2.3等差数列的前n项和(一)
2.3.1 等差数列的前n项和(1)
两式相加得: 2Sn = (a1+an )×n 算 法 : 倒 序 相 加 法
n( a1 an ) Sn 2
推导公式 (教材):
Sn a1 (a1 d ) ... [a1 (n 1)d ]
2.3.1 等差数列的前n项和(1)
问题1: 一个堆放铅笔的V形架的最下面一层放一 支铅笔,往上每一层都比它下面一层多放一支, 最上面一层放 100 支,这个V形架上共放着多少 支铅笔?
化归: 1+2+3+…+99+100 = ?
观察归纳
1 + 2 + 3 +…+50+51+…+98+99+100 1+100=101 2+ 99=101 3+ 98=101 ……
4.预习教辅第32页 ~35页内容
n( n 1) 公式 2:Sn na1 d 2
通项公式: an a1 (n 1)d
知三可求二. 共5个量,由三个公式联系,
例1、计 算:
n( n 1) (1)1+2+3+…+n = ________. 2
(2)1+3+5+…+(2n-1) (3)2+4+6+…+2n
2 =________ . n
4m 8m 12m
化归:
60m
4+8+12+…+60=?3; 8 +12 +…+52+56+60=? S15 60+56+52 +…+12+ 8 +4 =? S15
2.3等差数列前n项和公式(1)
nm
(3)在等差数列{an}中,由 m+n=p+q
am+an=ap+aq
问题 1:
求和:1+2+3+4+‥ ‥ +99=?
问题2:
求和:1+2+3+4+…+n=?
记:Sn= 1 + 2 + 3 +…+(n-2)+(n-1)+n 2 +1 Sn = n+(n-1)+(n-2)+…+ 3 +
2Sn n(n 1)
2、利用 an:借助通项公式 an的正负情况与前 n项和S n的 变化情况, an 0且an 1 0
二.等差数列an 的首项a1 0, 公差d 0时,前n项和S n 有最小值
2 d 1、利用S n:S n d n ( a 1 2 )n.借助二次函数最值问题 2
2、利用 an:借助通项公式 an的正负情况与前 n项和S n的 变化情况, an 0且an 1 0
等差数列平均分组,各组之和仍为等差数列。
如果an 为等差数列 ,则S k , S 2k S k , S3k S 2k 也成等差数列。
新的等差数列首项为 Sk,公差为k d。
2
二、例题 例3.已知一个等差数列{an}的前10项的和是310,前20项 变式.在等差数列 an 中 ,已知第 1 项到第 10 项的和为 310 , 的和是1220,由这些条件能确定这个等差数列的前 n 项 第 11 项到第 20 项的和为 910 , 求第 21 项到第 30 项的和 . 和的公式吗? 解:依题意知,S10=310,S20=1220 得
第二章 数列 2.3 等差数列的前n项和(一)
第二章 数列 2.3 等差数列的前n 项和(一)明目标、知重点 1. 掌握等差数列前n 项和公式及其获取思路.2. 经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思.3.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个. 知识梳理1. 数列前n 项和的概念把a 1+a 2+…+a n 叫数列{a n }的前n 项和,记做S n .a 1+a 2+a 3+…+a n -1=S n -1(n ≥2). 2. 等差数列前n 项和公式(1)若{a n }是等差数列,则S n 能够用首项a 1和末项a n 表示为S n =n (a 1+a n )2;(2)若首项为a 1,公差为d ,则S n 能够表示为S n =na 1+12n (n -1)d .3. 等差数列前n 项和的性质(1)若数列{a n }是公差为d 的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为d2.(2)S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,公差为m 2d .(3)设两个等差数列{a n }、{b n }的前n 项和分别为S n ,T n ,则a n b n =S 2n -1T 2n -1.[情境导学]“数学王子”高斯是德国数学家.在高斯10岁时,老师出一道数学题为1到100的所有整数的和为多少?很快高斯即得出答案为5 050.老师大吃一惊,而更使人吃惊的是高斯的算法,高斯的算法是老师未曾教过的方法,那么这是一个什么样的方法呢?它用于解决什么类型的问题呢?这种方法叫倒序相加法,是等差数列求和的一种重要方法,本节我们就来研究它. 探究点一 等差数列前n 项和公式思考1 高斯是用怎样的方法快速求出1+2+3+…+100=? .思考2 人们从“高斯的算法”受到启示,创造了“倒序相加法”,即设S =1+2+3+…99+100,把加数倒序写一遍:S =100+99+98+…+2+1.两式相加有2S =(1+100)+(2+99)+…+(99+2)+(100+1)=100×101,∴S =50×101=5050.你能利用此种方法1+2+3+…+n 等于多少吗? 答思考3 如何用“倒序相加法”求首项为a 1,公差为d 的等差数列{a n }的前n 项和S n 呢?答小结 (1)我们称a 1+a 2+a 3+…+a n 为数列{a n }的前n 项和,用S n 表示,即S n =a 1+a 2+a 3+…+a n . (2)等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .例1 2000年11月14日教育部下发了《关于在中小学实施“校校通”的工程通知》.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?解依题意得,反思与感悟建立等差数列的模型时,要根据题意找准首项、公差和项数或者首项、末项和项数.本题是根据首项和公差选择前n项和公式实行求解.易错方面:把前n项和与最后一项混淆,忘记答或写单位.跟踪训练1 甲、乙两物体分别从相距70 m的两处同时相向运动,甲第1分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?解例2 已知一个等差数列{a n}前10项的和是310,前20项的和是1 220,由这些条件能确定这个等差数列的前n项和的公式吗?解方法一;方法二:反思与感悟(1)在解决与等差数列前n项和相关的问题中,要注意方程思想和整体思想的使用;(2)构成等差数列前n项和公式的元素有a1,d,n,a n,S n,知其三能求其二.跟踪训练2 在等差数列{a n}中,已知d=2,a n=11,S n=35,求a1和n.探究点二等差数列前n项和的性质思考1 设{a n }是等差数列,公差为d ,S n 是前n 项和,那么S m ,S 2m -S m ,S 3m -S 2m 也成等差数列吗?如果是,它们的公差是多少? 答思考2 设S n 、T n 分别为两个等差数列{a n }和{b n }的前n 项和,那么a n b n 与S 2n -1T 2n -1有怎样的关系?请证明之.答例3 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.(3)解 (1)方法一 方法二反思与感悟 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.跟踪训练3 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n . 解当堂检测1. 在等差数列{a n }中,S 10=120,那么a 1+a 10的值是( )解析 由S 10=10(a 1+a 10)2,得a 1+a 10=S 105=1205=24.2. 记等差数列前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( )A .2B .3C .6D .7答案 B解析 方法一 由⎩⎪⎨⎪⎧S 2=2a 1+d =4S 4=4a 1+6d =20,解得d =3.方法二 由S 4-S 2=a 3+a 4=a 1+2d +a 2+2d =S 2+4d ,所以20-4=4+4d ,解得d =3. 3. 在一个等差数列中,已知a 10=10,则S 19=________.答案 190解析 S 19=19(a 1+a 19)2=19(a 10+a 10)2=19a 10=19×10=190.4. 已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n 及a n ;(2)a 1=1,a n =-512,S n =-1 022,求d . 解 (1)∵S n =n ·32+(-12)×n (n -1)2=-15,整理得n 2-7n -60=0,解之得n =12或n =-5(舍去), a 12=32+(12-1)×(-12)=-4.(2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,解之得n =4.又由a n =a 1+(n -1)d ,即-512=1+(4-1)d , 解之得d =-171. [呈重点、现规律]1. 求等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.2. 等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量,若已知其中三个量,通过方程思想可求另外两个量,在利用求和公式时,要注意整体思想的应用,注意下面结论的运用:若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N *);若m +n =2p ,则a n +a m =2a p . 3. 本节基本思想:方程思想,函数思想,整体思想,分类讨论思想.一、基础过关1. 已知等差数列{a n }中,a 2+a 8=8,则该数列的前9项和S 9等于( )解析 S 9=92(a 1+a 9)=92(a 2+a 8)=36.2. 等差数列{a n }中,S 10=4S 5,则a 1d等于( )A.12 B .2C.14D .4答案 A解析 由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ),∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12.3. 