小学(数学)奥数知识规律大全
小学奥数有哪些知识点
小学奥数有哪些知识点小学奥数知识点概览一、数论基础1. 质数与合数:理解质数的定义和性质,识别合数的因数分解。
2. 素因数分解:将一个合数分解为质数的乘积。
3. 最大公约数和最小公倍数:计算两个或多个数的GCD和LCM。
4. 整数的奇偶性:理解奇数和偶数的性质及其在问题解决中的应用。
5. 整数的四则运算:掌握整数加减乘除的规则和技巧。
6. 同余定理:理解同余的概念及其在解决数论问题中的应用。
二、分数与小数1. 分数的基本概念:分数的意义、性质和分类。
2. 分数的四则运算:分数的加、减、乘、除运算规则。
3. 分数的化简与比较:化简分数和比较分数大小的方法。
4. 小数的基本概念:小数的意义和性质。
5. 小数的四则运算:小数的加、减、乘、除运算规则。
6. 分数与小数的互化:分数与小数之间的转换方法。
三、几何知识1. 平面图形的认识:点、线、面的基本性质。
2. 常见平面图形的性质:正方形、长方形、三角形等的性质和计算。
3. 面积和周长的计算:计算各种平面图形的面积和周长。
4. 立体图形的初步认识:立方体、长方体、圆柱、圆锥等的性质。
5. 空间想象能力:通过剖面图、视图等理解三维空间。
四、代数基础1. 变量与常数:理解变量和常数的概念。
2. 简易方程:一元一次方程的建立和解法。
3. 代数表达式的简化:合并同类项、分配律等代数运算。
4. 不等式的概念:理解不等式的意义和基本性质。
5. 简单不等式的解法:解一元一次不等式。
五、逻辑推理1. 合情推理:通过已知信息推断未知信息。
2. 演绎推理:从一般到特殊的逻辑推理过程。
3. 归纳推理:从特殊到一般的推理方法。
4. 逻辑应用题:解决需要逻辑推理的实际问题。
六、组合数学1. 排列与组合:理解排列和组合的概念及其区别。
2. 简单排列组合问题:解决基础的排列组合问题。
3. 二项式定理:理解二项式定理并能够进行简单应用。
4. 容斥原理:解决涉及集合容斥问题的方法。
七、数列与级数1. 等差数列:理解等差数列的定义和性质。
小奥数公式定理大全
小奥数公式定理大全
小学奥数公式定理如下:
1. 每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。
2. 1倍数×倍数=几倍数,几倍数÷1倍数=倍数,几倍数÷倍数=1倍数。
3. 速度×时间=路程,路程÷速度=时间,路程÷时间=速度。
4. 单价×数量=总价,总价÷单价=数量,总价÷数量=单价。
5. 工作效率×工作时间=工作总量,工作总量÷工作效率=工作时间,工作总量÷工作时间=工作效率。
6. 加数+加数=和,和-一个加数=另一个加数。
7. 被减数-减数=差,被减数-差=减数,差+减数=被减数。
8. 因数×因数=积,积÷一个因数=另一个因数。
9. 被除数÷除数=商,被除数÷商=除数,商×除数=被除数。
以上是小奥数的公式定理,仅供参考,可以查阅奥数书籍获取更多公式定理。
小学奥数找规律知识点
小学奥数找规律知识点小学奥数是指小学生参加的数学奥赛比赛,题目难度较高,常常需要运用一些找规律的方法来解题。
在小学奥数中,找规律是一种重要的解题技巧,掌握了找规律的知识点,可以在解题时事半功倍。
本文将介绍小学奥数中常用的找规律的知识点。
一、数字序列的规律在小学奥数中,经常会给出一组数字的序列,要求找出其中的规律。
在解决这类问题时,我们可以首先观察数字序列的前几个数,看是否能够找到一些明显的规律。
比如,给定数字序列:2, 4, 6, 8, 10,我们可以发现每个数字都是前一个数字加2,因此规律是“加2”。
有时候数字序列的规律可能更加复杂,我们可以根据数字之间的差异来寻找规律。
例如,给定数字序列:1, 3, 6, 10,我们可以发现每个数字相对于前一个数字的差值递增,即1, 2, 3,因此规律是“差值递增”。
二、图形的规律小学奥数中常常会出现一些图形题目,要求找出图形之间的规律。
在解决这类问题时,我们可以先观察图形的形状、颜色、数量等特征,看是否能够找到一些规律。
例如,给定以下图形序列:△ △△ △△△ △△△△我们可以发现每一行图形的数量递增,因此规律是“数量递增”。
有时候图形的规律可能与位置有关,我们可以根据图形在位置上的变化来寻找规律。
比如,给定以下图形序列:□□ □□ □ □□ □ □ □我们可以发现每一行图形的位置与数量有关,因此规律是“位置与数量相关”。
三、数学运算的规律在小学奥数中,常常会出现一些涉及数学运算的题目,要求找出运算中的规律。
解决这类问题时,我们可以先观察数学运算的过程和结果,看是否能够找到一些规律。
例如,给定以下数学运算序列:2 +3 = 53 +4 = 74 +5 = 9我们可以发现每一组的结果都比前一组的结果大2,即组数与结果之间存在着一定的关系,因此规律是“结果与组数相关”。
