MATLAB实验二傅里叶分析应用

合集下载

实验二 用matlab实现傅立叶变换

实验二 用matlab实现傅立叶变换

实验二用matlab实现傅立叶变换Step 1: 生成信号我们首先来生成一个信号,作为傅立叶变换的输入。

```matlab% 生成信号t = 0:0.001:1; % 时间范围f1 = 10; % 第一个频率f2 = 50; % 第二个频率y = sin(2*pi*f1*t) + sin(2*pi*f2*t); % 两个频率的正弦信号相加plot(t,y)title('信号')xlabel('时间 (秒)')```这段代码生成了一个时间范围为0到1秒的信号。

信号由两个频率分别为10Hz和50Hz的正弦波相加组成。

Step 2: 进行傅立叶变换接下来,我们可以使用Matlab中的fft函数来对信号进行傅立叶变换。

fft函数将信号从时域(时间)上转换到频域上。

```matlab% 进行傅立叶变换Y = fft(y);L = length(y); % 信号长度P2 = abs(Y/L); % 双边频谱P1 = P2(1:L/2+1); % 单边频谱P1(2:end-1) = 2*P1(2:end-1);% 绘制频域图figure()f = 1000*(0:(L/2))/L;plot(f,P1)title('单边频谱')xlabel('频率 (Hz)')```这段代码计算了信号的傅立叶变换,并绘制了信号的单边频谱。

Step 3: 解释结果在绘图结果中,我们可以看到两个明显的峰值。

这两个峰值对应着信号中两个正弦波的频率,也就是10Hz和50Hz。

傅立叶变换将信号从时域上转换到了频域上,这就使我们能够分析信号中不同频率的组成。

这在信号处理和分析中极为常见,傅立叶变换可以将信号转换到更加恰当的域中,使得我们能够更好地对信号进行分析和处理。

(最新整理)MATLAB实验傅里叶分析

(最新整理)MATLAB实验傅里叶分析

MATLAB实验傅里叶分析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(MATLAB实验傅里叶分析)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为MATLAB实验傅里叶分析的全部内容。

实验七 傅里叶变换一、实验目的傅里叶变换是通信系统、图像处理、数字信号处理以及物理学等领域内的一种重要的数学分析工具。

通过傅里叶变换技术可以将时域上的波形分 布变换为频域上的分布,从而获得信号的频谱特性。

MATLAB 提供了专门的函数fft 、ifft 、fft2(即2维快速傅里叶变换)、ifft2以及fftshift 用于实现对信号的傅里叶变换.本次实验的目的就是练习使用fft 、ifft 以及fftshift 函数,对一些简单的信号处理问题能够获取其频谱特性(包括幅频和相频特性)。

二、实验预备知识1。

离散傅里叶变换(DFT )以及快速傅里叶变换(FFT)简介设x (t )是给定的时域上的一个波形,则其傅里叶变换为2()() (1)j ft X f x t e dt π∞--∞=⎰显然X ( f )代表频域上的一种分布(波形),一般来说X ( f )是复数。

而傅里叶逆变换定义为:2()() (2)j ft x t X f e df π∞-∞=⎰因此傅里叶变换将时域上的波形变换为频域上的波形,反之,傅里叶逆变换则将频域上的波形变换为时域上的波形。

由于傅里叶变换的广泛应用,人们自然希望能够使用计算机实现傅里叶变换,这就需要对傅里叶变换(即(1)式)做离散化处理,使之符合电脑计算的特征。

另外,当把傅里叶变换应用于实验数据的分析和处理时,由于处理的对象具有离散性,因此也需要对傅里叶变换进行离散化处理。

MATLAB实验二 傅里叶分析及应用复习课程

MATLAB实验二  傅里叶分析及应用复习课程

M A T L A B实验二傅里叶分析及应用实验二傅里叶分析及应用一、实验目的(一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义2、学会使用Matlab分析周期信号的频谱特性(二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质1、学会运用Matlab求连续时间信号的傅里叶变换2、学会运用Matlab求连续时间信号的频谱图3、学会运用Matlab分析连续时间信号的傅里叶变换的性质(三)掌握使用Matlab完成信号抽样并验证抽样定理1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化3、学会运用MATLAB对抽样后的信号进行重建二、实验条件Win7系统,MATLAB R2015a三、实验内容1、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

Code:ft = sym('(t+2)*(heaviside(t+2)-heaviside(t+1))+(heaviside(t+1)-heaviside(t-1))+(2-t)*(heaviside(t-1)-heaviside(t-2))');fw = simplify(fourier(ft));subplot(2, 1, 1);ezplot(abs(fw)); grid on;title('amp spectrum');phi = atan(imag(fw) /real(fw));subplot(2, 1, 2);ezplot(phi); grid on;符号运算法Code:dt = 0.01;t = -2: dt: 2;ft = (t+2).*(uCT(t+2)-uCT(t+1))+(uCT(t+1)-uCT(t-1))+(2-t).*(uCT(t-1)-uCT(t-2));N = 2000;k = -N: N;w = pi * k / (N*dt);fw = dt*ft*exp(-i*t'*w);fw = abs(fw);plot(w, fw), grid on;axis([-2*pi 2*pi -1 3.5]);t(20 π ex p(-3 t) heaviside(t) - 8 π ex p(-5 t) heaviside(t))/(2 π)数值运算法2、试用Matlab 命令求ωωωj 54-j 310)F(j ++=的傅里叶反变换,并绘出其时域信号图。

Matlab技术傅里叶变换

Matlab技术傅里叶变换

Matlab技术傅里叶变换引言傅里叶变换是一种在信号处理和图像处理领域广泛应用的数学工具。

通过傅里叶变换,我们可以将一个信号或图像分解为不同频率的分量,从而更好地理解信号或图像的特性。

在实际应用中,Matlab是一个功能强大的工具,用于实现傅里叶变换和信号处理。

本文将介绍Matlab中傅里叶变换的基本原理、实现方法以及一些实际应用案例。

一、傅里叶变换的基本原理傅里叶变换是一种将一个函数或信号表示为频率分量的工具。

它可以将一个时域函数转换为频域函数,从而得到不同频率分量的振幅和相位信息。

在数学上,傅里叶变换将一个函数f(t)表示为连续频谱的形式,即F(ω),其中ω为频率。

傅里叶变换的基本公式如下:F(ω) = ∫f(t)e^(-jωt)dt其中,F(ω)表示频域函数,f(t)表示时域函数,j表示虚数单位,ω表示频率,e 为自然对数的底。