已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( )A .-9B .-11C .-13D .-15答案 D解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15.4. 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27答案 B解析 数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), ∵S 3=9,S 6-S 3=27,则S 9-S 6=45. ∴a 7+a 8+a 9=S 9-S 6=45.5. 在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .663答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.6. 含2n +1项的等差数列,其奇数项的和与偶数项的和之比为( )A.2n +1nB.n +1nC.n -1nD.n +12n答案 B解析 S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2,∵a 1+a 2n +1=a 2+a 2n , ∴S 奇S 偶=n +1n .7. 设S n 为等差数列{a n }前n 项和,若S 3=3,S 6=24,求a 9.解 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1,S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8.由⎩⎪⎨⎪⎧ a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15. 二、能力提升8. 等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于( )A .38B .20C .10D .9答案 C解析 因为{a n }是等差数列,所以a m -1+a m +1=2a m ,由a m -1+a m +1-a 2m =0,得:2a m -a 2m =0,由S 2m-1=38知a m ≠0,所以a m =2,又S 2m -1=38,即(2m -1)(a 1+a 2m -1)2=38,即(2m -1)×2=38,解得m=10,故选C.9.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .29答案 B解析 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200. ∴n =19时,剩余钢管根数最少,为10根.10.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( )A.310 B.13C.18D.19答案 A 解析 方法一 S 3S 6=3a 1+3d 6a 1+15d =13, ∴a 1=2d ,S 6S 12=6a 1+15d 12a 1+66d =12d +15d 24d +66d =310. 方法二 由S 3S 6=13,得S 6=3S 3.S 3,S 6-S 3,S 9-S 6,S 12-S 9仍然是等差数列,公差为(S 6-S 3)-S 3=S 3,从而S 9-S 6=S 3+2S 3=3S 3⇒S 9=6S 3,S 12-S 9=S 3+3S 3=4S 3⇒S 12=10S 3,所以S 6S 12=310.11. 已知等差数列{a n }的前3项依次为a,4,3a ,前k 项和S k =2 550,求a 及k .解 设等差数列{a n }的公差为d ,则由题意得 ⎩⎪⎨⎪⎧a +3a =2×4d =4-a ka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧a =2d =2k =50.(注:k =-51舍)∴a =2,k =50.12.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和.解 方法一 设等差数列{a n }的公差为d ,前n 项和为S n , 则S n =na 1+n (n -1)2d .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①,得a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎫1 099-109×11100=-110.故此数列的前110项之和为-110.方法二 设S n =an 2+bn .∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10,解得⎩⎨⎧a =-11100,b =11110.∴S n =-11100n 2+11110n .∴S 110=-11100×1102+11110×110=-110.三、探究与拓展13.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .解 (1)设等差数列{a n }的公差为d ,且d >0. ∵a 3+a 4=a 2+a 5=22,又a 3a 4=117, ∴a 3,a 4是方程x 2-22x +117=0的两个根. 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧ a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1d =4,∴a n =4n -3. (2)由(1)知,S n =n ×1+n (n -1)2×4=2n 2-n ,∴b n =S nn +c =2n 2-n n +c.∴b 1=11+c ,b 2=62+c ,b 3=153+c .∵{b n }是等差数列,∴2b 2=b 1+b 3, ∴2c 2+c =0,∴c =-12 (c =0舍去).经检验,c =-12符合题意,∴c =-12.。
2.3等差数列的前n项和公式
2.3 等差数列的前n 项和(一)[学习目标]1.掌握等差数列前n 项和公式及其推导方法;2. 会用等差数列的前n 项和公式解决一些简单的有关的问题 [预习导引]1.数列前n 项和的概念把a 1+a 2+…+a n 叫数列{a n }的前n 项和,记做S n . 即S n =a 1+a 2+…+a n 问题1:如何由数列的前n 项和n S 求出通项公式n a ?2.等差数列前n 项和公式问题2:如何快速计算1+2+…+n=?问题3:受上述算法的启示,如何推导等差数列前n 项和公式n S ,方法是什么?新知1:等差数列前n 项和1()2n n n a a S +=(常与性质“若m n k l +=+则m n k l a a a a +=+”使用) 问题4:将通项1(1)n a a n d =+-代入上式,你能得到怎样的前n 项和公式n S ?新知2:等差数列前n 项和21(1)A B 2n n n S na d n n -=+=+其中A ________,B __________==(常建立1,a d 的方程组或看成关于n 的函数)题型一 与前n 项和S n 有关的基本量的计算 例1 在等差数列{a n }中(1)a 1=56,a n =-32,S n =-5,求n 和d . (2)已知d =2,a n =11,S n =35,求a 1和n .跟踪演练1在等差数列{a n }中(1)已知a 6=10,S 5=5,求a 8和S 10;(2)已知a 3+a 15=40,求S 17.题型二 等差数列前n 项和的最值例2 已知等差数列5,427,347,…的前n 项和为S n ,求使得S n 最大的序号n 的值.跟踪演练2 设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0. (1)求公差d 的范围; (2)问前几项的和最大,并说明理由.题型三 利用S n 与a n 的关系求a n例3 已知数列{a n }的前n 项和为S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?跟踪演练3 已知数列{a n }的前n 项和S n =3n ,求a n .当堂达标A 组1. 在等差数列{}n a 中,10120S =,那么110a a +=( ). A. 12 B. 24 C. 36 D. 482.在50和350之间,所有末位数字是1的整数之和是( ). A .5880 B .5684 C .4877 D .45663.一个五边形的内角度数成等差数列,且最小角是046,则最大角是( ) A.0108 B. 0139 C. 0144 D. 01704.在小于100的正整数中共有 个数能被3除余2? 这些数的和是 。
普通高中课程标准实验教科书必修5第二章数列 (数列的概念与简单的表示方法等17个) 人教课标版4最新优选公
新课引入
这个故事告诉我们: (1)作为数学王子的高斯从小就善于观察,敢 于思考,所以他能从一些简单的事物中发现和 寻找出某些规律性的东西。
(2)该故事还告诉我们求等差数列前 n 项和的 一种很重要的思想方法,这就是下面我们要介 绍的“倒序相加”法。
在等差数列的通 与项 前 n项 公和 式公,式 含中 有 a1, d,n,an ,Sn 五个,只 量要已知其中,就 三可 个以 量求 出余下的两 . 个量
例题讲解
例 3在等 a n 差 中 ,已 数 1 知 项 列 第 1 到 项 0 第 的 31 ,和
第 1项 1 2 到 项 0 第 的 91 ,求 和 02项 第 为 1 3 到 项 0 第 .的
以后也许三里清风,三里路,步步清风再无你。可也无悔你来过!人生的路你陪我一程,我念你一生……… 谢谢你来过!往后余生愿安好!感恩相遇,感恩来过……“当花瓣离开花朵,暗香残留,香消在风起雨后,无人来嗅”忽然听到沙宝亮的这首《暗香》,似乎这香味把整间屋子浸染。我是如此迷恋香味,吸进的是花儿的味道,吐出来的是无尽的芬芳。轻轻一流转,无限风情,飘散,是香,是香,它永远不会在我的时光中走丢。
项数4为 0的 0 等差.数列 根据等差数列的求和公 式 , 得
S40 0404 0.0 1400 4 201 00.2 320 m 00 .m
320 m 0 m 1 00 m 0
答 满盘时卫生纸和长度为 约100m.