有时候数学运算的规律可能与数的性质有关,我们可以根据数的性质来寻找规律。
比如,给定以下数学运算序列:6 × 1 = 66 × 2 = 126 × 3 = 18我们可以发现每一组的结果都是一个等差数列,因此规律是“结果是一个等差数列”。
奥数知识点总结
奥数知识点总结一、整数与分数1.1 奇数与偶数•奇数是指不能被2整除的数,如1、3、5等。
•偶数是指能被2整除的数,如2、4、6等。
1.2 质数与合数•质数是指除了1和自身外没有其他因数的数,如2、3、5等。
•合数是指除了1和自身外还有其他因数的数,如4、6、8等。
1.3 最大公约数与最小公倍数•最大公约数是指两个或多个数的公共因数中最大的一个数,常用符号为gcd。
•最小公倍数是指两个或多个数的公共倍数中最小的一个数,常用符号为lcm。
二、代数与方程2.1 代数运算•加法是指两个或多个数相加,常用符号为+。
•减法是指一个数减去另一个数,常用符号为-。
•乘法是指两个或多个数相乘,常用符号为*。
•除法是指一个数除以另一个数,常用符号为/。
2.2 一元一次方程•一元一次方程是指只含有一个未知数的一次方程,如2x+3=7。
•解一元一次方程的步骤:1.将方程中的常数项移到等式的右边。
2.将未知数的系数移到等式的左边。
3.化简方程,求得未知数的值。
2.3 二元一次方程•二元一次方程是指含有两个未知数的一次方程,如2x+3y=7。
•解二元一次方程的步骤:1.选择一种方法消去其中一个未知数,得到一个只含有一个未知数的一次方程。
2.解这个一次方程,得到一个未知数的值。
3.将得到的未知数的值代入原方程中,求得另一个未知数的值。
三、几何与概率3.1 直线与角•直线是指在平面上无限延伸的一条线段。
•角是指由两条线段共享一个端点所形成的图形。
3.2 三角形与四边形•三角形是指由三条线段所围成的图形。
•四边形是指由四条线段所围成的图形。
3.3 圆与圆周角•圆是指平面上一组离一个固定点相等距离的点的集合。
•圆周角是指以圆心为顶点的角。
3.4 概率与统计•概率是指事件发生的可能性大小。
•统计是指对数据进行收集、整理、分析和解释的过程。
四、数论与逻辑4.1 数列与递推•数列是指按照一定规律排列的一组数。
•递推是指根据数列中前一项或前几项推导出后一项的方法。
(完整版)小学奥数找规律
小学奥数找规律一、知重点依照必定序次摆列起来的一列数,叫做数列。
如自然数列:1,2,3,4,⋯⋯双数列: 2,4, 6, 8,⋯⋯我研究数列,目的就是了数列中数摆列的律,并依照个律来填写空缺的数。
依照必定的序摆列的一列数,只需从的几个数中找到律,那么就能够知道其他全部的数。
找数列的摆列律,除了从相两数的和、差考,有要从、商考。
擅长数列的律是填数的关。
二、精精【例 1】在括号内填上适合的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()1:在括号内填上适合的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例 2】先找出律,再在括号里填上适合的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习 2:按规律填数。
(1)2,1,4,1,6,1,( ),( )(2)3,2,9,2,27,2,( ),()(3)18,3,15,4,12,5,( ),( )(4)1,15,3,13,5,11,( ),()(5)1,2,5,14,(),()【例题 3】先找出规律,再在括号里填上适合的数。
(1)2,5,14,41,() (2)252,124,60,28,( )(3)1,2,5,13,34,( )(4)1,4,9,16,25,36,()练习 3:按规律填数。
(1)2,3,5,9,17,( ),()(2)2,4,10,28,82,( ),( )(3)94,46,22,10,( ),( )(4)2,3,7,18,47,(),()【例题 4】依据前方图形里的数的摆列规律,填入适合的数。
(1)10 7 12 9 145914111613(2)479 816 814 43249 3 27 (3)1243636 12练习 4:找出摆列规律,在空缺处填上适合的数。
小学数学奥数知识点顺口溜
小学数学奥数知识点顺口溜一、整数四则运算正负结合简便记,两正相加更强力,同号相减均正数,异号相减看绝对。
乘法中符号不变化,同号正,异号负,除法中同正同负,同号正,异号负,除法进位有窍门,除整除,余继续。
二、分数的加减法分母相同简单了,分子相加就好。
分母不同不用愁,先通分再相加。
异分共分添加法,先找最小公倍数。
公倍数除分母得,分子相加乘倍数。
三、分数的乘除法分数乘法简单了,分子分母分别乘。