二、Matlab中傅里叶变换的实现方法在Matlab中,傅里叶变换可以通过fft函数来实现。

fft函数是Fast Fourier Transform的缩写,是一种快速傅里叶变换算法。

使用fft函数,我们可以方便地进行信号的频域分析。

具体实现步骤如下:1. 准备输入信号数据。

在Matlab中,可以通过向量或矩阵的形式表示一个信号。

2. 调用fft函数进行傅里叶变换。

输入参数为信号数据,输出结果为频域函数。

3. 对频域函数进行处理和分析。

可以进行滤波、频谱分析等操作。

4. 反傅里叶变换。

如果需要将频域函数转换回时域函数,可以使用ifft函数。

通过以上步骤,我们可以方便地实现对信号的傅里叶变换和频域分析。

三、实际应用案例傅里叶变换在信号处理和图像处理领域有着广泛的应用。

下面将介绍几个实际案例,展示了傅里叶变换的实际应用。

1. 音频信号处理音频信号是一种由不同频率的声波组成的信号。

通过傅里叶变换,我们可以将音频信号分解为不同频率分量的振幅和相位。

这使得我们能够实现音频信号的滤波、频谱分析和降噪等操作。

matlab实现傅里叶变换

matlab实现傅里叶变换

(1)原理正交级数的展开是其理论基础!将一个在时域收敛的函数展开成一系列不同频率谐波的叠加,从而达到解决周期函数问题的目的。

在此基础上进行推广,从而可以对一个非周期函数进行时频变换。

从分析的角度看,他是用简单的函数去逼近(或代替)复杂函数,从几何的角度看,它是以一族正交函数为基向量,将函数空间进行正交分解,相应的系数即为坐标。

从变幻的角度的看,他建立了周期函数与序列之间的对应关系;而从物理意义上看,他将信号分解为一些列的简谐波的复合,从而建立了频谱理论。

当然Fourier积分建立在傅氏积分基础上,一个函数除了要满足狄氏条件外,一般来说还要在积分域上绝对可积,才有古典意义下的傅氏变换。

引入衰减因子e^(-st),从而有了Laplace变换。

(好像走远了)。

(2)计算方法连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。

这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。

连续傅里叶变换的逆变换 (inverse Fourier transform)为即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。

一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。

二、傅立叶变换的应用;DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。

需要指出的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算法,即快速傅里叶变换(快速傅里叶变换(即FFT)是计算离散傅里叶变换及其逆变换的快速算法。

)。

(1)、频谱分析DFT是连续傅里叶变换的近似。

因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。

前面还提到DFT应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。

可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。

快速傅立叶变换FFT及其应用实验报告

快速傅立叶变换FFT及其应用实验报告

实验一 离散时间系统的时域分析一、实验目的1. 运用MA TLAB 仿真一些简单的离散时间系统,并研究它们的时域特性。

2. 运用MA TLAB 中的卷积运算计算系统的输出序列,加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。

二、实验原理离散时间系统其输入、输出关系可用以下差分方程描述:∑=∑=-=-M k k N k k k n x p k n y d 00][][当输入信号为冲激信号时,系统的输出记为系统单位冲激响应 ][][n h n →δ,则系统响应为如下的卷积计算式:∑∞-∞=-=*=m m n h m x n h n x n y ][][][][][ 当h[n]是有限长度的(n :[0,M])时,称系统为FIR 系统;反之,称系统为IIR 系统。

在MA TLAB 中,可以用函数y=Filter(p,d,x) 求解差分方程,也可以用函数 y=Conv(x,h)计算卷积。

例1clf;n=0:40;a=1;b=2;x1= 0.1*n;x2=sin(2*pi*n);x=a*x1+b*x2;num=[1, 0.5,3];den=[2 -3 0.1];ic=[0 0]; %设置零初始条件y1=filter(num,den,x1,ic); %计算输入为x1(n)时的输出y1(n)y2=filter(num,den,x2,ic); %计算输入为x2(n)时的输出y2(n)y=filter(num,den,x,ic); %计算输入为x (n)时的输出y(n)yt= a*y1+b*y2;%画出输出信号subplot(2,1,1)stem(n,y);ylabel(‘振幅’);title(‘加权输入a*x1+b*x2的输出’);subplot(2,1,2)stem(n,yt);ylabel(‘振幅’);title(‘加权输出a*y1+b*y2’);(一)、线性和非线性系统对线性离散时间系统,若)(1n y 和)(2n y 分别是输入序列)(1n x 和)(2n x 的响应,则输入)()()(21n bx n ax n x +=的输出响应为)()()(21n by n ay n y +=,即符合叠加性,其中对任意常量a 和b 以及任意输入)(1n x 和)(2n x 都成立,否则为非线性系统。

大学matlab课程设计图像的傅里叶变换及其应用

大学matlab课程设计图像的傅里叶变换及其应用

课程名称: MATLAB及在电子信息课程中的应用实验名称:图像的傅里叶变换及其应用设计四图像的傅里叶变换及其应用一、设计目的通过该设计,掌握傅里叶变换的定义及含义。

二、设计内容及主要的MATLAB 函数1、图像的离散傅里叶变换假设),(n m f 是一个离散空间中的二维函数,则该函数的二维傅里叶变换定义为nj m j e e n m f f 21),()2,1(ωωωω--∞∞-∞∞-∑∑=其中21ωω和是频域变量,单位是弧度/采样单元。

函数),(21ωωf 为函数),(n m f 的频谱。

二维傅里叶反变换的定义为21212121),(),(ωωωωωωππωππωd d e e f n m f n j m j ⎰⎰-=-==因此,函数),(n m f 可以用无数个不同频率的复指数信号的和表示,在频率),(21ωω处复指数信号的幅度和相位为),(21ωωfMATLAB 提供的快速傅里叶变换函数1)fft2:用于计算二维快速傅里叶变换,其语法格式为b=fft2(I),返回图像I 的二维傅里叶变换矩阵,输入图像I 和输出图像B 大小相同;b=fft2(I,m,n),通过对图像I 剪切或补零,按用户指定的点数计算二维傅里叶变换,返回矩阵B 的大小为m ⨯n 。

很多MATLAB 图像显示函数无法显示复数图像,为了观察图像傅里叶变换后的结果,应对变换后的结果求模,方法是对变换结果使用abs 函数。

2)fftn :用于计算n 维快速傅里叶变换,其语法格式为b=fftn(I),计算图像的n 维傅里叶变换,输出图像B 和输入图像I 大小相同; b=fftn(I, size),通过对图像I 剪切或补零,按size 指定的点数计算n 维傅里叶变换,返回矩阵B 的大小为size 。

3) fftshift :用于将变换后的图像频谱中心从矩阵的原点移到矩阵的中心,其语法格式为b=fftshift(I),将变换后的图像频谱中心从矩阵的原点移到矩阵的中心。