例题讲解
例6 已知数 {an}列 的前 n项和Sn为 n212n,求这个数 列的通项 .这 公个 式数列是等?差 如数 果,列 是 它吗 的 首项和公差分?别是什么
2.3 等差数列的前n项和(一)讲学稿
前置作业: 1、 已知数列 an 是等差数列, a1 4, a8 18, n 8 ,求 S n
2、已知数列 an 是等差数列, a1 10, d 2, n 20 ,求 S n
研讨探究: 探究一:等差求和公式的推导(预习) 问题 1:计算 1 2 3 100 (思考:计算 1 2 3
2、已知数列 an 是等差数列, d 2, n 15, an 10 ,求 a1 及 S n
3、设 S n 施等差数列 an 的前 n 项和,若 S 5 25, S 10 100 ,求 an
当堂检测: 1、 (1)设 S n 施等差数列 an 的前 n 项和,已知 a2 3, a6 11 ,则 S 7
d=
总结反思:
101)
问题 2:计算 1 2 3
n
探究:数列 an 是等差数列, S n 是前 n 项和,则 S n a1 a2
an 怎么求?
探究二:求和公式的灵活应用 1、已知数列 an 是等差数列, a2 4, a7 18, n 8 ,求 S n (比较一下前置 1)
(2)若 an 中存在 am , an , ap , aq ,满足 m n p q ,则 (3)求和公式: S n = =
2、方法提点:灵活应用通项公式和求和公式解题。
重要例题示范: 例 已知数列 an 是等差数列, a5 10, S 5 30 ,求 S n
an a1 n 1 d a1 4d 10 a1 2 解:方法一:根据 , n n 1 得: 5a 10d 30 ,解得 d d 2 1 S n a1n 2
数学学科讲学稿
高中数学课件:第二章 2.3 等差数列的前n项和 第一课时 等差数列的前n项和
n=1 n≥2.
返回
在等差数列{an}中,S10=100,S100=10.求S110.
[解] 法一:(基本量法)设等差数列{an}的首项为 a1,
1010-1 d=100, 10a1+ 2 公差为 d,则 100a +100100-1d=10. 1 2
2
返回
返回
点击此图片进入 NO.1 课堂强化
返回
点击此图片进入 NO.2 课下检测
返回
1 022,求公差d;
(2)已知等差数列{an}中,a2+a5=19,S5=40,求a10.
返回
nn-1 解:(1)因为 an=a1+(n-1)d,Sn=na1+ 2 d, 又 a1=1,an=-512,Sn=-1 022, 1+n-1d=-512, 所以 1 n+2nn-1d=-1 022. ① ②
返回
返回
[研一题] [例1] 在等差数列{an}中,已知d=2,an=11,Sn=
35,求a1和n.
返回
[自主解答]
an=a1+n-1d, 由 nn-1 Sn=na1+ 2 d,
பைடு நூலகம்
a1+2n-1=11, 得 nn-1 na1+ 2 ×2=35,
n=5, 解方程组得 a1=3, n=7, 或 a1=-1.
2 . 3
课前预习·巧设计
第 二 章 数 列
等 差 数 列 的 前
第一 课时 等差 数列 的前 n项 和
名 师 课 堂 · 一 点 通
创 新 演 练 · 大 冲 关
考点一 考点二 考点三
n
项 和
N0.1 课堂强化 N0.2 课下检测
返回
返回
2.3 等差数列的前n项和(1)
解答:假设a1=7,则d=7, an=7n<100. 由7n<100得最大正整数n为14, 所以元素的个数是14. 故S14=14×7+½(14×13×7)=1911, 即这些元素的和是1911.
□范例讲解 例3. 等差数列{an}的前n项和为Sn, 若S4=16,S8=64,求S12.
d 2 d S n n (a1 )n 2 2
用a1和an表示
☆能用基本量 a1和d表示吗?
二次函数形式
□范例讲解 例1. (1)已知等差数列{an}中,a1=4,S8=172,
求a8和d; (2)等差数列-10,-6,-2,2,…前多少 项的和是54? n(a1 an ) (1)答案:a8=39,d=5; Sn
2
S n na1 n( n 1)d 2
(2)解答:
因为a1=-10,d=4, Sn=54, 则 Sn=na1+½n(n-1)d,即得n² -6n-27=0, 解得n=9. 所以前9项的和是54.
□范例讲解 例2. 求集合
M {m | m 7n, n N * 且m 100}
orLeabharlann n( n 1)d S n na1 2
2.等差数列的前n项和的性质:
在等差数列中, Sn,S2n-Sn,S3n-S2n 也是等差数列.
课后作业
1. 课本P.40 第1题;
2. 作业本 1-9.
“倒序相加”法
□讲授新课 1. 数列的前n项和: 数列{an}中,
a1 a2 a3 an
称为数列{an}的前n项和,记为Sn.
Sn a1 a2 a3 an
2. 等差数列的前n项和公式
2.3等差数列的前n项和公式(1)
2.3 等差数列的前n 项(1)课前预习学前温习1.等差数列的定义:2.等差数列的通项公式3.等差数列的常用性质(1)通项公式的推广:n a =m a + ,(n , m∈N*).(2)若{}n a 为等差数列,且k+l=m+n ,(k ,l ,m ,n∈N*),则 .(3)若{}n a 是等差数列,则a a a ++k k m k 2m ,,,…(k ,m∈N*)是公差为 的等差数列. 新课感知1.等差数列的前n 项和公式设等差数列{}n a 的公差为d ,其前n 项和Sn= 或Sn= .2.如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?课堂学习 ● 互动探究知识精讲1、等差数列前n 项和公式的推导:(1) 用“倒序相加法”进行求和。
],)1([...)2()(1111d n a d a d a a S n -+++++++=①],)1([...)2()(d n a d a d a a S n n n n n --++-+-+=②由①+②,得 2n S =1111n n n n a a a a a a a a ++++n 个()+()+()+...+())(1n a a n +=由此得到等差数列}{n a 的前n 项和的公式2)(1n n a a n S +=(2)其他的推导途径 123...n n S a a a a =+++=1111()(2)...[(1)]a a d a d a n d +++++++-=1[2...(1)]na d d n d ++++-=1[12...(1)]na n d ++++-=1(1)2n n na d -+ 2. 等差数列前n 项和公式的理解2)(1n n a a n S +=或n S =1(1)2n n na d -+ (1)公式的结构特征:第一个公式反映了等差数列的任意的第k 项与倒数第k 项的和等于首项与末项的和这个内在性质。
2.3等差数列的前n项和第一课时
解法3: 解法 :
设:∵S= 1+2+···+99+100 ,
S=100+99+···+2+1 , ∴2S=(1+100)+(2+99)+ ···+(99+2)+(100+1) =100× =100×101 s=100× s=100×(1+100)/2 ∴S=5050 .
