(完整版)高中数学必修五第一章测试卷

合集下载

(好题)高中数学必修五第一章《数列》检测卷(有答案解析)(2)

(好题)高中数学必修五第一章《数列》检测卷(有答案解析)(2)

一、选择题1.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N *-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .172.对于数列{}n a ,定义11222n nn a a a Y n-++⋅⋅⋅+=为数列{}n a 的“美值”,现在已知某数列{}n a 的“美值”12n n Y +=,记数列{}n a tn -的前n 项和为n S ,若6n S S ≤对任意的*n N ∈恒成立,则实数t 的取值范围是( )A .712,35⎡⎤⎢⎥⎣⎦B .712,35⎛⎫⎪⎝⎭ C .167,73⎡⎤⎢⎥⎣⎦ D .167,73⎛⎫⎪⎝⎭ 3.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( ) A .2018B .2019C .2020D .20214.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .25.已知数列1a ,21a a ,…1nn a a -,…是首项为1,公比为2的等比数列,则2log n a =( )A . (1)n n +B . (1)4n n -C .(1)2n n + D .(1)2n n - 6.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D .2597.若数列{}n a 满足*111(n nd n N a a +-=∈,d 为常数),则称数列{}n a 为调和数列,已知数列21n x ⎧⎫⎨⎬⎩⎭为调和数列,且222212320184036x x x x +++⋯+=,则92010x x +的最大值为( ) A .2B .2C.22D .48.已知椭圆2222x y a b +=1(a>b>0)与双曲线2222x y m n-=1(m>0,n>0)有相同的焦点(-c ,0)和(c ,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是 ( )A .3B .2C .14 D .129.设{}n a 为等比数列,给出四个数列:①{}2n a ,②{}2n a ,③{}2na ,④{}2log||n a .其中一定为等比数列的是( ) A .①③B .②④C .②③D .①②10.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .27611.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-12.已知定义域为R 的函数f (x )满足f (x )=3f (x +2),且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,设f (x )在[2n -2,2n )上的最大值为*()n a n N ∈,且数列{a n }的前n 项和为S n ,若S n <k 对任意的正整数n均成立,则实数k 的取值范围为( ) A .27,8⎛⎫+∞⎪⎝⎭B .27,8⎡⎫+∞⎪⎢⎣⎭C .27,4⎛⎫+∞⎪⎝⎭D .27,4⎡⎫+∞⎪⎢⎣⎭二、填空题13.已知数列{}n a 的前n 项和n S ,且满足1n n a S +=,则39121239S S S S a a a a +++⋅⋅⋅+=___________.14.数列{}n a 中,16a =,29a =,且{}1n n a a +-是以2为公差的等差数列,则n a =______.15.数列{}n a 满足11a =,22a =,且2221sin 2cos 22n nn n a a ππ+⎛⎫=+⋅+ ⎪⎝⎭(*n N ∈),则2020a =__.16.若数列{}n a 满足12a =,141n n a a +=+,则使得22020n a ≥成立的最小正整数n 的值是______.17.已知数列{}n a 的前n 项和是n S ,若111,n n a a a n +=+=,则1916S S -的值为________.18.已知数列{}n a 的前n 项和()2*32n n n S n +=∈N ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为______.19.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,1121(2)(2)n n n n n n b a a +++=++,对任意的*n N ∈,n k T >,恒成立,则k 的最小值是__________.20.若数列}{n a2*3()n n n N =+∈,则n a =_______.三、解答题21.已知()23f x x x =-,数列{}n a 前n 项和为n S ,且()n S f n =.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 满足43nn na b =⨯,数列{}n b 的前n 项和为n T ,且对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,求实数m 的取值范围. 22.已知数列{}n a 满足:*111,21,n n a a a n n N +=-=-∈(1)证明{}n a n +是等比数列,并求出数列{}n a 的通项公式; (2)设21,n n n n b S a n+=+为数列{}n b 的前n 项和,求n S 23.在①242n n n S a a =+,②12a =,12n n na S +=这两个条件中任选一个,补充到下面横线处,并解答.已知正项数列{}n a 的前n 项和为n S , . (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足131log 12n n b a =-,且n n n c a b =,求数列{}n c 的前n 项和n M . 注:如果选择多个条件分别进行解答,按第一个解答进行计分.24.已知等差数列{}n a 中,n S 为数列{}n a 的前n 项和,519a =,321S =. (1)求数列{}n a 的通项公式n a ; (2)令1n n b S n=+,求数列{}n b 的前n 项和n T . 25.从①1a 、2a 、5a 成等比数列,②525S =,③222n nS S n n+-=+,这三个条件中任选一个,补充在下面问题中并作答.已知等差数列{}n a 的前n 项和为n S ,47a =, ,122n a n nb a +=+,求数列{}n b 的前n 项和为n T .26.已知数列{}n a 的前n 项和n S 满足()*224n n S a a n N =-∈,且1a ,2a ,31a-成等差数列.(1)求数列{}n a 的通项公式; (2)设()()222221log log +=n n n b a a ,{}n b 的前项和为n T ,对任意*n N ∈,23n mT >恒成立,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.2.C解析:C 【分析】由1112222n n n n a a a Y n -+++⋅⋅⋅+==,可得1112222n n n n a a a -+=⋅+⨯++⋅⋅进而求得22n a n =+,所以()22n a tn t n -=-+可得{}n a tn -是等差数列,由6n S S ≤可得660a t -≥,770a t -≤,即可求解【详解】由1112222n n n n a a a Y n-+++⋅⋅⋅+==可得1112222n n n n a a a -+=⋅+⨯++⋅⋅,当2n ≥时()21212221n n n a a a n --+⋅=⋅-+⋅+,又因为1112222n n n a a n a -+=++⋅⋅⋅+,两式相减可得:()()11122221n n n n n n n n a -+=--=+,所以22n a n =+, 所以()22n a tn t n -=-+, 可得数列{}n a tn -是等差数列, 由6n S S ≤对任意的*n N ∈恒成立, 可得:660a t -≥,770a t -≤, 即()2620t -⨯+≥且()2720t -⨯+≤,解得:16773t ≤≤,所以实数t 的取值范围是167,73⎡⎤⎢⎥⎣⎦,故选:C【点睛】关键点点睛:本题解题的关键点是由已知条件得出1112222n n n n a a a -+=⋅+⨯++⋅⋅再写一式可求得n a ,等差数列前n 项和最大等价于0n a ≥,10n a +≤,3.B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出. 【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2.142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+ (1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 故选:B . 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.4.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 5.D解析:D 【分析】根据题意,求得1n n a a -,再利用累乘法即可求得n a ,再结合对数运算,即可求得结果.【详解】由题设有111122(2)n n nn a n a ---=⨯=≥, 而(1)1213221121122(2)n n n n n n a aa a a n a a a -+++--=⨯⨯⨯⨯=⨯=≥,当1n =时,11a =也满足该式,故(1)22(1)n n n a n -=≥,所以2(1)log 2n n n a -=, 故选:D. 【点睛】本题考查利用累乘法求数列的通项公式,涉及对数运算,属综合基础题.6.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.7.C解析:C 【分析】 先由题设21n x ⎧⎫⎨⎬⎩⎭为调和数列{}2n x ⇒是等差数列,进而利用等差数列的前n 项和公式及性质求得2292010x x +的值,再利用基本不等式求得92010x x +的最大值即可.【详解】解:由题设知:2212211111n n n n x x d x x ++-=-=*(n N ∈,d 为常数), {}2n x ∴是等差数列, 2222221201812320182018()40362x x x x x x++++⋯+==, 222212018920104x x x x ∴+==+,2292010920102x x x x +(当且仅当92010x x =时取“等号“), 2229201092010()2()8x x x x ∴++=,9201022x x ∴+(当且仅当92010x x =“等号“),92010x x ∴+的最大值为故选:C. 【点睛】本题主要考查等差数列的定义、性质、前n 项和公式及基本不等式在处理最值中的应用,属于中档题.8.D解析:D 【解析】由题意可知2n 2=2m 2+c 2. 又m 2+n 2=c 2, ∴m=2c. ∵c 是a ,m 的等比中项, ∴2c am =, ∴22ac c =, ∴12c e a ==.选D . 9.D解析:D 【分析】设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】设11n n a a q -=,①,112=2n n a a q-,所以数列{}2n a 是等比数列;②,222222111=()n n n a a qa q --=,所以数列{}2n a 是等比数列; ③,11112111211222=2,222n n n n n n n n a a q a a qa q a q a a q -------==不是一个常数,所以数列{}2n a 不是等比数列; ④,122122121log ||log |q |log ||log |q |n n n n a a a a ---=不是一个常数,所以数列{}2log ||n a 不是等比数列. 故选D 【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.10.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果.【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=,故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.11.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立,故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.12.B解析:B 【分析】运用二次函数的最值和指数函数的单调性求得[0,2]x ∈的()f x 的最大值,由递推式可得数列{}n a 为首项为94,公比为13的等比数列,由等比数列的求和公式和不等式恒成立思想可得k 的最小值 【详解】解:当[0,2]x ∈时,且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,可得01x ≤<时,()f x 的最大值为(0)2f =,12x <≤时,()f x 的最大值为39()24f =,即当[0,2]x ∈时,()f x 的最大值为94, 当24x ≤<时,1()(2)3f x f x =-的最大值为912,当46x ≤<时,1()(2)3f x f x =-的最大值为936, ……可得数列{}n a 为首项为94,公比为13的等比数列,所以91(1)2712743(1)183813n n nS -==-<-, 由S n <k 对任意的正整数n 均成立,可得278k ≥, 所以实数k 的取值范围为27,8⎡⎫+∞⎪⎢⎣⎭,故选:B 【点睛】此题考查分段函数的最值求法和等比数列的求和公式,以及不等式恒成立问题的解法,考查转化思想和运算能力,属于中档题二、填空题13.【分析】由推得得到数列表示首项为公比为的等比数列求得和进而得到再结合等比数列求和公式即可求解【详解】由数列的前项和且满足当时两式相减可得即令可得解得所以数列表示首项为公比为的等比数列所以则所以所以故 解析:1013【分析】由1n n a S +=,推得11(2)2n n a n a -=≥,得到数列{}n a 表示首项为12,公比为12的等比数列,求得n a 和 n S ,进而得到21n nnS a =-,再结合等比数列求和公式,即可求解. 【详解】由数列{}n a 的前n 项和n S ,且满足1n n a S +=, 当2n ≥时,111n n a S --+=,两式相减,可得()11120n n n n n n a a S S a a ----+-=-=,即11(2)2n n a n a -=≥, 令1n =,可得11121a S a +==,解得112a =, 所以数列{}n a 表示首项为12,公比为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭, 则11122111212nn nS ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭-,所以1122112nn n n n S a ⎛⎫- ⎪⎝⎭==-⎛⎫ ⎪⎝⎭,所以()2939121239222(111)S S S S a a a a ++++=+++-+++()9102129211101312-=-=-=-.故答案为:1013. 【点睛】关键点睛:由1n n a S +=,利用1,1=,2n n n n S n a S S n -=⎧⎨-≥⎩,推得11(2)2n n a n a -=≥从而证得数列{}n a 为等比数列是解答本题的关键.14.【分析】由是以2为公差的等差数列可得:再利用累加求和方法等差数列的求和公式即可得出【详解】∵是以2为公差的等差数列∴∴故答案为:【点睛】本题考查了等差数列的通项公式与求和公式累加求和方法考查了推理能 解析:25n +【分析】由{}1n n a a +-是以2为公差的等差数列,可得:121n n a a n --=-,再利用累加求和方法、等差数列的求和公式即可得出. 【详解】∵{}1n n a a +-是以2为公差的等差数列, ∴()()1212221n n a a a a n n --=-+-=-,∴()()()12116321n n n a a a a a a n -=+-+⋯⋯+-=++⋯⋯+-()2121552n n n +-=+=+,故答案为:25n +. 【点睛】本题考查了等差数列的通项公式与求和公式、累加求和方法,考查了推理能力与计算能力,属于中档题.15.2020【分析】当n 为偶数时可得出故偶数项是以2为首项公差为2的等差数列求出通项公式代值计算即可得解【详解】当n 为偶数时即故数列的偶数项是以2为首项公差为2的等差数列所以所以故答案为:2020【点睛解析:2020 【分析】当n 为偶数时,可得出22n n a a +=+,故偶数项是以2为首项,公差为2的等差数列,求出通项公式,代值计算即可得解. 【详解】 当n 为偶数时,2223cos 1sin 2cos 1cos 2222n n n n n n n a a a n a ππππ+-⎛⎫=+⋅+=⋅++=+ ⎪⎝⎭, 即22n n a a +=+,故数列{}n a 的偶数项是以2为首项,公差为2的等差数列, 所以2122n n a n ⎛⎫=+-⨯=⎪⎝⎭, 所以20202020a =. 故答案为:2020. 【点睛】本题考查数列的递推式,解题关键是得出当n 为偶数时,可得出2n a +与n a 的关系式,进而求出{}n a 的通项公式,考查逻辑思维能力和计算能力,属于常考题.16.【分析】根据递推关系式可证得数列为等比数列根据等比数列通项公式求得代入不等式结合可求得结果【详解】数列是以为首项为公比的等比数列由得:即且满足题意的最小正整数故答案为:【点睛】本题考查根据数列递推关 解析:11【分析】根据递推关系式可证得数列}1,代入不等式,结合n *∈N 可求得结果. 【详解】()21411n n a a +=+=,1=,)121=,∴数列}111=为首项,2为公比的等比数列, )1112n -+=⨯,)1121n -=⨯-,由22020n a ≥2020≥,即)1220211837n -≥=⨯≈,92512=,1021024=且n *∈N ,∴满足题意的最小正整数11n =.故答案为:11. 【点睛】本题考查根据数列递推关系式求解数列通项公式并解不等式的问题,关键是能够通过构造的方式,通过递推关系式得到等比数列的形式,进而利用等比数列通项公式来进行求解.17.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的解析:27【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论. 【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n n a a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27. 【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n n a a +-=,这里再计算21a a -,如果2211()22n n a a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.18.【分析】根据可求得的通项公式经检验满足上式所以可得代入所求利用裂项相消法求和即可得答案【详解】因为所以所以又满足上式所以所以所以数列的前10项和为故答案为:【点睛】解题的关键是根据求得的通项公式易错 解析:532【分析】根据1(2)n n n a S S n -=-≥可求得n a 的通项公式,经检验,112a S ==满足上式,所以可得n a ,代入所求,利用裂项相消法求和,即可得答案. 【详解】因为()2*32n n n S n +=∈N ,所以2213(1)1352(2)22n n n n n S n --+--+==≥, 所以221335231,(2)22n n n n n n n a S S n n -+-+=---≥==,又1131122a S ⨯+===满足上式, 所以()*31,n a n n N=-∈,所以111111(31)(32)3313+2n n a a n n n n +⎛⎫== ⎪-+-⎝⎭-,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为11111111115325582932323232⎛⎫⎛⎫-+-+⋅⋅⋅+-=⨯-= ⎪ ⎪⎝⎭⎝⎭, 故答案为:532【点睛】解题的关键是根据1(2)n n n a S S n -=-≥,求得n a 的通项公式,易错点为,若11a S =满足上式,则写成一个通项公式的形式,若11a S =不满足上式,则需写成分段函数形式,考查计算化简的能力,属中档题.19.【分析】首先利用与的关系式求数列的通项公式再利用裂项相消法求再利用的最值求的最小值【详解】当时解得或当两式相减后可得整理后得:所以数列是公差为1的等差数列即数列单调递增当时对任意的恒成立即的最小值是解析:13【分析】首先利用n S 与n a 的关系式,求数列{}n a 的通项公式,再利用裂项相消法求n T ,再利用n T 的最值求k 的最小值. 【详解】当1n =时,2111122S a a a =+=,解得10a =或11a =,0n a >,11a ∴=,当2n ≥,2211122n n nn n n S a a S a a ---⎧=+⎨=+⎩,两式相减后可得()()()221112n n n n n n S S a a a a ----=-+-,整理后得:()()1110n n n n a a a a --+--=,所以11n n a a --=,∴数列{}n a 是公差为1的等差数列,即n a n =,()()112111221221n n n n n n b n n n n +++==-++++++, 2231111111...21222223221n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭1112121n n +=-+++ 111321n n +=-++, 数列{}n T 单调递增,当n →+∞时,13n T →对任意的*n N ∈,n k T >,恒成立,()max n k T ∴>,即13k ≥,k 的最小值是13.故答案为:13【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.20.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题 解析:()241n +【分析】有已知条件可得出116a =,2n ≥时()()2*131()n n n N =-+-∈,与题中的递推关系式相减即可得出()241n a n =+,且当1n =时也成立.【详解】数列}{n a 2*3()n n n N =+∈4=,即116a =2n ≥()()2*131()n n n N =-+-∈22n =+, 所以()241n a n =+(2n ≥ )当1n =时,116a =适合上式,所以()241n a n =+ 【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.三、解答题21.(1)24n a n =-;(2)11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【分析】(1)易知23n S n n =-,再利用通项与前n 项和关系11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求解.(2)易得2424323n n nn n b --==⨯⨯,1160b =-<,20b =,3n ≥时,0n b >,则n T 的最小值为16-,再根据对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,由()min 16mf x ⎡⎤->⎣⎦求解. 【详解】(1)因为()23f x x x =-,()n S f n =,所以23n S n n =-,当2n ≥时,()()21131n S n n -=---,124n n n a S S n -=-=-, 当1n =时,112a S ==-,也满足24n a n =-, 故24n a n =-.(2)因为24n a n =-,43nn na b =⨯, 所以2424323n n nn n b --==⨯⨯,1160b =-<,20b =, 当3n ≥时,0n b >,故12T T =为n T 的最小值,n T 的最小值为16-, 因为对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立, 所以()min 16mf x ⎡⎤->⎣⎦, 因为[]2,4x ∈,()2239324f x x x x ⎛⎫=-=-- ⎪⎝⎭,所以()[]2,4f x ∈-, 当0m >时,()min16mf x ⎡⎤->⎣⎦,即126m ->-,解得112m >; 当0m <时,()min16mf x ⎡⎤->⎣⎦,即146m ->,解得124m <-, 0m =时,106->,显然不成立. 故实数m 的取值范围为11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【点睛】结论点睛:不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .22.(1)证明见解析,2nn a n =-;(2)()12552n S n ⎛⎫=-+⋅+⎪⎝⎭. 【分析】(1)根据条件可得112112n n n n a n a n n a n a n++++-++==++,从而可证,所以数列{}n a n +是首项为2,公比为2的等比数列,得出答案. (2)由题意可得21212n n n n n b a n ++==+,由错位相减法可得答案. 【详解】(1)数列{}n a 满足111,21n n a a a n +==+-112112n n n n a n a n n a n a n++++-++∴==++即公比12,12q a =+=∴数列{}n a n +是首项为2,公比为2的等比数列;2n n a n ∴+=(2)由题意,21212n n n n n b a n ++==+ 所以123123357212222n n n n S b b b b +=+++⋅⋅⋅+=+++⋅⋅⋅+.........① 234113572121 (222222)n n n n n S +--=+++++………② 由①-②,得123234113572135721212222222222n n n n n n n S ++-+⎡⎤⎡⎤=+++⋅⋅⋅+-+++⋅⋅⋅++⎢⎥⎢⎥⎣⎦⎣⎦234131111212?··222222n n n ++⎛⎫=+++++- ⎪⎝⎭()1111122121512251222212nn n n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎛⎫⎣⎦=+⨯-=-+⋅ ⎪⎝⎭- 从而()12552n S n ⎛⎫=-+⋅+ ⎪⎝⎭【点睛】关键点睛:本题考查由递推公式求数列的通项公式和利用错位相减法求和,解答本题的关键是根据21212n n n n n b a n ++==+得出求和的方法,利用错位相减法求和时计算要仔细,考查运算能力,属于中档题.23.(1)条件性选择见解析,2n a n =;(2)1931223n n M n -⎫⎫⎛⎛=-+⨯ ⎪ ⎪⎝⎝⎭⎭.【分析】(1)若选①,先求出12a =,由242n n n S a a =+可得111242n n n S a a +++=+,两式相减可得()()1120n n n n a a a a +++--=,从而12n n a a +-=得出答案; 若选②,由12n n na S +=可得1(1)2n n n a S --=,两式相减可得11n n a n a n++=,由累乘法可得答案. (2)由(1)可得13log 1n b n =-,则113n n b -⎛⎫= ⎪⎝⎭,于是1123n n n n c a b n -⎫⎛==⨯ ⎪⎝⎭,由错位相减法可求和得出答案. 【详解】(1)选①时,当1n =时,211142a a a =+,因为10a >,所以12a =, 由242n n n S a a =+,① 可得111242n n n S a a +++=+,②②-①得,22111422n n n n n a a a a a +++=-+-, 整理得2211220n n n n a a a a ++---=,所以()()1120n n n n a a a a +++--= 因为0n a >,所以12n n a a +-=,所以数列{}n a 是首项为2,公差为2的等差数列, 所以2n a n =; 选②时, 因为12n n na S +=①所以当2n ≥时,1(1)2n n n a S --=②①-②得:1(1)n n na n a +=+,即11n n a n a n++= ①中,令1n =,得2124a a ==,212a a =适合上式 所以当2n ≥时,1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋅12322212321n n n n n n n --=⋅⋅⋅⋅⨯⨯=--- 又1n =,1221a ==⨯ 所以对任意*N n ∈,2n a n = (2)因为13log 12nn a b =-即13log 1n b n =-所以113n n b -⎛⎫= ⎪⎝⎭,于是1123n n n n c a b n -⎫⎛==⨯ ⎪⎝⎭,2111121462333n n M n -⎫⎫⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪⎝⎝⎭⎭③2311111246233333nn M n ⎫⎫⎫⎛⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭④ ③-④得231211111222222333333n nn M n -⎫⎫⎫⎫⎛⎛⎛⎛=+⨯+⨯+⨯+⋯+⨯-⨯ ⎪ ⎪ ⎪⎪⎝⎝⎝⎝⎭⎭⎭⎭1111212333n nn -⎡⎤⎫⎫⎛⎛=⨯++⋯+-⨯⎢⎥ ⎪ ⎪⎝⎝⎭⎭⎢⎥⎣⎦1113221313nnn ⎫⎛- ⎪⎫⎛⎝⎭=⨯-⨯ ⎪⎝⎭-所以1931223n n M n -⎫⎫⎛⎛=-+⨯ ⎪ ⎪⎝⎝⎭⎭【点睛】关键点睛:本题考查求数列的通项公式和应用错位相减法求数列的前n 项和,解答本题的关键是按照步骤求解,考查计算能力,由2111121462333n n M n -⎫⎫⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪⎝⎝⎭⎭,得出2311111246233333nn M n ⎫⎫⎫⎛⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,两式相减再化简得出答案,属于中档题.24.(1)41n a n =-;(2)2(1)n nT n =+.【分析】(1)由已知列方程求出首项和公差,可得答案; (2)求出n S 及n b 的通项公式,由裂项相消求和可得答案. 【详解】(1)∵313321S a d =+=①,51419a a d =+=② 由①②得13a =,4d =. ∴1(1)41n a a n d n =+-=-; (2)由(1)知41n a n =-,13a =,()234122n n n S n n +-∴==+;∴111112(1)21n n b S n n n n n ⎛⎫===- ⎪+++⎝⎭, ∴11111111122233412(1)n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-= ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点睛】本题考查了等差数列的通项公式、数列求和,解题关键点是求出数列的首项和公差以及裂项相消求和,考查了学生的基础知识、基本运算. 25.答案见解析. 【分析】选①,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而可求得n T ;选②,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T ; 选③,设等差数列{}n a 的公差为d ,利用等差数列的求和公式求出d 的值,可求得1a 的值,求出数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T . 【详解】解:选①,设数列{}n a 的公差为d ,则由47a =可得137a d +=,由1a 、2a 、5a 成等比数列得()()21114a a d a d +=+,可得212d a d =,所以,121372a d d a d +=⎧⎨=⎩,解得170a d =⎧⎨=⎩或112a d =⎧⎨=⎩, 若17a =,0d =,则7n a =,23n b =,23n T n =;若11a =,2d =,则()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选②,设数列{}n a 的公差为d ,则由47a =可得137a d +=, 由525S =得1545252a d ⨯+=,即125a d +=, 联立以上两式可得11a =,2d =,所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选③,设数列{}n a 的公差为d ,则由47a =可得137a d +=,()112n n n d S na -=+,()112n n d S a n -∴=+,()21122n n d S a n ++∴=++, 由222n nS S n n+-=+得2d =,则11a =, 所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212n n T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和. 26.(1)12n n a ;(2)233m <. 【分析】(1)根据题设中的递推关系有12n n a a -=,算出1a 后可求{}n a 的通项. (2)利用裂项相消法可求n T ,求出n T 的最小值后可得m 的取值范围. 【详解】(1)因为()*224n n S a a n N=-∈,故11224n n Sa a --=-,所以1244n n n a a a -=-即12n n a a -=,其中2n ≥,所以322a a =且212a a =, 因为1a ,2a ,31a -成等差数列,故21321a a a =+-即111441a a a =+-,故11a =且10a ≠,故0n a ≠,故12nn a a -=即{}n a 为等比数列且公比为2,故12n n a .(2)()()()()2222211111log log 212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,所以1111111111213352121221n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为0n b >,故{}n T 为增数列,故()1min 13n T T ==,故1323m>即233m <. 【点睛】方法点睛:数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.。

