P ,3612)(=AB P ,于是: 322131)()()|(===B P AB P B A P . 21.设10件产品中有4件是次品,从中任取两件,试求在所取得的产品中发现有一件是次品后,另一件也是次品的概率.解:设=A {所取得两件中至少有一件是次品},=B {所取得两件产品都是次品},B AB A B =∴⊂, .而321)(1)(21026=-=-=C C A P A P ,152)(21024==C C B P ,所求概率为:5132152)()()()()|(====A P B P A P AB P A B P . 22. 10件产品有6件是正品,4件次品,对它们逐一进行检查,问下列事件的概率是多少?(1)最先两次抽到的都是正品;(2)第一、三次抽到正品,第二、四次抽到次品;(3)在第五次检查时发现最后一个次品.解:设i A ={第i 次抽到的是正品},i =1,2,3,4,5,6.则 (1)3195106)|()()(12121=⋅=⋅=A A P A P A A P ; (2) )(4321A A A A P )|()|()|()(3214213121A A A A P A A A P A A P A P =141738594106=⋅⋅⋅=; (3) 设=B {第五次检查时发现最后一个次品},则2104)(151********=*=C C C C C B P . 23.某人忘记电话号码的最后一个数字,他仅记得最末一位数字是偶数.现在他试着拨最后一个号码,求他拨号不超过三次而接通电话的概率.解:设=A {接通电话},=i B {拨号i 次},i =1,2,3.i B 构成样本空间的一个划分,由全概率公式:)|()()|()()|()()(332211B A P B P B A P B P B A P B P A P ++=532110321522121=⨯+⨯+⨯=. 24.某型号的显像管主要由三个厂家供货,甲、乙、丙三个厂家的产品分别占总产品和的25%、50%、25%,甲、乙、丙三个厂的产品在规定时间内能正常工作的概率分别是0.1、0.2、0.4,求一个随机选取的显像管能在规定时间内正常工作的概率.解:设A ={能在规定时间内正常工作},i B ={选取第i 个厂家的产品},i =1,2,3.则由全概率公式:)|()()|()()|()()(332211B A P B P B A P B P B A P B P A P ++=225.04.025.02.05.01.025.0=⨯+⨯+⨯=.25.两批同类产品各自有12件和10件,在每一批产品中有一件次品,无意中将第一批的一件产品混入第二批,现从第二批中取出一件,求第二批中取出次品的概率.解:设=B {第二批中取出次品},=A {第一批的次品混入第二批},A A ,构成样本空间的一个有限划分,由全概率公式:0985.01111211112121)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P . 26.在一个盒子中装有15个乒乓球,其中有9个新球,在第一次比赛时任意取出三个球,比赛后仍放回原盒中,第二次比赛时,同样任意的取出三个球,求第二次取出三个新球的概率.解:设B={第二次取出3个新球}.可以看出,直接确定B 的概率)(B P 是困难的,原因是,第一次比赛之后,12个乒乓球中的新、旧球的分布情况不清楚,而一旦新旧球的分布情况明确了,那么相应的概率也容易求得.为此,设i A ={第一次取到的3个球中有i 个新球}, i =0,1,2,3.容易判断3210,,,A A A A 构成一个划分.由于3,2,1,0,)(315369==-i C C C A P i i i ,又3,2,1,0,)|(31539==-i C C A B P i i . 由全概率公式,得:)|()()(30i i i A B P A P B P ∑==∑=--=3023*******)(i i i i C C C C 0893.02070251680756075601680≈+++=. 27.仓库中存有从甲厂购进的产品30箱,从乙厂购进的同类产品25箱,甲厂的每箱装12个,废品率为0.04,乙厂的每箱装10个,废品率0.05,求:(1)任取一箱,从此箱中任取一个为废品的概率;(2)将所有产品开箱后混放,任取一个为废品的概率.解:(1)设=B {取出的是废品},=A {从甲厂取出},A A ,构成一个划分,则)|()()|()()(A B P A P A B P A P B P +=0441.005.010251230102504.0102512301230=⨯⨯+⨯⨯+⨯⨯+⨯⨯=(2) 0441.010********.0102504.01230=⨯+⨯⨯⨯+⨯⨯ 28.已知一批产品中96%是合格品,用某种检验方法辨认出合格品为合格品的概率是0.98,而误认废品是合格品的概率是0.05,求检查合格的一件产品确系合格的概率.解: 设A ={检查合格产品},B ={确系合格}.由已知,05.0)|(,98.0)|(,96.0)(===B A P B A P B P , 由贝叶斯公式:)()|()()|(A P B A P B P A B P =)|()()|()()|()(B A P B P B A P B P B A P B P += 9979.005.004.098.096.098.096.0≈⨯+⨯⨯=. 29.已知5%的男人和0.25%的女人是色盲者,现随机挑选一人,此人恰为色盲者,问此人 是男人的概率为多少(假设男人女人各占总人数的一半).