算术法
解法1与解法2 解法1与解法2的比较
课
题
等差数列的前n 等差数列的前n项和 第一课时
三门中学
辛颖
2007 03 19
星期一
问题1 问题1
1+2+3+4+5+···+100=?
解法1: 解法1:
∵1+100=101, 2+99=101, 3+98=101 , 4+97=101, ··· , ··· , 49+52=101,50+51=101. ∴1+2+3+4+5+···+100 =50×101 =5050.
公式的应用
例1.求和: 1.求和: 求和 (1) 101 + 100 + 99 + 98 + 97 + ⋯ + 64 ; (2) 2 + 4 + 6 + 8 + ⋯ + (2n + 4)(结果用
n表示) 表示)
中前多少项的和是9900 9900? 例2.等差数列 2, 4, 6,⋯ 中前多少项的和是9900? 2.等差数列
高斯 德国著名数学家高斯 (Carl Friedrich Causs 1777年~1855 年 ),10岁时曾很快 年), 岁时曾很快 求出它的结果! 求出它的结果!
高中数学:第二章 2.3 等差数列的前n项和
等差数列的前n项和(1)数列前n项和的定义是什么?通常用什么符号表示?(2)能否根据首项、末项与项数求出等差数列的前n项和?(3)能否根据首项、公差与项数求出等差数列的前n项和?[新知初探]1.数列的前n项和对于数列{a n},一般地称a1+a2+…+a n为数列{a n}的前n项和,用S n表示,即S n=a1+a2+…+a n.2.等差数列的前n项和公式已知量首项,末项与项数首项,公差与项数选用公式S n=n(a1+a n)2S n=na1+n(n-1)2d[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列的前n项和就是指从数列的第1项a1起,一直到第n项a n所有项的和()(2)a n=S n-S n-1(n≥2)化简后关于n与a n的函数式即为数列{a n}的通项公式()(3)在等差数列{a n}中,当项数m为偶数2n时,则S偶-S奇=a n+1()解析:(1)正确.由前n项和的定义可知正确.(2)错误.例如数列{a n}中,S n=n2+2.当n≥2时,a n=S n-S n-1=n2-(n-1)2=2n-1.又∵a1=S1=3,∴a1不满足a n=S n-S n-1=2n-1,故命题错误.(3)错误.当项数m为偶数2n时,则S偶-S奇=nd.★答案★:(1)√(2)×(3)×预习课本P42~45,思考并完成以下问题2.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .n B .n (n +1) C .n (n -1)D.n (n +1)2解析:选D 因为a 1=1,d =1,所以S n =n +n (n -1)2×1=2n +n 2-n 2=n 2+n 2=n (n +1)2,故选D.3.设等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( )A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d , 由已知得4a 1+4×32d =20, 即4×12+4×32d =20,解得d =3,∴S 6=6×12+6×52×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,则S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.★答案★:12等差数列的前n 项和的有关计算[典例] 已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求d 和n ;(2)a 1=4,S 8=172,求a 8和d .[解] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n (n -1)2d =-5, 解得n =15或n =-4(舍).(2)由已知,得S8=8(a1+a8)2=8(4+a8)2=172,解得a8=39,又∵a8=4+(8-1)d=39,∴d=5.等差数列中的基本计算(1)利用基本量求值:等差数列的通项公式和前n项和公式中有五个量a1,d,n,a n和S n,这五个量可以“知三求二”.一般是利用公式列出基本量a1和d的方程组,解出a1和d,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若m+n=p+q(m,n,p,q∈N*),则a m+a n=a p+a q,常与求和公式S n=n(a1+a n)2结合使用.[活学活用]设S n是等差数列{a n}的前n项和,已知a2=3,a8=11,则S9等于() A.13B.35C.49 D.63解析:选D∵{a n}为等差数列,∴a1+a9=a2+a8,∴S9=9(a2+a8)2=9×142=63.已知S n求a n问题[典例]已知数列{a n}的前n项和S n=-2n2+n+2.(1)求{a n}的通项公式;(2)判断{a n}是否为等差数列?[解](1)∵S n=-2n2+n+2,∴当n≥2时,S n-1=-2(n-1)2+(n-1)+2=-2n2+5n-1,∴a n=S n-S n-1=(-2n2+n+2)-(-2n2+5n-1)=-4n +3.又a 1=S 1=1,不满足a n =-4n +3,∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.(2)由(1)知,当n ≥2时,a n +1-a n =[-4(n +1)+3]-(-4n +3)=-4, 但a 2-a 1=-5-1=-6≠-4,∴{a n }不满足等差数列的定义,{a n }不是等差数列.(1)已知S n 求a n ,其方法是a n =S n -S n -1(n ≥2),这里常常因为忽略条件“n ≥2”而出错. (2)在书写{a n }的通项公式时,务必验证n =1是否满足a n (n ≥2)的情形.如果不满足,则通项公式只能用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2表示.[活学活用]1.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.已知S n 是数列{a n }的前n 项和,根据条件求a n . (1)S n =2n 2+3n +2; (2)S n =3n -1.解:(1)当n =1时,a 1=S 1=7,当n ≥2时,a n =S n -S n -1=(2n 2+3n +2)-[2(n -1)2+3(n -1)+2]=4n +1,又a 1=7不适合上式,所以a n =⎩⎪⎨⎪⎧7,n =1,4n +1,n ≥2.(2)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n -1)-(3n -1-1)=2×3n -1,显然a 1适合上式, 所以a n =2×3n -1(n ∈N *).等差数列的前n 项和性质[典例] (1)等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( ) A .130 B .170 C .210D .260(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.[解析] (1)利用等差数列的性质: S n ,S 2n -S n ,S 3n -S 2n 成等差数列. 所以S n +(S 3n -S 2n )=2(S 2n -S n ), 即30+(S 3n -100)=2(100-30), 解得S 3n =210.(2)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1,即132-120=132+1202n +1,解得n =10.(3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. [★答案★] (1)C (2)10 (3)53等差数列的前n 项和常用的性质(1)等差数列的依次k 项之和,S k ,S 2k -S k ,S 3k -S 2k …组成公差为k 2d 的等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn (a ,b 为常数)⇔数列⎩⎨⎧⎭⎬⎫S n n 为等差数列.(3)若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d , ①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶=a na n +1;②当项数为奇数2n -1时,S 奇-S 偶=a n ,S 奇S 偶=n n -1. [活学活用]1.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18B .17C .16D .15解析:选A 设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析:因为a n =2n +1,所以a 1=3, 所以S n =n (3+2n +1)2=n 2+2n , 所以S nn=n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75.★答案★:75等差数列的前n 项和最值问题[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解] 由S 17=S 9,得 25×17+17×(17-1)2d =25×9+9×(9-1)2d , 解得d =-2, [法一 公式法] S n =25n +n (n -1)2×(-2)=-(n -13)2+169. 由二次函数性质得,当n =13时,S n 有最大值169. [法二 邻项变号法]∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2(n -1)≥0,a n +1=25-2n ≤0,得⎩⎨⎧n ≤1312,n ≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.求等差数列的前n 项和S n 的最值的解题策略(1)将S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n 配方,转化为求二次函数的最值问题,借助函数单调性来解决.(2)邻项变号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0的项数n 使S n 取最大值.当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n 使S n 取最小值.[活学活用]已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .21解析:选C ∵S n 有最大值,∴d <0,则a 10>a 11,又a 11a 10<-1,∴a 11<0<a 10,a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.故选C.层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n 2B .-32n 2-n 2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n (-1+2-3n )2=-32n 2+n 2.2.