(典型题)高中数学必修五第一章《数列》检测卷(有答案解析)

(典型题)高中数学必修五第一章《数列》检测卷(有答案解析)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-3.已知数列{}n a 满足11a =,24a =,310a =,1{}n n a a +-是等比数列,则数列{}n a 的前8项和8S =( ) A .376B .382C .749D .7664.已知数列{}n a 的前n 项和是n S ,且21n n S a =-,若()0,2021n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的和为( ) A .1022B .1023C .2046D .20475.在“全面脱贫”行动中,贫困户小王2020年1月初向银行借了扶贫免息贷款10000元,用于自己开发的农产品、土特产品加工厂的原材料进货,因产品质优价廉,上市后供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底街缴房租800元和水电费400元,余款作为资金全部用于再进货,如此继续,预计2020年小王的农产品加工厂的年利润为( )(取111275=..,121.29=)A .25000元B .26000元C .32000元D .36000元6.已知数列{}n a 的前n 项和为n S ,对任意的*n N ∈有2233n n S a =-,且112k S <<,则k 的值为( ) A .2或4B .2C .3或4D .67.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( ) A .-784B .-368C .-389D .-3928.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .89.设n S 是数列{}n a 的前n 项和,且()*2n n S a n n N =+∈,则{}na 的通项公式为na=( )A .23n -B .23n -C .12n -D .12n -10.等差数列{}n a 的前n 项和为n S ,1000S >,1010S <,则满足10n n a a +<的n =( ) A .50B .51C .100D .10111.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .27612.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.在数列{}n a 中,11a =,0n a ≠,曲线3y x =在点()3,n n a a 处的切线经过点()1,0n a +,下列四个结论:①223a =;②313a =;③416527i i a ==∑;④数列{}n a 是等比数列;其中所有正确结论的编号是______.14.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈,若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项的和n T 为______.15.已知数列{}n a 的前n 项和为n S ,若121(2)n n S S n -=+≥且23S =,则55S a =_________. 16.无穷数列{}n a 满足:只要()*,p q a a p q N=∈,必有11p q aa ++=,则称{}n a 为“和谐递进数列”.已知{}n a 为“和谐递进数列”,且前四项成等比数列,151a a ==,22a =,则2021S =_________.17.若a 、b 、c 成等比数列,a 、x 、b 成等差数列,b 、y 、c 成等差数列(x 、y 均不为0),则a cx y+=______. 18.数列{}n a 满足:112a =,212n n a a a n a ++⋯+=⋅,则数列{}n a 的通项公式n a =___________.19.等差数列{}n a 的前n 项和为n S ,且4873a a a +-=_________. 20.等比数列{}n a 前n 项和为n S ,若634S S =,则96S S =______. 三、解答题21.已知数列{}n a 满足1*111,33().n n n a a a n ++==+∈N(1)求证:数列{}3nn a 是等差数列. (2)求数列{}n a 的通项公式.(3)设数列{}n a 的前n 项和为,n S 求证:37.324n n S n >- 22.已知等差数列{}n a ,且55a =,515S =,首项为1的数列{}n b 满足112n n n n b a b a ++= (1)求数列{}n a 的通项公式及前n 项和n S ; (2)求数列{}n b 前n 项和n T .23.已知正项数列{}n a 的前n 项和为n S .若214,n n n a S S a +==+ (1)求证:数列是等差数列;(2)设n b =,求数列{}n b 的前n 项和n T . 24.已知{}n a 是等差数列,{}n b 是递增的等比数列且前n 和为n S ,112822,10a b a a ==+=,___________.在①2345,,4b b b 成 等差数列,②12n n S λ+=+(λ为常数)这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件分别解答,按第一个解答计分). (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T .25.已知等差数列{}n a 中,n S 为数列{}n a 的前n 项和,519a =,321S =. (1)求数列{}n a 的通项公式n a ; (2)令1n n b S n=+,求数列{}n b 的前n 项和n T . 26.已知数列{}n a 的前n 项和为n S ,且233n n S a =-. (1)求数列{}n a 的通项公式; (2)设3log n n b a =,11n n n c b b +=,求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272n nn c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n n n n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.A解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.3.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式和分组求和法,求解8S 即可 【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,878128123(122)2831612S a a a -=++=⨯+++-⨯=⨯--83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项.4.D解析:D【分析】由1(2)n n n a S S n -=-≥求出{}n a 的递推关系,再求出1a 后确定数列是等比数列,求出通项公式,根据新定义确定“和谐项”的项数及项,然后由等比数列前n 项和公式求解. 【详解】当2n ≥时,11121(221)2n n n n n n n a S S a a a a ---=--==---,∴12n n a a -=, 又11121a S a ==-,11a =,∴{}n a 是等比数列,公比为2,首项为1, 所以12n na ,由122021n n a -=<得110n -≤,即11n ≤,∴所求和为1112204712S -==-.故选:D . 【点睛】关键点点睛:本题考查数列新定义,考查等比数列的通项公式与前n 项和公式,解题思路是由1(2)n n n a S S n -=-≥得出递推关系后确定数列是等比数列,从而求得通项公式.解题关键是利用新定义确定数列中“和谐项”的项数及项.5.C解析:C 【分析】设1月月底小王手中有现款为1(120%)10000120010800a =+⨯-=元,n 月月底小王手中有现款为n a ,1n +月月底小王手中有现款为1n a +,由题意可知16000 1.2(6000)n n a a +-=-,所以数列{6000}n a -是首项为4800,公比为1.2的等比数列,求出12a 即得解. 【详解】设1月月底小王手中有现款为1(120%)1000080040010800a =+⨯--=元,n 月月底小王手中有现款为n a ,1n +月月底小王手中有现款为1n a +,则1 1.21200n n a a +=-,即16000 1.2(6000)n n a a +-=-, 所以数列{6000}n a -是首项为4800,公比为1.2的等比数列,∴11126000480012a -=⨯,即1112480012600042000a =⨯+=,年利润为420001000032000-=元, 故选:C 【点睛】关键点睛:解答本题的关键是根据递推关系1 1.21200n n a a +=-构造数列{6000}n a -,求出新数列的通项关系.6.A解析:A 【分析】利用递推关系式求出{}n a 的通项公式,再求出{}n a 的前n 项和为n S ,即可求出k 的值. 【详解】对任意的*n N ∈有2233n n S a =-, 可得:1112233a S a ==- ,解得:1=2a -, 当2n ≥时:2233n n S a =-,112233n n S a --=- 两式相减得112233n n n n n S S a a a ---=-=,即12n n a a -=-, 所以{}n a 是首项为2-,公比为2-的等比数列,所以()2nn a =-,()()()212212123nn nS ⎡⎤-⨯--⎣⎦⎡⎤==---⎣⎦--, 所以211(2)123kk S ⎡⎤<=---<⎣⎦, 所以5(219)2k <-<, 当2k =和4k =时不等式成立,所以k 的值为2或4, 故选:A. 【点睛】本题主要考查了由递推公式求通项公式,考查了等比数列前n 项和公式,属于中档题.7.D解析:D 【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D.【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值.8.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案.【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1)即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列.所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nn S n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.9.C解析:C 【分析】由()*2n n S a n n N =+∈结合11,1,2n nn S n a S S n -=⎧=⎨-≥⎩即可求出1a 和121n n a a -=-,通过构造法即可求出通项公式. 【详解】当1n =时,11121a S a ==+,解得1 1a =-;当2n ≥时,122(1)n n n a a n a n -=+---.∴121n n a a -=-,∴()1121n n a a --=-.∵112a -=-,∴12nn a -=-, ∴12nn a =-.故选:C . 【点睛】本题考查了数列通项公式的求解,考查了,n n a S 的递推关系求通项公式,考查了等比数列的通项公式,考查了构造法求数列的通项公式,属于中档题.10.A解析:A 【分析】由题意和等差数列求和公式与性质可得50510a a +>;510a <,进而可得500a >,据此分析可得答案. 【详解】根据题意,等差数列{}n a 中,1000S >,1010S <, 则有110010*********()10050()50()02a a S a a a a +⨯==+=+>,则有50510a a +>;又由110110151()10110102a a S a +⨯==<,则有510a <;则有500a >,若10n n a a +<,必有50n =; 故选:A . 【点睛】本题考查等差数列的前n 项和公式的应用,涉及等差数列的性质,属于基础题.11.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果.【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=,故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.①③④【分析】先利用导数求得曲线在点处的切线方程由此求得与的递推关系式进而证得数列是等比数列由此判断出四个结论中正确的结论编号【详解】∵∴曲线在点处的切线方程为则∵∴则是首项为1公比为的等比数列从而解析:①③④ 【分析】先利用导数求得曲线3y x =在点()3,n n a a 处的切线方程,由此求得1n a +与n a 的递推关系式,进而证得数列{}n a 是等比数列,由此判断出四个结论中正确的结论编号. 【详解】∵2'3y x =,∴曲线3y x =在点()3,n n a a 处的切线方程为()323n n n y a a x a -=-,则()3213n n n n a a a a +-=-.∵0n a ≠,∴123n n a a +=, 则{}n a 是首项为1,公比为23的等比数列,从而223a =,349a =,4412165322713i i a =⎛⎫- ⎪⎝⎭==-∑. 故所有正确结论的编号是①③④. 故答案为:①③④ 【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前n 项和公式,属于基础题.14.【分析】首先利用方程组求出数列的通项公式进一步求出数列的通项公式进一步利用分类讨论思想的应用求出数列的和【详解】解:各项均为正数的等比数列中若所以由于公比解得所以解得所以由于所以则当时当时所以故答案解析:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【分析】首先利用方程组求出数列{}n a 的通项公式,进一步求出数列{}n b 的通项公式,进一步利用分类讨论思想的应用求出数列的和. 【详解】解:各项均为正数的等比数列{}n a 中,若355a a +=,264a a =, 所以35352654a a a a a a +=⎧⎨==⎩,由于公比()0,1q ∈, 解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =. 所以55512n n n a a q--⎛⎫=⋅= ⎪⎝⎭.由于5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==,则()9292n n n n S n c nn--===, 当9n ≤时,()212171744n n n n n n T c c c --=+++==. 当9n >时,()()212910*********24n n n n n T c c c c c c c c c c -+=+++---=++-+++=. 所以()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩. 故答案为:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【点睛】本题考查等比数列的通项公式,等差数列的前n 项和公式,考查分类讨论思想和数学运算能力,是中档题.15.【分析】先计算出数列的前两项分别为和由题意可知可得再结合得数列是首项为公比为的等比数列然后利用等比数列的相关公式计算【详解】由①得则所以得:②②-①得:即又成立所以数列是首项为公比为的等比数列则故故解析:3116.【分析】先计算出数列{}n a 的前两项分别为1和2,由题意可知()1121212n n nn S S S S n +-=+⎧⎨=+≥⎩可得()122n na n a +=≥,再结合212aa =得数列{}n a 是首项为1,公比为2的等比数列,然后利用等比数列的相关公式计算55S a . 【详解】由121(2)n n S S n -=+≥ ①得12121213S S a =+=+=,则11a =,所以2212a S a =-=,得:121n n S S +=+②,②-①得:()122n n a a n +=≥,即()122n na n a +=≥ 又212a a =成立,所以数列{}n a 是首项为1,公比为2的等比数列, 则4451216a a q =⋅==,()()55151********a q S q-⨯-===--,故553116Sa =. 故答案为:3116【点睛】本题考查利用递推关系式求解数列的通项公式,考查等比数列的通项公式、求和公式的应用,较简单.16.7576【分析】根据新定义得数列是周期数列从而易求得【详解】∵成等比数列∴又为和谐递进数列∴…∴数列是周期数列周期为4∴故答案为:7576【点睛】本题考查数列新定义解题关键是由数列新定义性质得出数列解析:7576 【分析】根据新定义得数列是周期数列,从而易求得2021S . 【详解】∵1234,,,a a a a 成等比数列,121,2a a ==,∴344,8a a ==,又15a a =,{}n a 为“和谐递进数列”,∴26a a =,37a a =,48a a =,59a a =,…, ∴数列{}n a 是周期数列,周期为4. ∴2021505(1248)17576S =⨯++++=. 故答案为:7576. 【点睛】本题考查数列新定义,解题关键是由数列新定义性质得出数列为周期数列,从而易得结论.17.【分析】由题意可得出代入计算可得出的值【详解】由题意可得出故答案为:【点睛】本题考查利用等差中项和等比中项求值考查计算能力属于中等题 解析:2【分析】由题意可得出2b ac =,2a bx +=,2b c y +=,代入计算可得出a c x y +的值.【详解】由题意可得出2b ac =,2a bx +=,2b c y +=,()()()()()222222224222a b c c a b ab ac bc a c a cab ac bc x y a b b c a b b c ab ac b bc ab ac bc +++++++∴+=+====+++++++++.故答案为:2. 【点睛】本题考查利用等差中项和等比中项求值,考查计算能力,属于中等题.18.【分析】当时作差即可得到再利用累乘法求出数列的通项公式即可;【详解】解:因为①;当时②;①减②得即所以所以所以所以……所以所以又所以当时也成立所以故答案为:【点睛】对于递推公式为一般利用累乘法求出数解析:21n n+ 【分析】当2n ≥时,()212111n n a a a n a --++⋯+=-⋅,作差即可得到111n n a n a n --=+,再利用累乘法求出数列的通项公式即可; 【详解】解:因为212n n a a a n a ++⋯+=⋅①;当2n ≥时,()212111n n a a a n a --++⋯+=-⋅②;①减②得()2211n n n a n a n a -=⋅-⋅-,即()()22111n n n a n a -⋅-⋅-=,所以()()()21111n n n n a n a --+=⋅-⋅,所以()()111n n n a n a -⋅-⋅+=,所以111n n a n an --=+ 所以2113a a =,3224a a =,4335a a =,……,111n n a n a n --=+,所以324211312313451n n a a a a n a a a a n --⋅⋅⋅⨯⨯⨯=⨯+,所以()121n a a n n =+,又112a =,所以()11n a n n =+,当1n =时()11n a n n =+也成立,所以()11n a n n =+故答案为:()11n n +【点睛】 对于递推公式为()1nn a f n a -=,一般利用累乘法求出数列的通项公式,对于递推公式为()1n n a a f n --=,一般利用累加法求出数列的通项公式;19.【分析】首先设出等差数列的首项和公差根据其通项公式得到再根据其求和公式得到从而得到结果【详解】设等差数列的首项为公差为则有因为所以故答案为:【点睛】思路点睛:该题考查的是有关等差数列的问题解题思路如 解析:13313S 【分析】首先设出等差数列的首项和公差,根据其通项公式,得到487733a a a a +-=,再根据其求和公式,得到13713S a =,从而得到结果. 【详解】设等差数列的首项为1a ,公差为d ,则有48711117333(7)(6)318=3a a a a d a d a d a d a +-=+++-+=+, 因为11313713()132a a S a +==,所以487133313a a a S +-=, 故答案为:13313S . 【点睛】思路点睛:该题考查的是有关等差数列的问题,解题思路如下: (1)首先设出等差数列的首项和公差;(2)利用等差数列的通项公式,得到项之间的关系,整理得出487733a a a a +-=; (3)利用等差数列的求和公式,求得13713S a =; (4)比较式子,求得结果.20.【分析】根据等比数列的性质得到成等比从而列出关系式又接着用表示代入到关系式中可求出的值【详解】因为等比数列的前n 项和为则成等比且所以又因为即所以整理得故答案为:【点睛】本题考查学生灵活运用等比数列的 解析:134【分析】根据等比数列的性质得到232,,n n n n n S S S S S --成等比,从而列出关系式,又634S S =,接着用6S 表示3S ,代入到关系式中,可求出96S S 的值. 【详解】因为等比数列{}n a 的前n 项和为n S ,则232,,n n n n n S S S S S --成等比,且0n S ≠,所以6396363--=-S S S S S S S ,又因为634S S =,即3614=S S ,所以6696666141144--=-S S S S S S S ,整理得96134=S S .故答案为:134. 【点睛】本题考查学生灵活运用等比数列的性质化简求值,是一道基础题。