解:设=A {色盲者},=B {男人}, B B ,构成样本空间的一个划分,且05.0)|(=B A P , 0025.0)|(=B A P ,由贝叶斯公式:)()|()()|(A P B A P B P A B P = )|()()|()()|()(B A P B P B A P B P B A P B P +=9524.00025.02105.02105.021=⨯+⨯⨯=. 30.设某种病菌在人口中的带菌率为0.03,由于检验手段不完善,带菌者呈阳性反应的概 率为0.99,而不带菌者呈阳性反应的概率为0.05,若某人检查结果是呈阳性反应,他是带菌者的概率是多少?解:设=A {结果呈阳性},=B {是带菌者},则B B ,构成样本空间的一个划分,且 99.0)|(=B A P ,05.0)|(=B A P ,由贝叶斯公式:)()|()()|(A P B A P B P A B P =)|()()|()()|()(B A P B P B A P B P B A P B P += 3798.005.097.099.003.099.003.0=⨯+⨯⨯=. 31.证明:如果)|()|(B A P B A P =,则事件A 和B 相互独立. 证明:由已知和条件概率公式,有)()()()(B P B A P B P AB P =,即)()()()(AB P B P B A P B P =, 即)())(1()()(AB P B P AB A P B P -=-,又A AB ⊂,上式得:)()](1[)]()()[(AB P B P AB P A P B P -=-,有)()()(B P A P AB P =,即A 和B 相互独立.32.设一个n 位二进制数是由n 各“0”或“1”数字组成,每一位出现错误数字的概率是p ,各位数字出现错误与否是独立的,问组成一个不正确的这类二进制数的概率是多少? 解:每一位出现正确数字的概率是p -1,由已知,各位数字出现正确与否也是独立的,于是所求概率nP A P )1(1)(--=.33.设事件C B A ,,相互独立,且21)(,31)(,41)(===C P B P A P ,试求: (1)三个事件都不发生的概率;(2)三个事件中至少有一个事件发生的概率;(3)三个事件中恰有一个事件发生的概率;(4)至多有两个事件发生的概率.解:(1)41)211)(311)(411()()()()(=---==C P B P A P C B A P ; (2)43411)(1)(=-=-=C B A P C B A P ; (3))(C B A C B A C B A P )()()(C B A P C B A P C B A P ++=2411213243213143213241=⋅⋅+⋅⋅+⋅⋅=; (4))()()(1)(1C P B P A P ABC P -=-24232131411=⋅⋅-=. 34.甲袋中有3只白球,7只红球,15只黑球;乙袋中有10只白球,6只红球,9只黑球.从两袋中各取一球,试求两球颜色相同的概率.解:设C B A ,,表示两球同为白色、红色和黑色,C B A ,,互不相容,则所求概率为:)()()()(C P B P A P C B A P ++= 3312.025925152562572510253=⨯+⨯+⨯=. 35.两部机床独立的工作,每部机床不需要工人照管的概率分别为0.9和0.85,试求:(1)两部均不需照管的概率; (2)恰有一部需要照管的概率;(3)两部同时需要照管的概率.解:设=A {甲机床不需要工人照管},=B {乙机床不需要工人照管},则9.0)(=A P ,85.0)(=B P ,(1)765.085.09.0)()()(=⨯==B P A P AB P (2))()()()()()()(B P A P B P A P B A P B A P B A B A P +=+=22.085.01.015.09.0=⨯+⨯= (3) 015.015.01.0)()()(=⨯==B P A P B A P .36.求下列系统(图1.6)能正常工作的概率,其框图的字母代表组件,字母相同,下标不同的均为同一类组件,知识装配在不同的位置,A 类组件正常工作的概率为a γ,B 类组件正常工作的概率为b γ,C 类为c γ.解:(1)所求概率为)]()()()[()()()]([BC P C P B P A P C B P A P C B A P -+==c b a c a b a γγγγγγγ-+=.(2)所求概率为)()()()()(5421635241635241A A A A P A A P A A P A A P A A A A A A P -++= )()()(65432165326431A A A A A A P A A A A P A A A A P +--,又654321,,,,,A A A A A A 相互独立,则)33(33)(422642635241a a a a a a A A A A A A P γγγγγγ+-=+-= .(3)所求概率为 )()()()]())([(22112211n n n n B A P B A P B A P B A B A B A P =)]()()([)]()()()][()()([22221111n n n n B A P B P A P B A P B P A P B A P B P A P -+-+-+= n b a b a )(γγγγ-+=.习题二1、一批晶体管中有9个合格品和3个不合格品,从中任取一个安装在电子设备上,如果取出不合格品不再放回,求在取得合格品以前已取出的不合格品数的概率.解:设在取得合格品以前已取出的不合格品数为随机变量X ,则X 的所有可能取值为:0,1,2,3。