等差数列{a n }的前n 项和为S n ,若a 7>0,a 8<0,则下列结论正确的是( ) A .S 7<S 8 B .S 15<S 16 C .S 13>0D .S 15>0解析:选C 由等差数列的性质及求和公式得,S 13=13(a 1+a 13)2=13a 7>0,S 15=15(a 1+a 15)2=15a 8<0,故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92(a 1+a 9)52(a 1+a 5)=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .★答案★:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________.解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. ★答案★:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1 =(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1, 所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. ★答案★:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1, 则S n =2n +1-1.当n =1时,a 1=S 1=3,当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n , 又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.10.在等差数列{a n }中,S n 为其前n 项的和,已知a 1+a 3=22,S 5=45. (1)求a n ,S n ;(2)设数列{S n }中最大项为S k ,求k .解:(1)由已知得⎩⎪⎨⎪⎧ 2a 2=22,5a 3=45, 即⎩⎪⎨⎪⎧a 2=11,a 3=9,所以⎩⎪⎨⎪⎧a 1=13,d =-2,所以a n =-2n +15,S n =-n 2+14n .(2)由a n ≥0可得n ≤7,所以S 7最大,k =7.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k 2,解得k =2 016.故选C.3.已知S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,则S n 取最小值时,n 的值为( )A .11B .12C .13D .14解析:选A 设等差数列{a n }的公差为d ,由2S 21+S 25=0得,67a 1+720d =0,又d >0,∴67a 11=67(a 1+10d )=67a 1+670d <0,67a 12=67(a 1+11d )=67a 1+737d >0,即a 11<0,a 12>0.故选A.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选D ∵a nb n =a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -12(2n -1)b 1+b 2n -12(2n -1)=A 2n -1B 2n -1=7(2n -1)+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.★答案★:4056.已知等差数列{a n }的前n 项和为S n ,若S 4≤4,S 5≥15,则a 4的最小值为________. 解析:S 4=2(a 1+a 4)≤4⇒2a 3-d ≤2,S 5=5a 3≥15⇒a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.★答案★:77.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28. (1)求数列{a n }的通项公式;(2)若b n =S n n +c (c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴(a 1+a 4)×42=28,a 1+a 4=14,a 2+a 3=14, 又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3. (2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c , ∴b 1=11+c ,b 2=62+c ,b 3=153+c. 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧a 1=50,d =-3, ∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0;当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =-32n 2+1032n . 当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n=2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝⎛⎭⎫-32×172+1032×17-⎝⎛⎭⎫-32n 2+1032n =32n 2-1032n +884. ∴S n=⎩⎨⎧-32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。
2.3等差数列的前n项和(1)
2
变式练习
一个屋顶的某一斜面成等腰梯形,最上面 一层铺瓦片21块,往下每一层多铺1块,斜面 上铺了19层,共铺瓦片多少块? 解:由题意,该屋顶斜面每层所铺的瓦片数 构成等差数列{an},且a1=21,d=1,n=19. 于是,屋顶斜面共铺瓦片:
19 19 1 S19 19 21 1 570 块 2
3/30/2015
想 一 想
3/30/2015
在等差数列 {an} 中,如果已知五个 量 a1, an, n, d, Sn 中的任意三个, 请问: 能否求出其余两个量 ?
( n n 1) d S n na1 2 an a1 (n 1) d
结论:知 三 求 二
3/30/2015
复习引入
数列的通项公式能够反映数列的基 本特性,而在实际问题中,常常需要求 数列的前n项和.对于等差数列,为了方 便运算,我们希望有一个求和公式,这 就是本节课我们需要探究的课题.
3/30/2015
3/30/2015
高斯(Gauss,1777—1855), 德国著名数学家,他研究的内 容涉及数学的各个领域,被称 为历史上最伟大的三位数学家 之一,他与阿基米德、牛顿齐 名,是数学史上一颗光芒四射 的巨星,被誉为“数学王子”.
环县二中
梁万聪
复习引入
1. 等差数列定义:
即an-an-1 =d (n≥2).
2. 等差数列通项公式:
(1) an=a1+(n-1)d .
(2) an=am+(n-m)d .
3/30/2015
复习引入
3. 等差中项
ab A a , A, b 2
*
成等差数列.
4. 等差数列的性质 m+n=p+q am+an=ap+aq. (m,n,p,q∈N*)
苏教版数学必修五2.3等差数列的前n项和(学案含答案)
苏教版数学必修五2.3等差数列的前n项和(学案含答案)=n (a 1+a n ),∴S n =21n (a 1+a n ) 这种推导方法称为倒序求和法。
【核心突破】(1)由等差数列的前n 项和公式及通项公式可知,若已知a 1、d 、n 、a n 、S n 中三个便可求出其余两个,即“知三求二”。
“知三求二”的实质是方程思想,即建立方程组求解。
(2)在运用等差数列的前n 项和公式来求和时,一般地,若已知首项a 1及末项a n 用公式S n =2)(1na an +较方便;若已知首项a 1及公差d 用公式S n =na 1+2)1(-nn d 较好。
(3)在运用公式S n =2)(1na an +求和时,要注意性质“设m 、n 、p 、q 均为正整数,若m +n =p +q ,则a m +a n =a p +a q ”的运用。
(4)在求和时除了直接用等差数列的前n 项和公式求和(即已知数列是等差数列)外,还要注意创设运用公式条件(即将非等差数列问题转化为等差数列问题),以利于求和。
考点二:等差数列前n 项和的性质数列{a n }为等差数列,前n 项和为S n ,则有如下性质:(1)S m ,S 2m -S m ,S 3m -S 2m ,…,也是等差数列,公差为m 2d 。
(2)若项数为偶数2n (n ∈N *),则S 偶-S奇=nd ,偶奇S S =1+n na a 。
(3)若项数为奇数2n +1(n ∈N *),则S 奇-S 偶=a n +1,偶奇S S =n n 1+。
(4)若{a n }、{b n }均为等差数列,前n 项和分别为S n 和T n ,则1212--=m m m m T S b a 。
考点三:等差数列前n 项和的最值解决等差数列前n 项和的最值的基本思想是利用前n 项和公式与函数的关系解决问题,即:(1)二次函数法:用求二次函数的最值的方法来求前n 项和的最值,但要注意的是:*n N ∈。
2.3等差数列的前n项和教学设计
2。
3等差数列前n项和教学设计石嘴山市第三中学刘金瑞一、指导思想与理论依据学习是学生积极主动地建构知识的过程,因此,应该让学生在具体问题情境中经历知识的形成和发展,让学生利用自己原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构.基于数学学科自身抽象和严谨的特点,在数学教学活动中就要引导学生自主发现问题,解决问题,培养学生的动手、动脑能力。
本堂课以个性化的教学思想为指导进行设计。
采用探究活动为主的教学方法,借助教材和教师提供的相关资料让学生亲自去探索得出结论或规律性的知识,培养学生的探究思维能力.因此,我在此堂课的教学中借助梯形面积拼接演示等差数列的前n项和公式,帮助理解,启迪思路,更加形象地揭示研究对象的性质和关系,也在教学中展示了数学的对称美.二、教材分析本节课的教学内容是人教版数学必修5第二章第三节列前n项和(第一课时),主要内容是等差数列前n项和的推导过程和简单应用。
本节对“等差数列前n项和"的推导,是在学生已掌握等差数列的通项性质以及高斯算法等相关知识的基础上进行。
对本节的研究,为以后学习数列求和提供了一种重要的思想方法——倒序相加法,也为高三运用数学归纳法证明数列型的不等式奠定良好的基础,具有承上启下的重要作用。
等差数列在现实生活中比较常见,等差数列求和就成为我们在实际生活中经常遇到的一类问题.因此,等差数列求和公式的推导,是由现实情境引入数列求和的模型,再用模型解决一些实际问题,使学生能掌握“倒序相加"这一重要数学方法。
通过探索等差数列前n项和,培养学生观察、猜想、类比、归纳的学习思想,加强和提高学生解决问题的能力。
要求学生理解等差数列前n项和的求和过程,掌握公式并能用公式解决一些实际题。
三、学情分析本节课之前学生已经学习了等差数列的通项公式及基本性质,这为倒序相加法的教学提供了基础.学生已有了函数知识,因此在教学中渗透函数思想。
大部分学生对高斯算法有比较清晰的认识,并且知道此算法原理,但在高斯算法中数列1,2,3,……,100只是一个特殊的等差数列,对于一般的等差数列的求和方法和公式学生还是一无所知.如何从首尾配对法引出倒序相加法,这是学生学习的障碍,同时,学生学习抽象理论知识存在为难的情绪.对学生学习的障碍和困难,本节采用情境导入、激发兴趣,由特殊到一般的推导方法,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭建了理想的平台,让学生去感悟倒序相加法的和谐对称以及使用范围。
2.3等差数列前n项和(一)课件人教新课标
1+2+3+…+98+99+100=?
