通信原理实验报告2抽样定理实验(PAM)第6组

合集下载

抽样定理和脉冲调幅(PAM)实验

抽样定理和脉冲调幅(PAM)实验

电子信息工程学系实验报告课程名称:通信原理 实验项目名称:抽样定理和脉冲调幅(PAM )实验 实验时间:班级:通信091 姓名:Jxairy 学号:910705131实 验 目 的:1)验证抽样定理; 2)观察了解PAM 信号形成过程,平顶展宽解调过程。

实 验 环 境 与 仪 器: 1)抽样定理和脉冲调幅(PAM )实验模块 2)数字频率计 8110A 3) 低频信号发生器XFD7 4) 直流稳压电源 JWY -30-4 5) 双踪同步示波器 SR8 6) 毫伏表 GB9 实 验 原 理:利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM )信号。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。

并且,从抽样信号中可以无失真地恢复出原信号。

图02-01示意地画出了传输一路语音信号的PCM 系统。

从图中可以看出要实现对语音的PCM 编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。

因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。

图02-01 单路PCM 系统示意图1. 抽样定理:一个频带受限信号m(t)如果它的最高频率为f H (即m(t)的频谱中没有f H 以上的分量),可以唯一地由频率等于或大于2f H 的样值序列所决定。

图02-02 抽样定理实验方框图2.脉冲幅度调制(PAM):是脉冲载波的幅度随基带信号变化的一种的调制方式。

若脉冲载波是冲激脉冲序列,则按抽样定理进行抽样得到的信号m()t就是一个PAM信号。

sPAM信号在时间上是离散的,但在幅度上却是连续的。

而在PCM系统里,PAM信号只有在被量化和编码后才有传输的可能。

本实验仅提供一个PAM系统的简单模式。

图02-03 多路脉冲调幅实验框图实验内容及过程:(一)、抽样和分路脉冲的形成用示波器和频率计观察并核对各脉冲信号的频率、波形及脉冲宽度,并记录相应的波形。

通信原理实验实验报告

通信原理实验实验报告

通信原理实验实验报告通信原理实验实验报告一、引言通信原理是现代通信技术的基础,而通信原理实验则是学习和理解通信原理的重要途径之一。

本次实验旨在通过实际操作和数据分析,加深对通信原理的理解,并掌握相关实验技能。

二、实验目的本次实验的主要目的是通过实验验证通信原理中的一些基本概念和理论,包括调制、解调、信道传输特性等。

同时,通过实验数据的分析,探究不同参数对通信系统性能的影响。

三、实验原理1. 调制与解调调制是将要传输的信息信号转换成适合传输的调制信号的过程,解调则是将接收到的调制信号恢复成原始信息信号的过程。

常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)等。

2. 信道传输特性信道传输特性是指信号在传输过程中受到的各种干扰和衰减的影响。

常见的信道传输特性包括衰减、失真、噪声等。

在通信系统设计中,需要考虑信道传输特性对信号质量的影响,并采取相应的措施进行补偿或抑制。

四、实验步骤1. 实验一:调制与解调在实验一中,我们选择了幅度调制(AM)作为调制方式。

首先,通过信号发生器产生一个正弦波作为基带信号,然后将其调制到无线电频率范围。

接下来,通过解调器将接收到的信号解调,并与原始信号进行比较分析。

2. 实验二:信道传输特性在实验二中,我们通过建立一个简单的传输系统来研究信道传输特性。

首先,我们将信号源连接到信道输入端,然后通过信道模拟器模拟信道的衰减、失真和噪声等特性。

最后,我们使用示波器观察信号在传输过程中的变化,并记录相关数据。

五、实验结果与分析1. 实验一:调制与解调通过实验一的数据分析,我们可以得出调制信号与原始信号的关系,并进一步了解幅度调制的特点。

同时,我们还可以观察到解调过程中的信号失真情况,并对解调算法进行改进。

2. 实验二:信道传输特性实验二的数据分析主要包括信号衰减、失真和噪声等方面。

通过观察示波器上的波形变化,我们可以了解信号在传输过程中的衰减程度,以及失真和噪声对信号质量的影响。

通信原理实验报告PAM实验

通信原理实验报告PAM实验

PAM实验一、实验目的1、验证抽样定理、观察PAM信号形成的过程、学习中频抽样的基本方法;2、了解混迭效应产生的原因;3、熟悉matlab仿真;二、实验仪器1、J H5001(Ⅲ)通信原理基础实验箱一台2、双踪示波器一台3、函数信号发生器一台三、实验原理利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。

采样频率一般大于2f h。

当采样频率小于2f h 的时候,就会出现频谱的混叠。

抽样定理实验电路实验电路中A部分为低通滤波器用于限制最高频率,C部分为实现采样/保持的模拟开关,B、D为缓冲输出,E部分低通滤波器用于恢复原始信号。

图6 抽样定理实验电路组成框图四、实验步骤及实验现象与分析1.自然抽样脉冲序列测量预置电路:将KB04设置在右端(自然抽样状态);将K501设置在右端以输入测试信号。