2021年大学基础课概率论与数理统计复习题及答案(完整版)

2021年大学基础课概率论与数理统计复习题及答案(完整版)

2021年大学基础课概率论与数理统计复习题及答案(完整版)一、单选题1、设()(P Poission λX 分布),且()(1)21E X X --=⎡⎤⎣⎦,则λ=A )1,B )2,C )3,D )0【答案】A2、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是A )当n 充分大时,近似有X ~(1),p p N p n -⎛⎫ ⎪⎝⎭B ){}(1),k k n k n P X kC p p -==-0,1,2,,k n =⋅⋅⋅C ){}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅D ){}(1),1k k n k i n P X k C p p i n -==-≤≤ 【答案】B3、 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则2()E Y =A )1.B )9.C )10.D )6.【答案】C4、设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x 1,x 2, …,x n )落入W 的概率为0.15,则犯第一类错误的概率为__________。

(A) 0.1 (B) 0.15 (C) 0.2 (D) 0.25【答案】B5、设X ,Y 是相互独立的两个随机变量,它们的分布函数分别为F X (x),F Y (y),则Z = max {X,Y} 的分布函数是A )F Z (z )= max { F X (x),F Y (y)}; B) F Z (z )= max { |F X (x)|,|F Y (y)|}C) F Z (z )= F X (x )·F Y (y) D)都不是【答案】C6、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是(A)当n 充分大时,近似有X ~(1),p p N p n -⎛⎫ ⎪⎝⎭(B){}(1),k k n k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅(C ){}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅(D ){}(1),1k k n k i n P X k C p p i n -==-≤≤ 【答案】B7、对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则A )()()()D XY D X D Y =⋅B )()()()D X Y D X D Y +=+C )X 和Y 独立D )X 和Y 不独立【答案】B8、设n X X X ,,21为来自正态总体),(2σμN 简单随机样本,X 是样本均值,记2121)(11X X n S ni i --=∑=,2122)(1X X n S n i i -=∑=,2123)(11μ--=∑=n i i X n S , 22411()ni i S X n μ==-∑,则服从自由度为1-n 的t 分布的随机变量是 A) 1/1--=n S X t μ B) 1/2--=n S X t μ C) n S X t /3μ-= D) n S X t /4μ-=【答案】B 9、在一次假设检验中,下列说法正确的是___ ____(A)第一类错误和第二类错误同时都要犯(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误(C)增大样本容量,则犯两类错误的概率都要变小(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误【答案】C10、假设随机变量X 的分布函数为F(x),密度函数为f(x).若X 与-X 有相同的分布函数,则下列各式中正确的是A )F(x) = F(-x); B) F(x) = - F(-x);C) f (x) = f (-x); D) f (x) = - f (-x).【答案】C二、填空题1、设),(~2σμN X ,而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为 。

概率论与数理统计习题及答案

概率论与数理统计习题及答案

第一章 概率论的基本概念1. 设C B A ,,为三个随机事件,用C B A ,,的运算表示下列事件: (1)、C B A ,,都发生; (2)、B A ,发生, C 不发生; (3)、C B A ,,都不发生;(4)、B A ,中至少有一个发生而C 不发生; (5)、C B A ,,中至少有一个发生; (6)、C B A ,,中至多有一个发生; (7)、C B A ,,中至多有两个发生; (8)、C B A ,,中恰有两个发生。

2. 设C B A ,,为三个随机事件, 已知:3.0)(=A P ,8.0)(=B P ,6.0)(=C P ,2.0)(=AB P ,0)(=AC P ,6.0)(=BC P 。

试求)(B A P ⋃,)(B A P ,)(C B A P ⋃⋃。

3. 将一颗骰子投掷两次, 依次记录所得点数, 试求: (1)、两次点数相同的概率;(2)、两次点数之差的绝对值为1的概率; (3)、两次点数的乘积小于等于12的概率。

4. 设一袋中有编号为1, 2, 3, ⋅ ⋅ ⋅, 9的球共9只, 某人从中任取3只球, 试求:(1)、取到1号球的概率; (2)、最小号码为5的概率;(3)、所取3只球的号码从小到大排序,中间号码恰为5的概率; (4)、2号球或3号球中至少有一只没有取到的概率。

.5. 已知3.0)(=A P ,4.0)(=B P ,2.0)(=AB P ,试求:(1) )|(A B P ; (2))|(B A P ; (3))|(B A B P ⋃; (4))|(B A B A P ⋃⋃。

6. 设有甲、乙、丙三个小朋友, 甲得病的概率是0.05, 在甲得病的条件下乙得病的概率是0.40, 在甲、乙两人均得病的条件下丙得病的条件概率是0.80, 试求甲、乙、丙三人均得病的概率。

7. 设某人按如下原则决定某日的活动: 如该天下雨则以0.2的概率外出购物,以0.8的概率去探访朋友; 如该天不下雨,则以0.9的概率外出购物,以0.1的概率去探访朋友。

陕西理工学院 概率论与数理统计试题及答案

陕西理工学院 概率论与数理统计试题及答案

陕西理工学院教务处试题标准答案及评分标准用纸课程名称 概率论与数理统计 ( A 卷) 一、填空题(每空3分,共30分)1.58 2.0.1 3.16 4. 13 5.2 6.0.3 7.12 8.20092010 9. 1X10.22(X u X u αα-+ 二、解:{}B =取的产品是正品, 1{}A =取的是甲厂的产品, 2{}A =取的是乙厂的产品, 3{}A =取的是丙厂的产品,易见123,,A A A Ω是的一个划分。

123()0.5,()0.3()0.2P A P A P A ===,123(|)0.9,(|)0.8(|)0.7P B A P B A P B A ===, 由全概率公式,得31()()(|)0.83i i i P B P A P B A ===∑从而 1111()(|)()0.50.945(|)0.542()()0.8383P A B P B A P A P A B P B P B ⨯====≈ 三、解: ①22()cos 21f x dx a xdx a ππ+∞-∞-===⎰⎰,故a =0.5②10024412(100)()cos 424P X f x dx xdx ππππ<<===⎰⎰ ③()()F x P X x =≤。

当2x π<-时,()0F x =;当22x ππ-≤≤时,211()()cos (sin 1)22xxF x f t dt tdt x π-∞-===+⎰⎰; 当2x π>时,()1F x =。