信号与系统matlab实验傅里叶分析及应用报告答案

信号与系统matlab实验傅里叶分析及应用报告答案

实验二傅里叶分析及应用姓名学号班级一、实验目的(一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义2、学会使用Matlab分析周期信号的频谱特性(二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质1、学会运用Matlab求连续时间信号的傅里叶变换2、学会运用Matlab求连续时间信号的频谱图3、学会运用Matlab分析连续时间信号的傅里叶变换的性质(三)掌握使用Matlab完成信号抽样并验证抽样定理1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化3、学会运用MATLAB对抽样后的信号进行重建二、实验条件需要一台PC机和一定的matlab编程能力三、实验内容2、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

符号运算法: Ft=sym('t*(Heaviside(t+2)-Heaviside(t+1))+Heaviside(t+1)-Heaviside(t-1)+(-t)*(Heavi side(t-1)-Heaviside(t-2))'); Fw = fourier(Ft); ezplot(abs(Fw)),grid on; phase = atan(imag(Fw)/real(Fw)); ezplot(phase);grid on; title('|F|'); title('phase');3、试用Matlab 命令求ωωωj 54-j 310)F(j ++=的傅里叶反变换,并绘出其时域信号图。

[注意:(1)写代码时j i]syms tFw = sym('10/(3+iw)-4/(5+iw)');ft = ifourier(Fw,t);F = abs(ft);ezplot(F,[-3,3]),grid on;4、已知门函数自身卷积为三角波信号,试用Matlab命令验证FT的时域卷积定理。

熟悉MATLAB环境,快速傅里叶变换(FFT)及其应用,IIR数字滤波器的设计,FIR数字滤波器的设计实验报告

熟悉MATLAB环境,快速傅里叶变换(FFT)及其应用,IIR数字滤波器的设计,FIR数字滤波器的设计实验报告

南京邮电大学实验报告实验名称实验一熟悉MATLAB环境实验二快速傅里叶变换(FFT)及其应用实验三IIR数字滤波器的设计实验四FIR数字滤波器的设计课程名称数字信号处理A班级学号__________________姓名______ _______________开课时间 2010 /2011 学年,第 2学期实验一熟悉MATLAB环境一、实验目的(1)熟悉MA TLAB的主要操作命令。

(2)学会简单的矩阵输入和数据读写。

(3)掌握简单的绘图命令。

(4)用MATLAB编程并学会创建函数。

(5)观察离散系统的频率响应。

二、实验内容注:每个实验内容包括题目、实验过程与结果(含实验程序、运行的数据结果和图形);(1) 数组的加、减、乘、除和乘方运算。

输入A=[1 2 3 4],B=[3,4,5,6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B 。

并用stem语句画出A、B、C、D、E、F、G。

输入代码如下:A=[1 2 3 4];B=[3,4,5,6];C=A+B;stem(C)C运行图片:输入代码如下:A=[1 2 3 4];B=[3,4,5,6];D=A-Bstem(D)D运行图片:输入代码如下:A=[1 2 3 4]; B=[3,4,5,6]; E=A.*Bstem(E)E运行图片:输入代码如下:A=[1 2 3 4]; B=[3,4,5,6]; F=A./Bstem(F)F运行图片:输入代码如下: A=[1 2 3 4]; B=[3,4,5,6]; G=A.^B stem(G) G 运行图片:(2) 用MATLAB 实现下列序列: a) 08(). 0n 15nx n =≤≤ 输入代码如下: n=0:1:15; x1=0.8.^n stem(x1) 运行图片:b) 023(.)() 0n 15j nx n e+=≤≤输入代码如下: a=(0.2+3*i)*n; x2=exp(a) stem(x2) 运行图片:c) 3012502202501()cos(..)sin(..)x n n n ππππ=+++ 0n 15≤≤ 输入代码如下:x3=3*cos(0.125*pi*n+0.2*pi)+2*sin(0.25*pi*n+0.1*pi) stem(x3) 运行图片:d) 将c)中的x(n)扩展为以16为周期的函数)16()(16+=n x n x ,绘出四个周期。

用FFT做谱分析Matlab2

用FFT做谱分析Matlab2

实验二 用FFT 做谱分析一、实验目的1.在理论学习的基础上,通过本实验,加深对FFT 的理解,熟悉FFT 子程序; 2.熟悉应用FFT 对典型信号进行频谱分析的方法; 3.了解应用FFT 对信号频谱分析过程中可能出现的问题以便在实际中正确应用FFT ; 4.熟悉应用FFT 实现两个序列的线性卷积的方法; 5.初步了解用周期图法作随机信号谱分析的方法; 6.在理论学习的基础上,通过本实验,加深对DFT 的理解,熟悉DFT 子程序; 7.掌握计算离散信号DFT 的方法; 8. 体会有限长序列DFT 与离散时间傅里叶变换DTFT 之间的联系;9. 掌握用Matlab 进行离散傅里叶变换DFT 及其逆变换IDFT 的方法。

二、实验内容1、已知有限长序列x(n)=[1,0.5,0,0.5,1,1,0.5,0], 要求:(1) 用FFT 求该序列的DFT 、IDFT 的图形;(2) 假设采样频率Fs=20Hz,序列长度长度N 分别取8、32和64,用FFT 计算其幅度频谱和相位频谱。

2、用FFT 计算下面连续信号的频谱,并观察选择不同的采样周期Ts 和序列长度N 值对频谱特性的影响。

0),2.2sin 1.2sin 2(sin )(01.0≥++=-t t t t e t x t a3、已知有限长序列x(n)=[7,6,5,4,3,2], 求x(n)的DFT 和IDFT 。

要求:(1) 画出序列DFT 对应的|X(k)|和arg[X(k)]的图形;(2) 画出原信号与 IDFT[X(k)]的图进行比较。

4、将第3题中的x(n)以补零方式加长到1000≤≤n ,重复第3题。

三、实现步骤1、已知有限长序列x(n)=[1,0.5,0,0.5,1,1,0.5,0], 要求:(1)用FFT 求该序列的DFT 、IDFT 的图形;x=[1,0.5,0,0.5,1,1,0.5,0];N=length(x);n=0:N-1;figure(1)subplot(2,2,1.5)stem(n,x)title('x(n)');n1=0:29;y=fft(x,30);subplot(2,2,3)stem(n1,y)title('DFT1');y=ifft(x,30);subplot(2,2,4)stem(n1,y)title('IDFT1'); 图1(2)假设采样频率Fs=20Hz,序列长度长度N 分别取8、32和64,用FFT 计算其幅度频谱和相位频谱。