将K702设置在NF位置(无滤波),将正弦波输出1000Hz、2Vp-p 的测试信号送入测试端口。

PAM脉冲抽样序列观察:注意观测时以TP701做同步,本实验同步信号不同对结果影响不太大,但有的实验会影响严重。

记录与分析:CH2蓝色波形是由(TP701)观测到的正弦波输入信号,测得该信号频率为1kHz,Vpp为1.96V。

CH1黄色波形是由(TP703)观测到的PAM脉冲抽样序列信号。

由红框当中可以明显看出一个周期内PAM脉冲抽样序列信号抽样了8次(一个周期内有8个脉冲),符合以8kHz 脉冲来抽样1kHz 信号的结果。

且抽样信号占空比不是50%,而是大约1/3。

由图中可以看出黄色PAM 脉冲抽样信号的包络与蓝色正弦波输入信号波形是基本吻合的。

两者的峰谷位置以及正负半周变换都基本一致,相位上基本符合应有的对应关系,PAM 脉冲抽样信号包络的相位略微滞后于正弦波输入信号,应该是由于模拟开关等部分电路造成略微延时所带来的。

PAM 脉冲抽样信号的包络幅值要大于正弦波输入信号,约为2倍,应该是因为经过缓冲输出时电路的运放有放大作用。

通信原理抽样定理和PAM调制解调实验实验报告

通信原理抽样定理和PAM调制解调实验实验报告

实验一抽样定理和PAM调制解调实验组员(姓名学号)成绩gllh631507xxxxx一、实验目的1、通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。

2、通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。

二、实验内容1、观察模拟输入正弦波信号、抽样时钟的波形和脉冲幅度调制信号,并注意观察它们之间的相互关系及特点。

2、改变模拟输入信号或抽样时钟的频率,多次观察波形。

三、实验器材1、信号源模块一块2、①号模块一块3、20M双踪示波器一台4、连接线若干四、实验结果PAM自然抽样波形PAM平顶抽样波形改变抽样时钟频率,观测自然抽样信号,验证抽样定理。

观测解码后PAM波形与原信号的区别答:无区别。

所测各点频率、电压等有关数据答:信号源为2kHZ,信号源CLK1为32kHZ,NRZ频率为16kHZ,自然抽样输出频率为25kHZ。

五、实验思考题1、简述平顶抽样和自然抽样的原理及实现方法。

答:(1).平顶抽样原理:抽样脉冲具有一定持续时间,在脉宽期间其幅度不变,每个抽样脉冲顶部不随信号变化。

实际应用中是采用抽样保持电路来实现的。

(2).自然抽样原理:抽样脉冲具有一定持续时间,在脉宽期间其幅度不变,每个抽样脉冲顶部随信号幅度变化。

用周期性脉冲序列与信号相乘就可以实现。

平顶抽样和自然抽样是用小矩形进行抽样,即抽样在一小段时间内进行。

2、在抽样之后,调制波形中包不包含直流分量,为什么?答:因为抽样过程实际是相乘的过程,得到的结果还是交流信号,经过调后不包含直流分量。

通信原理实验报告

通信原理实验报告

通信原理实验报告学号:姓名:2012年12月25日实验1抽样定理与PAM通信系统实验一、实验内容样脉冲通过开关J601来选择。

可在TP62处很方便地观测到脉冲频率变化情况和输出的脉冲波形。

2、PAM解调与滤波电路该电路即为前面介绍的话路终端接收滤波电路,解调滤波电路由集成运放电路TL084组成。

即一个二阶有源低通滤波器,其截止频率设计在3.4KHz左右,因为该滤波器有着解调的作用,因此它的质量好坏直接影响着系统的工作状态。

三、实验步骤及注意事项1、脉冲幅度调制实验步骤用示波器在TP61处观察,以该点信号输出幅度不失真时为好,如有削顶失真则减小外加信号源的输出幅度或调节W03。

在TP62处观察其抽样时钟信号。

2、PAM通信系统实验步骤分别将J601的第1排、第2排和第3排相连,即改变抽样频率f s,使f c=2f s、f c>2f s、f c<2f s,在TP63、TP64处用示波器观测系统输出波形,以判断和验证抽样定理在系统中的正确性,同时做详细记录和绘图。

四、测量点说明TP61:若外加信号幅度过大,则该点信号波形被限幅电路限幅成方波了,因此信号波形幅度尽量小一些。

方法是:减小外加信号幅度或调节通信话路终端发送放大电路中的电位器W03。

TP62:抽样时钟输出,有三种抽样时钟:等于8KHz抽样脉冲、大于8KHz抽样脉冲、小于8KHz抽样脉冲。

由J601的选择决定。

TP63:抽样信号输出。

TP64:收端PAM解调信号输出。

六、实验报告要求绘出三种抽样时钟情况下测得各点的波形、频率,对所测波形做简要分析说明。

各点波形如下:TP61抽样频率:4kHzTP62TP63 TP64抽样频率:8kHzTP62TP63 TP64抽样频率:16kHzTP62TP63 TP64说明:在不同的抽样频率下,可以看见波形的失真程度不同,由抽样频率大于等于2倍的信号最高频率,可以验证,抽样频率在满足条件的基础上,越大,失真程度越小。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。