故0,21()(sin 1),2221,2x F x x x x ππππ⎧<⎪⎪⎪=+-≤≤⎨⎪⎪>⎪⎩四、解:因为(0,1)X U ,所以X 的密度函数为1,(0,1)()0,.x f x ∈⎧=⎨⎩其他 先求Y 的分布函数()()()3ln ln 3Y y F y Y y X y X ⎛⎫=P ≤=P -≤=P ≥- ⎪⎝⎭3y X e -⎛⎫=P ≥ ⎪⎝⎭当0y ≤时,()0Y F y =;当0y >时,3313()()11y y yY X eeF y f x dx dx e---+∞===-⎰⎰;再求Y 的密度函数()()31,030,yY Y dF y e y f y dy y -⎧>⎪==⎨⎪≤⎩五、解:(,)X Y 联合分布律和边缘分布律见下表:X 和Y 不相互独立。

概率论与数理统计习题参考答案

概率论与数理统计习题参考答案

概率论与数理统计习题参考答案概率论与数理统计习题参考答案(仅供参考)第一章第1页(共101页)概率论和数理统计的参考答案(附练习)第一章随机事件及其概率1.写出以下随机测试的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和;(2)在单位圆内任意一点,记录它的坐标;(3) 10种产品中有3种存在缺陷。

每次取一个,直到三个有缺陷的产品全部取出后再放回去。

记录提取次数;(4)测量汽车通过给定点的速度解:所求的样本空间如下(1) s={2,3,4,5,6,7,8,9,10,11,12}(2)s={(x,y)|x2+y2<1}(3)s={3,4,5,6,7,8,9,10}(4)s={v|v>0}2.设a、B和C为三个事件,并使用a、B和C的运算关系来表示以下事件:(1)a发生,B和C不发生;(2)a与b都发生,而c不发生;(3)a、b、c都发生;(4)a、b、c都不发生;(5)a、b、c不都发生;(6)至少出现a、B和C中的一种;(7) a、B和C的出现次数不超过一次;(8)解决方案a、B和C中至少有两个出现:请求的事件表示如下(1)abc(2) abc(3)abc(4)abc(6)a?BC(5)abc(7)ab?bc?ac(8)ab?bc?ca3.在某小学的学生中任选一名,若事件a表示被选学生是男生,事件b表示该如果学生是三年级的学生,C项意味着学生是运动员,那么(1)AB项意味着什么?(2)在什么条件下abc=c成立?(3)在什么条件下关系式c?b是正确的?(4)在什么条件下a?b成立?解决方案:请求的事件表示如下(1)事件ab表示该生是三年级男生,但不是运动员.(2)当全校运动员都是三年级男生时,abc=c成立.概率论和数理统计练习参考答案(仅供参考)第1章第2页(101)(3)当全校运动员都是三年级学生时,关系式c?b是正确的.(4)当全校女生都在三年级,并且三年级学生都是女生时,a?b成立.4.设p(a)=0.7,p(a-b)=0.3,试求p(ab)由于一个问题的解决方案?B=acab,P(a)=0.7,所以p(a?b)=p(a?ab)=p(a)??p(ab)=0.3,所以p(ab)=0.4,故p(ab)=1?0.4=0.6.5.对于事件a、B和C,已知P(a)=P(B)=P(C)=,P(AB)=P(CB)=0,P(AC)=141求a、b、c中至少有一个发生的概率.8解由于abc?ab,p(ab)?0,故p(abc)=0那么p(a+B+C)=p(a)+p(B)+p(C)CP(AB)CP(BC)CP(AC)+p(ABC)?11115 04万肆仟肆佰捌拾捌元6.设盒中有α只红球和b只白球,现从中随机地取出两只球,试求下列事件的概率: A={两个颜色相同的球},B={两个颜色不同的球}222解由题意,基本事件总数为aa?b,有利于a的事件数为aa?ab,有利于b111111中的事件数是aaab?阿巴?2aaab,2aa?ab2则p(a)?2aa?b112aaabp(b)?2aa?B7.若10件产品中有件正品,3件次品,(1)取其中任何一个三次,不放回去,计算得到三个不良品的概率;(2)每次取其中任何一个三次,计算得到三次次品的概率(1)让a={得到三次次品}33c3a316p(a)?3?.或者p(a)?3?c10120a10720(2)设b={取到三个次品},则3327p(a)?3.1010008.在一家旅行社的100名导游中,43人说英语,35人说日语,32人说日语和汉语英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:(1)此人可能会说英语和日语,但不会说法语;(2)此人只会说法语的可能性解设a={此人会讲英语},b={此人会讲日语},c={此人会讲法语}根据主题的意思,你可以概率论与数理统计习题参考答案(仅供参考)第一章第3页(共101页)(1) p(abc)?p(ab)?p(abc)?(2)p(abc)?p(ab)?p(abc)32923?? 100100100? p(a?b)?0 1? p(a?b)?1.p(a)?p(b)?p(ab)43353254?1一千零一亿零一十万零一百9.罐中有12颗围棋子,其中8颗白子4颗黑子,若从中任取3颗,求:(1)取到的都是白子的概率;(2)获得两个白点和一个太阳黑子的概率;(3)取到三颗棋子中至少有一颗黑子的概率;(4)取到三颗棋子颜色相同的概率.解(1)那么让a={带上所有白人孩子}3c814p(a)?3??0.255.C1255(2)设B={得到两个白点和一个太阳黑子}1c82c4p(b)??0.509.3c12(3)设c={取三颗子中至少的一颗黑子}p(c)?1?p(a).4?0.7(4)设d={取到三颗子颜色相同}33c8?c4p(d)??0.273.3c1210.(1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)六个人中有一个人恰好在同一个月过生日的概率是多少?解决方案(1)设a={至少有一个人生日在7月1日},则364500? 0.746便士?1.p(a)?1.365500(2)假设计算的概率为p(b)41c6?c1?1122?0.0073p(b)?12611.将字母C、C、e、e、I、N和S7随机排列成一行,并尝试将它们精确地排列成科学的概率p.227解决方案因为两个C和两个e共享A2,所以有A2安排,基本事件的总数是a722a2p??0.0007947a7概率论与数理统计习题参考答案(仅供参考)第一章第4页(共101页)12.从5副手套中取出4副手套,并找出这4副手套未配对的可能性解要4只都不配对,我们先取出4双,再从每一双中任取一只,共有c54?24中取法.设a={4只手套都不配对},则有c54?2480便士(a)?4.210c1013.一名实习生用一台机器独立生产三个同类型零件,I零件不合格的概率为pi?为多少?假设AI={第I部分不合格},I=1,2,3,那么p(AI)?圆周率?那么p(AI)?1.圆周率?1,I=1,2,3。