(典型题)高中数学必修五第一章《数列》检测题(包含答案解析)

(典型题)高中数学必修五第一章《数列》检测题(包含答案解析)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40423.在数列{}n a 中,11a =-,33a =,212n n n a a a ++=-(*n N ∈),则10a =( ) A .10B .17C .21D .354.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .25.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,6.《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元466485~年间,其记臷着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同. 已知第一天织布5尺,30天其织布390尺,则该女子织布每天增加的尺数(不作近似计算)为( ) A .1629B .1627C .1113D .13297.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .28.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ).A .2B .1C .32D .129.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .202210.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-11.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .102412.已知{}n a 为等比数列,13527a a a =,246278a a a =,以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是( ) A .4B .5C .6D .7二、填空题13.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2123n n S S n n ++=+,若数列{}n a 是递增数列,则实数m 的取值范围是_______. 14.设数列{}n a 是等比数列,公比2q,n S 为{}n a 的前n 项和,记219n nn n S S T a +-=(*n N ∈),则数列{}n T 最大项的值为__________. 15.已知数列{}n a 满足对*,m n N ∀∈,都有m n m n a a a ++=成立,72a π=,函数()f x =2sin 24cos 2xx +,记()n n y f a =,则数列{}n y 的前13项和为______. 16.无穷数列{}n a 满足:只要()*,p q a a p q N=∈,必有11p q aa ++=,则称{}n a 为“和谐递进数列”.已知{}n a 为“和谐递进数列”,且前四项成等比数列,151a a ==,22a =,则2021S =_________.17.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 18.下图中的一系列正方形图案称为谢尔宾斯基地毯.在图中4个大正方形中,着色的正方形的个数依次构成一个数列{}n a 的前4项,则数列{}n a 的一个通项公式为______.19.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____.20.已知数列{}n a 的通项公式为()12n n a n =+⋅,若不等式()2235n n n a λ--<-对任意*n N ∈恒成立,则整数λ的最大值为_____.三、解答题21.已知等差数列{}n a 满足()()()()*122312(1)n n a a a a a a n n n N +++++⋅⋅⋅++=+∈. (1)求数列{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .22.已知{}n a 是等差数列,{}n b 是递增的等比数列且前n 和为n S ,112822,10a b a a ==+=,___________.在①2345,,4b b b 成 等差数列,②12n n S λ+=+(λ为常数)这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件分别解答,按第一个解答计分). (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T . 23.已知数列{}n a 满足112a =,1223241n n n a a n ++-=-,n *∈N . (1)设121n n b a n =+-,求证:数列{}n b 是等比数列; (2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:3n S <,n *∈N .24.已知正项数列{}n a 、{}n b ,记数列{}n a 的前n 项和为n S ,若1143a b +=,21n n S a +=,2211(1)0n n n n nb b b n b ----+=(1)求数列{}n a 、{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和n T . 25.已知数列{}n a ,11a =,121n n a a +=+.(1)求证数列{}1n a +是等比数列; (2)令()2log 1n n b a =+,求数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 26.已知数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈ ⎪⎝⎭. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T ;(3)设2nn n b a =,数列{}n b 的前n 项和为n S ,求2n n S S -的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272nn n c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立,所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n n n c -=,则111252792222n n n nn n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.3.B解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.4.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 5.C解析:C 【分析】先利用1,1,2n nn S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=,12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=. 12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nn n n n n S S λ+++++---<===----,所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<, 因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C .【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.6.A解析:A 【解析】由题设可知这是一个等差数列问题,且已知13030,390a S ==,求公差d .由等差数列的知识可得30293053902d ⨯⨯+=,解之得1629d =,应选答案A . 7.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =,且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.8.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.9.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.10.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.11.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.故选:C . 【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.12.A解析:A 【分析】先求出首项和公比,得出{}n a 是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论. 【详解】{}n a 为等比数列,3135327a a a a ==,32464278a a a a ==, 33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A . 【点评】本题主要考查等比数列的性质,属于基础题.二、填空题13.【分析】利用退一作差法求得再求得根据列不等式解不等式求得的取值范围【详解】由可得:两式相减得:两式相减可得:数列是以为公差的等差数列数列是以为公差的等差数列将代入及可得:将代入可得要使得恒成立只需要解析:15,44⎛⎫⎪⎝⎭【分析】利用退一作差法求得114(3)n n a a n +--=≥,再求得234,,a a a ,根据1234a a a a <<<列不等式,解不等式求得m 的取值范围. 【详解】由2123n n S S n n ++=+可得:212(1)3(1)(2)n n S S n n n -+=-+-≥两式相减得:141(2)n n a a n n ++=+≥143(3)n n a a n n -∴+=-≥两式相减可得:114(3)n n a a n +--=≥∴数列2a ,4a ,6a ,...是以4为公差的等差数列,数列3a ,5a ,7a ,...是以4为公差的等差数列,将1n =代入2123n n S S n n ++=+及1a m =可得:252a m =-将2n =代入141(2)n n a a n n ++=+≥可得342a m =+42492a a m =+=-要使得*n N ∀∈,1n n a a +<恒成立 只需要1234a a a a <<<即可524292m m m m ∴<-<+<-解得1544m <<则m 的取值范围是15,44⎛⎫⎪⎝⎭. 故答案为:15,44⎛⎫ ⎪⎝⎭【点睛】本小题主要考查已知n S 求n a ,考查数列的单调性,属于中档题.14.【解析】数列是等比数列公比为的前项和当且仅当时取等号又或时取最大值数列最大项的值为故答案为 解析:3【解析】数列{}n a 是等比数列,公比q 2=,n S 为{}n a 的前n 项和,219()n n n n S S T n N a *+-=∈ ,2111(12)(12)9812129222n nn nn na a T a --⋅---∴==--⋅822n n +≥=, 当且仅当822nn =时取等号, 又,1n N n *∈=或2 时,n T 取最大值19243T =--= .∴ 数列{}n T 最大项的值为3 .故答案为3 .15.【分析】由题意可得为常数可得数列为等差数列求得的图象关于点对称运用等差数列中下标公式和等差中项的性质计算可得所求和【详解】解:对都有成立可令即有为常数可得数列为等差数列函数由可得的图象关于点对称可得 解析:26【分析】由题意可得11n n a a a +-=,为常数,可得数列{}n a 为等差数列,求得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,运用等差数列中下标公式和等差中项的性质,计算可得所求和. 【详解】 解:对*,m n ∀∈N ,都有m n m n a a a ++=成立,可令1m =即有11n n a a a +-=,为常数, 可得数列{}n a 为等差数列, 函数2()sin 24cos 2xf x x =+sin 22(1cos )x x =++, 由()()()sin 221cos f x fx x x π+-=++()()()sin 221cos 4x x ππ+-++-=,可得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,113212a a a a +=+=6872a a a π=+==,∴()()()()113212f a f a f a f a +=+=()()()6874,2f a f a f a =+==,∴可得数列{}n y 的前13项和为46226⨯+=.故答案为26. 【点睛】本题考查等差数列的性质,以及函数的对称性及运用,化简运算能力,属于中档题.16.7576【分析】根据新定义得数列是周期数列从而易求得【详解】∵成等比数列∴又为和谐递进数列∴…∴数列是周期数列周期为4∴故答案为:7576【点睛】本题考查数列新定义解题关键是由数列新定义性质得出数列解析:7576 【分析】根据新定义得数列是周期数列,从而易求得2021S . 【详解】∵1234,,,a a a a 成等比数列,121,2a a ==,∴344,8a a ==,又15a a =,{}n a 为“和谐递进数列”,∴26a a =,37a a =,48a a =,59a a =,…, ∴数列{}n a 是周期数列,周期为4. ∴2021505(1248)17576S =⨯++++=. 故答案为:7576.【点睛】本题考查数列新定义,解题关键是由数列新定义性质得出数列为周期数列,从而易得结论.17.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.18.【分析】根据图象的规律得到前后两项的递推关系然后利用迭代法求通项并利用等比数列求和【详解】由图分析可知依次类推数列是首项为1公比为8的等比数列所以故答案为:【点睛】关键点点睛:本题的关键是迭代法求通解析:817n n a -= 【分析】根据图象的规律,得到前后两项的递推关系,然后利用迭代法求通项,并利用等比数列求和. 【详解】由图分析可知11a =,218181a a =⨯+=+,23281881a a =⨯+=++, 依次类推,1288...1n n n a --=+++,数列{}18n -是首项为1,公比为8的等比数列,所以1881187n n n a --==-, 故答案为:817n n a -=【点睛】关键点点睛:本题的关键是迭代法求通项,重点是得到前后两项的递推关系.19.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-20.4【分析】根据题意等价变形得对任意恒成立再求数列的最大值即可得答案【详解】解:∵∴不等式等价于记∴时即时数列单调递减又∵∴∴即∴整数的最大值为4故答案为:4【点睛】本题考查根据数列不等式恒成立求参数解析:4 【分析】根据题意等价变形得2352nn λ-->对任意*n N ∈恒成立,再求数列232nn n b -=的最大值即可得答案. 【详解】解:∵()102nn a n =+⋅>,∴不等式()2235n n n a λ--<-等价于2352nn λ-->, 记232n nn b -=,112121223462n n n n n b n n b n ++--==--, ∴3n ≥时,11n nb b +<,即3n ≥时数列单调递减, 又∵ 1211,24b b =-=, ∴ ()3max 38n b b ==, ∴358λ->,即337588λ<-=,∴整数λ的最大值为4. 故答案为:4. 【点睛】本题考查根据数列不等式恒成立求参数,考查化归转化思想,是中档题.三、解答题21.(1)21n a n =-;(2)2332n nn S +=-.【分析】(1)利用已知条件列出关于首项与公差的方程组,解方程组即得数列{}n a 的通项公式;(2)先由(1)得到n n n a 2n 122-=,再利用错位相减法求和即可. 【详解】(1)设等差数列{}n a 的公差为d ,由已知得()()121223412a a a a a a +=⎧⎨+++=⎩,即122348a a a a +=⎧⎨+=⎩,所以()()()1111428a a d a d a d ⎧++=⎪⎨+++=⎪⎩,解得112a d =⎧⎨=⎩, 所以21n a n =-. (2)由(1)得n n n a 2n 122-=, 所以1212321223212n n n n n S ---=++⋯++,① 231123212222213n n n n n S +--=++⋯⋯++,② -①②得:21111112132322222222n n n n n n S ++-+⎛⎫=+⨯+⋯+-=- ⎪⎝⎭,所以2332n nn S +=-. 【点睛】易错点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.22.条件选择见解析;(1)n a n =,2n n b =;(2)212222n n n n T +=-++.【分析】选①,(1)列出关于首项与公差、首项与公比的方程组,求出首项与公差、首项与公比,从而求出数列{}n a 和{}n b 的通项公式;(2)由(1)知2nn n a b n +=+,利用分组求和法,结合等差数列与等比数列的求和公式求解即可.选②,(1)列出关于首项与公差的方程组可求出数列{}n a 的通项公式,利用1n n n b S S -=-可求{}n b 的通项公式;(2)由(1)知2n n n a b n +=+,利用分组求和法,结合等差数列与等比数列的求和公式求解即可. 【详解】 选①解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==, 1(1)1n a n n ∴=+-⨯=.由题意知132452,24b b b b ⎛⎫=⋅=+⎪⎝⎭,得324522b b b =+, 设等比数列{}n b 的公比为2222,522q b q b b q ⋅=+,即22520q q -+=,解得2q,或12q =,由数列{}n b 为递增等比数列可知12q =不合题意, 所以{}n b 是一个以2为首项,2为公比的等比数列.1222n n n b -∴=⨯=(2)由(1)知2nn n a b n +=+,()()()()1231222322n n T n ∴=++++++⋯++,()123(123)2222n n T n ∴=+++⋯+++++⋯+, ()212(1)212nn n n T -+∴=+-212222n n n n T +∴=-++.选②解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==, 1(1)1n a n n ∴=+-⨯=.令1n =,则111112,42,2S b S λλλ+=+∴==+=∴=-,122n n S +∴=-当2n ≥时,()()1122222n n n n n n b S S +-=-=---=当1n =时,12b =也满足上式.2n n b =(2)由(1)知2nn n a b n +=+,()()()()1231222322n n T n ∴=++++++⋯++, ()123(123)2222n n T n ∴=+++⋯+++++⋯+, ()212(1)212nn n n T -+∴=+-212222n n n n T +∴=-++.【点睛】方法点睛:利用“分组求和法”求数列前n 项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减. 23.(1)证明见解析;(2)证明见解析. 【分析】(1)直接利用定义证明12n n b b +=即得证;(2)分析得到211321n n a -≤⋅-,再利用等比数列求和得证. 【详解】 解:(1)121n n b a n =+-,1223241n n n a a n ++-=-, 则1122123142222222141214121n n n n n n n n b a a a a b n n n n n ++++=+=++=+=+=+-+--, 又11312b a =+=, 所以数列{}n b 是等比数列; (2)由(1)得,1232322n n n b --=⋅=⋅,N n *∈, 213221n n a n -∴=⋅--,N n *∈, 211n -≥,23210n n a -∴≥⋅->,211321n n a -∴≤⋅-, 当2n ≥时,21231111111111222+23312222211112251132112n n n n n S ----⎛⎫- ⎪⎝⎭<++++=+<+=-<-++++⋅-,又11123S a ==<, 综上,3n S <,n *∈N . 【点睛】方法点睛:证明数列不等式常用的方法有:(1)比较法;(2)综合法;(3)分析法;(4)数学归纳法;(5)放缩法;(6)反证法.要根据已知条件灵活选择方法求解. 24.(1)13n n a =,12n n b +=;(2)151144323n n n n T -+=--⋅⋅ 【分析】(1)由1n =求得1a ,再風1b ,然后由11n n n a S S ++=-得到数列{}n a 的递推关系,知其为等比数列,从而得通项公式,由n b 的递推关系得1(1)n n nb n b -=+,用累乘的方法求得n b ;(2)用错位相减法求和n T . 【详解】(1)由题意知:1111221S a a a +=+=,113a =,∴11413b a =-=, ∵1121,21n n n n S a S a +++=+= ∴111333n n n n a a q a +=⇒=⇒= 又∵()[]11(1)0,0n n n n n b b nb n b b --+⋅-+=> ∴121121131(1)122n n n n n n n b b b n n n nb n b b b b b n n ----++=+⇒⋅=⋅⋅⇒=-(1b 也适合), (2)∵123n n n n a b += ∴2323413333n n n T +=++++ 231123133333n n n n T ++=++++ ∴12311111221111219313333333313n n n n n n n T -++⎛⎫- ⎪++⎝⎭=++++-=+-- 11211113633n n n -++⎛⎫=+-- ⎪⎝⎭ ∴151144323n n nn T -+=--⋅⋅. 【点睛】本题考查求等比数列的通项公式,累乘法求通项公式,错位相减法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.25.(1)证明见解析;(2)()()235412n n nT n n +=++【分析】(1)利用等比数列的定义变形为()1121n n a a ++=+,证明数列{}1n a +是等比数列;(2)首先求数列{}n b 的通项公式,再利用裂项相消法求和. 【详解】 (1)121n n a a +=+,()1121n n a a +∴+=+,即1121n n a a ++=+,且112a +=, 所以数列{}1n a +是公比为2的等比数列;(2)由(1)可知11222n nn a -+=⋅=, 所以2log 2nn b n ==,()211111222n n b b n n n n +⎛⎫==- ⎪++⎝⎭, 则11111111111...232435112n T n n n n ⎛⎫=-+-+-++-+- ⎪-++⎝⎭111112212n n ⎛⎫=+-- ⎪++⎝⎭()()235412n n n n +=++ 【点睛】关键点点睛:本题第二问考查裂项相消法求和,这样的形式不是连续相消,如果前面剩下两个正数项,那么最后一定剩下两个负数项.26.(1)2nn a n =⋅;(2)()1122n n T n +=-⋅+;(3)12.【分析】(1)利用累乘法可求得数列{}n a 的通项公式; (2)利用错位相减法可求得数列{}n a 的前n 项和n T ;(3)令2n n n c S S =-,分析数列{}n c 的单调性,由此可求得2n n S S -的最小值. 【详解】(1)数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈ ⎪⎝⎭, 则2140a a =>,323202a a =⨯>,,以此类推,对任意的n *∈N ,0n a >,由已知条件可得()121n n n a a n++=, 3211212223222121n n n n a a a na a n a a a n -⨯⨯=⋅⋅⋅⋅=⨯⨯⨯⨯=⋅-; (2)1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式得()()2311121222222212212n n n n n n T n n n +++--=++++-⋅=-⋅=-⋅--,因此,()1122n n T n +=-⋅+;(3)21n n n b a n ==,则111123n S n=++++, 令2n n n c S S =-,则()()()()122122221n n n n n n n n n n c c S S S S S S S S +++++-=---=---()()11111102221121222122n n n n n n n =+-=-=>+++++++,则1n n c c +>, 则数列{}n c 为单调递增数列,所以,数列{}n c 的最小值为12112c S S =-=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。