分数除法记窍门,倒数乘就没烦恼。
倒数就是分子分母调,再乘除法就好。
四、小数的四则运算小数加减先对齐,按位相加减就对。
小数乘法省工夫,先不算小数点位置。
两小数位数相加,小数点一起往后移。
小数点后有几位,结果小数点后就是。
五、比例与百分数比例问题要注意,等比例关系很重要。
百分数是百分之几,百分比不可忽视。
百分数转小数很简单,除以一百就是了。
小数转百分数说易行,乘以一百处理好。
六、几何图形平行线没有交,对应角相等。
三角形有分类,等边等腰直角。
正方形四边等,对角线相等长。
矩形对角线平分,长和宽用好。
梯形上底下底和高,求面积公式别忘。
圆的直径和周长,半径和面积要懂。
几何题多动脑,观察要细致思考。
七、解方程方程两边同时加减,使方程保持平衡。
方程两边同时乘除,等式依然成立。
解方程要记住,变量消失是最好。
去括号合并同类项,一元方程变一步。
分式方程有窍门,先去分母再求解。
方程题要动脑,试几个答案再求证。
总结:小学数学奥数知识点,顺口溜记牢牢。
整数分数小数运算,四则运算要规范。
比例百分数记心间,几何图形要观察。
解方程灵活应用,数学奥数轻松学习。
小学奥数数论知识点
小学奥数数论知识点一、数的认识1. 自然数:用于计数和排序的数,包括0和正整数。
2. 奇数与偶数:奇数是不能被2整除的整数,偶数是能被2整除的整数。
3. 质数与合数:质数是只有1和本身两个因数的大于1的自然数,合数是除了1和本身外还有其他因数的自然数。
4. 因数与倍数:如果整数a能被整数b整除,a是b的倍数,b是a的因数。
二、数的运算1. 加法与减法:加法是将两个或多个数合并成一个数的运算,减法是从一个数中去掉另一个数的运算。
2. 乘法与除法:乘法是重复加法的简化,除法是将一个数分成几个相等部分的运算。
3. 余数:在除法中,被除数除以除数后剩下的数称为余数。
三、数的性质1. 唯一分解定理:每个大于1的整数都可以唯一地表示为质数的乘积。
2. 最大公约数和最小公倍数:最大公约数是两个或多个整数共有的最大的因数,最小公倍数是这些整数的最小公共倍数。
3. 奇偶性:奇数加奇数得偶数,偶数加偶数得偶数,奇数加偶数得奇数。
四、数的应用1. 约数倍数问题:涉及找出一个数的约数或倍数的问题。
2. 质数问题:涉及质数的分布、判断和性质的问题。
3. 分数的拆分与比较:涉及将分数拆分为不同单位的和,以及比较分数大小的问题。
五、解题技巧1. 枚举法:通过列举所有可能的情况来找到答案。
2. 反证法:假设某个结论是错误的,通过推理得出矛盾,从而证明原结论是正确的。
3. 归纳法:通过观察一系列特殊情况,找出一般规律。
六、例题解析1. 例题一:找出20以内的所有质数。
- 解析:20以内的质数有2, 3, 5, 7, 11, 13, 17, 19。
2. 例题二:求36和54的最大公约数。
- 解析:通过辗转相除法,可以求得36和54的最大公约数是18。
七、总结数论是数学的基础分支之一,对于培养逻辑思维和解决问题的能力具有重要作用。
小学奥数数论涉及的知识点广泛,包括数的认识、数的运算、数的性质、数的应用以及解题技巧等。
掌握这些知识点,对于提高学生的数学素养和解决复杂问题的能力至关重要。
小学奥数找规律的方法大全及常见题型大全(给力)
找规律的详细方法及题型一.有理数找规律的方法1.画桥法:画小桥、画大桥2.从前往后,从上往下3.从最前面两个开始突破二.找规律的几大常见题型1.前一个数比后一个数多几或前一个比后一个数少几.2.前一个数是后一个数的几倍或后一个数是前一个数的几倍.3.前一个是后一个的几倍多几,后一个是前一个的几倍多几.4.前两个的和等于第三个数.5.分数的找规律方法:先看分子,再看分母,最后调系数或调正负三.几种常见的数列1.奇数数列:1、3、5、7、9……2n-13、5、7、9、11……2n+12.偶数数列:2、4、6、8、10……2n0、2、4、6、10……2n-24、6、8、10 、12……2n+23.乘方数列:2 、4、8、16……2n1、2、4、8、16……2n-1-2 、4、-8、16、-32……(-1)n·2n1、-2、4、-8、16、-32…(-1)n+1·2n-1小学找规律专题二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()举一反三1:1.在下面的括号里填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()2.按规律填数。
(1)2,8,32,128,(),()(2)1,5,25,125,(),()3.先找规律再填数。