2021年大学必修概率论与数理统计必考题及答案(最新版)

2021年大学必修概率论与数理统计必考题及答案(最新版)

2021年大学必修概率论与数理统计必考题及答案(最新版)一、单选题1、设81,,X X 和101,,Y Y 分别来自两个相互独立的正态总体)2,1(2-N 和)5,2(N 的样本, 21S 和22S 分别是其样本方差,则下列服从)9,7(F 的统计量是( ))(A 222152S S )(B 222145S S )(C 222154S S )(D 222125S S 【答案】B2、设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的A )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的充分必要条件;D )独立的充分必要条件 【答案】C3、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是____ _(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验(C) 方差分析中包含了随机误差外,还包含效应间的差异(D) 方差分析中包含了随机误差外,还包含效应间的差异【答案】D4、总体X ~2(,)N μσ,2σ已知,n ≥ 时,才能使总体均值μ的置信水平为0.95的置信区间长不大于L (A )152σ/2L (B )15.36642σ/2L (C )162σ/2L (D )16 【答案】B5、设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的A )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;im 211.()im r e ij i i j S y y ===-∑∑2.1()rA i i i S m y y ==-∑C )不相关的充分必要条件;D )独立的充分必要条件 【答案】C6、在对单个正态总体均值的假设检验中,当总体方差已知时,选用(A )t 检验法 (B )u 检验法 (C )F 检验法 (D )2χ检验法 【答案】B7、下列二无函数中, 可以作为连续型随机变量的联合概率密度。

(完整版)概率论与数理统计试题及答案.doc

(完整版)概率论与数理统计试题及答案.doc

2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。

1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。

若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。

6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。

概率论与数理统计试题及答案

概率论与数理统计试题及答案

概率论与数理统计一、单选题1.随机地掷一骰子两次,则两次出现的点数之和等于8的概率为()。

(4分)A :3/36B :4/36C :5/36D :2/362.A,B为任意两事件,若A,B之积为不可能事件,则称()。

(4分)A :A与B相互独立B :A与B互不相容C :A与B互为对立事件D :A与B为样本空间Ω的一个划分3.设A,B,C是三个事件,在下列各式中,不成立的是( ) .(4分)A :(A-B)UB=AUBB :(AUB)-B=AC :(AUB)-AB= UBD :(AUB)-C=(A-C)U(B-C)4.以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A为().(4分)A :“甲种产品滞销,乙种产品畅销”;B :“甲,乙两种产品均畅销”;C :“甲种产品滞销”;D :“甲种产品滞销或乙种产品畅销”。

5..掷二枚骰子,事件A为出现的点数之和等于3的概率为()。

(4分)A :11B :44,214C :44,202D :都不对6.设A,B为两个事件,且B A,则下列各式中正确的是( ).(4分)A :P(AUB)= P(A)B :P(AB)=P(A)C :P(BIA)= P(B)D :P(B-A)=P(B)- P(A)7.某小组共9人,分得一张观看亚运会的入场券,组长将一张写有“得票”字样和8张写有“不得票”字样的纸签混合后让大家依次各抽一张,以决定谁得入场券,则()。

(4分)A :A.第1个抽签者得“得票”的概率最大B :第5个抽签者“得票”的概率最大C :每个抽签者得“得票”的概率相等D :最后抽签者得“得票”的概率最小8.设A,B是两个事件,且P(A)≤P(AIB)则有( ).(4分)A :P(A)= P(AIB)B :P(B)>0C :P(A)≥P(AIB)D :前三者都不一定成立9.设有10个零件,其中2个是次品,现随机抽取2个,恰有一个是正品的概率为().(4分)A :8/45B :16/45C :8/15D :8/3010.设盒中有10个木质球,6个玻璃球,玻璃球有两个为红色,4个为蓝色;木质球有3个为红色,7个为蓝色,现从盒中任取一球,用A表示“取到蓝色球”;B表示“取到玻璃球”。