就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。

在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。

这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。

二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。

抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。

(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。

(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。

(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。

2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。

P09 测试点可用于抽样脉冲的连接和测量。

该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。

3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。

抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。

通信报告PAM实验

通信报告PAM实验

通信原理实验报告--PAM实验101180009陈惠娟一、实验目的1、验证抽样定理;2、观察PAM信号形成的过程;3、了解混迭效应产生的原因;4、学习中频抽样的基本方法;二、实验仪器1、JH5001(Ⅲ)通信原理基础实验一台2、双踪示波器一台3、函数信号发生器一台三、实验原理利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。

抽样定理指出,一个频带受限信号m(t),如果它的最高频率为f h,则可以唯一地由频率等于或大于2f h的样值序列所决定。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。

并且,从抽样信号中可以无失真地恢复出原始信号。

实际上,设计实现的滤波器特性不可能是理想的,对限制最高频率为3400Hz的语音信号,通常采用8KHz抽样频率。

这样可以留出一定的防卫带(1200Hz)。

当抽样频率f s低于2倍语音信号的最高频率f h,就会出现频谱混迭现象,产生混迭噪声,影响恢复出的话音质量。

本次实验采用标准的8KHz抽样频率,并用函数信号发生器产生一个信号,通过改变函数信号发生器的频率,观察抽样序列和重建信号,检验抽样定理的正确性。

图6 抽样定理实验电路组成框图上图为抽样定理实验电路组成框图,低通滤波器为3dB带宽为3400Hz的滤波器,用于限制最高的信号频率,信号通过跟随器缓冲送到模拟开关。

通过抽样时钟完成对信号的抽样,形成抽样序列信号,再通过运放输出。

接着继续通过3dB带宽为3400Hz的低通滤波器,恢复原始信号。

跳线开关K702用于选择输入滤波器,当K702设置在滤波位置时(左端),送入到抽样电路的信号经过3400Hz的低通滤波器;当K702设置在直通位置时(右端),实验中所有信号都不经过抗混迭滤波器直接送到抽样电路,其目的是为了观测混迭现象。

四、实验内容1、自然抽样脉冲序列测量(1)实验步骤将复接解复接模块中的KB04设置在右端(自然抽样状态);将ADPCM模块的输入信号选择开关K501设置在右端以输入测试信号。

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理抽样定理实验报告通信原理抽样定理实验报告摘要:本实验通过对抽样定理的研究和实践,探究了通信原理中抽样定理的重要性和应用。

通过实验结果的分析,验证了抽样定理的正确性,并得出了一些有关抽样定理的结论。

1. 引言通信原理是现代通信技术的基础,而抽样定理是通信原理中一个重要的理论基础。

抽样定理指出,在进行模拟信号的数字化处理时,为了保证处理结果的准确性,需要对模拟信号进行一定的采样频率。

本实验旨在通过实践验证抽样定理的正确性,并探究其在通信原理中的应用。

2. 实验原理抽样定理是由奈奎斯特(Nyquist)于20世纪20年代提出的,也被称为奈奎斯特定理。

该定理的核心思想是:对于一个带宽有限的信号,如果将其以大于两倍的最高频率进行采样,那么采样后的数字信号可以完全恢复原始信号。

3. 实验步骤3.1 实验仪器与材料准备本实验所需的仪器与材料包括:信号发生器、示波器、电缆、电阻、电容等。

3.2 实验过程首先,通过信号发生器产生一个带宽有限的模拟信号。

然后,将该模拟信号通过电缆连接到示波器上进行观测。

在示波器上观测到的信号即为模拟信号的采样结果。

3.3 实验结果分析通过观察示波器上的信号波形,可以发现,采样后的信号与原始模拟信号非常接近,几乎无法区分。

这表明,抽样定理的预测是正确的,通过足够高的采样频率,可以准确地还原原始信号。

4. 实验讨论4.1 抽样频率的选择根据抽样定理,为了准确还原原始信号,采样频率至少要大于信号带宽的两倍。

实际应用中,为了保证信号的完整性和准确性,通常会选择更高的采样频率。

4.2 抽样定理在通信系统中的应用抽样定理在通信系统中有着广泛的应用。

例如,在数字音频和视频的传输中,通过抽样定理可以将模拟音频和视频信号转换为数字信号,从而实现高质量的传输和存储。

5. 实验结论通过本实验的研究和实践,我们验证了抽样定理的正确性,并得出以下结论:(1)抽样定理是通信原理中一个重要的理论基础,通过足够高的采样频率,可以准确地还原原始信号。

通信原理实验实验报告

通信原理实验实验报告

通信原理实验实验报告实验名称:通信原理实验实验目的:1. 理解基本的通信原理和通信系统的工作原理;2. 掌握各种调制解调技术以及通信信号的传输方式;3. 熟悉通信系统的基本参数和性能指标。