12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()(3)3,4,7,3,4,10,3,4,13,(),(),()举一反三2:1.按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()2.在括号里填上适当的数。
(1)18,3,15,4,12,5,(),()(2)1,15,3,13,5,11,( ),( ) 3.找规律填数。
小学奥数期末知识点汇总
小学奥数期末知识点汇总在小学奥数的学习中,掌握并熟悉各个知识点是非常重要的。
这些知识点包括数字与计数、几何形状与图形、数的运算、逻辑推理等方面。
下面将为大家汇总小学奥数期末的知识点。
一、数字与计数1.1 认识整数:自然数、零、负整数1.2 数字的大小比较:数字的大小关系及大小比较符号1.3 数的读法和写法:阿拉伯数字和汉字读法、数的拆分与组合、数的进制表示1.4 数的倍数和因数:倍数与公倍数、因数与公因数、最大公因数与最小公倍数1.5 数字的运算:加法、减法、乘法、除法运算及运算规律1.6 小数:小数的认识、小数的读法和写法、小数的加减乘除等运算1.7 分数:分数的认识、分数的读法和写法、分数的加减乘除等运算1.8 百分数:百分数的认识、百分数的读法和写法、百分数的换算等1.9 常用计量单位:长度、重量、容量等的换算二、几何形状与图形2.1 拓扑关系:包含关系、相交关系、重叠关系等2.2 点、线、面的认识:点的特征、线的性质、平面的特性等2.3 基本几何图形:直线、射线、线段、角等的认识和性质2.4 多边形:三角形、四边形等多边形的分类、特性和计算2.5 圆:圆的认识、公式及计算2.6 立体图形:正方体、长方体等立体图形的分类、特性和计算三、数的运算3.1 加减乘除:四则运算的概念、性质和运算法则3.2 乘方与开方:乘方和开方的概念、运算法则和应用3.3 根号与幂:根号和幂的认识、运算法则和应用3.4 分数的加减乘除:分数的加减乘除法则、分数与整数运算等3.5 百分数的运用:百分数与整数、分数的运算、百分数之间的比较等四、逻辑推理4.1 数字的规律:数列的基本概念、数字规律的发现和推理4.2 图形的规律:图形变换、图形推理和图形的对称等4.3 排列组合:基本的排列组合方法和应用4.4 逻辑思维:逻辑判断、逻辑关系、逻辑表达等以上是小学奥数期末的知识点汇总,希望能够帮助大家对小学奥数的学习有更清晰的认识和了解。
奥数七大板块知识点梳理汇总
奥数七大板块知识点梳理汇总一、计算板块。
1. 整数计算。
- 四则运算:加法、减法、乘法、除法的基本运算规则。
包括运算顺序(先乘除后加减,有括号先算括号内)。
- 简便运算:- 加法交换律:a + b=b + a;加法结合律:(a + b)+c=a+(b + c)。
- 乘法交换律:a× b = b× a;乘法结合律:(a× b)× c=a×(b× c);乘法分配律:a×(b + c)=a× b+a× c。
- 减法的性质:a - b - c=a-(b + c);除法的性质:a÷ b÷ c=a÷(b× c)(b、c≠0)。
2. 小数计算。
- 小数的四则运算:与整数四则运算类似,但要注意小数点的位置。
- 小数的简便运算:同样可以运用整数简便运算的定律,如乘法分配律在小数计算中的应用,例如2.5×(4 + 0.4)=2.5×4+2.5×0.4 = 10 + 1=11。
3. 分数计算。
- 分数的四则运算:- 加法和减法:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,再按照同分母分数加减法的规则计算。
- 乘法:分子相乘的积做分子,分母相乘的积做分母。
- 除法:除以一个分数等于乘以它的倒数。
- 分数的简便运算:例如利用乘法分配律(3)/(4)×((4)/(5)+(8)/(5))=(3)/(4)×(4)/(5)+(3)/(4)×(8)/(5)=(3)/(5)+(6)/(5)=(9)/(5)。
二、数论板块。
1. 整除。
- 整除的概念:若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),记作ba。
- 整除的性质:- 若ab且bc,则ac。
- 若ab且ac,则对于任意整数m、n,有a(mb + nc)。
小学数学奥数知识点
小学数学奥数知识点小学数学奥数知识常见的知识点主要有以下方面:加法原理和乘法原理排列组合分数运算勾股定理简单的代数方程逻辑推理几何图形的性质和计算概率问题数列问题质数与合数因数与倍数最大公约数与最小公倍数平均数、中位数和众数简单的立体几何速度、时间和距离问题百分数和小数对称性与反射逆向思维和试错法等式和不等式等等这些内容,就不一一列举了,后面正文里面有详细描述。
一.加法原理和乘法原理:加法原理:指如果一个事件可以分为若干个互不相交的事件,那么这个事件发生的可能性等于这些互不相交事件发生的可能性之和。