概率论与数理统计(理工类)期末考试试卷B参考答案

概率论与数理统计(理工类)期末考试试卷B参考答案

10111概率论与数理统计(理工类)期末考试试卷B 参考答案一、填空题(本大题共6个小题,每小题2分,满分12分) 1、设事件A 与B 互不相容,且()P A a =,则()P AB = ; 【分析】利用§1.3有关结论()()1()1AB P AB P A P A a =∅==-=-23X ⇒456、若7、设,A B 为两个随机事件,则下列结论正确的是( )①若()0P AB =,则AB =∅; ②若()1P A B = ,则A B S = ; ③()()()P A B P A P B -=-; ④()()()P AB P B P AB =-。

【分析】利用§1.3有关结论()()()()()()P AB P B A P B P BA P B P AB =-=-=-,选④8、设随机变量X 的分布函数为()F x ,则下列结论错误的是( )①()F x 是x 的定义域为R 的实函数; ②对一切x ∈R ,0()1F x <≤; ③{}()()P a Xb F b F a <=-≤; ④lim ()lim ()1x x F x F x →+∞→-∞-=。

【分析】利用§2.3有关结论对一切x ∈R ,0()1F x ≤≤,选②9、设两个随机变量X 与Y 相互独立且同分布,1{1}{1}3P X P Y =-==-=,2{1}{1}3P X P Y ====,则下列各式成立的是( )①5{}9P X Y ==; ②{}1P X Y ==; ③{}0P X Y ==; ④X Y =。

【分析】利用§3.2有关结论{}{1,1}{1,1}11225{1}{1}{1}{1}P X Y P X Y P X Y P X P Y P X P Y ===-=-+====-=-+===⨯+⨯=独立性,选① 10①(E ③(D 11是( ①1n i n =12用( ①u13891=⇒14、设一批产品由三家工厂生产。

概率论与数理统计试题库及答案(考试必做)

概率论与数理统计试题库及答案(考试必做)

概率论与数理统计<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________ 7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。

概率论与数理统计复习题册答案(西农版)

概率论与数理统计复习题册答案(西农版)

第一章 随机事件与概率 §1.1 随机试验 随机事件 一、选择题1. 设B 表示事件“甲种产品畅销”,C 表示事件“乙种产品滞销”,则依题意得A=BC .于是对立事件 {}A B C ==U 甲产品滞销或乙产品畅销,故选D.2. 由A B B A B B A AB =⇔⊂⇔⊂⇔=ΦU ,故选D.也可由文氏图表示得出. 二 写出下列随机试验的样本空间 1.{}3,420L ,, 2[]0,100 3.z y x z y x z y x z y x ,,},1,0,0,0|),,{(=++>>>=Ω分别表示折后三段长度。

三、(1)任意抛掷一枚骰子可以看作是一次随机试验,易知共有6个不同的结果.设试验的样本点 ""1,2,3,4,5,6i i i ω==出点点, ;则{}246,,A ωωω=,{}36,B ωω=(2){}135,,A ωωω=,{}1245,,,B ωωωω=,{}2346,,,A B ωωωω=U ,{}6AB ω=,{}15,A B ωω=U四、(1)ABC ;(2)ABC ;(3)“A B C 、、不都发生”就是“A B C 、、都发生”的对立事件,所以应记为ABC ;(4)A B C U U ;(5)“A B C 、、中最多有一事件发生”就是“A B C 、、中至少有二事件发生”的对立事件,所以应记为:AB AC BC U U .又这个事件也就是“A B C 、、中至少有二事件不发生”,即为三事件AB AC BC 、、的并,所以也可以记为AB AC BC U U .§1.2 随机事件的概率 一、填空题1. 试验的样本空间包含样本点数为10本书的全排列10!,设{}A =指定的3本书放在一起,所以A 中包含的样本点数为8!3!⋅,即把指定的3本书捆在一起看做整体,与其他三本书全排,然后这指定的3本书再全排。

故8!3!1()10!15P A ⋅==。

2020年大学基础课概率论与数理统计期末考试卷及答案精选版

2020年大学基础课概率论与数理统计期末考试卷及答案精选版

2020年大学基础课概率论与数理统计期末考试卷及答案(精选版)一、单选题1、设X , X ,…,X 是取自总体X 的一个简单样本,则E (X 2)的矩估计是 1 2n,【答案】D2、若X 〜t (n )那么X 2〜【答案】A设随机变量X 和Y 的方差存在且不等于0,则D (X + 丫-D (X ^+D ^Y )是X 和Y 的不相关的充分必要条件; 、 X - R 、 X - RB) t = ---- J== C) t =S /Vn -1 S / nn2 3S 2 =(A) 1n -1i =1(B) S 2 =1E (X - X )22nii =1(C)S 12+X 2(D)S 2+ X2(A)F (1,n )(B )F (n ,1)(C)殍(n )(D)t (n )3、 A) 不相关的充分条件,但不是必要条件; B) 独立的必要条件,但不是充分条件;D) 独立的充分必要条件 【答案】C4、设某个假设检验问题的拒绝域为W ,且当原假设H0成立时,样本值(XjX,x n )落入亚的概率为0.15,则犯第一类错误的概率为 (A) 0.1(B) 0.15(C) 0.2(D) 0.25【答案】B5、设X , X ,…X 为来自正态总体N (R ,。