实验设备和器材:1. 信号发生器2. 采样示波器3. 调制解调器4. 麦克风和扬声器5. 示波器6. 功率分贝计7. 电缆和连接线等实验原理:通信原理主要涉及调制解调、传输媒介、信道编码和解码等方面的内容。

本次实验主要内容为调幅、调频和数字调制解调技术的验证,以及传输信号质量的评估和性能测量。

实验步骤:1. 调幅实验:将信号发生器产生的正弦波信号调幅到载波上,并使用示波器观察调幅波形,记录幅度调制度;2. 调频实验:使用信号发生器产生调制信号,将其调频到载波上,并使用示波器观察调频波形,记录调频的范围和带宽;3. 数字调制实验:使用调制解调器进行数字信号调制解调实验,并观察解调的信号质量,记录解调信号的正确性和误码率;4. 信号质量评估:使用功率分贝计测量信号传输过程中的信噪比和失真程度,并记录测量结果;5. 性能测量:采用示波器和其他测量设备对通信系统的带宽、传输速率等性能指标进行测量,记录测量结果。

实验结果:1. 对于调幅实验,观察到正弦波信号成功调幅到载波上,并记录幅度调制度为X%;2. 对于调频实验,观察到调制信号成功调频到载波上,并记录调频的范围为X Hz,带宽为X Hz;3. 对于数字调制实验,观察到解调后的信号正确性良好,误码率为X%;4. 信号质量评估测量结果显示信噪比为X dB,失真程度为X%;5. 性能测量结果显示通信系统的带宽为X Hz,传输速率为X bps。

实验总结:通过本次实验,我们深入了解了通信原理中的调制解调技术和信号传输方式,并且成功进行了调幅、调频和数字调制解调实验。

通过信号质量评估和性能测量,我们对通信系统的性能指标有了更深入的了解。

在实验过程中,我们还发现了一些问题和改进的空间,例如在数字调制实验中,我们可以进一步优化解调算法,提高解调的正确性。

抽样定理与PAM调制解调实验

抽样定理与PAM调制解调实验

脉幅调制(PAM)是数字通信系统最为常用的调制方式之一,脉冲振幅调制,即是脉冲载波的幅度随基带信号变化的一种调制方式。

如果脉冲载波是由脉冲激脉冲组成的,根据抽样定理,就可以把信号复原,就是脉冲振幅调制的原理。

通过本实验,我对抽样定理和PAM调制解调有更深的了解。

抽样定理与PAM调制解调实验工科实验报告2009-12-14 23:22:16 阅读292 评论0 字号:大中小订阅一、实验目的1、通过对模拟信号抽样的实验,加深对抽样定理的理解。

2、通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点。

3、通过对电路组成、波形和所测数据的分析,了解PAM调制方式的优缺点。

二、实验电路的工作原理与分析取样也称抽样、采样,是把时间连续的模拟信号变换为时间离散信号的过程。

抽样定理是指:一个频带限制在(0,fH)内的时间连续信号m(t),如果以T≤1/2fH秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽样值完全确定。

根据取样脉冲的特性,取样分为理想取样、自然取样(亦称曲顶取样)、瞬时取样(亦称平顶取样);根据被取样信号的性质,取样又分为低通取样和带通取样。

虽然取样种类很多,但是间隔一定时间,取样连续信号的样值,把信号从时间上离散,这是各种取样共同的作用,取样是模拟信号数字化及时分多路的理论基础。

抽样定理和脉冲幅度调制系统框图如(教材)图3-1所示,实验原理图如(教材)图3-2所示,由输入电路、高速电子开关电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。

取样电路是用4066模拟门电路实现。

当取样脉冲为高电位时,取出信号样值;当取样脉冲为低电平时,输出电压为0,这样便完成了取样。

本电路属于低通信号的自然取样根据取样定理,取样后的信号还原为原信号要通过理想低通滤波器,本滤波电路系统用有源低通滤波器代替理想低通滤波器完成还原。

数据测量当SP302接入抽样时钟信号为16KHZ抽样时钟方波信号SP108时测量点波形峰峰值(V)频率(KHZ)TP301图11.442.00TP302 3.6416.65TP301图21.44 1.988TP3030.820 1.999TP303图30.840 1.999TP304 3.12 2.002图1图2图3当SP302接入抽样时钟信号为8KHZ抽样时钟方波信号SP109时测量点波形峰峰值(V)频率(KHZ)TP301图41.44 1.953TP302 3.608.064TP301图51.42 2.000TP3030.840 2.012TP303图60.840 2.014TP304 3.16 2.000图4图5图6当SP302接入抽样时钟信号为4KHZ抽样时钟方波信号SP110时测量点波形峰峰值(V)频率(KHZ)TP301图71.44 1.986TP302 3.60 3.968TP301图81.44 1.985TP3030.664 2.005TP303图90.672 2.000TP304 1.84 1.969图7图8图9(二)音乐信号源的PAM调制解调实验将SP302分别接入不同的抽样时钟信号频率(SP108-SP112)可以发现音乐信号的质量随着频率的降低越来越差。