乘法原理:指如果一个事件可以分为若干个步骤,每个步骤有若干个不同的选项,那么这个事件发生的可能性等于每个步骤选项数的积。
例题:一个商店出售5种颜色的T恤,6种颜色的裤子,和4种颜色的帽子。
一个顾客想购买一套衣服,包括一件T恤,一条裤子,和一顶帽子。
问有多少种不同的搭配?解答:根据乘法原理,共有5×6×4=120种不同的搭配。
学习方法:通过实际生活中的例子,让学生理解加法原理和乘法原理的应用,多做练习题提高运用能力。
二.排列组合:排列指的是从一组对象中选取若干个对象进行排列,而不同的排列方式被视为不同的情况。
一般来说,如果从n 个对象中选取k 个对象进行排列,那么不同的排列数为n 的k 次方,即A(n,k) = n! / (n-k)!。
组合指的是从一组对象中选取若干个对象进行组合,而不同的组合方式被视为同一种情况。
一般来说,如果从n 个对象中选取k 个对象进行组合,那么不同的组合数为C(n,k) = n!/((n-k)!k!)。
例题:有8个人参加比赛,前三名将获得奖品。
有多少种不同的获奖组合?解答:用排列公式,8×7×6=336种排名。
学习方法:学习排列组合的公式,通过例题演示如何运用公式解决问题,并进行大量实战练习。
三.分数运算:加减运算:对于两个分数进行加减运算,需要将分数的分母化为相同的数,然后将分子相加或相减即可。
五年级奥数找规律题
五年级奥数找规律题一、找规律的基本方法1. 数字规律(1)等差数列定义:相邻两项的差相等的数列。
例如:1,3,5,7,9,…,相邻两项的差都是2。
通项公式:公式,其中公式是第公式项的数,公式是首项,公式是项数,公式是公差。
题目:求等差数列3,7,11,15,…的第10项。
解析:首先确定公式,公式。
根据通项公式公式,当公式时,公式。
(2)等比数列定义:相邻两项的比值相等的数列。
例如:1,2,4,8,16,…,相邻两项的比值都是2。
通项公式:公式,其中公式是第公式项的数,公式是首项,公式是项数,公式是公比。
题目:等比数列2,6,18,54,…的第6项是多少?解析:这里公式,公式。
根据通项公式公式,当公式时,公式。
(3)混合规律有些数列是由多种规律组合而成的。
例如:1,2,3,5,8,13,…,这个数列从第三项起,每一项都是前两项的和。
题目:数列1,1,2,3,5,8,13,21,…,求第10项。
解析:这是斐波那契数列,规律是从第三项起公式。
依次计算可得:第7项公式,第8项公式,第9项公式,第10项公式。
2. 图形规律(1)图形数量规律题目:观察下列图形,找出规律并回答问题。
△□□△△□□□△△△□□□□…第20个图形是什么?解析:可以分组来看,第一组是1个△和2个□,第二组是2个△和3个□,第三组是3个△和4个□,以此类推。
设第公式组,前面公式组图形的总数为公式。
当公式时,公式,说明第20个图形是第5组的最后一个图形,是□。
(2)图形位置规律题目:下面是一组正方形按规律摆放。
第一个正方形:左上角有一个点;第二个正方形:左上角和右上角各有一个点;第三个正方形:左上角、右上角和右下角各有一个点;第四个正方形:四个角都有一个点。
问第10个正方形有几个点?解析:观察可得,第公式个正方形的点数是公式个角中从左上角开始按顺时针方向连续的角的个数之和。
第10个正方形的点数为公式。
3. 数表规律题目:观察下面的数表:12 34 5 67 8 9 1011 12 13 14 15…问第10行第5个数是多少?解析:先求前9行的数字个数,根据等差数列求和公式公式,当公式时,公式。
小学数学奥数知识点全面汇总
小学数学奥数知识点全面汇总数学作为一门科学,不仅是学校教育中重要的学科,也是培养学生逻辑思维和解决问题能力的重要工具。
在小学阶段,学生接触的数学知识比较基础,但是在数学奥数竞赛中,往往需要更加深入和全面的掌握数学知识,以解决更为复杂的问题。
下面将对小学数学奥数知识点进行全面的汇总。
一、四则运算1. 加法2. 减法3. 乘法4. 除法在加法运算中,学生需要熟练掌握进位原理,能够灵活运用各种进位运算方法。
在减法运算中,学生需要掌握相应的借位原理,能够正确计算减法运算。
在乘法运算中,应重点掌握两位数与一位数的乘法运算,以及两位数与两位数的乘法运算。
在除法运算中,学生需要熟练掌握除法运算的步骤和原理,能够正确计算商和余数。
二、倍数与因数1. 倍数的概念2. 公倍数3. 最小公倍数4. 因数的概念5. 公因数6. 最大公因数学生需要了解倍数和因数的概念,并能够正确计算倍数和因数。
特别是在最小公倍数和最大公因数的计算中,需要采用较为灵活的方法,以解决复杂的问题。
三、分数1. 分数的概念2. 分数的基本运算3. 分数的化简与约分4. 分数的比较大小学生需要熟悉分数的概念和表示方法,并能够进行分数的加减乘除运算。
在运算过程中,需要进行分数的化简和约分。