2)简单随机样本,X 是样本均值 12 n记 S 2 = -L-Z(X -X )2,S 2 =1Z (X - X )22n ii =1S 2 = -L- Z (X -^)2,3n -1 iS 2 = 1 Z(X -^)2, 4nii =1则服从自由度为n -1的t 分布的随机变量是X - RA) t = ----- =S /- nn -1 1X -RD) t = -------S / nn【答案】BnrX = 1 £x i6、X服从正态分布,EX =T, EX 2 =5, (x i,…,X n )是来自总体x的一个样本,则ni=1服从的分布为o(A)N( —1,5/n) (B)N( —1,4/n) (C)N( —1/n,5/n) (D)N( —1/n,4/n) 【答案】B7、设X〜N(从 e 2),那么当o增大时,尸{X -川<°} =A)增大B)减少C)不变D)增减不定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西理工学院考试试题概率论与数理统计试卷 (A)姓名: 班级: 学号: 得分:一.选择题(18分,每题3分)1. 如果 1)()(>+B P A P ,则 事件A 与B 必定 ( ))(A 独立; )(B 不独立; )(C 相容; )(D 不相容.2. 已知人的血型为 O 、A 、B 、AB 的概率分别是; ;;。

现任选4人,则4人血型全不相同的概率为: ( ))(A ; )(B 40024.0; )(C 0. 24; )(D 224.0.3. 设~),(Y X ⎩⎨⎧<+=.,0,1,/1),(22他其y x y x f π 则X 与Y 为 ( ))(A 独立同分布的随机变量; )(B 独立不同分布的随机变量; )(C 不独立同分布的随机变量; )(D 不独立也不同分布的随机变量.4. 某人射击直到中靶为止,已知每次射击中靶的概率为. 则射击次数的数学期望与方差分别为 ( ))(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与. 5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( ))(A 32112110351ˆX X X ++=μ; )(B 3212949231ˆX X X ++=μ; )(C 3213216131ˆX X X ++=μ; )(D 32141254131ˆX X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10)(22212n Xini χμχ-=∑=,其拒域为(1.0=α) ( ))(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(205.02n χχ≥.二. 填空题(15分,每题3分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P .2. 设随机变量X 的分布律为⎪⎪⎭⎫⎝⎛-+c b a 4.01.02.04321,则常数c b a ,,应满足的条件 为 .3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率=>>),(b Y a X P .4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D . 5.设),,,(21n X X X 是从正态总体),(~2σμN X 中抽取的样本,则 概率 =≤-≤∑=)76.1)(37.0(222012012σσX XP ii .5. 设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信 度为1α-的单侧置信区间的下限为 . 三. 计算题 (54分,每题9分)1.自动包装机把白色和淡黄色的乒乓球混装入盒子,每盒装12只,已知每盒内装有的白球的个数是等可能的。

为检查某一盒子内装有白球的数量,从盒中任取一球发现是白球,求此盒中装的全是白球的概率。

2.设二维随机变量(X,Y )的联合密度函数为1,02,max{0,1}min{1,}(,)0,x x y x f x y otherwise≤≤-≤≤⎧=⎨⎩ 求:边缘密度函数(),()X Y f x f y .3. 已知随机变量X 与Z 相互独立,且)1,0(~U X ,)2.0,0(~U Z ,Z X Y +=, 试求:(),(),XY E Y D Y ρ.4. 学校食堂出售盒饭,共有三种价格4元,元,5元。

出售哪一种盒饭是随机的,售出三种价格盒饭的概率分别为,,。

已知某天共售出200盒,试用中心极限定理求这天收入在910元至930元之间的概率。

5. 设总体X 的概率密度为⎩⎨⎧∉∈+=)1,0(,0)1,0(,)1(),(x x x x f θθθ 1θ>-为未知参数.已知12,,,n X X X 是取自总体X 的一个样本。