实验2 抽样定理和脉冲调幅(PAM)

实验2 抽样定理和脉冲调幅(PAM)

电子信息工程学系实验报告课程名称:通信原理实验项目名称:实验2 抽样定理和脉冲调幅(PAM)实验实验时间:2012.5.21班级:电信091 姓名:林杨亮学号:910706104实验目的:1、验证抽样定理;2、观察了解PAM信号形成过程,平顶展宽解调过程。

实验原理:利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号好称为脉冲调幅信号。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。

抽样定理:fs>2fh,才能从抽样信号中可以无失真的恢复出原信号。

分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。

N路抽样脉冲在时间上是互不相交,顺序排列的,各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号,本实验设置了两路抽样电路。

多路脉冲调幅系统中的路际串话,在一个理想的传输系统中,各路PAM 信号应是严格地限制在本路时隙中的矩形脉冲。

但如果传输PAM信号的通道频带是有限的,则PAM信号就会出现拖尾现象。

实验内容及过程:1.抽样和分路脉冲的形成用示波器和频率计观察并核对各脉冲信号的频率、波形及脉冲宽度,并记录相应的波形。

(1)在TP1观察主振脉冲信号。

(2)在TP2观察分路抽样脉冲(8kHz)。

抽样和分路脉冲的形成波形如图1、图2所示。

由图1可知,主振脉冲信号的频率为2.048KHz,脉冲宽度为240ns。

由图2可知,分路抽样脉冲频率为8KHz,其脉冲宽度为10us。

图1 主振脉冲信号波形图2 分路抽样脉冲波形2.验证抽样定理连接TP2–TP6,观察并画出以下各点的波形。

(1)低频正弦信号从TP4输入,f H = 1kHz,幅度约2V P-P。

(2)以TP4作双踪同步示波器的同步信号,观察TP8——抽样后形成的PAM信号。

把输入信号调整到一合适的频率上,使PAM信号在示波器上显示稳定,计算在一个信号周期内的抽样次数。

核对信号频率与抽样频率的关系。

通信原理抽样实验报告

通信原理抽样实验报告

一、实验目的1. 理解通信原理中抽样定理的基本概念;2. 掌握抽样定理在模拟信号数字化过程中的应用;3. 了解模拟信号抽样后的特性及其对信号传输的影响;4. 熟悉实验仪器和实验方法。

二、实验原理抽样定理(Nyquist-Shannon采样定理)指出,如果一个信号在频域中的最高频率分量为\( f_m \),为了能够无失真地恢复原信号,抽样频率\( f_s \)必须满足以下条件:\[ f_s \geq 2f_m \]其中,\( f_s \)为抽样频率,\( f_m \)为信号最高频率分量。

当抽样频率满足上述条件时,原信号可以通过低通滤波器从抽样信号中无失真地恢复出来。

三、实验仪器与设备1. 信号发生器:用于产生不同频率和幅度的正弦信号;2. 示波器:用于观察和测量信号波形;3. 抽样器:用于对模拟信号进行抽样;4. 低通滤波器:用于从抽样信号中恢复原信号。

四、实验步骤1. 使用信号发生器产生一个频率为\( f_m \)的正弦信号;2. 将正弦信号输入到抽样器中,设置抽样频率\( f_s \)为\( 2f_m \);3. 使用示波器观察抽样后的信号波形;4. 通过低通滤波器从抽样信号中恢复原信号;5. 比较恢复后的信号与原信号,分析恢复效果。

五、实验结果与分析1. 当抽样频率\( f_s = 2f_m \)时,恢复后的信号与原信号基本一致,表明抽样定理在实验中得到了验证;2. 当抽样频率\( f_s < 2f_m \)时,恢复后的信号与原信号存在较大差异,说明抽样频率过低会导致信号失真;3. 当抽样频率\( f_s > 2f_m \)时,恢复后的信号与原信号基本一致,但抽样频率过高会浪费带宽资源。

六、实验总结通过本次实验,我们深入理解了通信原理中抽样定理的基本概念,掌握了抽样定理在模拟信号数字化过程中的应用。

实验结果表明,抽样频率的选择对信号恢复质量具有重要影响。

在实际应用中,应根据信号特性和传输需求选择合适的抽样频率,以实现信号的高效、准确传输。

通信原理实验报告(优秀范文5篇)

通信原理实验报告(优秀范文5篇)

通信原理实验报告(优秀范文5篇)第一篇:通信原理实验报告通信原理实验报告1、实验名称:2、实验目的:3、实验步骤:(详细记录你的实验过程)例如:(1)安装MATLAB6.5软件;(2)学习简单编程,画图plot(x,y)函数等(3)进行抽样定理验证:首先确定余弦波形,设置其幅度?、频率?和相位?等参数,然后画出该波形;进一步,设置采样频率?。

画出抽样后序列;再改变余弦波形的参数和抽样频率的值,改为。

,当抽样频率?>=余弦波形频率2倍时,怎么样?否则的话,怎么样。

具体程序及图形见附录1(或者直接放在这里,写如下。

)(4)通过DSP软件验证抽样定理该软件主要有什么功能,首先点“抽样”,选取各种参数:a, 矩形波,具体参数,出现图形B,余弦波,具体参数,出现图形然后点击“示例”中的。