此外,学生还需要掌握分数的大小比较,以便正确排序和比较大小。
四、小数1. 小数的概念2. 小数的基本运算3. 小数和分数的转化学生需要了解小数的概念和表示方法,并能够进行小数的加减乘除运算。
在小数和分数的转化中,需要掌握正确的转化方法,以便在不同的运算中互相转化。
五、图形与几何1. 平面图形的名称和性质2. 直角、钝角、锐角的判断3. 直线、线段、射线的概念4. 平行线和垂直线的判断5. 三角形的分类和性质学生需要熟悉各种平面图形的名称和性质,并能够准确判断直角、钝角和锐角,平行线和垂直线的关系等。
在解决几何问题时,需要熟练应用各种定理和性质,以推导和证明几何关系。
小学四年级奥数知识总结
奥数知识(四年级)1、笔画数等于奇点数的一半,即:奇点数/2=笔画数2、等差数列公式:中项=(首项+末项)/2末项=首项+(项数-1)*公差项数=(末项-首项)/公差+1和=中项*项数=(首项+末项)*项数/2首项=2*和/项数-末项末项=2*和/项数-首项3、等式规律:等式的两边同时加上或减去一个相同的数,等式不变。
等式的两边同时乘以或除以一个相同的不为零的数,等式不变。
4、分数规律:分数的分子和分母同时乘以或除以一个相同的不为零的数,分数值不变。
5、定义新运算:定义新运算没有交换律,也没有结合律。
6、周期问题:关键在于找出周期。
7、可能性问题:可能性的大小,一般用分数表示,如果整个事情有m种可能,而符合条件的只有n种可能,则符合条件要求的可能性是n/m。
8、抽屉原理:9、差倍问题:小数=差/(倍数-1)大数=小数+差10、和差规律:小数=(和-差)/2大数=(和+差)/211、原龄问题:两人年龄差是永运不变的量。
两人年龄之间的倍数关系,随着年龄的变化而变化。
12、植树问题:分封闭路线与不封闭路线两种,规律如下:封闭路线上植树:棵数=段数不封存闭路线上值树可分为三种:两端都植树:棵数=段数+1一端植树,另一端不植树:棵数=段数两端都不植树:棵数=段数-113、还原问题:解答时,从所给的结果出发,抓住顺序相反,运算相反这两条原理,由后向前一步步倒推.14、盈亏问题:人数=(盈+亏)/两次分配平均数之差15、两次亏缺:人数=(大亏-小亏)/两次分配平均数之差16、两次盈余:人数=(大盈-小盈)/两次分配平均数之差17、相遇问题:速度和*相遇时间=总路程18、列车过桥:车速*过桥时间=桥长+车长19、追及问题:速度差*追及时间=追及距离20、环形问题:如果两个物体同时同地背向运动,它们相遇时合走了一个环形全程,如果两个物体同时同地同向运动,它们相遇时,快的物体比慢的物体多运动了一个环形全程。
21、流水中航行:顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)/2水速=(顺水速度-逆水速度)/222、乘法原理:如果完成某件事需分几个步骤,做第一步有a1种不同方法,做第二步有a2种不同的方法,……做第n步有a n种不同方法,那么完成这件事共有:N=a1*a2*……*a n种不同方法24、方阵问题:方阵不论在哪一层,每边上的人(或物)数量都不相同,每向里一层,每边上的个数就少2,实心方阵总数=每边人(或物)数*每边人(或物)数。
奥数公式及规律
循环小数化分数:1、混循环小数,循环节有几个数,分母就有几个9,2、不循环的有几个数,分母再添几个0,分子是从不循环到一个循环节数减去不循环的数整除规律:(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a. 0是任何非零整数的倍数,a≠0,a为整数,则a|0. (2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的数字和能被3整除,则这个整数能被3整除。
(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)若一个整数的末位是0或5,则这个数能被5整除。
(6)若一个整数能被2和3整除,则这个数能被6整除。
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7 的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。
(9)若一个整数的数字和能被9整除,则这个整数能被9整除。
(10)若一个整数的末位是0,则这个数能被10整除。
(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!(12)若一个整数能被3和4整除,则这个数能被12整除。