(完整)高中数学必修五第一章测试卷.doc

(完整)高中数学必修五第一章测试卷.doc

高中数学必修五第一章复习测试卷一、选择题 :1.在△ABC 中,一定成立的等式是( )a b a b cosB a b sinA a b A. sinA= sinB B. cosA= C. sinB= D. cosB= cosA 2. . 在△ABC 中,根据下列条件解三角形,则其中有两个解的是A .b = 10 , A = 45 °,B = 70 ° B .a = 60 , c = 48 , B = 100 ° ( )C .a = 7 ,b = 5 ,A = 80 °D .a = 14 ,b = 16 , A = 45 °3. 在 ABC 中,已知角 B 45 , c 2 2, b43,则角 A 的值是( )3A . 15°B .75 °C . 105 °D . 75°或15 °4.在 ABC 中,若 a2 , b 2 2 , c6 2 ,则 A 的度数是( )A . 30B . 45C . 60D . 755. 若 sin A cos BcosC则△ABC 为a bc( )A .等边三角形B .等腰三角形C .有一个内角为 30°的直角三角形D .有一个内角为 30°的等腰三角形6.在 ABC 中,已知 B60 ,c 45 , BC 8, AD BC 于 D , 则 AD 长为( )A . (4 3 1)B . 4( 3 1)C . (4 3 3)D . (433)7. 钝角 ABC 的三边长为连续自然数,则这三边长为()A . 1、 2、3、B .2、 3、4C .3、 4、5D . 4、 5、 68.已知 △ ABC 中, a ∶b ∶ c = 1∶ 3 ∶2,则 A ∶B ∶ C 等于 ()A .1∶ 2∶ 3B .2∶ 3∶ 1C . 1∶3∶ 2D . 3∶ 1∶ 29 在中,C 90 0, 0 0A 45 0,则下列各式中正确的是().△ ABCA sin A cos AB sin B cos A Csin A cosB D sin B cosB二、填空题:1、已知在△ABC中,a 2 3, c 6, A 30o,△ABC的面积S.2.设△ ABC 的外接圆半径为R,且已知 AB=4,∠ C= 45°,则 R= ________.3.在平行四边形ABCD 中,已知AB 10 3 , B 60 , AC30 ,则平行四边形ABCD 的面积.4.在△ABC中,已知2cos B sin C=sin A,则△ABC的形状是.三、解答题:1、已知 a、 b、 c 分别是△ ABC中角 A、 B、 C 的对边,且 a2c2b2ac .(Ⅰ)求角 B 的大小;(Ⅱ)若 c3a ,求 tan A 的值.2. 在四边形 ABCD 中, AC 平分∠DAB,∠ABC=60 0, AC=7 ,AD=6 ,S △ADC= 153,求AB的长. 23. 如果 △ABC 内接于半径为R 的圆,且 2 R2Asin 2C) ( 2 a b ) sin B 求 △ABC(sin,的面积的最大值 .4. 一货轮航行到 M 处,测得灯塔 S 在货轮的北偏东 15 °相距20 里处,随后货轮按北偏西 30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45°,求货轮的速度 .答案:一、 1. C 2. D 3. D 4. A. 5. B 6. D 7. B 8.A二、 1.6 3 或 3 3 2. 2 2 3. 300 3 4.等腰三角形三、 1.( 1)由余弦定理得cos B a2 c2 b2 1 ,2ac 2且0 B , B3( 2)将c 3a 代入 a2 c2 b2 ac ,得 b 7a ,由余弦定理得a2 c 2 b 2 5 7 cos B2ac 140 A , sin A 1 cos2 A 2114tan A sin A 3 cos A 52 .△ ADC的面积S 1 AD AC sin ∠DAC 1 6 7 sin∠DAC 153 .2 2 2sin ∠DAC 53 , 在△ ABC中,可求BC 5 ,由余弦定理可求 AB 8 。

(典型题)高中数学必修五第一章《数列》检测卷(包含答案解析)

(典型题)高中数学必修五第一章《数列》检测卷(包含答案解析)