具体参数,图形。

4、思考题5、实验心得6、附录1有附录1的话有这项,否则无。

第二篇:通信原理实验报告1,必做题目1.1 无线信道特性分析 1.1.1 实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。

1.1.2 实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。

仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0-3-6-9]dB,最大多普勒频移为200Hz。

例如信道设置如下图所示:移动通信系统1.1.3 实验作业1)根据信道参数,计算信道相干带宽和相干时间。

fm=200;t=[0 4e-06 8e-06 1.2e-05];p=[10^0 10^-0.3 10^-0.6 10^-0.9];t2=t.^2;E1=sum(p.*t2)/sum(p);E2=sum(p.*t)/sum(p);rms=sq rt(E1-E2.^2);B=1/(2*pi*rms)T=1/fm2)设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。

通信原理实验报告2抽样定理实验(PAM)第6组

通信原理实验报告2抽样定理实验(PAM)第6组

通信原理实验报告班级:组号:06 时间:2015/11/12成员:学号:实验二:抽样定理实验(PAM)一、实验目的1、掌握抽样定理的概念。

2、掌握模拟信号抽样与还原的原理及实现方法。

3、了解模拟信号抽样过程的频谱。

二、实验内容1、采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱。

2、采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱。

三、实验仪器1、信号源模块一块2、模拟信号数字化模块一块3、20M双踪示波器一台4、带话筒立体声耳机一副5、频谱分析仪五、实验步骤(要求图片中有测得波形频率、峰峰值、占空比的数据)1、插上电源线,打开主机箱右侧的交流开关,再分别按下所用到的两个模块的电源开关,对应的发光二极管灯亮,两个模块均开始工作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)2、信号源模块调节“2K调幅”旋转电位器,使“2K正弦基波”输出幅度为3V。

3、实验连线如下:信号源模块模拟信号数字化模块2K正弦基波——————抽样信号DDS-OUT——————抽样脉冲模拟信号数字化模块内连线PAM输出———————解调输入4、不同频率方波抽样(1)信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋转电位器,使其峰峰值为3V。

(2)依次设置方波A的频率为2KHz、4KHz、8KHz、16KHz,示波器双踪观测“抽样信号”与“PAM输出”测试点波形,并记录图片为图1~4。

图1图2图3图4(3)再依次设置方波A的频率为2KHz、4KHz、8KHz、16KHz,示波器双踪观测“抽样信号”和“解调输出”测试点波形,并记录图片为图5~8。

图5图6图7图85、同频率但不同占空比方波抽样(1)信号源模块“DDS-OUT”测试点输出选择“方波B”,使其峰峰值为3V,频率为4KHz。

抽样定理和脉冲调幅(PAM)实验

抽样定理和脉冲调幅(PAM)实验

抽样定理和脉冲调幅(PAM)实验抽样定理,也称为奈奎斯特-香农定理或奈斯凯-香农定理,是信号处理中的一条基本定理,它表明,如果我们想要完全恢复连续的信号,我们必须将信号进行采样,采样频率必须要大于信号中频率最高的成分的两倍。

抽样定理告诉我们,如果我们使用低于两倍信号最高频率的采样频率,则不能完整地恢复原始信号。

因此,抽样定理是数字信号处理的基础之一。

脉冲调幅(PAM)是数字通信的一种基本模式,其通过将模拟信号转换为数字信号来完成模拟通信与数字通信之间的转换。

PAM是一种基本的数字化模拟调制技术,它将模拟信号进行采样并将其转换为数字信号,在数字信号中,每个样本由一个固定数量的二进制数表示。

在PAM中,我们使用一个调制脉冲来调制数据信号,这样可以将数据信号从一个信号空间映射到另一个信号空间,因此可以实现数字化通信。

在实际应用中,抽样定理和脉冲调幅(PAM)通常被用于数字通信和数字信号处理方面。

为了理解抽样定理和脉冲调幅(PAM)如何工作,我们可以进行以下实验:实验1:抽样定理实验在这个实验中,我们需要一个函数生成器(signal generator)和一个示波器(oscilloscope)来生成和观察信号。

设置函数生成器以产生一个正弦波信号,然后使用示波器来查看该信号。

以5kHz的频率采样信号,观察它的样本的数量和质量。

接下来,将抽样频率调整为10kHz并观察示波器上的波形,你会发现它看起来更平滑。

继续增加采样率以尝试找到一个极限值,达到这个极限值之后,再增加采样率不会对信号的质量产生任何显著的改进。

实验2:脉冲调幅实验在这个实验中,我们需要一个数字信号生成器(digital signal generator)、一个数字信号记录仪(digital signal recorder)和一个示波器。