高斯10岁时曾很快算出这一结
果,如何算的呢?
高斯
我们先看下面的问题.
(1777—1855)
德国著名数学家
怎样才能快速计算 出一堆钢管有多少根呢?
(1)先算出各层的根数,
一 二
4+10=14 5+9=14
三 四
6+8=14 7+7=14
=7
250(万元).
答:从2001 2010年,该市在“校校通”工程中的总 投入是7 250万元.
本题的设计意图: 培养学生的阅读能力,引导学生从中提取
有效信息.通过对生活实际问题的解决,让学生 体会到数学源于生活,又服务于生活,提高他们 学习数学的兴趣,同时又提高学生运用数学知识 解决实际问题的能力,促进了理论与实践的结合, 对新知进行巩固,使教师及时收到教学反馈.
五 8+6=14
六 9+5=14
七 10+4=14
每层都是14根;
(2)再算出钢管的层数,共7层.
所以钢管总根数是: 1 (4 10) 7 49(根) 2
1+2+3+···+100=?
带着这个问题,我们ຫໍສະໝຸດ 入本节课的学习!探究点1:等差数列的前n项和公式
下面再来看1+2+3+…+98+99+100的高斯算法.
所以Sn
=
5n
+
n(n - 1)×(-1)= 2
-30,
n = 15 或 n = -4(舍去).
等差数列的前N项和(1)上课使用
问题1
1.计算:1 2 3 99 100
1+100=2+99=3+98= =50+51=1(n 1) n
此种求 n+(n-1) + (n-2) +…+ 2 +1 和法称 为倒序 相加法 难点在于两两配对问题上,要分偶数项和
2.3 等差数列的前n项和 (一)
一.复习回顾与知识准备
等差数列的通项公式: an a1 (n 1)d 等差数列的性质:
an am (n m)d
若 m n p q, 则 am an ap aq
我们把 a1+a2 + a3 + … + an 叫做数列{ an } 的前n项和,记作Sn
结论:等差数列{an}的前2n-1项和公式:
(2n 1 (a1 a2 n 1 ) ) S2 n 1 (2n 1)an 2
2. 在a、b之间插入10个数,使它们同这两个数成等 差数列,求这10个数的和。 5(a+b)
变式. 等差数列{an}的前n项和为Sn,若
S10=310,S20=1220,求S30.
练 习
根据条件,求相应等差数列{an}的Sn: ①a1=5, an=95, n=10; ②a1=100, d=-2, n=50;
③a1=14.5, d=0.7, an=32.
答案:①500; ②2550; ③604.5
课堂小结
等差数列前n项和公式
n(a1 an ) Sn 2
n(n 1) S n na1 d 2
奇数项讨论
一、新课
100(100 1) 问题:1+2+3+…+100=? 2
2.3等差数列的前n项和(1)课件(人教A版必修5)
设 Sn,Sn′分别表示数列{an}和{|an|}的前 n 项和, 当 n≤20
nn-1 时,Sn′=-Sn=--60n+ × 3 2
3 2 123 =-2n + 2 n;8 分 当 n>20 时,Sn′=-S20+(Sn-S20)=Sn-2S20
nn-1 20×19 =-60n+ 2 ×3-2×-60×20+ × 3 2
由题目可获取以下主要信息: na1+an 由 Sn= ,an=a1+(n-1)d,联立列方程组. 2 解答本题要紧扣等差数列的求和公式的两种形式,利用 等差数列的性质解题.
[解题过程]
nn-1 (1)∵an=a1+(n-1)d,Sn=na1+ 2 d,
又 a1=1,an=-512,Sn=-1 022, 1+n-1d=-512, ∴ 1 n+ nn-1d=-1 022. 2 解得 n=4,d=-171.
解析: a1+a3+a5=3a3=9,∴a3=3. 又∵a6=9,a3=3,∴d=2,a1=-1. 6×6-1 ∴S6=6×(-1)+ ×2=24. 2
• 已知数列{an}是等差数列, • (1)若a1=1,an=-512,Sn=-1 022,求公差 d; • (2)若a2+a5=19,S5=40,求a10; • (3)若S10=310,S20=1 220,求Sn.
d2 a1- 2
2d
1 a1 d d1 a12 2 =2n-2- d -22- d .