一、选择题1.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( )A .20192020B .20202021C .20212022D .101010112.某大楼共有12层,有11人在第一层上了电梯,他们分别要去第2至12层,每层1人,因特殊原因,电梯只能停在某一层,其余10人都要步行到所要去的楼层,假设初始的“不满意度”为0,每位乘客每向下步行一层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,要使得10人“不满意度”之和最小,电梯应该停在第几层( ) A .7B .8C .9D .103.在等比数列{n a }中,13a =,424a =,则345a a a ++的值为( ) A .33B .72C .84D .1894.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D .2595.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .126.设等差数列{}n a 的前n 项和为n S ,若10a >,81335a a =,则n S 中最大的是( ). A .10SB .11SC .20SD .21S7.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1nii i xy =+=∑( )A .0B .nC .2nD .3n8.已知{}n a 是公比为整数的等比数列,设212n nn na ab a -+=,n ∈+N ,且113072b =,记数列{}n b 的前n 项和为n S ,若2020n S ≥,则n 的最小值为( ) A .11B .10C .9D .89.设等差数列{}n a 的前n 项和为n S ,523S =,360n S =,5183n S -=,则n =( ) A .18B .19C .20D .2110.等差数列{}n a 的前n 项和为n S ,1000S >,1010S <,则满足10n n a a +<的n =( )A .50B .51C .100D .10111.若n S 是等比数列{}n a 的前项和,3S ,9S ,6S 成等差数列,且82a =,则25a a +=( ) A .12-B .4-C .4D .1212.等差数列{}n a 中,10a >,310S S =,则当n S 取最大值时,n 的值为 ( ) A .6B .7C .6或7D .不存在二、填空题13.数列{}n a 中,1111,,21n n n a a a a --==+则n a =_____________.14.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈.若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则当1212nS S S n+++取最大值时n 的值为______.15.已知{}n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,则10S 的值为__________.16.等比数列{}n a 的各项均为正数,且2414a a =,则2122232425log log log log log a a a a a ++++=___________.17.已知数列{}n a 的前n 项和为n S ,点()()*,,2n n S a n N n ∈≥在2441x y x =-的图像上,11a =,数列{}n a 通项为__________.18.定义max{,}a b 表示实数,a b 中的较大的数.已知数列{}n a 满足1a a =2(0),1,a a >=122max{,2}()n n na a n N a *++=∈,若20154a a =,记数列{}n a 的前n项和为n S ,则2015S 的值为___________. 19.已知数列{}n a 的通项公式为3217n n a n -=-,前n 项和为n S ,则n S 取得最小值时n 的值为_________.20.已知数列{}n a 的通项公式为()12n n a n =+⋅,若不等式()2235n n n a λ--<-对任意*n N ∈恒成立,则整数λ的最大值为_____.三、解答题21.已知数列{}n a 满足1*111,33().n n n a a a n ++==+∈N(1)求证:数列{}3nna 是等差数列. (2)求数列{}n a 的通项公式.(3)设数列{}n a 的前n 项和为,n S 求证:37.324n n S n >- 22.已知n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,记12n n a x ⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数且n *∈N 若.130n n a a ++⋅>恒成立,求: (1)数列{}n a 的通项公式; (2)数列{}n a 的前n 项和n S .23.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .24.设数列{}n a 的前n 项和为n S ,已知23S =,()*11n n a S n +=+∈N .(1)求数列{}n a 的通项公式; (2)设()()111n n n n a b a a +=++,记数列{}n b 的前n 项和为n T ,求证:12n T <.25.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,且满足___________(从①()101051S a =+﹔②1a ,2a ,6a 成等比数列;③535S =,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题). (1)求n a ﹔ (2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求证:13n T <. 26.已知数列{}n a 的前n 项和()2*N n S nn =∈,{}n b 是递增等比数列,且11b a =,35b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)若()*N n n n c a b n =⋅∈,求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】 数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=. 故选:C 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.2.C解析:C 【分析】根据题意,假设电梯所停的楼层,表达出“不满意度”之和,利用等差数列的求和公式即可求得结论. 【详解】解:设电梯所停的楼层是(212)n n ,则12(2)2[12(12)]S n n =++⋯+-+++⋯+- (2)(1)(12)(13)222n n n n ----=+⨯ 22235335353()157()157232624n n n =-+=--+开口向上,对称轴为5396x =≈, 故S 在9n =时取最小值239539314402min S ⨯-⨯+==.故选:C . 【点睛】本题考查数列知识,考查函数思想的运用,考查计算能力,求得“不满意度”之和是关键.3.C解析:C 【分析】根据341a a q =,可求出q ,再根据等比数列通项公式求出35,a a 即可.【详解】因为341a a q =,即3243q =,所以2q,所以22313212a a q ==⨯=,44513248a a q ==⨯=,所以34512244884a a a ++=++=. 故选:C 【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.4.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.5.D解析:D【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.6.C解析:C 【解析】分析:利用等差数列的通项公式,化简求得20210a a +=,进而得到20210,0a a ><,即可作出判定.详解:在等差数列{}n a 中,18130,35a a a >=,则113(7)5(12)a d a d +=+,整理得12390a d +=,即()()1119200a d a d +++=, 所以20210a a +=,又由10a >,所以20210,0a a ><,所以前n 项和n S 中最大是20S ,故选C .点睛:本题考查了等差数列的通项公式,及等差数列的前n 项和n S 的性质,其中解答中根据等差数列的通项公式,化简求得20210a a +=,进而得到20210,0a a ><是解答的关键,着重考查了学生分析问题和解答问题的能力.7.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称,设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124ni n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122n i n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.8.B解析:B 【分析】设{}n a 是公比为q ,根据已知条件有1n n n b qq -=+求得2q,数列{}n b 的前n 项和为3(21)n n S =-即2020n S ≥可求n 的最小值【详解】令{}n a 是公比为q ,由212n nn na ab a -+=,n ∈+N ∴1n n n b qq -=+,又113072b =即10113072q q +=,又q Z ∈,知:2q∵{}n b 的前n 项和为n S ,则3(21)nn S =-∴2020n S ≥时,3(21)2020n -≥,n ∈+N 解得10n ≥ 故选:B 【点睛】本题考查了数列,由数列的递推关系及已知条件求公比,进而根据新数列的前n 项和及不等式条件求n 的最小值9.A解析:A 【分析】根据题意,由等差数列的前n 项和公式可得()155355232a a S a+⨯===,变形可得3235a =,又由5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,变形可得21775n a -=,结合等差数列的性质分析可得答案. 【详解】根据题意,等差数列{}n a 中,523S =,则()155355232a a S a+⨯===,变形可得3235a =, 又由360n S =,5183n S -=,则5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,则21775n a -=, 又由360n S =,则()()()13223177203602210n n n a a n a a n n S n -+⨯+⨯+⨯=====,解可得18n =. 故选:A. 【点睛】本题考查利用等差数列求和公式求参数,同时也考查了等差数列基本性质的应用,考查计算能力,属于中等题.10.A解析:A 【分析】由题意和等差数列求和公式与性质可得50510a a +>;510a <,进而可得500a >,据此分析可得答案. 【详解】根据题意,等差数列{}n a 中,1000S >,1010S <, 则有110010*********()10050()50()02a a S a a a a +⨯==+=+>,则有50510a a +>;又由110110151()10110102a a S a +⨯==<,则有510a <;则有500a >,若10n n a a +<,必有50n =; 故选:A . 【点睛】本题考查等差数列的前n 项和公式的应用,涉及等差数列的性质,属于基础题.11.C解析:C 【分析】当公比q=1时,易推断不符合题意,故q 1≠,然后利用等比数列的前n 项和的公式和等差数列的性质得方程,再利用等比数列的性质求解. 【详解】设数列{}n a 的公比为q ,当1q =时,2n a =,则36S =,612S =,918S =,此时396,,S S S 不成等差数列,不符合题意,舍去;当1q ≠时,∵396,,S S S 成等差数列,∴3692S S S +=, 即()()()3691111112?111a q a q a q qq q---+=---,即96320q q q --=,解得312q =-或31q =(舍去)或30q =(舍去), ∴8268a a q ==,8534a a q ==-,∴254a a +=,故选C. 【点睛】本题综合考查了等比数列与等差数列;在应用等比数列的前n 项和公式时,公比不能为1,故在解题过程中,应注意公比为1的这种特殊的等比数列,以防造成漏解.12.C解析:C 【解析】设等差数列{}n a 的公差为d ∵310S S = ∴()()113319913922a d a d ⨯-⨯-+=+∴160a d += ∴70a = ∵10a >∴当n S 取最大值时,n 的值为6或7 故选C二、填空题13.【分析】对两边取到数可得从而可得数列是等差数列求出数列的通项公式即可求出【详解】因为所以即又所以数列是以为首项2为公差的等差数列所以所以故答案为:【点睛】本题主要考查取到数构造新数列同时考查等差数列 解析:121n - 【分析】 对1121n n n a a a --=+两边取到数可得1112n n a a --=,从而可得数列1{}n a 是等差数列,求出数列1{}na 的通项公式,即可求出n a . 【详解】 因为1121n n n a a a --=+,所以11121112n n n n a a a a ---+==+,即1112n n a a --=,又111a ,所以数列1{}na 是以1为首项,2为公差的等差数列, 所以11(1)221n n n a =+-⨯=-,所以121n a n =-. 故答案为:121n - 【点睛】本题主要考查取到数构造新数列,同时考查等差数列的概念及通项公式,属于中档题.14.8或9【分析】根据等差等比数列的通项公式先求出数列和的通项公式再结合等差数列的求和公式求得进而得到再结合数列取值即可求解【详解】各项均为正数的等比数列中若所以解得所以解得或因为所以所以又由所以则当时解析:8或9 【分析】根据等差、等比数列的通项公式,先求出数列{}n a 和{}n b 的通项公式,再结合等差数列的求和公式,求得()92n n n S -=,进而得到92n nc -=,再结合数列{}n c 取值,即可求解.【详解】各项均为正数的等比数列{}n a 中,若355a a +=,264a a =,所以35352656a a a a a a +=⎧⎨==⎩,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =或12q =-,因为()0,1q ∈,所以12q =, 所以55512n n n a a q --⎛⎫=⋅= ⎪⎝⎭.又由5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==,则92n n S nc n -==, 当9,n n N +<∈时,902n nc -=>;当9n =时,0n c =;当10,n n N +>∈时,0n c <,故当8n =或9n =时,1212nS S S n+++取最大值. 故答案为:8或9. 【点睛】本题主要考查了等差、等比数列的通项公式,以及等差数列的前n 项和公式的应用,其中解答中熟记等差、等比数列的通项公式,以及等差数列的求和公式,准确计算是解答解答的关键,着重考查推理与运算能力.15.110【分析】根据题意求出首项再代入求和即可得【详解】是与的等比中项解得故答案为:110【点睛】本题主要考查等差数列等比数列的通项公式及等差数列求和是基础题解析:110 【分析】根据题意,求出首项120a =,再代入求和即可得. 【详解】31124a a d a =+=-,711612a a d a =+=-,911816a a d a =+=-,7a 是3a 与9a 的等比中项,()()2111(12)416a a a ∴-=--,解得120a =,()101102010921102S ∴=⨯+⨯⨯⨯-=.故答案为:110. 【点睛】本题主要考查等差数列、等比数列的通项公式及等差数列求和,是基础题.16.【分析】由题意利用等比数列的性质求得的值再利用对数的运算性质求得结果【详解】解:等比数列{an}的各项均为正数且∴则故答案为:【点睛】本题考查等比中项的性质考查运算求解能力求解时注意对数运算法则的运用 解析:5-【分析】由题意利用等比数列的性质求得3a 的值,再利用对数的运算性质,求得结果.【详解】解:等比数列{a n }的各项均为正数, 且224314a a a ==,∴312a =, 则2122232425log log log log log a a a a a ++++523231og 5log 5(1)5a a ===⋅-=-,故答案为:5-. 【点睛】本题考查等比中项的性质,考查运算求解能力,求解时注意对数运算法则的运用.17.【分析】把数列递推式中换为整理得到是等差数列公差然后由等差数列的通项公式得答案【详解】由题意可得:∴∴两边除以并移向得出是等差数列公差故当时当时不符合上式故答案为:【点睛】本题考查了数列递推式考查了解析:()()()()*1,14,,24347n n a n N n n n ⎧=⎪=-⎨∈≥⎪--⎩【分析】把数列递推式中n a 换为1n n s s --,整理得到1{}nS 是等差数列,公差2d =,然后由等差数列的通项公式得答案. 【详解】由题意可得:()24,241nn n S a n S =≥- ∴()214,241nn n n S S S n S --=≥-, ∴1140n n n n s s s s ---+=.两边除以1n n s s -,并移向得出1114,(2)n n n S S --=, 1{}nS ∴是等差数列,公差4d =, 11111S a ==. ∴114(1)43nn n S =+-=-, 故143n S n =-. ∴当2n 时,()()111443474347n n n a S S n n n n --=-=-=----. 当1n =时,11a =不符合上式.()()()()*1,14,,24347n n a n N n n n ⎧=⎪∴=-⎨∈≥⎪--⎩. 故答案为:()()()()*1,14,,24347n n a n N n n n ⎧=⎪=-⎨∈≥⎪--⎩. 【点睛】本题考查了数列递推式,考查了等差关系的确定,考查了运算求解能力,属于中档题.18.7254【分析】参数进行分类讨论由已知求出数列的前几项从中发现是以5为周期的再根据求得的值可得答案【详解】由题意当时因此是周期数列周期为所以不合题意当时同理是周期数列周期为所以故答案为:【点睛】本题解析:7254 【分析】参数a 进行分类讨论,由已知求出数列的前几项,从中发现是以5为周期的,再根据20154a a =求得a 的值可得答案.【详解】 由题意34a a=,当2a ≥时,44a =,52a a =,6a a =,71a =,因此{}n a 是周期数列,周期为5,所以2015524a a a a ==≠,不合题意,当02a <<时,48a a=,54a =,6a a =,71a =,同理{}n a 是周期数列,周期为5,所以2015544a a a ===,1a =,1234518a a a a a ++++=,2015403187254S =⨯=.故答案为:7254. 【点睛】本题考查新定义问题,考查周期数列的知识,解决此类问题常采取从特殊到一般的方法,可先按新定义求出数列的前几项(本题由12,a a 依次求出34567,,,,a a a a a ),从中发现周期性的规律,本题求解中还要注意由新定义要对参数a 进行分类讨论.解决新定义问题考查的学生的阅读理解能力,转化与化归的数学思想,即把新定义的“知识”、“运算”等用我们已学过的知识表示出来,用已学过的方法解决新的问题.19.8【分析】求出数列在n 的不同取值范围的正负判断出的单调性可求出【详解】令解得或当时单调递增当时单调递减当时单调递增所以取得最小值时的值为8故答案为:8【点睛】本题考查数列前n 项和的最值的求法解题的关解析:8 【分析】求出数列在n 的不同取值范围的正负判断出n S 的单调性可求出. 【详解】令30217n n a n -=≥-,解得3n ≤或172n ≥,∴当3n ≤时,0n a ≥,n S 单调递增,当47n ≤≤时,0n a <,n S 单调递减, 当8n ≥时,0n a >,n S 单调递增, 所以n S 取得最小值时n 的值为8. 故答案为:8. 【点睛】本题考查数列前n 项和的最值的求法,解题的关键是根据数列的正负判断n S 的单调性.20.4【分析】根据题意等价变形得对任意恒成立再求数列的最大值即可得答案【详解】解:∵∴不等式等价于记∴时即时数列单调递减又∵∴∴即∴整数的最大值为4故答案为:4【点睛】本题考查根据数列不等式恒成立求参数解析:4 【分析】根据题意等价变形得2352nn λ-->对任意*n N ∈恒成立,再求数列232nn n b -=的最大值即可得答案. 【详解】解:∵()102nn a n =+⋅>,∴不等式()2235n n n a λ--<-等价于2352nn λ-->, 记232n nn b -=,112121223462n n n n n b n n b n ++--==--, ∴3n ≥时,11n nb b +<,即3n ≥时数列单调递减, 又∵ 1211,24b b =-=, ∴ ()3max 38n b b ==, ∴358λ->,即337588λ<-=,∴整数λ的最大值为4. 故答案为:4. 【点睛】本题考查根据数列不等式恒成立求参数,考查化归转化思想,是中档题.三、解答题21.(1)证明见解析;(2)233nn a n ⎫⎛=-⋅ ⎪⎝⎭;(3)证明见解析. 【分析】(1)利用已知条件通分计算或者直接整理,证明11133n nn n a a ++-=,即证结论; (2)利用(1)求得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,即求得{}n a 的通项公式; (3)结合(2)的结果,利用错位相减法求得n S ,并计算整理3n n S ,根据7043n>⨯即证得结论. 【详解】解:(1)解法1:由()1*133n n n a a n N ++=+∈,得111111333313333n n n n n n nn n n n a a a a a a ++++++-+--===. 又11133a =,故数列3n n a ⎧⎫⎨⎬⎩⎭是以13为首项,以1为公差的等差数列. 解法2:由()1*133n n n a a n N ++=+∈,得11133n nn n a a ++=+,即11133n n n n a a ++-=. 又11133a =,故数列3n n a ⎧⎫⎨⎬⎩⎭是以13为首项,以1为公差的等差数列. (2)由(1)得()111133n n a n =+-⨯,*N n ∈, 即233n n a n =-,故233n n a n ⎫⎛=-⋅ ⎪⎝⎭;(3)由(2)可知()121222213231333333n nn S n n -⎫⎫⎫⎛⎛⎡⎤⎛=-⨯+-⨯+⋅⋅⋅+--⨯+-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎝⎣⎦⎝⎭⎭⎭① ()2312222313231333333n n n S n n +⎫⎫⎫⎛⎛⎡⎤⎛=-⨯+-⨯+⋅⋅⋅+--⨯+-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎝⎣⎦⎝⎭⎭⎭②由①②得1112397723133262n n n n S n n +++-⎫⎫⎛⎛=-⨯--=-⨯+ ⎪ ⎪⎝⎝⎭⎭ 故17732124n n n S +⎫⎛=-⨯+ ⎪⎝⎭,从而1737377372123343244324n n n n n n n S n n +⎫⎛-⨯ ⎪⎫⎛⎝⎭=+=-+>- ⎪⨯⨯⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:利用等差数列和等比数列前n 项和公式进行计算即可;(2)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法;(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(4)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(5)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(6)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.22.(1)*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩;(2)2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【分析】 (1)先令12n nx t =,根据所给方程,得到()()2312log 23n n n t n t n n ++=+,构造函数()()214log 2n g x x n x +=+,确定122n n n t +<<,再讨论n 为奇数和n 为偶数两种情况,结合题中条件,即可求出数列的通项;(2)根据(1)的结果,讨论n 为奇数和n 为偶数两种情况,利用分组求和的方法,结合等差数列的求和公式,即可求出结果. 【详解】(1)因为n x 是关于x 的方程2121log 3n n x n n x+-=+的实数根,令12n n x t =,则12n nx t =, 所以()()2312log 23n n n t n t n n ++=+,记()()214log 2n g x x n x +=+,显然()g x 单调递增,且2221log 32n n g n n n n n n n +⎛⎫=+<+<+ ⎪⎝⎭,()()222111log 13132n n g n n n n n n n ++⎛⎫=+++=++>+ ⎪⎝⎭, 所以122n n n t +<<, 当*21()n k k N =-∈时,2112n k k t k --<<<,则[]11122n n n n a t k x ⎡⎤-===-=⎢⎥⎣⎦; 当*2()n k k N =∈时,21122n k k t k +<<=+,则[]122n nn n a t k x ⎡⎤====⎢⎥⎣⎦; 综上,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩; (2)由(1)可得,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩, 当*21()n k k N =-∈时,()()1352461......n n n S a a a a a a a a -=+++++++++211121002412461122222......22222222224n n n n n n n +---⎛⎫⎛⎫++ ⎪ ⎪---⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭;当*2()n k k N =∈时,()()1351246......n n n S a a a a a a a a -=+++++++++2220024224622222 (222)22222224n n n n n n n -⎛⎫⎛⎫++ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭; 综上,2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【点睛】 关键点点睛:求解本题的关键在于由n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,求出12n x 的范围,利用12n n a x ⎡⎤=⎢⎥⎣⎦,通过讨论n 的奇偶,得出数列通项,即可求解.23.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n na a n n+=+,得到{}n b 为等比数列, (2)由(1)得到{}n a 的通项公式,用错位相减法求得n S 【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅, 12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和. 24.(1)12n n a ;(2)证明见解析.【分析】(1)利用1n n n a S S -=-消去n S ,得到{}n a 为等比数列,公式法求通项公式; (2)把12n n a 代入()()111n n n n a b a a +=++,用裂项相消法求出n T ,再证明12n T <.【详解】解:(1)∵11n n a S +=+,∴11(2)n n a S n -=+≥ ∴1n n n a a a +-=,即∴12(2)n n a a n +=≥. 又21111a S a =+=+,2123S a a =+=∴11a =,22a =,∴212a a =也满足12(2)n n a a n +=≥. ∴{}n a 是以1为首项,2为公比的等比数列,∴12n na(2)由(1)知()()()()11112111121212121n n nn n n n n n a b a a ---+===-++++++.∴1201121111111212121212121n n n nT b b b -⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+-⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭01111121212212n n=-=-<+++. 【点睛】 (1)证明等差(比)数列的方法:定义法和等差(比)中项法;(2)数列求和的方法:公式法、分组求和法、倒序相加法、裂项相消法、错位相减法. 25.条件选择见解析;(1)32n a n =-;(2)证明见解析. 【分析】(1)由①可得11a =,由②可得13d a =,由③可得3127a a d =+=,选择①②、①③、②③条件组合,均得11a =,3d =,即得解析式; (2)可得11133231n b n n ⎛⎫=- ⎪-+⎝⎭,由裂项相消法求出n T 即可证明.【详解】(1)①由()101051S a =+,得()11109105912a d a d ⨯+=++,即11a =; ②由1a ,2a ,6a 成等比数列,得2216a a a =,222111125a a d d a a d ++=+,即13d a =;③由535S =,得()15355352a a a +==,即3127a a d =+=; 选择①②、①③、②③条件组合,均得11a =,3d =, 故()13132n a n n =+-=-. (2)()()111111323133231n n nb a a n n n n +⎛⎫===- ⎪-+-+⎝⎭∴123n n T b b b b =++++11111111134477103231n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111331n ⎛⎫=- ⎪+⎝⎭, ∵n *∈N ,∴1031n >+,∴13n T <.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.(1)()*21n a n n N =-∈,()1*3n nbn N -=∈;(2)()*(1)31n n T n n N =-⨯+∈.【分析】(1)首先根据n S 与n a 的关系求数列{}n a 的通项公式,再根据条件求等比数列{}n b 的基本量,求数列{}n b 的通项公式;(2)()1*(21)3n n n n c a b n n N -=⋅=-⋅∈,利用错位相减法求和. 【详解】(1)当1n =时,111a S ==;当1n >时,221(1)21n n n a S S n n n -=-=--=-;当n=1时符合上式, ∴()*21n a n n N=-∈;∴111b a ==,359==b a , ∴数列{}n b 的公比3q =, ∴()1*3n n b n N -=∈;(2)由(1)可得()1*(21)3n n n n c a b n n N -=⋅=-⋅∈,∴2211231113353(23)3(21)3n n n n n T c c c c c n n ---=+++++=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯,①2313133353(23)3(21)3n n n T n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯,②①-②,整理得()*(1)31nn T n n N =-⨯+∈.【点睛】本题考查已知数列n S 与n a 的关系式,求通项公式,和错位相减法求和,一般数列求和包含1.公式法,利用等差和等比数列的前n 项和公式求解;2.错位相减法求和,适用于等差数列乘以等比数列的数列求和;3.裂项相消法求和,适用于能变形为()()1n a f n f n =+-, 4.分组转化法求和,适用于n n n c a b =+;5.倒序相加法求和.。

(必考题)高中数学必修五第一章《数列》检测(包含答案解析)

(必考题)高中数学必修五第一章《数列》检测(包含答案解析)