求:(1) 未知参数的矩估计量;(2) 未知参数的极大似然估计量; (3) )(X E 的极大似然估计量.6. 为改建交大徐汇本部中央绿地,建工学院有5位学生彼此独立地测量了中央绿地的面积,得如下数据(单位:2km ) 设测量误差服从正态分布.试检验(0.05α=)(1) 以前认为这块绿地的面积是μ=2km ,是否有必要修改以前的结果 (2) 若要求这次测量的标准差不超过0.015σ=,能否认为这次测量的标准差显著偏大四. 证明题 (6分) 设12,,,,n X X X 是相互独立且都服从区间],0[θ上的均匀分布的随机变量序列,令1max{}n i i nY X ≤≤=,证明 1)(lim =<-∞→εθn n Y P .五.是非题(7分,每题1分)1. 设样本空间{}4321,,,ωωωω=Ω,事件{}431,,ωωω=A ,则75.0)(=A P . ( )2. 设n 次独立重复试验中,事件A 出现的次数为X ,则 5n 次独立重复试验中,事件A 出现的次数未必为5X . ( ) 3.设a , b 为常数,F (x )是随机变量X 的分布函数. 若F (a ) < F (b ),则 a < b . ( ) 4. 若随机变量)5.0;1,0;1,0(~),(-N Y X ,则 )1,0(~N Y X + ( ) 5. )()()(Y E X E XY E =是X 与Y 相互独立的必要而非充分的条件. ( ) 6. 若随机变量),(~m m F X ,则概率)1(≤X P 的值与自然数m 无关. ( ) 7.置信度α-1确定以后,参数的置信区间是唯一的. ( )附 分布数值表99.0)33.2(,9032.0)30.1(,9474.0)62.1(,926.0)45.1(=Φ=Φ=Φ=Φ 0150.2)5(,1318.2)4(,5706.2)5(,7764.2)4(05.005.0025.0025.0====t t t t711.0)4(,488.9)4(,484.0)4(,143.11)4(295.0205.02975.02025.0====χχχχ概率统计试卷A (评分标准)一. 选择题(15分,每题3分) [ 方括弧内为B 卷答案 ]C A C AD . . [ A D B C A ] 二. 填空题(18分,每题3分)1. 62.0 [84.0]; 2..0,4.0,1.0,3.0≥≤-≥=+-c b a c b a 且[0,3.0,2.0,4.0≥-≥≤=+-c b a c a b 且];3. ),(),(),(1b F a F b a F +∞-∞+-+ [)22,(),6()22,6(1+∞-∞+-+F F F ];4. 4/,2/m m [ 4/,2/n n ] ;5. 985.0 [)1(-+m t mS X α]; 6. )1(--n t nS X α [98.0].五. 是非题(7分,每题1分)非 非 是 是 是 是 非. [ 是 非 是 非 非 非 是 ] 三. 计算题(54分,每题9分)1. 解:令 A={抽出一球为白球}, t B ={盒子中有t 个白球},12,,2,1,0 =t . 由已知条件,131)(=t B P ,12)(tB A P t =,12,,2,1,0 =t , [ 111)(=t B P ,10)(tB A P t =,10,,2,1,0 =t ] (3分) 由全概率公式,∑∑====12012012131)()()(t t t t t B A P B P A P , [∑==10010111)(t tA P ] (3分) 由Bayes 公式,132)()()()(1212131131121212===∑=t t A P B A P B P A B P . [ 112)(10=A B P ] (3分)2. 解: ,01()2,120,X x x f x x x otherwise ≤<⎧⎪=-≤≤⎨⎪⎩[1,[0,1]()0,[0,1]X x f x x ∈⎧=⎨∉⎩ (4分)] (5分)1,[0,1]()0,[0,1]Y y f y y ∈⎧=⎨∉⎩ [,01()2,120,Y y y f y y y otherwise ≤<⎧⎪=-≤≤⎨⎪⎩(5分)] (4分) 3.解: 11111(),()()()222020E X E Y E X E Z ==+=+=(3分)cov(,)(())()()1()12X Y E X X Z E X E X Z D X =+-+==11101()()()()1212001200D Y D X Z D X D Z =+=+=+=[15013] (3分)1XYρ==2625] (3分) 4.解:设i X 为第i 盒的价格(1,2,,200.)i =,则总价2001i i X X ==∑ (1分)() 4.6,()0.19i i E X D X == (2分)2001()()200 4.6920ii E X E X ===⨯=∑.2001()()2000.1938ii D X D X ===⨯=∑. (2分)(910930)212(1.622)120.947410.8948P X P ≤≤=≤≤≈Φ-=Φ-=⨯-=[ 8064.01)298.1(2)928912(=-Φ≈≤≤X P ] (4分)5.解:(1) 矩估计量 12ˆ1X X θ-=- [ ˆ1X Xθ=- ] (3分) (2) 极大似然估计量 11ˆ11ln ni i X n θ==--∑ [11ˆ1ln ni i X n θ==-∑] (3分)(3) )(X E 的极大似然估计量∑=-=++=n i in X X E 11ln 112ˆ1ˆ)(ˆθθ [ 1ln 11ˆˆ)(ˆ11-=+=∑=ni inXX E θθ ] (3分)7. 解:(1)假设 01: 1.23;: 1.23H H μμ=≠. [ 01: 1.20;: 1.20H H μμ=≠ ] (1分) 当0H 为真,检验统计量 )1(~/0--=n t nS X T μ (3分)0.0252(1)(4) 2.7764t n t α-== , 拒绝域 (, 2.7764][2.7764,)W =-∞-⋃+∞ (3分)221.246,0.0288x s ==, [ 221.23,0.0224x s == ]0 1.242T W =∉,接受0H . [ W T ∈=571.30,拒绝0H ] (2分)(2)假设 222201:0.015;:0.015H H σσ=>. (1分)当0H 为真,检验统计量 )1(~)1(2222--=n S n χσχ (3分)220.05(1)(4)9.488n αχχ-==, 拒绝域 [9.488,)W =+∞. (3分)2014.86W χ=∈,拒绝0H . (2分)四.证明题证: ⎩⎨⎧∉∈=],0[,0],0[,/1)(~θθθx x x f X i 0,0(),01,1x x F x x x θθ<⎧⎪⎪=≤<⎨⎪≥⎪⎩1max{}n i i nY X ≤≤=的密度为 1,[0,]()0,[0,]n n nY ny y f x y θθθ-⎧∈⎪=⎨⎪∉⎩(3分)0ε∀>11||00(||)()(1)0,n n n nny nn nny ny P Y dy dyas n θεθεθεθθθεεθθ----≥<-≥==-==-→→∞⎰⎰即0)(lim =≥-∞→εθn n Y P , 所以 1)(lim =<-∞→εθn n Y P . (3分)。

相关文档
最新文档