(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学(数学)奥数知识规律大全1和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数两个数的和,差,倍数关系两个数①(和-差)÷2=较小数较小数+差=较大数差÷(倍数-1)=小数和÷(倍数+1)=小数和-较小数=较大数公式小数×倍数=大数小数×倍数=大数②(和+差)÷2=较大数和-小数=大数小数+差=大数较大数-差=较小数和-较大数=较小数求出同一条件下的关键问题和与差和与倍数差与倍数2不定方程一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;常规方法:观察法、试验法、枚举法;多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一;多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;涉及知识点:列方程、数的整除、大小比较;解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数;3抽屉原理抽屉原则一:如果把(n+1)个物体放在n 个抽屉里,那么必有一个抽屉中至少放有 2 个物体。
例:把 4 个物体放在 3 个抽屉里,也就是把 4 分解成三个整数的和,那么就有以下四种情况:①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有 2 个或多于 2 个物体,也就是说必有一个抽屉中至少放有 2 个物体。
抽屉原则二:如果把n 个物体放在m 个抽屉里,其中n>m,那么必有一个抽屉至少有: ①k=[n/m]+1 个物体:当n 不能被m 整除时。
②k=n/m个物体:当n 能被m 整除时。
理解知识点:[X]表示不超过X 的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
4定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
5二进制及其应用十进制:用0~9 十个数字表示,逢10 进1;不同数位上的数字表示不同的含义,十位上的 2 表示20,百位上的 2 表示 200。
所以 234=200+30+4=2×102+3×10+4。
=An×10 +An-1×10 +An-2×10 +An-3×10 +An-4×10 +An-6×10 +……+A3×10 +A2×10 +A1×10n-1n-2n-3n-4n-5n-721注意:N0=1;N1=N(其中N 是任意自然数)二进制:用0~1 两个数字表示,逢 2 进 1;不同数位上的数字表示不同的含义。
= An×2 +An-1×2 +An-2×2 +An-3×2 +An-4×2 +An-6×2n-7n-1 n-2 n-3 n-4 n-5+……+A3×22+A2×21+A1×20 注意:An 不是 0 就是 1。
十进制化成二进制:①根据二进制满 2 进 1 的特点,用 2 连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。
②先找出不大于该数的 2 的n 次方,再求它们的差,再找不大于这个差的 2 的n 次方,依此方法一直找到差为 0,按照二进制展开式特点即可写出。
6 分数大小的比较基本方法:①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。
②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。
③基准数法:确定一个标准,使所有的分数都和它进行比较。
④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。
⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。
(具体运用见同倍率变化规律)⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。
⑦倍数比较法:用一个数除以另一个数,结果得数和 1 进行比较。
⑧大小比较法:用一个分数减去另一个分数,得出的数和 0 比较。
⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。
⑩基准数比较法:确定一个基准数,每一个数与基准数比较。
7分数与百分数的应用基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
分数单位:把单位“1”平均分成几份,表示这样一份的数。
百分数:表示一个数是另一个数百分之几的数。
常用方法:①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。