一、选择题1.某大楼共有12层,有11人在第一层上了电梯,他们分别要去第2至12层,每层1人,因特殊原因,电梯只能停在某一层,其余10人都要步行到所要去的楼层,假设初始的“不满意度”为0,每位乘客每向下步行一层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,要使得10人“不满意度”之和最小,电梯应该停在第几层( ) A .7B .8C .9D .102.我国古代数学名著《孙子算经》载有一道数学问题:“今有物不知其数,三三数之剩二,五五数之剩二,七七数之剩二,问物几何?”根据这一数学思想,所有被3除余2的整数从小到大组成数列{}n a ,所有被5除余2的正整数从小到大组成数列{}n b ,把数{}n a 与{}n b 的公共项从小到大得到数列{}n c ,则下列说法正确的是( ) A .122a b c +=B .824b a c -=C .228b c =D .629a b c =3.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40424.记n S 为数列{}n a 的前n 项和.若点(),n n a S ,在直线60x y +-=上,则4S =( ) A .92B .254C .458D .4095.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列6.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( ) A .11n + B .1n n + C .1n n- D .11n n -+ 7.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( )A .1011B .910C .89 D .28.若数列{}n a 满足*111(n nd n N a a +-=∈,d 为常数),则称数列{}n a 为调和数列,已知数列21n x ⎧⎫⎨⎬⎩⎭为调和数列,且222212320184036x x x x +++⋯+=,则92010x x +的最大值为( ) AB .2C.D .49.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212C .2155D .236610.已知函数()()31f x x x =-+,数列{}n a 中各项互不相等,记()()()12n n S f a f a f a =+++,给出两个命题:①若等差数列{}n a 满足55S =,则33a =;②若正项等比数列{}n a 满足33S =,则21a <;其中( )A .①是假命题,②是真命题B .①是真命题,②是假命题C .①②都是假命题D .①②都是真命题11.等差数列{}n a 的前n 项和为n S ,1000S >,1010S <,则满足10n n a a +<的n =( ) A .50B .51C .100D .10112.已知定义域为R 的函数f (x )满足f (x )=3f (x +2),且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,设f (x )在[2n -2,2n )上的最大值为*()n a n N ∈,且数列{a n }的前n 项和为S n ,若S n <k 对任意的正整数n均成立,则实数k 的取值范围为( ) A .27,8⎛⎫+∞⎪⎝⎭B .27,8⎡⎫+∞⎪⎢⎣⎭C .27,4⎛⎫+∞⎪⎝⎭D .27,4⎡⎫+∞⎪⎢⎣⎭二、填空题13.数列{}n a 中,1111,,21n n n a a a a --==+则n a =_____________.14.在数列{}n a 中,11a =,0n a ≠,曲线3y x =在点()3,n n a a 处的切线经过点()1,0n a +,下列四个结论:①223a =;②313a =;③416527i i a ==∑;④数列{}n a 是等比数列;其中所有正确结论的编号是______.15.在平面直角坐标系xOy 中,直线l 经过坐标原点,()3,1n =是l 的一个法向量.已知数列{}n a 满足:对任意的正整数n ,点()n 1n a ,a +均在l 上,若2a 6=,则3a 的值为______.16.数列{}n a 中,若31()n na a n *+=∈N ,13a =,则{}n a 的通项公式为________. 17.在数列{}n a 中,11a =()*1n =∈N ;等比数列{}n b 的前n 项和为2n n S m =-.当n *∈N 时,使得n n b a λ≥恒成立的实数λ的最小值是_________.18.已知下列结论:①若数列{}n a 的前n 项和21n S n =+,则数列{}n a 一定为等差数列.②若数列{}n a 的前n 项和21nn S =-,则数列{}n a 一定为等比数列.③非零实数,,a b c 不全相等,若,,a b c 成等差数列,则111,,a b c 可能构成等差数列. ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,则111,,a b c一定构成等比数列. 则其中正确的结论是_______.19.记n S 为等差数列{}n a 的前n 项和,若22a =-,714S =,则10a =__________. 20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________.三、解答题21.已知各项为正数的等比数列{}n a ,前n 项和为n S ,若2125,2,log a log a 成等差数列,37S =,数列{}n b 满足,11b =,数列11n n n b b a ++⎧⎫-⎨⎬⎩⎭的前n 项和为232n n+ (1)求{}n a 的公比q 的值; (2)求{}n b 的通项公式.22.已知正项等比数列{}n a 的前n 项和为n S ,12a =,2232S a a =+. (1)求数列{}n a 的通项公式; (2)设21n nn b a -=,求数列{}n b 的前n 项和. 23.已知数列{}n a 的前n 项和是2n S n =.(1)求数列{}n a 的通项公式; (2)记12n n n b a a +=,设{}n b 的前n 项和是n T ,求使得20202021n T >的最小正整数n . 24.在数列{}n a 中,已知12a =,且12(1)(1)n n na n a n n +=+-+,*n ∈N . (1)设1nn a b n=-,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n T .25.已知等差数列{}n a 和等比数列{}n b 的首项均为1,{}n b 的前n 项和为n S ,且22a S =,43a S =.(1)求数列{}n a ,{}n b 的通项公式;(2)设n n n c a b =⋅,*n N ∈,求数列{}n c 的前n 项和n T . 26.已知数列{}n a 的前n 项和为n S ,且n nS a 和2n a 的等差中项为1. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设41log n n b a +=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意,假设电梯所停的楼层,表达出“不满意度”之和,利用等差数列的求和公式即可求得结论. 【详解】解:设电梯所停的楼层是(212)n n ,则12(2)2[12(12)]S n n =++⋯+-+++⋯+- (2)(1)(12)(13)222n n n n ----=+⨯ 22235335353()157()157232624n n n =-+=--+ 开口向上,对称轴为5396x =≈, 故S 在9n =时取最小值239539314402min S ⨯-⨯+==.故选:C . 【点睛】本题考查数列知识,考查函数思想的运用,考查计算能力,求得“不满意度”之和是关键.2.C解析:C 【分析】根据题意数列{}n a 、{}n b 都是等差数列,从而得到数列{}n c 是等差数列,依次对选项进行判断可得答案.【详解】根据题意数列{}n a 是首项为2,公差为3的等差数列, 23(1)31n a n n =+-=-, 数列{}n b 是首项为2,公差为5的等差数列,25(1)53n b n n =+-=-,数列{}n a 与{}n b 的公共项从小到大得到数列{}n c ,故数列{}n c 是首项为2,公差为15的等差数列,215(1)1513n c n n =+-=-,对于A , 12222539,1521317a b c +=+⨯-==⨯-=, 122a b c +≠,错误; 对于B , 82458332132,1541347b a c -=⨯--⨯+==⨯-=,824b a c -≠,错误; 对于C , 2285223107,15813107b c =⨯-==⨯-=,228b c =,正确;对于D , ()()629361523119,15913122a b c =⨯-⨯⨯-==⨯-=,629a b c ≠,错误. 故选:C. 【点睛】本题考查了等差数列的定义、通项公式,解题的关键是利用数列{}n a 、{}n b 都是等差数列得到数列{}n c 的通项公式,考查了理解能力和计算能力.3.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.4.C解析:C 【分析】由题可得,S 60n n a +-=,根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,可求得{}n a 为等比数列,进而可求得本题答案. 【详解】因为点(),n n a S 在直线60x y +-=上,所以S 60n n a +-=. 当1n =时,1160a S +-=,得13a =;当2n ≥时,S 60n n a +-=①,1160n n a S --+-=②,①-②得,112n n a a -=, 所以数列{}n a 为等比数列,且公比12q =,首项13a =, 则()4414131124511812a q S q⎡⎤⎛⎫⨯-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦===--. 故选:C 【点睛】本题主要考查根据,n n a S 的关系式求通项公式n a 的方法.5.C解析:C 【分析】根据13n n a S +=得14n n S S +=,分类讨论当10S =和10S ≠两种情况分析得数列{}n a 可能为等差数列,但不会为等比数列. 【详解】解:13n n a S +=,13n n n S S S +∴=-, 14n n S S +∴=,若10S =,则数列{}n a 为等差数列;若10S ≠,则数列{}n S 为首项为1S ,公比为4的等比数列,114n n S S -∴=⋅,此时21134n n n n a S S S -==-⋅﹣(2n ≥),即数列从第二项起,后面的项组成等比数列.综上,数列{}n a 可能为等差数列,但不会为等比数列. 故选:C. 【点睛】本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.6.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S =∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.7.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =, 且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.8.C解析:C 【分析】 先由题设21n x ⎧⎫⎨⎬⎩⎭为调和数列{}2n x ⇒是等差数列,进而利用等差数列的前n 项和公式及性质求得2292010x x +的值,再利用基本不等式求得92010x x +的最大值即可.【详解】解:由题设知:2212211111n n n n x x d x x ++-=-=*(n N ∈,d 为常数), {}2n x ∴是等差数列, 2222221201812320182018()40362x x x x x x++++⋯+==, 222212018920104x x x x ∴+==+,2292010920102x x x x +(当且仅当92010x x =时取“等号“), 2229201092010()2()8x x x x ∴++=,9201022x x ∴+(当且仅当92010x x =“等号“),92010x x ∴+的最大值为故选:C. 【点睛】本题主要考查等差数列的定义、性质、前n 项和公式及基本不等式在处理最值中的应用,属于中档题.9.C解析:C 【解析】 依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,……101110112221,,101155a a a a ==+=. 10.A解析:A 【分析】先确定函数()f x 对称性与单调性,再结合等差数列的等距性确定3a ;结合基本不等式将等比数列性质转化到等差数列性质上,解不等式即得结果. 【详解】因为()()()3311(1)1f x x x x x =-+=-+-+,而3y x x =+关于原点对称且在R 上单调递增,所以()f x 关于(1,1)对称且在R 上单调递增, 先证明下面结论:若()g x 为奇函数且在R 上单调递增,{}n a 为等差数列,123g()()()()0n a g a g a g a ++++=,则1230n a a a a ++++=.证明:若1230n a a a a ++++>,则当n 为偶数时,1211220n n n n a a a a a a -++=+==+>111()()()()+()0n n n n a a g a g a g a g a g a >-∴>-=-∴>同理21+122()()0,,()+()0n n n g a g a g a g a -+>>,即123g()()()()0n a g a g a g a ++++>与题意矛盾,当n 为奇数时,1211220n n n a a a a a -++=+==>类似可得12112()()0,()(),,()0n n n g a g a g a g a g a -++>+>,即123g()()()()0n a g a g a g a ++++>,与题意矛盾同理可证1230n a a a a ++++<也不成立,因此1230n a a a a ++++=再引申结论:若()f x 为关于(,)a b 函数且在R 上单调递增,{}n a 为等差数列,123()()()()n f a f a f a f a nb ++++=,则123n a a a a na ++++=证明过程只需令()()g x f x a b =+-,再利用上面结论即得.①若等差数列{}n a 满足55S =,即 12345()()()()()5f a f a f a f a f a ++++=,则123453555a a a a a a ++++=∴=, 31a ∴=,故①是假命题,②若正项等比数列{}n a 满足33S =, 即123()()()3f a f a f a ++= 因为数列{}n a 中各项互不相等,所以公比不为1,不妨设公比大于1,即123123()()()a a a f a f a f a <<∴<<,因为1322a a a +>=∴2()1f a <,()3222111a a a -+<∴<故②是真命题 故选:A 【点睛】本题考查函数()f x 对称性与单调性、等差数列性质、基本不等式应用,考查综合分析判断能力,属中档题.11.A解析:A 【分析】由题意和等差数列求和公式与性质可得50510a a +>;510a <,进而可得500a >,据此分析可得答案. 【详解】根据题意,等差数列{}n a 中,1000S >,1010S <, 则有110010*********()10050()50()02a a S a a a a +⨯==+=+>,则有50510a a +>;又由110110151()10110102a a S a +⨯==<,则有510a <;则有500a >,若10n n a a +<,必有50n =; 故选:A . 【点睛】本题考查等差数列的前n 项和公式的应用,涉及等差数列的性质,属于基础题.12.B解析:B 【分析】运用二次函数的最值和指数函数的单调性求得[0,2]x ∈的()f x 的最大值,由递推式可得数列{}n a 为首项为94,公比为13的等比数列,由等比数列的求和公式和不等式恒成立思想可得k 的最小值【详解】解:当[0,2]x ∈时,且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩, 可得01x ≤<时,()f x 的最大值为(0)2f =,12x <≤时,()f x 的最大值为39()24f =,即当[0,2]x ∈时,()f x 的最大值为94, 当24x ≤<时,1()(2)3f x f x =-的最大值为912,当46x ≤<时,1()(2)3f x f x =-的最大值为936, ……可得数列{}n a 为首项为94,公比为13的等比数列, 所以91(1)2712743(1)183813n n nS -==-<-, 由S n <k 对任意的正整数n 均成立,可得278k ≥, 所以实数k 的取值范围为27,8⎡⎫+∞⎪⎢⎣⎭,故选:B 【点睛】此题考查分段函数的最值求法和等比数列的求和公式,以及不等式恒成立问题的解法,考查转化思想和运算能力,属于中档题二、填空题13.