MATLAB实验二傅里叶分析报告及应用

MATLAB实验二傅里叶分析报告及应用

实验二傅里叶分析及应用一、实验目的(一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义2、学会使用Matlab分析周期信号的频谱特性(二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质1、学会运用Matlab求连续时间信号的傅里叶变换2、学会运用Matlab求连续时间信号的频谱图3、学会运用Matlab分析连续时间信号的傅里叶变换的性质(三)掌握使用Matlab完成信号抽样并验证抽样定理1 、学会运用MATLA完成信号抽样以及对抽样信号的频谱进行分析2 、学会运用MATLA改变抽样时间间隔,观察抽样后信号的频谱变化3 、学会运用MATLA对抽样后的信号进行重建二、实验条件Win7 系统,MATLAB R2015a三、实验内容1、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

Code:ft = sym( ' (t+2)*(heaviside(t+2)-heavisi de(t+1))+(heaviside(t+1)-heav iside(t-1))+(2-t)*(heaviside( t-1)-heaviside(t-2))');fw = simplify(fourier(ft));subplot(2, 1, 1); ezplot(abs(fw)); gridon ;title( 'amp spectrum' );phi = atan(imag(fw) / real(fw));subplot(2, 1,2);ezplot(phi); grid on ;title( 'phase spectrum' );Code:dt = 0.01;t = -2: dt: 2;ft(t+2).*(uCT(t+2)-uCT(t+1))+(uCT(t+1)-uCT(t-1))+(2-t).*(uCT(t-1)-uCT(t-2));N = 2000;k = -N: N;w = pi * k / (N*dt);fw = dt*ft*exp(-i*t'*w);fw = abs(fw); plot(w, fw), gridon; axis([-2*pi 2*pi -1 3.5]);符号运算法数值运算法wxphase speetrunn2、试用Matlab 命令求Fj •)1^ -—的傅里叶反变换,并绘出其时域信号图 3 + 他 5 + j co两个单边指数脉冲的叠加Codef = sym( 'heaviside(t+1) - heaviside(t-1)' );fw = simplify(fourier(f)); F = fw.*fw; subplot(211);ezplot(abs(F), [-9, 9]), grid ontitle('FW A2') tri =sym( '(t+2)*heaviside(t+2)-2*t*heaviside(t)+(t-2)*heaviside(t-2)' );Ftri = fourier(tri); F = simplify(Ftri); subplot(212);ezplot(abs(F), [-9, 9]), grid on ;title( 'tri FT' )Code :syms t ; fw =sym( '10/(3+i*w)-4/(5+i* w)');ft = ifourier(fw, t); ezplot(ft), grid on;3、已知门函数自身卷积为三角波信号,试用Matlab 命令验证FT 的时域卷积定理(20 - exp(-3 t) heaviside(t) -8 - exp(-5 t) heaviside(t))/( 2 -■)4、设有两个不同频率的余弦信号,频率分别为匸=100Hz , f^ 3800Hz ;现在使用抽样频率f s =4000Hz 对这三个信号进行抽样, 使用MATLAB^令画出各抽样信号的波形和频谱,并分析其频率混叠现象Code: >t2 = -0.007:ts:0.007; fst = cos(2*f1*pi*t2); fl = 100; % fl = 100 hz>subplot(223);plot(t1, ft, ':'),ts = 1/4000;% sample = 4000hzhold ondt = 0.0001;>stem(t2, fst), gridon ;t1 = -0.007:dt:0.007;axis([-0.006 0.006 -1.5 1.5])ft = cos(2*f1*pi*t1); >xlabel( 'Time/s' ),ylabel( 'fs(t)')subplot(221); plot(t1, ft),grid on ;title( 'Sample sig nal' ); holdoffaxis([-0.006 0.006 -1.5 1.5])>xlabel( 'Time/s' ),ylabel( 'f(t)' )fsw=ts*fst*exp(-1i*t2'*w);title( 'Cos ine curve' );>subplot(224); plot(w, abs(fsw)),grid onN = 5000; k = -N:N;> axis([-20000 20000 0 0.006]) w = 2*pi*k/((2*N+1)*dt);xlabel( '\omega' ),ylabel( 'fsw' )fw = ft*dt*exp(-1i*t1'*w); >title( ' Sample freq spectrum');subplot(222);plot(w, abs(fw)); gridon ;>axis([-20000 20000 0 0.005]);xlabel( '\omega' ), ylabel('f(w)' )>FW 1-8-6^-22468wtri FT-吕 ££€024 68实用文档Cos inecurve-3x 10 Cos freq spectrum-3x 10 Sample freq spectrum Sample signalws4 Time/sx 10-3x 10f1 = 100Hz将代码中f1设为3800即可JCos inecurve-3-1-5! «3254-3x 10 Cos freq spectrumTime/s5X 10-2-10 1©x210Sample signal.I42ws4x 10 Sample freq spectrum-5 0Time/s5-3X 10 x 100 -2f2 = 3800Hz实用文档5、结合抽样定理,利用MATLA编程实现Sa(t)信号经过冲激脉冲抽样后得到的抽样信号f s t及其频谱[建议:冲激脉冲的周期分别取4*pi/3 s、pi s、2*pi/3 s三种情况对比],并利用f s t构建Sa(t)信号(**改动第一行代码即可)t2 = -5: Ts: 5;fst = sin c(t2);subplot(2, 2, 3)plot(t1, ft, ':' ), hold onstem(t2, fst), grid onaxis([-6 6 -0.5 1.2])title( 'Sampli ng sig nal' )Fsw = Ts*fst*exp(-1i*t2'*W);subplot(2, 2, 4)plot(W, abs(Fsw)), grid onaxis([-50 50 -0.05 1.5])title( 'spectrum of Sampling signal' )冲激脉冲的周期=4*pi/3 sSa(t) Sa(t) freq spectrumSampli ng signalspectrum of Sampli ng signalTs = 4/3; % impulse period = 4*pi/3t1 = -5:0.01:5;ft = si nc(t1);subplot(2, 2, 1)plot(t1, ft), grid onaxis([-6 6 -0.5 1.2]) title( 'Sa(t)' )N = 500; k = -N: N;W = pi*k / (N*0.01);Fw = 0.01*ft*exp(-1i*t1'*W);subplot(2, 2, 2)plot(W, abs(Fw)), grid onaxis([-30 30 -0.05 1.5])title( 'Sa(t) freq spectrum' )实用文档冲激脉冲的周期=pi s冲激脉冲的周期=2*pi/3 sSa(t) Sa(t) freq spectrumSampli ng signalspectrum of Sampli ng signalSa(t) Sa(t) freq spectrumSampli ng signalspectrum of Sampli ng signal实用文档6、已知周期三角信号如下图所示[注:图中时间单位为:毫秒(ms)]:(1)试求出该信号程实现其各次谐波[如1、3、5、13、49]的叠加,并验证其收敛性;a。