②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。
③转化思维方法:把一类应用题转化成另一类应用题进行解答。
最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。
常见的处理方法是确定不同的标准为一倍量。
④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。
⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。
有以下三种情况:A、分量发生变化,总量不变。
B、总量发生变化,但其中有的分量不变。
C、总量和分量都发生变化,但分量之间的差量不变化。
⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。
⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。
⑧浓度配比法:一般应用于总量和分量都发生变化的状况。
工程问题基本公式:①工作总量=工作效率×工作时间②工作效率=工作总量÷工作时间③工作时间=工作总量÷工作效率基本思路:①假设工作总量为“1” (和总工作量无关);②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.关键问题:确定工作量、工作时间、工作效率间的两两对应关系。
经验简评:合久必分,分久必合。
归一问题的基本特点:归一问题的基本特点:问题的基本特点问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;8鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;置换问题、把假设错的那部分置换出来;置换问题假设问题,把假设错的那部分置换出来基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
9几何面积基本思路:在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。
常用方法: 1. 连辅助线方法 2. 利用等底等高的两个三角形面积相等。
3. 大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。
4. 利用特殊规律①等腰直角三角形,已知任意一条边都可求出面积。
(斜边的平方除以 4 等于等腰直角三角形的面积)②梯形对角线连线后,两腰部分面积相等。
③圆的面积占外接正方形面积的 78.5%。
10加法乘法原理和几何计数加法原理:如果完成一件任务有n 类方法,在第一类方法中有m1 种不同方法,在第二类方法中有m2 种不同方法……,在第n 类方法中有mn 种不同方法,那么完成这件任务共有:m1+ m2....... +mn 种不同的方法。
关键问题:确定工作的分类方法。
基本特征:每一种方法都可完成任务。
乘法原理:如果完成一件任务需要分成n 个步骤进行,做第 1 步有m1 种方法,不管第 1 步用哪一种方法,第 2 步总有m2 种方法……不管前面n-1 步用哪种方法,第n 步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn 种不同的方法。
关键问题:确定工作的完成步骤。
基本特征:每一步只能完成任务的一部分。
直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。
直线特点:没有端点,没有长度。
线段:直线上任意两点间的距离。
这两点叫端点。
线段特点:有两个端点,有长度。
射线:把直线的一端无限延长。
射线特点:只有一个端点;没有长度。
①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数11简单方程代数式:用运算符号(加减乘除)连接起来的字母或者数字。
方程:含有未知数的等式叫方程。
列方程:把两个或几个相等的代数式用等号连起来。
列方程关键问题:用两个以上的不同代数式表示同一个数。
等式性质:等式两边同时加上或减去一个数,等式不变;等式两边同时乘以或除以一个数(除 0),等式不变。
移项:把数或式子改变符号后从方程等号的一边移到另一边;移项规则:先移加减,后变乘除;先去大括号,再去中括号,最后去小括号。
加去括号规则:在只有加减运算的算式里,如果括号前面是“+”号,则添、去括号,括号里面的运算符号都不变;如果括号前面是“-”号,添、去括号,括号里面的运算符号都要改变;括号里面的数前没有“+”或“-”的,都按有“+”处理。