【分析】对两边取到数可得从而可得数列是等差数列求出数列的通项公式即可求出【详解】因为所以即又所以数列是以为首项2为公差的等差数列所以所以故答案为:【点睛】本题主要考查取到数构造新数列同时考查等差数列解析:121n - 【分析】 对1121n n n a a a --=+两边取到数可得1112n n a a --=,从而可得数列1{}n a 是等差数列,求出数列1{}na 的通项公式,即可求出n a . 【详解】 因为1121n n n a a a --=+,所以11121112n n n n a a a a ---+==+,即1112n n a a --=,又111a ,所以数列1{}na 是以1为首项,2为公差的等差数列, 所以11(1)221n n n a =+-⨯=-,所以121n a n =-. 故答案为:121n - 【点睛】本题主要考查取到数构造新数列,同时考查等差数列的概念及通项公式,属于中档题.14.①③④【分析】先利用导数求得曲线在点处的切线方程由此求得与的递推关系式进而证得数列是等比数列由此判断出四个结论中正确的结论编号【详解】∵∴曲线在点处的切线方程为则∵∴则是首项为1公比为的等比数列从而解析:①③④ 【分析】先利用导数求得曲线3y x =在点()3,n n a a 处的切线方程,由此求得1n a +与n a 的递推关系式,进而证得数列{}n a 是等比数列,由此判断出四个结论中正确的结论编号. 【详解】∵2'3y x =,∴曲线3y x =在点()3,n n a a 处的切线方程为()323n n n y a a x a -=-,则()3213n n n n a a a a +-=-.∵0n a ≠,∴123n n a a +=, 则{}n a 是首项为1,公比为23的等比数列, 从而223a =,349a =,4412165322713i i a =⎛⎫- ⎪⎝⎭==-∑. 故所有正确结论的编号是①③④. 故答案为:①③④ 【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前n 项和公式,属于基础题.15.-2【分析】由直线的法向量可得直线的斜率和直线方程求得则数列为公比q为的等比数列运用等比数列的通项公式可得所求值【详解】直线经过坐标原点是的一个法向量可得直线的斜率为即有直线的方程为点均在上可得即有解析:-2 【分析】由直线的法向量可得直线的斜率和直线方程,求得n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列,运用等比数列的通项公式可得所求值. 【详解】直线经过坐标原点,()n 3,1=是l 的一个法向量, 可得直线l 的斜率为3-, 即有直线l 的方程为y 3x =-,点()n 1n a ,a +均在l 上,可得n n 1a 3a +=-, 即有n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列, 可得321a a q 623⎛⎫==⨯-=- ⎪⎝⎭. 故答案为2-. 【点睛】本题主要考查等比数列的定义和通项公式的运用,考查直线方程的求法,考查运算能力,属于基础题.16.【分析】两边取对数化简整理得得到数列是以为首项公比为3的等比数列结合等比数列的通项公式即可求解【详解】由两边取对数可得即又由则所以数列是以为首项公比为3等比数列则所以故答案为:【点睛】本题主要考查了 解析:133()n n a n -*=∈N【分析】两边取对数,化简整理得313log 3log n na a +=,得到数列3{log }n a 是以1为首项,公比为3的等比数列,结合等比数列的通项公式,即可求解. 【详解】由31()n na a n *+=∈N ,两边取对数,可得313log 3log n n a a +=,即313log 3log n na a +=, 又由13a =,则31log 1a =,所以数列3{log }n a 是以31log 1a =为首项,公比为3等比数列,则113log 133n n n a --=⋅=,所以133()n n a n -*=∈N .故答案为:133()n n a n -*=∈N 【点睛】本题主要考查了对数的运算性质,以及等比数列的通项公式的求解,其中解答中合理利用对数的运算性质,结合等比数列的通项公式求解是解答的关键,着重考查推理与运算能力.17.【分析】分别求出的通项再构建新数列求出最大项后可得实数的最小值【详解】因为故是以1为首项以1为公差的等差数列所以当时是等比数列也适合故即又恒成立等价于恒成立令则当时当时故【点睛】方法点睛:含参数的数解析:94【分析】分别求出{}n a 、{}n b 的通项,再构建新数列212n n n c -=,求出{}n c 最大项后可得实数λ的最小值. 【详解】()*1n =∈N,故是以1为首项,以1为公差的等差数列,()11n n =+-⨯=,2*()n a n n N ∴=∈.当2n ≥时,111(2)(2)2nn n n n n b S S m m ---=-=---=,{}n b 是等比数列,112b S m ∴==-也适合12n n b -=,故21m -=即1m =,1*2()n n b n N -∴=∈.又n n b a λ≥恒成立等价于212n n λ-≥恒成立,2max max 1()()2n n n a n b λ-∴≥=,令212n n n c -=,则()2221121142222n n n n n n n n n c c --------=-=, 当23n ≤≤时,10-->n n c c ,当4n ≥时,10n n c c --<, 故max 39()4n c c ==,94λ∴≥. 【点睛】方法点睛:含参数的数列不等式的恒成立,可利用参变分离将参数的取值范围问题转化新数列的最值问题,后者可利用数列的单调性来处理.18.②④【分析】①先求出再当时求出判断当时有判断①错误;②先求出再当时求出判断数列是以1为首项以2为公比的等比数列判断②正确;③先建立方程组再整理得与非零实数不全相等矛盾判断③错误;④先得方程整理得判断解析:②④ 【分析】①先求出12a =,再当2n ≥时求出21n a n =-,判断当1n =时有11n a a =≠,判断①错误;②先求出11a =,再当2n ≥时求出12n na ,判断数列{}n a 是以1为首项以2为公比的等比数列,判断②正确;③先建立方程组2112a c b a c ac a c b +⎧=+=⎪⎨⎪+=⎩,再整理得a b c ==与非零实数,,a b c 不全相等矛盾,判断③错误;④先得方程2b ac =,整理得2111()b a c =⨯,判断④正确. 【详解】①:数列{}n a 的前n 项和21n S n =+, 当1n =时,211112a S ==+=,当2n ≥时,221(1)(1)121n n n a S S n n n -⎡⎤=-=+--+=-⎣⎦,当1n =时,11n a a =≠,故①错误;②:数列{}n a 的前n 项和21nn S =-, 当1n =时,111211a S ==-=,当2n ≥时,111(21)(21)2n n n n n n a S S ---=-=---=,当1n =时,11n a a ==,且12nn a a -= 所以数列{}n a 是以1为首项,以2为公比的等比数列, 故②正确;③:若111,,a b c是等差数列,则211a c b a c ac+=+=, 因为,,a b c 成等差数列,则2a c b +=,则2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,整理得a b c ==,与非零实数,,a b c 不全相等矛盾, 故③错误;④:因为非零实数,,a b c 不全相等,且,,a b c 成等比数列, 所以2b ac =,则21111b ac a c==⨯, 则111,,a b c一定构成等比数列. 故④正确. 故答案为:②④. 【点睛】本题考查等差数列和等比数列的判断,是基础题.19.14【分析】本题先求再求即可解题【详解】解:因为数列是等差数列所以解得所以故答案为:14【点睛】本题考查等差数列的基本量法是基础题解析:14 【分析】本题先求1a 、d ,再求10a 即可解题. 【详解】解:因为数列{}n a 是等差数列,22a =-,714S =所以217127(71)7142a a d S a d =+=-⎧⎪⎨⨯-=+=⎪⎩,解得142a d =-⎧⎨=⎩, 所以101914a a d =+= 故答案为:14 【点睛】本题考查等差数列的基本量法,是基础题.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)2q ;(2)()121n n b n =-⋅+.【分析】(1)对正项的等比数列{}n a ,利用基本量代换,列方程组,解出公比q ; (2)设11n nn n b b d a ++-=,由题意分析、计算得 1n d n =+,从而得到()112n n n b b n +-=+⋅,用累加法和错位相减法求出 n b .【详解】(1)∵2125log ,2,log a a 成等差数列,∴ ()225215log log log 4a a a a +==,即132516a a a ==,又0,n a >34a ∴=,又37,S =21211147a q a a q a q ⎧=∴⎨++=⎩ 解得2q或23q =-(舍).()2记11n n n n b b d a ++-=,当2n ≥时,()()221313122n n n n n d n -+-+=-=+又12d =也符合上式,1n d n ∴=+.而31322n n n a a --=⋅=,()112n n n b b n +∴-=+⋅,()()()21121321122322,)2(n n n n b b b b b b b b n n --∴=+-+-+⋯+-=+⋅+⋅+⋯+⋅≥, ()231222232122n n n b n n -∴=+⋅+⋅+⋅⋅⋅+-⋅+⋅两式相减得()2112222121n n n n b n n --=+++⋯+-⋅=-⋅-,()2)2(11,n n b n n ∴=-⋅+≥.而11b =也符合上式, 故()121nn b n =-⋅+.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换; (2)数列求和常用方法:①公式法;②倒序相加法;③裂项相消法;④错位相减法.22.(1)2nn a =;(2)()13232nn T n ⎛⎫=-+⨯ ⎪⎝⎭. 【分析】(1)求等比数列的通项公式用公式法,基本量代换;(2) ()121221n nn n n b a ⎛⎫=- ⎝=⎪⎭-,用错位相减法求和.【详解】解:(1)设{}n a 的公比为q ,0q >2232S a a =+∴()12122a a a q a q +=+ ∴2q∴1222n nn a -=⋅=.(2)()1212nn b n ⎛⎫=- ⎪⎝⎭设{}n b 的前n 项和为n T∴()()23111111135232122222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⨯+-⨯ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭①()()2311111113232122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭②①-②()23111111122221222222nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++⨯--⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()111112211121122212n n n T n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+--⨯ ⎪⎝⎭-()1111112212222nn n T n +⎛⎫⎛⎫=+-⋅--⨯ ⎪ ⎪⎝⎭⎝⎭所以()11342122nnn T n ⎛⎫⎛⎫=-⋅--⨯ ⎪ ⎪⎝⎭⎝⎭所以()13232nn T n ⎛⎫=-+⨯ ⎪⎝⎭.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换;(2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法. 23.(1)21n a n =-;(2)1011. 【分析】(1)利用1n n n a S S -=-可得答案; (2)求出112121n b n n =--+利用裂项相消可得答案. 【详解】 (1)111a S ==,当2n ≥时,()221121n n n a S S n n n -=-=--=-,1a 符合上式,所以21n a n =-. (2)()()21121212121n b n n n n ==--+-+, ∴11111111335212121n T n n n =-+-++-=--++, 令120201212021n ->+,解得1010n >, 所以最小正整数n 为1011. 【点睛】数列求和的方法技巧:( 1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. ( 2)错位相减:用于等差数列与等比数列的积数列的求和. ( 3)分组求和:用于若干个等差或等比数列的和或差数列的求和.( 4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和. 24.(1)12n n b -=;(2)22(1)22nn n n T n ++=-⋅+. 【分析】(1)由定义证明数列{}n b 是等比数列,得出数列{}n b 的通项公式;(2)由{}n b 的通项公式求出n a ,再由错位相减法以及分组求出法得出数列{}n a 的前n 项和n T . 【详解】解:(1)因为12(1)(1)n n na n a n n +=+-+,所以1211n n a an n+=⋅-+ 所以11211n n a a n n +⎛⎫-=- ⎪+⎝⎭,又1111a -=所以{}n b 是首项为1,公比为2的等比数列,所以12n nb -=.(2)由(1)知,()()111212n n n n n a b n n n --=+⋅=+=⋅+⋅所以()21(1)11223222n n n n T n -+=⨯+⨯+⨯++⋅+设211122322n n S n -=⨯+⨯+⨯++⋅① 232S 1222322n n n =⨯+⨯+⨯++⋅②①-②得211212222?212nn nn n S n n ---=++++-⋅=--所以(1)21n n S n =-⋅+所以22(1)22nn n n T n ++=-⋅+. 【点睛】关键点睛:在第二问中,对于求{}n a 的前n 项和,关键是利用错位相减法结合分组求和得出n T .25.(1)()1121n a a n d n =+-=-,1112nn n b b q ;(2)()3232n n T n =+-⋅.【分析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由22a S =,43a S =,求得2,2d q ==,然后利用等差数列和等比数列通项公式求解.(2)由(1)得到()1212n n c n -=-⋅,然后错位相减法求解.【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 因为22a S =,43a S =,所以11d q +=+,2131d q q +=++,解得2,2d q ==所以()1121n a a n d n =+-=-,1112nn n b b q ;(2)由(1)知:()1212n n c n -=-⋅,所以()0121123252...212n n T n -=⋅+⋅+⋅++-⋅, 则()1232123252...212nn T n =⋅+⋅+⋅++-⋅, 两式相减得:()23122...2212n nn T n -=++++--⋅,()()1412121212n n n --=+--⋅-,()3322n n =-+-⋅,所以()3232nn T n =+-⋅.【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.26.(Ⅰ)2n n a =;(Ⅱ)22n n T n =+. 【分析】(Ⅰ)利用等差中项的定义得出n S 与n a 的关系,然后由1(2)n n n a S S n -=-≥得出数列{}n a 的递推关系,求出1a 其为等比数列,从而得通项公式;(Ⅱ)用裂项相消法求和n T .【详解】解:(Ⅰ)因为n nS a 和2n a 的等差中项为1, 所以22n n nS a a +=,即22n n S a =-, 当2n 时,1122n n S a --=-.两式相减得1122n n n n S S a a ---=-,整理得12n n a a -=.在22n n S a =-中,令1n =得12a =,所以,数列{}n a 是以2为首项,2为公比的等比数列,因此1222n n n a -=⨯=.(Ⅱ)411log 2n n n b a ++==. 则114114(1)(2)12+⎛⎫==- ⎪++++⎝⎭n n b b n n n n . 所以11111111244233412222n n T n n n n ⎛⎫⎛⎫=⨯-+-++-=⨯-=⎪ ⎪++++⎝⎭⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.。