实验二 用matlab实现傅立叶变换

实验二 用matlab实现傅立叶变换

实验报告实验课程:信号与系统——MATLAB综合实验学生姓名:赖硕秋学号:6100208060专业班级:电子0812010年 4月 15日实验二用matlab实现傅立叶变换实验目的: 1.掌握傅立叶数值实现方法(矩阵算法)2.生成连续周期信号,掌握程序优化技巧3.对于自定义函数参数有效性的检查4.复习并巩固“信号与系统”相关知识内容,学习用matlab实现问题实验环境:运行于Matlab7.6环境实验内容:本次实验参照《信号与系统》——“Matlab综合实验”55页课后练习习题:1.如图4.4所示锯齿波信号,分别去一个周期的抽样数据X1(t),0<=t<=1和五个周期的数据X(t),0<=t<5,计算其傅立叶变换X1(w)和X(w),比较有和不同并解释原因。

编程如下:方法1:%计算单位锯齿波和五个周期波形的傅立叶变换%解法1:基本用循环实现数值的计算;对于5个周期锯齿波用内外循环来生成实现T1=1; %一个周期锯齿波N1=10000;t1=linspace(0,T1-T1/N1,N1)';f1=0*t1;f1=1-2*t1;OMG=32*pi; %频率抽样区间K1=100; %频率抽样点数omg=linspace(-OMG/2,OMG/2-OMG/K1,K1)';X1=0*omg;for k=1:K1 %求解五个周期函数的傅里叶变换系数for n=1:N1X1(k)=X1(k)+T1/N1*f1(n)*exp(-j*omg(k)*t1(n));endendfs1=0*t1;for n=1:N1 %通过傅里叶逆变换还原原函数for k=1:K1fs1(n)=fs1(n)+OMG/2/pi/K1*X1(k)*exp(j*omg(k)*t1(n));endendT2=5; %五个周期锯齿波N2=10000;t2=linspace(0,T2-T2/N2,N2)';f2=0*t2;t3=linspace(0,T2/5-T2/N2,N2/5)'; %先定义一个周期内的锯齿波变量抽样值f3=0*t3; %初始化一个周期的函数抽样值f3=1-2*t3; %表示出一个周期内函数抽样值for s=0:4 %将一个周期锯齿波平移到五个周期,通过循环控制for a=1:N2/5f2(2000*s+a)=f3(a);endend %将函数拓展表示为五个周期X2=0*omg;for k=1:K1 %求解五个周期函数的傅里叶变换系数for n=1:N2X2(k)=X2(k)+T2/N2*f2(n)*exp(-j*omg(k)*t2(n));endendfs2=0*t2;for n=1:N1 %通过傅里叶逆变换还原原函数for k=1:K1fs2(n)=fs2(n)+OMG/2/pi/K1*X2(k)*exp(j*omg(k)*t2(n));endendfigure;subplot(2,2,1);plot(omg,abs(X1),'r'); %以幅度频谱画图xlabel('Frequency'),ylabel('Amplitude');title('单个锯齿波的幅频曲线');subplot(2,2,2);plot(t1,fs1,'r');xlabel('Second(s)'),ylabel('Amplitude');title('由频域还原时域函数');subplot(2,2,3);plot(omg,abs(X2),'r');xlabel('Frequency'),ylabel('Amplitude');title('五个周期锯齿波的幅频曲线');subplot(2,2,4);plot(t2,fs2,'r');xlabel('Second(s)'),ylabel('Amplitude');title('由频域还原时域函数');相关曲线:方法2:%计算单位锯齿波和五个周期波形的傅立叶变换%解法2:数值算法用矩阵实现,大大加快了运行速度;并且直接调用“sawtooth”生成5个周期的锯齿波T1=1; %单个周期时域范围N1=10000; %时域抽样点数t1=linspace(0,T1-T1/N1,N1)'; %生成抽样时间点f1=1-2*t1; %生成抽样函数值OMG=32*pi; %频域范围K1=100; %频域抽样点数omg=linspace(-OMG/2,OMG/2-OMG/K1,K1)'; %生成抽样频率点X1=T1/N1*exp(-j*kron(omg,t1.'))*f1; %傅里叶正变换求解傅里叶系数fs1=OMG/2/pi/K1*exp(j*kron(t1,omg.'))*X1; %傅里叶逆变换还原时域函数T2=5; %五个周期时域范围N2=10000; %时域抽样点数t2=linspace(0,T2-T2/N2,N2)'; %生成抽样时间点fs2=0*t2;f2=sawtooth(t2*2*pi,0); %生成五个周期的锯齿波X2=T2/N2*exp(-j*kron(omg,t2.'))*f2; %傅里叶正变换求解傅里叶系数fs2=fs2+OMG/2/pi/K1*exp(j*kron(t2,omg.'))*X2; %傅里叶逆变换还原时域函数figure; %生成一个2*2矩阵子图subplot(2,2,1);plot(omg,abs(X1),'r'); %一个周期时的频谱图xlabel('Frequency'),ylabel('Amplitude')title('单个锯齿周期幅频特性曲线');subplot(2,2,2);plot(t1,fs1,'r'); %还原的时域函数xlabel('Time'),ylabel('Amplitude')title('Function after recovered');subplot(2,2,3);plot(omg,abs(X2),'r'); %五个周期时的频谱图xlabel('Frequency'),ylabel('Amplitude')title('五个锯齿周期幅频特性曲线');subplot(2,2,4);plot(t2,fs2,'r'); %还原的时域函数xlabel('Time'),ylabel('Function after recovered')title('Function after recovered');相关曲线:2.请编写函数F=fsana(t,f,,N),计算周期信号f的前N个指数形式的傅立叶级数系数,t表示f对应的抽样时间(均为一个周期);再编写函数f=fssyn(F,t),由傅立叶级数系数F合成抽样时间t对应的函数。

MAtlab-傅里叶变换-实验报告(最新-编写)

MAtlab-傅里叶变换-实验报告(最新-编写)

MAtlab-傅里叶变换-实验报告(最新-编写)一、实验目的1. 了解傅里叶变换的基本概念及其在信号处理中的应用;2. 掌握使用Matlab软件进行傅里叶变换的方法;3. 通过实验掌握傅里叶变换的计算与图像分析方法。

二、实验原理1. 傅里叶级数傅里叶级数是一类振幅、频率和相位相同的正弦(余弦)函数构成某一周期函数的和。

若函数f(t)可以表示为周期2π的函数,则有:f(t) = a0 + ∑[an*cos(nwt) + bn*sin(nwt)] (1)其中,a0、an、bn为常数,w=2π/T为角频率,T为周期。