设置数字信号生成器以产生一个正弦波数据信号,然后使用数字信号记录仪来记录该信号。

接下来,使用示波器来查看该记录的数字信号。

通信原理实验四 实验报告 抽样定理与PAM系统实训

通信原理实验四 实验报告 抽样定理与PAM系统实训

南昌大学实验报告学生姓名:学号:专业班级:实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验四抽样定理与PAM系统实训一、实验目的1.熟通过对模拟信号抽样的实验,加深对抽样定理的理解;2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点;3.通过对电路组成、波形和所测数据的分析,了解PAM调制方式的优缺点。

二、实验原理1.取样(抽样、采样)(1)取样取样是把时间连续的模拟信号变换为时间离散信号的过程。

(2)抽样定理一个频带限制在(0,f H) 内的时间连续信号m(t),如果以≦1/2f H每秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽样值完全确定。

(3)取样分类①理想取样、自然取样、平顶取样;②低通取样和带通取样。

2.脉冲振幅调制电路原理(PAM)(1)脉冲幅度调制系统系统由输入电路、高速电子开关电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。

图 1 脉冲振幅调制电路原理框图(2)取样电路取样电路是用4066模拟门电路实现。

当取样脉冲为高电位时,取出信号样值;当取样脉冲为低电位,输出电压为0。

图 2 抽样电路图 3 低通滤波电路三、实验步骤1.函数信号发生器产生2KHz(2V)模拟信号送入SP301,记fs;2.555电路模块输出抽样脉冲,送入SP304,连接SP304和SP302,记fc;3.分别观察fc>>2fs,fc=2fs,fc<2fs各点波形;4.连接SP204 与SP301、SP303H 与SP306、SP305 与TP207,把扬声器J204开关置到1、2 位置,触发SW201 开关,变化SP302 的输入时钟信号频率,听辨音乐信号的质量.四、实验内容及现象1.测量点波形图 4 TP301 模拟信号输入图 5 TP302 抽样时钟波形(555稍有失真) fc=图 6 TP303 抽样信号输出1图7 TP304 模拟信号还原输出1图8 TP303 抽样信号输出2图9 TP304 模拟信号还原输出2图10 TP303 抽样信号输出3图11 TP304 模拟信号还原输出32.电路Multisim仿真图12 PAM调制解调仿真电路图13 模拟信号输入图14 抽样脉冲波形图15 PAM信号图16 低通滤波器特性图17 还原波形 更多学习资料请见我的个人主页:落寂花溅泪。

通信原理实验报告

通信原理实验报告

通信原理实验报告1. 实验简介该实验旨在探究通信原理中的基础概念和技术,通过实际操作和数据收集,加深对通信原理的理解和应用。

2. 实验目的通过实验,达到以下目的:- 理解调制、解调、信道传输等基本通信原理- 学习并应用相关通信原理工具和设备- 分析实验结果,总结出相关规律和结论- 提高实验操作能力和数据处理能力3. 实验过程3.1 实验设备和器材预备准备以下设备和器材:- 调制解调器- 信号发生器- 示波器- 噪声源- 电缆和连接线3.2 实验步骤步骤1:使用信号发生器产生载波信号,并将其连接到调制解调器的输入端口。

步骤2:将待发送的消息信号连接到调制解调器的输入端口。

步骤3:通过示波器观察并记录调制解调器输出的调制信号。

步骤4:使用示波器观察并记录解调器输出的解调信号。

步骤5:将噪声源连接到调制解调器的输入端口,并观察解调器输出的抗噪性能。

步骤6:根据实验结果进行数据分析和总结。

4. 实验结果与讨论4.1 调制信号观察与记录通过示波器观察到的调制信号波形如下图所示:(可以插入图片)4.2 解调信号观察与记录通过示波器观察到的解调信号波形如下图所示:(可以插入图片)4.3 抗噪性能观察与分析连接噪声源后,示波器观察到的解调信号波形相对于无噪声的情况产生了一定程度的畸变。

通过分析解调信号的信噪比和误码率等指标,可以进一步评估抗噪性能,并提出改进建议。

5. 结论通过本次实验,我们深入探讨了通信原理相关的调制、解调和信道传输等基本概念。

通过观察实验结果和数据分析,得出以下结论:- 调制技术可以将消息信号转换为适合传输的载波信号,进而实现有效的数据传输。

- 解调技术可以将接收到的调制信号还原为原始的消息信号。

- 通信系统在存在噪声的情况下,解调信号的质量和抗噪能力会受到一定影响。

6. 改进建议根据实验结果和结论,我们提出以下改进建议:- 进一步优化调制和解调算法,提高传输效率和抗噪性能。

- 使用更先进的设备和器材,提升实验数据的准确性和稳定性。

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理实验〔五〕实验一抽样定理实验工程一、抽样信号观测及抽样定理实验1、观测并记录抽样前后的信号波形,分别观测music和抽样输出。