由二次函数的最大值、最小值知识及 n∈N*知,当 n 取 1 a1 最接近2- d 的正整数时,Sn 取到最大值(或最小值),值得注 1 a1 意的是最接近2- d 的正整数有时 1 个,有时 2 个. (2)根据项的正负来定. 若 a1>0,d<0,则数列的所有正数项之和最大; 若 a1<0,d>0,则数列的所有负数项之和最小. ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.3 等差数列的前n 项和(一)学习目标 1.掌握等差数列前n 项和公式及其获取思路(重点);2.经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思;3.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个(重、难点).预习教材P42-43完成下列问题: 知识点一 数列a n 与前n 项和S n 的关系 1.数列的前n 项和的概念一般地,我们称a 1+a 2+a 3+…+a n 为数列{a n }的前n 项和,用S n 表示,即S n =a 1+a 2+a 3+…+a n .2.数列的通项a n 与前n 项和S n 的关系当n ≥2时,有S n =a 1+a 2+a 3+…+a n ,S n -1=a 1+a 2+a 3+…+a n -1,所以S n -S n -1=a n ; 当n =1时,a 1=S 1.综上可得a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.【预习评价】1.利用数列的前n 项和S n 求数列的通项公式时,能不能直接运用S n -S n -1=a n 求解?提示 不能.因为当n =1时,S 1-S 0没有意义. 2.已知数列{a n }的前n 项和S n =n 2,怎样求a 1,a n? 提示 a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 又n =1时也适合上式,所以a n =2n -1,n ∈N *.知识点二 等差数列的前n 项和公式 1.等差数列的前n 项和公式2.两个公式的关系:把a n =a 1+(n -1)d 代入S n =1n 2中,就可以得到S n=na 1+n (n -1)2d .【预习评价】1.高斯用1+2+3+…+100=(1+100)+(2+99)+…+(50+51)=101×50迅速求出了等差数列前100项的和.如果是求1+2+3+…+n ,不知道共有奇数项还是偶数项怎么办?提示 不知共有奇数项还是偶数项导致不能配对.但我们可以采用倒序相加来回避这个问题:设S n =1+2+3+…+(n -1)+n , 又S n =n +(n -1)+(n -2)+…+2+1,∴2S n =(1+n )+[2+(n -1)]+…+[(n -1)+2]+(n +1), ∴2S n =n (n +1),∴S n =n (n +1)2.2.能否用“倒序相加法”求首项为a 1,公差为d 的等差数列{a n }的前n 项和S n 呢?提示 由上节课学到的性质:在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和.即a 1+a n =a 2+a n -1=a 3+a n -2=….“倒序相加法”可以推广到一般等差数列求前n 项和,其方法如下: S n =a 1+a 2+a 3+…+a n -1+a n=a 1+(a 1+d )+(a 1+2d )+…+[a 1+(n -2)d ]+[a 1+(n -1)d ];S n =a n +a n -1+a n -2+…+a 2+a 1=a n +(a n -d )+(a n -2d )+…+[a n -(n -2)d ]+[a n -(n -1)d ]. 两式相加,得2S n =(a 1+a n )×n ,由此可得等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2.根据等差数列的通项公式a n =a 1+(n -1)d , 代入上式可得S n =na 1+n (n -1)2d .知识点三 等差数列前n 项和的性质 1.若数列{a n }是公差为d的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为d2.2.若S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,公差为m 2d .3.设两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,则a n b n =S 2n -1T 2n -1.4.若等差数列的项数为2n ,则S 2n =n (a n +a n +1), S 偶-S 奇=nd ,S 偶S 奇=a n +1a n. 5.若等差数列的项数为2n +1,则S 2n +1=(2n +1)a n +1, S 偶-S 奇=-a n +1,S 偶S 奇=nn +1.【预习评价】1.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( ) A .-2 B.-1 C .0D.1解析 等差数列前n 项和S n 的形式为S n =an 2+bn ,∴λ=-1. 答案 B2.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5=( )A .1 B.-1 C.2D.12解析 由于S 2n -1=(2n -1)a n ,则, S 9S 5=9a 55a 3=95×59=1. 答案 A题型一 数列的前n 项和S n 与通项a n 之间的关系【例1】 已知数列{a n }的前n 项和为S n =na 1+12n (n -1)d (d 为常数).求证:数列{a n }是等差数列.证明 根据S n =na 1+12n (n -1)d , a n +1=S n +1-S n=(n +1)a 1+12(n +1)[(n +1)-1]·d -⎣⎢⎡⎦⎥⎤na 1+12n (n -1)d=a 1+nd .① 当n >1时, a n =S n -S n -1=na 1+12n (n -1)d -⎣⎢⎡⎦⎥⎤(n -1)a 1+12(n -1)(n -2)d=a 1+(n -1)d ,当n =1时,a 1=S 1,适合此式. ∴a n =a 1+(n -1)d (n ∈N *).∴a n +1-a n =(a 1+nd )-[a 1+(n -1)d ]=d (常数),对任意n ∈N *成立. ∴数列{a n }是等差数列.规律方法 已知前n 项和S n 求通项a n ,先由n =1时,a 1=S 1求得a 1,再由n ≥2时,a n =S n -S n -1求a n ,最后验证a 1是否符合a n ,若符合则统一用一个解析式表示.【训练1】 已知数列{a n }的前n 项和为S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?解 根据S n =a 1+a 2+…+a n -1+a n 可知S n -1=a 1+a 2+…+a n -1(n >1), 当n >1时,a n =S n -S n -1=n 2+12n -⎣⎢⎡⎦⎥⎤(n -1)2+12(n -1)=2n -12,① 当n =1时,a 1=S 1=12+12×1=32,也满足①式.∴数列{a n }的通项公式为a n =2n -12.由此可见:数列{a n }是以32为首项,2为公差的等差数列.题型二 等差数列前n 项和的有关运算 【例2】 在等差数列{a n }中, (1)a 1=56,a n =-32,S n =-5,求n 和d ;(2)a 1=4,S 8=172,求a 8和d .解 (1)由题意得,S n =n (a 1+a n )2=n ⎝ ⎛⎭⎪⎫56-322=-5,解得n =15.又a 15=56+(15-1)d =-32,∴d =-16.∴n =15,d =-16.(2)由已知得S 8=8(a 1+a 8)2=8(4+a 8)2=172,解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5. ∴a 8=39,d =5.规律方法 等差数列中基本计算的两个技巧(1)利用基本量求值.(2)利用等差数列的性质解题.【训练2】 在等差数列{a n }中, (1)已知a 6=10,S 5=5,求a 8和S 10; (2)已知a 3+a 15=40,求S 17.解(1)⎩⎨⎧S 5=5a 1+5×42d =5,a 6=a 1+5d =10,解得a 1=-5,d =3. ∴a 8=a 6+2d =10+2×3=16,S 10=10a 1+10×92d =10×(-5)+5×9×3=85.(2)S 17=17×(a 1+a 17)2=17×(a 3+a 15)2=17×402=340.【例3】 (1)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A.13 B.35 C.49D.63(2)等差数列{a n }与{b n }的前n 项和分别是S n 和T n ,已知S n T n =7n n +3,则a 5b 5等于( )A.7B.23 C.7013 D.214(3)已知数列{a n }的通项公式为a n =2n +1(n ∈N *),其前n 项和为S n ,则数列{S nn }的前10项的和为________.解析 (1)S 7=72(a 1+a 7)=72(a 2+a 6)=72(3+11)=49. (2)a 5b 5=a 1+a 92b 1+b 92=S 9T 9=7×99+3=214.(3)∵S n =n (3+2n +1)2=n (n +2).∴S nn =n +2,∴数列{S nn }是以首项为3,公差为1的等差数列,∴{S nn }的前10项和为10×3+10×92×1=75. 答案 (1)C (2)D (3)75【迁移1】 已知两个等差数列{a n }与{b n }的前n (n >1)项和分别是S n 和T n ,且S n ∶T n =(2n +1)∶(3n -2),求a 9b 9的值.解 法一 a 9b 9=2a 92b 9=a 1+a 17b 1+b 17=a 1+a 172×17b 1+b 172×17=S 17T 17=2×17+13×17-2=3549=57. 