傅里叶级数引入相位角,使得函数形态可以更加丰富,而且描述更加直观。

假设n=0时,a0是函数f(t)的常数项,且an、bn分别表示f(t)的奇、偶对称部分的振幅,即:a0 = (1/2π)∫[f(t)]dt,an = (1/π)∫[f(t)*cos(nwt)]dt,bn =(1/π)∫[f(t)*s in(nwt)]dt式中,*为乘积,∫为积分。

在时域中,傅里叶分析用来分析周期性信号的性质。

但是,在实际应用中,很少有真正的周期性信号,因此需要将傅里叶分析推广到非周期性信号上,即傅里叶变换。

原信号可以表示为一个函数f(t),其傅里叶变换可以表示为:F(w) = ∫[f(t)*e^(-jwt)]dt其中,j为虚数单位,w为角频率。

傅里叶变换将信号从时域变换到频域,通常使用复数表示幅值与相位。

同时,傅里叶变换也具有很高的线性性质。

即,若有两个函数f1(t)和f2(t),其傅里叶变换分别是F1(w)和F2(w),则下列变换同样成立:a1*f1(t) + a2*f2(t)的傅里叶变换为a1*F1(w) + a2*F2(w)其中,a1、a2为常数。

最后,傅里叶变换的性质包括线性、平移、频移、反褶和自相关性等,这些性质都对信号处理和分析具有实际意义。

三、实验内容本实验主要分为两个部分:1. 计算周期波形的傅里叶级数并绘制其频谱图和振幅谱图。

傅里叶变换在matlab中的应用123

傅里叶变换在matlab中的应用123

傅里叶变换在matlab 中应用一、实验目的(1)了解并会熟练计算傅里叶变换; (2)学会在matlab 中运行傅里叶变换;(3)能熟练地绘出频谱图,与matlab 中的频谱图进行比较;二、实验原理1、傅里叶变换的定义非周期信号的频谱(即傅里叶变换)是周期信号的频谱(傅里叶级数)当∞→1T 时的极限。

设周期信号)(t f 展开成复指数形式的傅里叶级数为 tjnw n enw F t f 1)()(1∑∞-∞==⎰-=2211111)(1)(T T tjnw dt et f T nw F (两边同时乘以1T )得⎰-==221111111)()(2)(T T tjnw dt et f w nw f T nw F π当∞→1T 时,对上式两边求极限得⎰-∞→∞→=221111111)(lim )(2lim T T t jnw T T dt e t f w nw f π(2-38)上式左边,当∞→1T 时,如前所述,→11/)(w nw F 有限值,并且成为一个连续得频率函数,即频谱密度函数,用)(w F 表示为11)(2lim )(1w nw f w F T π∞→= 而式(2-38)右边,当∞→1T 时,01→w ,w nw →1,即原来离散频率1nw 趋于连续频率w ,故上式右边亦为w 得连续函数,故得⎰∞∞--=dt et f w F jwt)()( (2-40)式(2-40)为信号f (t )的傅里叶正变换,它的物理意义是单位频带上的频谱值,即频谱密度,简称为非周期信号频谱。

F (w )一般为复数,故又可写成复指数形式为)()()(w j e w F w F ϕ=式中:)(w F ---------幅度频谱,代表信号中各频率分量的相对大小; )(w ϕ---------相位频谱,代表信号各频率分量之间的相位关系。

2、傅里叶反变换由已知的非周期信号的傅里叶正变换F (w )求原信号f (t )的运算,称为傅里叶反变换。

实验二 傅里叶分析及应用

实验二 傅里叶分析及应用

fw = dt*ft*exp(-i*t'*w);
fw = abs(fw);
plot(w, fw), grid on;
axis([-2*pi 2*pi -1 3.5]);
数值运算法
2 / 11'.
.
2、试用 Matlab 命令求 F(j) 10 - 4 的傅里叶反变换,并绘出其时域信号图。 3 j 5 j
3 / 11'.
.
4、设有两个不同频率的余弦信号,频率分别为 f1 100 Hz , f2 3800 Hz ;现在使用 抽样频率 fs 4000 Hz 对这三个信号进行抽样,使用 MATLAB 命令画出各抽样信号的波形
和频谱,并分析其频率混叠现象
Code: f1 = 100; % f1 = 100 hz ts = 1/4000;% sample = 4000hz dt = 0.0001; t1 = -0.007:dt:0.007; ft = cos(2*f1*pi*t1); subplot(221); plot(t1, ft), grid on; axis([-0.006 0.006 -1.5 1.5]) xlabel('Time/s'),ylabel('f(t)') title('Cosine curve');
5
4
3
2
1
0
0
0.5
1
1.5
2
2.5
t
两个单边指数脉冲的叠加 3、已知门函数自身卷积为三角波信号,试用 Matlab 命令验证 FT 的时域卷积定理。
Code:
f = sym('heaviside(t+1) - heaviside(t-1)'); fw = simplify(fourier(f)); F = fw.*fw; subplot(211); ezplot(abs(F), [-9, 9]), grid on title('FW^2')

matlab中fft2计算傅里叶系数

matlab中fft2计算傅里叶系数

标题:探究Matlab中fft2计算傅里叶系数的原理与应用导语:傅里叶变换在信号处理、图像处理等多个领域都有着重要的应用,而Matlab作为一款常用的科学计算软件,其内置的fft2函数可以用来计算二维离散傅里叶变换,本文将深入探讨fft2函数的原理和用法,帮助读者更好地理解和应用这一功能。

一、傅里叶变换的基本原理傅里叶变换是将一个信号从时间或空间域转换到频率域的一种数学方法,它能够将一个信号分解成多个不同频率的正弦和余弦波,从而可以更清晰地观察信号的频域特性。

在实际的应用中,傅里叶变换有连续傅里叶变换和离散傅里叶变换两种形式,前者适用于连续信号,而后者适用于离散信号,通常在数字信号处理中使用。

二、Matlab中fft2函数的基本功能1. fft2函数是Matlab中用来计算二维离散傅里叶变换的函数,其语法为Y = fft2(X),其中X为输入的二维数组,Y为输出的变换结果。

2. 在Matlab中,二维离散傅里叶变换的计算可以分为两个步骤:首先对每一行使用一维离散傅里叶变换(一维DFT),然后对得到的结果再进行一维DFT,即可得到二维离散傅里叶变换的结果。