由分析知,自然抽样后的结果如图,很明显抽样间隔相同,且抽样后的波形在其包络严格被原音乐信号所限制加权,与被抽样信号完全一致。

2、观测并记录平顶抽样前后信号的波形。

此结果为平顶抽样结果,仔细观察可发现与上一实验中的自然抽样有很大差距,即相同之处,其包络也由原信号所限制加权,但是在抽样信号的每个频率分量呈矩形,顶端是平的。

3、观测并比照抽样恢复后信号与被抽样信号的波形,并以100HZ为步进,减小A-OUT的频率,比拟观测并思考在抽样脉冲频率为多少的情况下恢复信号有失真。

(1)9.0KHZ (2)7.7KHZ(3)7.0KHZ实验二 PCM 编译码实验实验工程一 测试W681512的幅频特性1、将信号源频率从50HZ 到4000HZ ,用示波器接模块21的音频输出,观测信号的幅频特性。

(1)、4000HZ(2)、3500HZ在频率为9HZ 时的波形如上图,低通滤波器恢复出的信号与原信号根本一致,只是相位有了延时,约1/4个Ts ; 逐渐减小抽样频率可知在7.7KHZ 左右,恢复信号出现了幅度的失真,且随着fs 的减小,失真越大。

上述现象验证了抽样定理,即,在信号的频率一定时,采样频率不能低于被采样信号的2倍,否那么将会出现频谱的混叠,导致恢复出的信号严重失真。

(3)120HZ (4)50HZ在实验中仔细观察结果,可知,当信号源的频率由4000HZ不断下降到3000HZ的过程中,信号的频谱幅度在不断地增加;在3000HZ~1500HZ的过程中,信号的幅度在一定范围内变化,但是没有特别大的差距;在1500HZ~50HZ的过程中,信号的幅度有极为明显的下降。

实验工程二PCM编码规那么实验1、以FS为触发,观测编码输入波形。

示波器的DIV档调节为100微秒。

图中分别为输入被抽样信号和抽样脉冲,观察可发现正弦波与编码对应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信原理实验报告
班级:组号:06 时间:2015/11/12
成员:
学号:
实验二:抽样定理实验(PAM)
一、实验目的
1、掌握抽样定理的概念。

2、掌握模拟信号抽样与还原的原理及实现方法。

3、了解模拟信号抽样过程的频谱。

二、实验内容
1、采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号
的波形和频谱。

2、采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信
号及还原信号的波形和频谱。

三、实验仪器
1、信号源模块一块
2、模拟信号数字化模块一块
3、20M双踪示波器一

4、带话筒立体声耳机一副
5、频谱分析仪
五、实验步骤(要求图片中有测得波形频率、峰峰值、占空比的数据)
1、插上电源线,打开主机箱右侧的交流开关,再分别按下所用到的两个模块的电源开
关,对应的发光二极管灯亮,两个模块均开始工作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)
2、信号源模块调节“2K调幅”旋转电位器,使“2K正弦基波”输出幅度为3V。

3、实验连线如下:
信号源模块模拟信号数字化模块
2K正弦基波——————抽样信号
DDS-OUT——————抽样脉冲
模拟信号数字化模块内连线
PAM输出———————解调输入
4、不同频率方波抽样
(1)信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋转电位器,使其峰峰值为3V。

(2)依次设置方波A的频率为2KHz、4KHz、8KHz、16KHz,示波器双踪观测“抽样信号”与“PAM输出”测试点波形,并记录图片为图1~4。

图1
图2
图3
图4
(3)再依次设置方波A的频率为2KHz、4KHz、8KHz、16KHz,示波器双踪观测“抽
样信号”和“解调输出”测试点波形,并记录图片为图5~8。

图5
图6
图7
图8
5、同频率但不同占空比方波抽样
(1)信号源模块“DDS-OUT”测试点输出选择“方波B”,使其峰峰值为3V,频率为4KHz。

说明:为能稳定观测“抽样信号”与“PAM输出”测试点波形,每次方波B的占空比调节好后,均要重新按“功能切换”键,将“占空比”菜单切换回“步进”菜单。

(2)依次设置方波B的占空比为20%、50%、80%,示波器双踪观测“抽样信号”与
“PAM输出”测试点波形,并记录图片为图9~11。

图9
图10
图11
(3)再依次设置方波B的占空比为20%、50%、80%,示波器双踪观测“抽样信号”
和“解调输出”测试点波形,并记录图片为图12~14。

图12
图13
图14
(4)依次改变方波B的频率为8KHz、16KHz,重复上述第5步实验步骤并记录图片。

方波B、8KHZ:
图15
图16
图17
图18
图19
方波B、16KHz:
图21
图22
图23
图24
图25
图26
6、模拟语音信号抽样与还原
用信号源模块模拟语音信源输出的“T-OUT”话音信号代替2K正弦信号输入模拟信号数字化模块中,还原的“解调输出”信号送回信号源模拟语音信源“R-IN”测
试点,耳机接收话筒语音信号,完成模拟语音信号抽样与还原的整个过程。

六、实验报告要求
根据图片结果比较方波在不同频率、不同占空比下作为抽样脉冲的区别,结合抽样定理分析原因。

答:对基波信号进行抽样的抽样脉冲即方波A的频率越大,在一个周期内的抽样点就越多,PAM输出点的波形就越接近基波信号,频谱更密集。

相关文档
最新文档