法二 ∵数列{a n },{b n }均为等差数列, ∴S n =A 1n 2+B 1n ,T n =A 2n 2+B 2n . 又S n T n =2n +13n -2,∴令S n =tn (2n +1),T n =tn (3n -2),t ≠0,且t ∈R . ∴a n =S n -S n -1=tn (2n +1)-t (n -1)(2n -2+1) =tn (2n +1)-t (n -1)(2n -1)=t (4n -1)(n ≥2), b n =T n -T n -1=tn (3n -2)-t (n -1)(3n -5) =t (6n -5)(n ≥2).∴a n b n =t (4n -1)t (6n -5)=4n -16n -5, ∴a 9b 9=4×9-16×9-5=3549=57. 【迁移2】 已知两个等差数列{a n }与{b n }的前n 项和分别是S n 和T n ,且a n ∶b n =(2n +1)∶(3n -2),则S 9T 9=________.解析 ∵{a n },{b n }均为等差数列, 则S 9T 9=9a 59b 5=2×5+13×5-2=1113.答案1113规律方法 等差数列前n 项和运算的几种思维方法(1)整体思路:利用公式S n =n (a 1+a n )2,设法求出整体a 1+a n ,再代入求解.(2)待定系数法:利用S n 是关于n 的二次函数,设S n =An 2+Bn (A ≠0),列出方程组求出A ,B 即可,或利用S n n 是关于n 的一次函数,设S nn =an +b (a ≠0)进行计算. (3)利用S n ,S 2n -S n ,S 3n -S 2n 成等差数列进行求解.课堂达标1.在等差数列{a n }中,S 10=120,那么a 1+a 10的值是( ) A.12 B.24 C.36D.48解析 S 10=10(a 1+a 10)2=5(a 1+a 10)=120,∴a 1+a 10=24. 答案 B2.记等差数列前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( ) A.2 B.3 C.6D.7解析 法一 由⎩⎪⎨⎪⎧S 2=2a 1+d =4,S 4=4a 1+6d =20,解得d =3.法二 由S 4-S 2=a 3+a 4=a 1+2d +a 2+2d =S 2+4d ,所以20-4=4+4d ,解得d =3. 答案 B3.等差数列{a n }的前四项之和为124,后四项之和为156,各项和为210,则此数列的项数为( ) A.5 B.6 C.7D.8解析 由题意知a 1+a 2+a 3+a 4=124, a n +a n -1+a n -2+a n -3=156, ∴4(a 1+a n )=280, ∴a 1+a n =70.又S =n (a 1+a n )2=n2×70=210,∴n =6.答案 B4.已知数列{a n }的通项公式是a n =2n -48,则S n 取得最小值时,n 为________. 解析 ∵a 24=0,∴a 1<0,a 2<0,…,a 23<0,故S 23=S 24最小. 答案 23或245.已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n ; (2)a 1=1,a n =-512,S n =-1 022,求d . 解 (1)∵S n =n ×32+⎝ ⎛⎭⎪⎫-12×n (n -1)2=-15,整理得n 2-7n -60=0, 解之得n =12或n =-5(舍去).(2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,解之得n =4.又由a n =a 1+(n -1)d ,即-512=1+(4-1)d , 解之得d =-171.课堂小结1.求等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.2.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量,若已知其中三个量,通过方程思想可求另外两个量,在利用求和公式时,要注意整体思想的应用,注意下面结论的运用:若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N *),若m +n =2p ,则a n +a m =2a p .3.本节基本思想:方程思想、函数思想、整体思想、分类讨论思想.基础过关1.已知等差数列{a n }中,a 2+a 8=8,则该数列的前9项和S 9等于( ) A.18 B.27 C.36D.45解析 S 9=92(a 1+a 9)=92(a 2+a 8)=36. 答案 C2.等差数列{a n }中,S 10=4S 5,则a 1d 等于( )A.12B.2C.14D.4解析 由题意得:10a 1+12×10×9d =4⎝ ⎛⎭⎪⎫5a 1+12×5×4d ,∴10a 1+45d =20a 1+40d , ∴10a 1=5d ,∴a 1d =12.答案 A3.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( )A.-9B.-11C.-13D.-15解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15. 答案 D4.在一个等差数列中,已知a 10=10,则S 19=________.解析 S 19=19(a 1+a 19)2=19(a 10+a 10)2=19a 10=19×10=190. 答案 1905.已知等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________. 解析 设等差数列{a n }的首项为a 1,公差为d ,由6S 5-5S 3=5,得3(a 1+3d )=1,所以a 4=13. 答案 136.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,求a 9. 解 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1,S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8.由⎩⎪⎨⎪⎧a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15.7.已知S n 是等差数列{a n }的前n 项和,且S 10=100,S 100=10,求S 110. 解 法一 设等差数列{a n }的首项为a 1,公差为d ,∵S 10=100,S 100=10,∴⎩⎨⎧10a 1+10(10-1)2d =100,100a 1+100(100-1)2d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150. ∴S 110=110a 1+110(110-1)2d =110×1 099100+110×1092×⎝ ⎛⎭⎪⎫-1150=-110. 法二 ∵S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100,…成等差数列,设公差为d ,∴该数列的前10项和为10×100+10×92d =S 100=10,解得d =-22,∴前11项和S 110=11×100+11×102×(-22)=-110.能力提升8.在等差数列{a n }中,前四项之和为20,最后四项之和为60,前n 项之和是100,则项数n 为( )A.9B.10C.11D.12解析 由题意及等差数列的性质可得4(a 1+a n )=20+60=80,∴a 1+a n =20.∵前n 项之和是100=n (a 1+a n )2,解得n =10,故选B. 答案 B9.等差数列{a n }中,已知前15项的和S 15=90,则a 8等于( )A.452B.12C.6D.454解析 在等差数列{a n }中, ∵S 15=90,由S 15=15a 8=90,得a 8=6.故选C.答案 C10.已知{a n }为等差数列,a 2+a 8=43,则S 9等于________.解析 由等差数列的求和公式可得:S 9=9(a 1+a 9)2=9(a 2+a 8)2=9×432=6. 答案 611.含2n +1项的等差数列,其奇数项的和与偶数项的和之比为________.解析 S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2. ∵a 1+a 2n +1=a 2+a 2n ,∴S 奇S 偶=n +1n . 答案 n +1n12.已知数列{a n }的前n 项和S n =32n -n 2+1,(1)求数列{a n }的通项公式;(2)求数列{a n }的前多少项和最大.解 (1)当n =1时,a 1=S 1=32-1+1=32;当n ≥2时,a n =S n -S n -1=(32n -n 2+1)-[32(n -1)-(n -1)2+1]=33-2n ;所以:a n =⎩⎪⎨⎪⎧32,n =1,33-2n ,n ≥2;(2)S n =32n -n 2+1=-(n 2-32n )+1=-(n -16)2+162+1;所以,前16项的和最大.13.(选做题)已知数列{a n }的通项公式为a n =6n +5(n ∈N *),数列{b n }是等差数列,且a n =b n +b n +1.(1)求数列{a n }的前n 项和;(2)求数列{b n }的通项公式. 解 (1)∵a n =6n +5(n ∈N *), ∴a n +1-a n =[6(n +1)+5]-(6n +5)=6(n ∈N *). ∴数列{a n }是以公差为6的等差数列. 又∵a 1=11,∴数列{a n }的前n 项和:S n =n (a 1+a n )2=n [11+(6n +5)]2=3n 2+8n . (2)∵a n =b n +b n +1, ∴a 1=b 1+b 2,a 2=b 2+b 3. ∴⎩⎪⎨⎪⎧b 1+b 2=11,b 2+b 3=17. 设数列{b n }的公差为d , 则⎩⎪⎨⎪⎧2b 1+d =11,2b 1+3d =17,∴⎩⎪⎨⎪⎧b 1=4,d =3. ∴数列{b n }的通项公式:b n =3n +1.。