3. fft2函数计算得到的结果是一个与输入数组大小相同的数组,其中每个元素对应于输入数组中的一个频率分量。

三、fft2函数的用法和参数解析1. 输入参数X可以是各种类型的二维数组,包括灰度图像、彩色图像、复数数组等。

2. 输出参数Y的大小与输入参数X相同,它的各个元素表示输入数组中对应位置的频率分量的幅度和相位信息。

3. 在实际使用中,可以通过对Y进行逆变换得到输入数组X,实现信号的重新构造。

四、示例分析下面通过一个具体的示例来展示fft2函数的使用方法和效果。

假设有一幅灰度图像img,我们可以通过如下代码来计算其二维离散傅里叶变换的结果并进行可视化:```matlabf = imread('cameraman.tif'); % 读取灰度图像F = fft2(f); % 计算二维离散傅里叶变换F2 = fftshift(F); % 将低频分量移到中心S = abs(F2); % 计算幅度谱imshow(log(S+1),[]); % 显示对数幅度谱```上述代码中,我们首先读取了一幅灰度图像,并使用fft2函数进行二维离散傅里叶变换,然后通过fftshift函数将低频分量移到图像中心,最后计算了变换结果的幅度谱并进行了可视化。

实验2 傅里叶变换的MATLAB 实现

实验2  傅里叶变换的MATLAB 实现

实验2 傅里叶变换的MATLAB 实现一. 实验目的1. 傅里叶变换的matlab 实现。

2. 连续时间信号傅里叶变换的数值计算。

二. 实验原理1. Matlab 的Symbolic Math Toolbox 提供了能直接求解傅里叶变换和逆变换的函数fourier(_)和ifourier()。

使用上述函数有一个局限性。

尽管信号f(t)是连续的,但却不可能表示成符号表达式,而更多的实际测量现场获得的信号是多组离散的数值量f(n),此时也不可能应用fourier( )对f(n)进行处理,而只能应用傅里叶变换的数值计算方法。

2. 傅里叶变换的数值计算方法的理论依据如下:()()ττωτωτωn j n t i e n f dt e t f j F -∞-∞=→-∞∞-∑⎰==)(lim 0 (1)对于一大类信号,当取τ足够小时,上式的近似情况可以满足实际需要。

若信号f(t)是时限的,则(1)式的n 取值就是有限的,设为N ,有:()N k en f k F n j N n k ≤≤=--=∑0,)(10τωττ (2)上式是对(1)中的频率ω进行取样,通常:k N k τπω2= 采用matlab 实现(2)式时,其要点是要正确生成()t f 的N 个样本()τn f 的向量f 及向量 τωn j k e -,两向量的内积(即两矩阵的乘积)结果即完成式(2)的计算。

下面举例说明:例1.已知门信号()()⎪⎩⎪⎨⎧><==10112t t t g t f ,求其傅里叶变换()ωj F 。

解:实现该过程的matlab 命令程序如下:tau=0.02;t=-2:tau:2;f= [(t>-1 &t<1)];W1=2*pi*5; % the bandlimitN=500;k=0:N;W=k*W1/N;F=f*exp(-j*t'*W)*tau;F=real(F);W=[-fliplr(W),W(2:501)];F=[fliplr(F),F(2:501)];subplot(2,1,1);plot(t,f);xlabel('t');ylabel('f(t)');title('f(t)=u(t+1)-u(t-1)');subplot(2,1,2);plot(W,F);xlabel('w');ylabel('F(w)');title('f(t)的付氏变换F(w)');程序执行出现图Fig3-1所示的曲线。

matlab在傅里叶函数中的应用

matlab在傅里叶函数中的应用

下面题目例4-1:求的傅立叶变换。

例4-2:求的傅立叶逆变换。

例4-3:设,、试画出及其幅频图。

例4-4:已知门信号,求其傅立叶变换。

例4-5:设,用MATLAB求的频谱,并与的频谱进行比较。

例4-6:设,试用MATLAB绘出,及其频谱(幅度谱和相位谱),并对二者频谱进行比较。

例4-7:设,试用MATLAB绘出及的频谱和,并与的频谱进行比较。

例4-8:设,,试用MATLAB绘出,,,及,验证式(4-10)。

例4-9:设,已知信号的傅立叶变换为,利用MATLAB求的傅立叶变换,验证对称性。

例4-1:求的傅立叶变换。

解:利用如下MATLAB命令实现:yms tfourier(exp(-2*abs(t)))ans =4/(4+w^2)若傅立叶变换的结果变量希望是,则可执行如下命令:syms t vfourier(exp(-2*abs(t)),t,v)ans =4/(4+v^2)例4-2:求的傅立叶逆变换。

解:利用如下MATLAB命令实现:syms t wifourier(1/(1+w^2),t)ans =1/2*exp(-t)*Heaviside(t)+1/2*exp(t)*Heaviside(-t) 其中,Heaviside(t)即为单位阶跃函数。

例4-3:设,、试画出及其幅频图。

解:MATLAB命令如下:syms t v w x;x=1/2*exp(-2*t)*sym('Heaviside(t)');F=fourier(x);subplot(211);ezplot(x);subplot(212);ezplot(abs(F));程序运行结果如图4-1所示。

程序中的Heaviside(t)是调用了Symbolic Math Toolbox的Heaviside.m文件,内容为:function f= Heaviside(t)f=(t>0);例4-4:已知门信号,求其傅立叶变换。

解:由信号分析可知,该信号的频谱为,其第一个过零点频率为,一般将此频率认为信号的带宽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二傅里叶分析及应用-、实验目的(一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义2、学会使用Matlab分析周期信号的频谱特性(二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质1、学会运用Matlab求连续时间信号的傅里叶变换2、学会运用Matlab求连续时间信号的频谱图3、学会运用Matlab分析连续时间信号的傅里叶变换的性质(三)掌握使用Matlab完成信号抽样并验证抽样定理1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化3、学会运用MATLAB对抽样后的信号进行重建、实验条件Win7 系统,MATLAB R2015a三、实验内容1、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)Code:ft = sym( ' (t+2)*(heaviside(t+2)-heaviside(t+1))+(heaviside(t+1)-heav iside(t-1))+(2-t)*(heaviside( t-1)-heaviside(t-2))');fw = simplify(fourier(ft));subplot(2, 1, 1); ezplot(abs(fw)); gridon ;title( 'amp spectrum' );phi = atan(imag(fw) / real(fw));subplot(2, 1,2);ezplot(phi); grid on ;title( 'phase spectrum' );符号运算法Code:dt = 0.01;t = -2: dt: 2;ft(t+2).*(uCT(t+2)-uCT(t+1))+(uCT(t+1)-uCT(t-1))+(2-t).*(uCT(t-1)-uCT(t-2));N = 2000;k = -N: N;w = pi * k / (N*dt);fw = dt*ft*exp(-i*t'*w);fw = abs(fw); plot(w, fw), gridon; axis([-2*pi 2*pi -1 3.5]);数值运算法amp spectrum-6-4 -2 0 2 4 6wx10 phase spectrurri-6 -4 -2 0 2 4 6wCode:syms t ; fw =sym( '10/(3+i*w)-4/(5+i* w)');ft = ifourier(fw, t); ezplot(ft), grid on;两个单边指数脉冲的叠加Codef = sym( 'heaviside(t+1) - heaviside(t-1)' );fw = simplify(fourier(f)); F = fw.*fw; subplot(211);ezplot(abs(F), [-9, 9]), grid ontitle( 'FW A 2')tri =sym( '(t+2)*heaviside(t+2)-2*t*heaviside(t)+(t-2)*heaviside(t-2)' );Ftri = fourier(tri); F = simplify(Ftri); subplot(212);ezplot(abs(F), [-9, 9]), grid on ;title( 'tri FT' )3、已知门函数自身卷积为三角波信号,试用Matlab 命令验证FT 的时域卷积定理2、试用Matlab 命令求F(j )10的傅里叶反变换,并绘出其时域信号图(20 exp(-3 t) heaviside(t) - 8 exp(-5 t) heaviside(t))/( 2 )wtri FT■5-6 -2 0 2 4 6 8w4、设有两个不同频率的余弦信号,频率分别为f i 100Hz , f2 3800Hz ;现在使用抽样频率f s 4000 Hz对这三个信号进行抽样,使用MATLAB命令画出各抽样信号的波形和频谱,并分析其频率混叠现象Cos ine curve-3x 10 Cos freq spectrumx 10Sample signalTime/s -3-3x 10 Sample freq spectrumx 10X 10f1 = 100Hz将代码中f1设为3800即可J Cos inecurvex 10 )..IJ4L M13254-3x 10 Cos freq spectrum-2-10 1 2x 10Sample sig nalx 10 4x 104-2x 10 Sample freq spectrum—j1 I■2f2 = 3800Hz5、结合抽样定理,利用MATLAB编程实现Sa(t)信号经过冲激脉冲抽样后得到的抽样信号f s t及其频谱[建议:冲激脉冲的周期分别取4*pi/3 s、pi s、2*pi/3 s三种情况对比],并利用f s t构建Sa(t)信号(**改动第一行代码即可)t2 = -5: Ts: 5;fst = sin c(t2);subplot(2, 2, 3)plot(t1, ft, ':' ), hold onstem(t2, fst), grid onaxis([-6 6 -0.5 1.2])title( 'Sampli ng sig nal' )Fsw = Ts*fst*exp(-1i*t2'*W);subplot(2, 2, 4)plot(W, abs(Fsw)), grid onaxis([-50 50 -0.05 1.5])title( 'spectrum of Sampling signal' )Sa(t) Sa(t) freq spectrumSampli ng signal 1.5spectrum of Sampli ng signal0 -50:门片i i '! L, ..." !j •…,• }/I. I.:f:丨::10.550Ts = 4/3; % impulse period = 4*pi/3t1 = -5:0.01:5;ft = si nc(t1);subplot(2, 2, 1)plot(t1, ft), grid onaxis([-6 6 -0.5 1.2]) title( 'Sa(t)' )N = 500; k = -N: N;W = pi*k / (N*0.01);Fw = 0.01*ft*exp(-1i*t1'*W);subplot(2, 2, 2)plot(W, abs(Fw)), grid onaxis([-30 30 -0.05 1.5])title( 'Sa(t) freq spectrum' )冲激脉冲的周期=4*pi/3 sSa(t) freq spectrum Sa(t)1.510.5Sampli ng sig nal -20 0 20 spectrum of Sampling sig nal冲激脉冲的周期=pi sSa(t)1.50.5-20 20Sa(t) freq spectrumSampli ng sig nal spectrum of Sampli ng sig nal冲激脉冲的周期=2*pi/3 s实现其各次谐波[如1、3、5、13、49]的叠加,并验证其收敛性;13 class H-wav e1 ----------- - ------- ■ -------- ■ --------- 0.8 - ■ 0.6 0.4 0.20 ----------- 1 -------- 1 --------- 1 ---------- :-4 -2 0 2 449 class H-wav e1 ---------- -- -------- - -------- - -------- 0.8 - - 0.6 0.4 0.20 ---------- 1 ---------- 1 --------- 1 --------- -4 -2 0 2 4第k 阶谐波波形a o = 12;a n =b n = 0i谐波幅度收敛速度:Origi nal wave2110.8\ 广 1! \ G :0.80.6 1j\I1 / ™ / '\IL1 -1: J '0.61 ^ \ \ \V V V V \/\J 70.4 ■ 「 ;;…0.4■ ・0.28! , ! ! ■” 9 1 J ! 1 1f0.20 ・.mrr■1 class H-wave3 class H-wave-4-2-2The Itimes superposeThe 3times superposeCode :figure(1);t = -2*pi: 0.001: 2*pi;f = abs(sawtooth(0.5*pi*t, 0.5)); plot(t, f), grid on ;axis([-4, 4, -1,2]) title( 'Origi nalwave');nclass = [1,3, 13, 49]; figure(2); N = 4; a0 = 1/2; for k = 1: N n = n class(k); an = 4./(( n*pi).A2); ft = an *cos(pi* n'*t); ft = ft + a0;subplot(2, 2, k); plot(t, ft); axis([-4, 4, 0, 1])title([ num2str( nclass(k)), class H-wave ' ]);end figure(3); N = 4;a0 = 1/2; for k = 1: Nn = 1: 2: n class(k); an = 4./(( n*pi).A2); ft = an *cos(pi* n'*t);ft = ft + a0;subplot(2, 2, k); plot(t, ft); axis([-4, 4, 0, 1]) title(['The',num2str(nclass(k)), 'timessuperpose' ]); end11t AA ..■耳A Afl H f\ 0.8r ■ j i \ t \ f \ 1 i0.8- f 1 J il 1ri / \t L\j I 1 i|| f0.6• I J I i \ |10.6. iJ 1r ,1 f I1 , I i \ I i J1 1 ' \ ' - 0.4If ・ 0.4-1 ■' '■ : ;(-\ iI: 1 1 \ I I 1 i\ I\ 1 ' i \ f0.2.'-J N \-0.2.-i i il -.VV L fJ11 \ i 1 JVVVIT0 rrrThe 13times superposeThe 49times superpose 11 0.8■ \i' 1\i0.8 j'lu J L il \ i \ ■ f i j i( i「0.6r \ ( 1/ ii「 0.6 \\1 1IflIh 1j 1- ; 1」1I',0.4 ■ ri 1, r \H - I \ 'L ]1/'10.4 [\1 1 J 111 1「 \\0.20.2” L ■ : r '0 rlUU\f1rir"ir前K 次谐波的叠加-2 0 2 4-4-2 0 2-4-2-2(2)用Matlab分析该周期三角信号的频谱[三角形式或指数形式均可]。

相关文档
最新文档