(好题)高中数学必修五第一章《数列》测试卷(含答案解析)(2)

(好题)高中数学必修五第一章《数列》测试卷(含答案解析)(2)

一、选择题1.已知数列{}n a 是等比数列,满足51184a a a =,数列{}n b 是等差数列,且88b a =,则79b b +等于( )A .24B .16C .8D .42.在等比数列{}n a 中,有31598a a a =,数列{}n b 是等差数列,且99b a =,则711b b +等于( ) A .4B .8C .16D .243.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞4.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =( ) A .21nn - B .21nn + C .221nn + D .42nn + 5.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( ) A .2018B .2019C .2020D .20216.在等比数列{n a }中,13a =,424a =,则345a a a ++的值为( ) A .33B .72C .84D .1897.已知等差数列{}n a 满足3434a a =,则该数列中一定为零的项为( )A .6aB .7aC .8aD .9a8.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知222,,a b c 成等差数列,则cos B 的最小值为( )A .12B .2C .34D .29.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( ) A .11n + B .1n n + C .1n n- D .11n n -+10.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ). A .12B .11C .10D .911.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .27612.已知数列{}n a 中,11a =,又()1,1n a a +=,()21,1n b a =+,若//a b ,则4a =( ) A .7B .9C .15D .17二、填空题13.设S n 是数列{}n a 的前n 项和,且*1111,20,3n n n a a S S n N ++=+=∈,则1223910S S S S S S ++⋅⋅⋅⋅⋅+=___________.14.已知{}n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,则10S 的值为__________.15.定义:如果一个数列从第二项起,后一项与前一项的和相等且为同一常数,这样的数列叫“等和数列”,这个常数叫公和.给出下列命题: ①“等和数列”一定是常数数列;②如果一个数列既是等差数列又是“等和数列”,则这个数列一定是常数列; ③如果一个数列既是等比数列又是“等和数列”,则这个数列一定是常数列; ④数列{}n a 是“等和数列”且公和100h =,则其前n 项之和50n S n =; 其中,正确的命题为__________.(请填出所有正确命题的序号) 16.已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2*12,n n S S n n n N -+=≥∈,若对任意*n N ∈,1n n a a +<恒成立,则a 的取值范围是___________.17.定义max{,}a b 表示实数,a b 中的较大的数.已知数列{}n a 满足1a a =2(0),1,a a >=122max{,2}()n n na a n N a *++=∈,若20154a a =,记数列{}n a 的前n项和为n S ,则2015S 的值为___________.18.已知数列{}n a 的前n 项和()2*32n n n S n +=∈N ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为______.19.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0; ③S n =2a n +1p(p 是与n 无关的参数). 从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______.20.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____. 三、解答题21.已知公差为2的等差数列{}n a ,且1a ,7a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的前n 项和为n S ,求数列n S n ⎧⎫⎨⎬⎩⎭的最小项. 22.已知{}n a 是公差不为0的等差数列,若1313,,a a a 是等比数列{}n b 的连续三项. (1)求数列{}n b 的公比; (2)若11a =,数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 和为n S 且99200nS >,求n 的最小值. 23.已知n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,记12n n a x ⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数且n *∈N 若.130n n a a ++⋅>恒成立,求: (1)数列{}n a 的通项公式; (2)数列{}n a 的前n 项和n S .24.已知数列{}n a 是等差数列,n S 是数列{}n a 的前n 项和,35a =,749=S . (1)求数列{}n a 的通项公式及前n 项和n S ;(2)若数列{}n b满足2n b =,求数列{}n b 的前n 项和n T .25.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.26.在①222n n S n a =+,②3516a a +=且3542S S +=,③2142n n S n S n +=+且756S =这三个条件中任选一个,补充在下面的问题中,并加以解答.问题:设数列{}n a 为等差数列,其前n 项和为n S ,_________.数列{}n b 为等比数列,11b a =,23b a =.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用等比数列和等差数列的性质计算. 【详解】∵数列{}n a 是等比数列,∴2511884a a a a ==,又80a ,∴84a =,又{}n b 是等差数列,∴7988228b b b a +===. 故选:C . 【点睛】关键点点睛:本题考查等差数列与等比数列的性质,掌握等差数列与等比数列的性质是解题关键.对正整数,,,m n p l ,若m n p l +=+,{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =,特别地若2m n p +=,{}n a 是等差数列,则2m n p a a a +=,若{}n a 是等比数列,则2m n p a a a =.2.C解析:C 【分析】根据等比数列性质求得9a ,再由等差数列性质求解. 【详解】∵{}n a 是等比数列,∴2931598a a a a ==,90a ≠,所以98a =,即998b a ==,∵{}n b 是等差数列,所以7119216b b b +==.故选:C . 【点睛】关键点点睛:本题考查等差数列和等比数列的性质,掌握等差数列和等比数列的性质是解题关键,设,,,m n p l 是正整数,m n p l +=+,若{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =.p l =时,上述结论也成立.3.D解析:D 【分析】由2n n S a =-利用1112n nn S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}na 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.4.B解析:B 【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T . 【详解】已知数列{}n a 满足11a =,+121nn n a a a =+, 在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n n a a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-, ()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21n n =+. 故选:B. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.5. B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出. 【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2.142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+(1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.故选:B . 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.6.C解析:C 【分析】根据341a a q =,可求出q ,再根据等比数列通项公式求出35,a a 即可.【详解】因为341a a q =,即3243q =,所以2q,所以22313212a a q ==⨯=,44513248a a q ==⨯=,所以34512244884a a a ++=++=. 故选:C 【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.7.B解析:B 【分析】由条件可得34a d =-,进而得n a (7)n d =-,从而得解. 【详解】33a 44a =,33a ∴()33444a d a d =+=+, 34d a ∴=-n a ∴3(3)a n d =+-⋅4(3)d n d =-+- (7)n d =-70a ∴=,故选:B 【点睛】本题主要考查了等差数列的通项公式,等差数列的性质,属于基础题.8.A解析:A 【解析】分析:用余弦定理推论得222cos 2a c b B ac +-=.由222,,a b c 成等差数列,可得2222a c b += ,所以22222cos 24a c b a c B ac ac+-+==,利用重要不等式可得2221cos 442a c ac B ac ac +=≥=.详解:因为222,,a b c 成等差数列,所以2222a cb += . 由余弦定理推论得2222221cos 2442a cb ac ac B ac ac ac +-+==≥=当且仅当a c =时,上式取等号. 故选A .点睛:本题考查等差中项、余弦定理的推论、重要不等式等知识,考查学生的运算能力及转化能力.利用重要不等式、基本不等式求最值时,一定要判断能否取相等,不能相等时,应转化为函数求最值.9.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2) 1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.10.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.11.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果.【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=,故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.12.C解析:C 【分析】利用向量平行的坐标运算公式得出121n n a a +=+,可得出1121n n a a ++=+,所以数列{}1n a +是以2为首项,公比为2的等比数列,然后求解4a . 【详解】因为//a b ,所以121n n a a +=+,则()112221n nn a a a ++=+=+,即1121n na a ++=+, 又11a =,所以112a +=,所以数列{}1n a +是以2为首项,公比为2的等比数列, 所以441216a +==,得415a =. 故选:C. 【点睛】本题考查向量的平行,考查数列的通项公式求解及应用,难度一般. 一般地,若{}n a 满足()10,1,0n n a pa q p p q +=+≠≠≠,则只需构造()1n n a x p a x ++=+,其中1q x p =-,然后转化为等比数列求通项.二、填空题13.【分析】由代入化简求得再结合求和方法计算可得结果【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以所以故答案为:【点晴】由代入化简求得数列是等差数列是解题的关键解析:17【分析】由11n n n a S S ++=-代入化简求得n S ,再结合求和方法计算可得结果. 【详解】因为1120n n n a S S +++=所以1120n n n n S S S S ++-+= 所以112n n n n S S S S ++-= 所以1112n nS S +-= 又11113S a == 所以数列1n S ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列,所以()131221nn n S =+-⨯=+ 所以121n S n =+ 所以111111212322123n n S S n n n n +⎛⎫=⋅=- ⎪++++⎝⎭所以12239101111111111123557192123217S S S S S S ⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭ 故答案为:17【点晴】由11n n n a S S ++=-代入化简求得数列1n S ⎧⎫⎨⎬⎩⎭是等差数列是解题的关键. 14.110【分析】根据题意求出首项再代入求和即可得【详解】是与的等比中项解得故答案为:110【点睛】本题主要考查等差数列等比数列的通项公式及等差数列求和是基础题解析:110 【分析】根据题意,求出首项120a =,再代入求和即可得. 【详解】31124a a d a =+=-,711612a a d a =+=-,911816a a d a =+=-,7a 是3a 与9a 的等比中项,()()2111(12)416a a a ∴-=--,解得120a =,()101102010921102S ∴=⨯+⨯⨯⨯-=.故答案为:110.【点睛】本题主要考查等差数列、等比数列的通项公式及等差数列求和,是基础题.15.②【分析】利用等和数列的定义对每一个命题逐一分析判断得解【详解】①等和数列不一定是常数数列如数列是等和数列但是不是常数数列所以该命题错误;②如果一个数列既是等差数列又是等和数列则这个数列一定是常数列解析:② 【分析】利用“等和数列”的定义对每一个命题逐一分析判断得解. 【详解】①“等和数列”不一定是常数数列,如数列1,0,1,0,1,0,1,0,1,0,是“等和数列”,但是不是常数数列,所以该命题错误;②如果一个数列既是等差数列又是“等和数列”,则这个数列一定是常数列.如果数列{}n a 是等差数列,所以112(2)n n n a a a n +-+=≥,如果数列{}n a 是“等和数列”,所以11+(2),n n n n a a a a n -+=+≥所以11(2),n n a a n -+=≥所以122(2)n n a a n -=≥,所以1(2)n n a a n -=≥,所以这个数列一定是常数列,所以该命题是正确的.③如果一个数列既是等比数列又是“等和数列”,则这个数列一定是常数列. 如果数列{}n a 是等比数列,所以211(2)n n n a a a n +-⋅=≥,如果数列{}n a 是“等和数列”,所以11+(2),n n n n a a a a n -+=+≥所以11(2),n n a a n -+=≥所以221(2)n n a a n -=≥,所以1(2)n n a a n -=±≥,所以这个数列不一定是常数列,所以该命题是错误的.④数列{}n a 是“等和数列”且公和100h =,则其前n 项之和50n S n =,是错误的.举例“等和数列”1,99,1,99,1,其5201505S =≠⨯,所以该命题是错误的. 故答案为:② 【点睛】本题主要考查数列的新定义的理解和应用,考查等差数列和等比数列的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.【分析】由化简可得从而可得由知则从而解得【详解】解:即即故由知;若对任意恒成立只需使即解得故故答案为:【点睛】本题考查了数列的性质的判断与应用同时考查了整体思想的应用及转化思想应用解析:24,33⎛⎫⎪⎝⎭【分析】由21n n S S n -+=化简可得1121n n S S n +--=+,从而可得22n n a a +-=,由1a a =知242a a =-,32a a =+,442a a =-,则1234a a a a <<<从而解得.【详解】解:21n n S S n -+=,21(1)n n S S n ++=+,1121n n S S n +-∴-=+,即121n n a a n ++=+, 即2123n n a a n +++=+, 故22n n a a +-=, 由1a a =知2124a a +=, 214242a a a ∴=-=-,32a a =+, 462a a =-;若对任意n ∈+N ,1n n a a +<恒成立, 只需使1234a a a a <<<, 即42262a a a a <-<+<-, 解得2433a <<,故24,33a ⎛⎫∈ ⎪⎝⎭故答案为:24,33⎛⎫⎪⎝⎭. 【点睛】本题考查了数列的性质的判断与应用,同时考查了整体思想的应用及转化思想应用.17.7254【分析】参数进行分类讨论由已知求出数列的前几项从中发现是以5为周期的再根据求得的值可得答案【详解】由题意当时因此是周期数列周期为所以不合题意当时同理是周期数列周期为所以故答案为:【点睛】本题解析:7254 【分析】参数a 进行分类讨论,由已知求出数列的前几项,从中发现是以5为周期的,再根据20154a a =求得a 的值可得答案.【详解】 由题意34a a=,当2a ≥时,44a =,52a a =,6a a =,71a =,因此{}n a 是周期数列,周期为5,所以2015524a a a a ==≠,不合题意,当02a <<时,48a a=,54a =,6a a =,71a =,同理{}n a 是周期数列,周期为5,所以2015544a a a ===,1a =,1234518a a a a a ++++=,2015403187254S =⨯=.故答案为:7254. 【点睛】本题考查新定义问题,考查周期数列的知识,解决此类问题常采取从特殊到一般的方法,可先按新定义求出数列的前几项(本题由12,a a 依次求出34567,,,,a a a a a ),从中发现周期性的规律,本题求解中还要注意由新定义要对参数a 进行分类讨论.解决新定义问题考查的学生的阅读理解能力,转化与化归的数学思想,即把新定义的“知识”、“运算”等用我们已学过的知识表示出来,用已学过的方法解决新的问题.18.【分析】根据可求得的通项公式经检验满足上式所以可得代入所求利用裂项相消法求和即可得答案【详解】因为所以所以又满足上式所以所以所以数列的前10项和为故答案为:【点睛】解题的关键是根据求得的通项公式易错 解析:532【分析】根据1(2)n n n a S S n -=-≥可求得n a 的通项公式,经检验,112a S ==满足上式,所以可得n a ,代入所求,利用裂项相消法求和,即可得答案. 【详解】因为()2*32n n n S n +=∈N ,所以2213(1)1352(2)22n n n n n S n --+--+==≥, 所以221335231,(2)22n n n n n n n a S S n n -+-+=---≥==,又1131122a S ⨯+===满足上式, 所以()*31,n a n n N=-∈,所以111111(31)(32)3313+2n n a a n n n n +⎛⎫== ⎪-+-⎝⎭-, 所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为11111111115325582932323232⎛⎫⎛⎫-+-+⋅⋅⋅+-=⨯-= ⎪ ⎪⎝⎭⎝⎭, 故答案为:532【点睛】解题的关键是根据1(2)n n n a S S n -=-≥,求得n a 的通项公式,易错点为,若11a S =满足上式,则写成一个通项公式的形式,若11a S =不满足上式,则需写成分段函数形式,考查计算化简的能力,属中档题.19.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得 1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.20.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-三、解答题21.(1)211n a n =-;(2)最小项为第7项为297. 【分析】(1)由等比中项的性质以及等差数列的通项公式求出数列{}n a 的通项公式;(2)当5n ≤时,由112n a n =-得出n S ,由二次函数的性质得出数列n S n ⎧⎫⎨⎬⎩⎭的最小项,当6n >时,由211n a n =-得出n S 结合导数数列n S n ⎧⎫⎨⎬⎩⎭的最小项. 【详解】(1)由题知:2715a a a =⋅,则()()2111128a a a +=⋅+得:19a =-即1(1)211n a a n d n =+-=- (2)当5n ≤时,112n a n =-,29112102n nS n n n +-=⨯=- 则21010n S n n n n n-==-,即5n =时,min 5n S n ⎛⎫= ⎪⎝⎭当6n ≥时,211n a n =-,251211(5)10502n n S S n n n +-=+⨯-=-+,则5010n S n n n=+- 令50()10,6f x x x x =+-≥,2225050()1x f x x x-'=-=当6x <<()0f x '<,当x >时,()0f x '>即函数()f x在(上单调递减,在()+∞上单调递增即7n =时,min 297n S n ⎛⎫= ⎪⎝⎭ 最小项为第7项为297【点睛】关键点睛:解决本题的关键在于先讨论211n a n =-的正负,从而确定{}n a 的通项公式,进而得出n S ,最后由二次函数的性质以及导数得出数列n S n ⎧⎫⎨⎬⎩⎭的单调性,由此得出最小值. 22.(1)5;(2)50. 【分析】(1)利用基本量代换,求出12d a =,直接求出公比;(2)裂项相消法求出n S ,解不等式即可. 【详解】(1)设等差数列{}n a 的公差为d ,由1313,,a a a 是等比数列{}n b 的连续三项,得23113a a a =⋅,即()()2111212a d a a d +=⋅+,化简得2148d a d =.10,2d d a ≠∴=.设数列{}n b 的公比的公比为q ,则3111111245a a d a a q a a a ++====. (2)若11a =,则1111112,21,(21)(21)22121n n n d a n a a n n n n +⎛⎫==-==- ⎪-+-+⎝⎭, 111112133557(21)(21)n S n n ⎫⎛=++++⎪ ⨯⨯⨯-⨯+⎝⎭111111111111233557212122121nn n n n ⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 由99200n S >,得9999,212002n n n >∴>+,故n 的最小值为50.【点睛】(1)等差(比)数列问题解决的基本方法:基本量代换;(2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法.23.(1)*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩;(2)2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【分析】 (1)先令12n nx t =,根据所给方程,得到()()2312log 23n n n t n t n n ++=+,构造函数()()214log 2n g x x n x +=+,确定122n n n t +<<,再讨论n 为奇数和n 为偶数两种情况,结合题中条件,即可求出数列的通项;(2)根据(1)的结果,讨论n 为奇数和n 为偶数两种情况,利用分组求和的方法,结合等差数列的求和公式,即可求出结果. 【详解】(1)因为n x 是关于x 的方程2121log 3n n x n n x+-=+的实数根,令12n n x t =,则12n nx t =, 所以()()2312log 23n n n t n t n n ++=+,记()()214log 2n g x x n x +=+,显然()g x 单调递增,且2221log 32n n g n n n n n n n +⎛⎫=+<+<+ ⎪⎝⎭,()()222111log 13132n n g n n n n n n n ++⎛⎫=+++=++>+ ⎪⎝⎭, 所以122n n n t +<<, 当*21()n k k N =-∈时,2112n k k t k --<<<,则[]11122n nn n a t k x ⎡⎤-===-=⎢⎥⎣⎦; 当*2()n k k N =∈时,21122n k k t k +<<=+,则[]122n n n n a t k x ⎡⎤====⎢⎥⎣⎦; 综上,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩; (2)由(1)可得,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩, 当*21()n k k N =-∈时,()()1352461......n n n S a a a a a a a a -=+++++++++211121002412461122222 (222)22222224n n n n n n n +---⎛⎫⎛⎫++ ⎪ ⎪---⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭;当*2()n k k N =∈时,()()1351246......n n n S a a a a a a a a -=+++++++++2220024224622222 (222)22222224n n n n n n n -⎛⎫⎛⎫++ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭; 综上,2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【点睛】 关键点点睛:求解本题的关键在于由n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,求出12nx 的范围,利用12n n a x ⎡⎤=⎢⎥⎣⎦,通过讨论n 的奇偶,得出数列通项,即可求解. 24.(1)21n a n =-,2n s n =;(2)21n nT n =+. 【分析】(1)根据条件列出式子求出数列{}n a 的首项和公差,即可求出通项公式和前n 项和; (2)可得112+1n b n n ⎛⎫=- ⎪⎝⎭,利用裂项相消法即可求出. 【详解】(1)设等差数列{}n a 的公差为d ,则3171+25767+492a a d S a d ==⎧⎪⎨⨯==⎪⎩,解得1a 1,d 2, ()1+1221n a n n ∴=-⨯=-,()21+212n n n S n -==; (2)()2112+1+1n b n n n n ⎛⎫===- ⎪⎝⎭, 1111122122311n nT n n n ⎛⎫∴=-+-++-=⎪++⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 25.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1nn a b a =即可求出;(2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】 (1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212ab a ==,3313a b a ==, (2)设1n a k +=,nn nA bB =, 若n k B ≤,则+1nn n n nk A A b b B =≥=, 若n n B k A <<,则+1nn nn A b b B ==, 若n k A ≥,则+1n n n nn A kb b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=;(3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n nn A b q B -==, 由(2)可得1n n b b +≥,则1q ≥, 当1q =时,1nnA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列;当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =,此时01n n nn n n A a b q B a -===,即01n n n a a q -=,故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列.【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.26.见解析【分析】根据选择的条件求出{}n a 的通项,再利用分组求和可得n T .【详解】若选①,由222n n S n a =+可得1122a a =+,故12a =,又22422S a ⨯=+,故()222224a a =+⨯+,故24a =,故等差数列的公差422d =-=,故()2212n a n n =+-=,所以()()2212n n n S n n +==+, 所以12b =,26b =,所以等比数列{}n b 的公比为3q =,故123n n b -=⨯ 故()111111=232311n n n n b S n n n n --++⨯=-+⨯++, 故11111111131=231223341131n n n T n n n -⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+⨯=- ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭⎝⎭. 若选②,由题设可得11126163351042a d a d a d +=⎧⎨+++=⎩,解得122a d =⎧⎨=⎩, 同①可得131n n T n =-+. 若选③,由题设可得1213S S =即212a a =,故1d a =,故1n a na =, 而74567S a ==,故48a =,故12a =,故2n a n =,同①可得131n n T n =-+. 【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.另外求和注意根据通项的特征选择合适的求和方法.。

高中数学必修五第一章《解三角形》单元测试卷及答案

高中数学必修五第一章《解三角形》单元测试卷及答案

高中数学必修五第一章《解三角形》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.在ABC △中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A >B ,则一定有( ) A .cos A >cos BB .sin A >sin BC .tan A >tan BD .sin A <sin B3.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,2sin sin cos a A B b A +,则ba =( )A .B .C D4.在△ABC 中,∠A =60°,a =,b =4.满足条件的△ABC ( ) A .无解B .有一解C .有两解D .不能确定5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222a b c =-, 则角B 的大小是( ) A .45°B .60°C .90°D .135°6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -,sin C B =,则A =( ) A .30°B .60°C .120°D .150°7.在△ABC 中,∠A =60°,b =1,△ABC sin aA为( )A B C D .8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .0,6π⎛⎤ ⎥⎝⎦B .,6π⎡⎫π⎪⎢⎣⎭C .0,3π⎛⎤ ⎥⎝⎦D .,3π⎡⎫π⎪⎢⎣⎭9.在△ABC 中,已知B =45°,c =,b =A 的值是( ) A .15°B .75°C .105°D .75°或15°10.在锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1a <<C a <D .不确定11.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 22A b cc+=,则 △ABC 的形状为( ) A .直角三角形B .等腰直角三角形C .等腰或直角三角形D .等边三角形12.如图所示,在△ABC 中,已知∠A ∶∠B =1∶2,角C 的平分线CD 把三角形面积分为3∶2两部分,则cos A 等于( )A .13B .12C .34D .0二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________. 14.在△ABC 中,若a 2+b 2<c 2,且3sin C ,则∠C =________. 15.在△ABC 中,a =3,26b =B =2∠A ,则cos A =________.16.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔A 仰角为30°,则塔高为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知()cos cos 3sin cos 0C A A B +=.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.18.(12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .(1)若sin 2cos 6A A π⎛⎫+= ⎪⎝⎭,求A 的值;(2)若1cos 3A =,b =3c ,求sin C 的值.19.(12分)在△ABC 中,角A 、B 、C 对应的边分别是a 、b 、c ,已知cos2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =b =5,求sin B sin C 的值.20.(12分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c +=. (1)求C ;(2)设cos cos A B =,()()2cos cos cos A B ααα++,求tan α的值.21.(12分)在△ABC 中,2C A π-=,1sin 3B =. (1)求sin A 的值;(2)设6AC =,求△ABC 的面积.22.(12分)如图,已知扇形AOB ,O 为顶点,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 相交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.答 案一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.【答案】C 【解析】6A π=,3B π=,2C π=,132::sin :sin :sin 3222a b c A B C ===,故选C . 2.【答案】B【解析】∵A B >,∴a b >,由正弦定理,得sin sin A B >,故选B .3.【答案】D【解析】本小题考查内容为正弦定理的应用.∵2sin sin cos a A B b A +=,∴22sin sin sin cos A B B A A +=,sin B A =,∴b =,∴ba.故选D . 4.【答案】A【解析】4sin 60⨯︒=<a <b sin A ,∴△ABC 不存在. 故选A . 5.【答案】A【解析】∵222a b c =-,∴222a c b +-=,由余弦定理,得222cos 2a c b B ac +-===0°<B <180°,所以B =45°. 故选A . 6.【答案】A【解析】由sin C B =及正弦定理,得c =,∴2226a b b -=, 即a 2=7b 2.由余弦定理,2222222cos2b c a A bc +-===,又∵0°<A <180°,∴A =30°.故选A . 7.【答案】B【解析】由1sin 2bc A =c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =13,故a =sin a A ==B . 8.【答案】C【解析】本题主要考查正余弦定理,∵sin 2A ≤sin 2B +sin 2C -sin B sin C , ∴由正弦定理得:a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理得:2221cos 222b c a bc A bc bc +-==≥=,∴03A π<≤,故选C .9.【答案】D 【解析】∵sin sin b cB C =,∴sin sin c B C b ==. ∵0°<C <180°.∴C =60°或120°,∴A =75°或15°.故选D . 10.【答案】C【解析】∵b <c ,△ABC 为锐角三角形,∴边c 与边a 所对的角的余弦值大于0,即b 2+a 2-c 2>0且b 2+c 2-a 2>0,∴22140140a a ⎧+->⎪⎨+->⎪⎩.∴3<a 2<5,∴35a <<. 故选C . 11.【答案】A【解析】由21cos cos 222A A b c c ++==,整理得cos bA c=.又222cos 2b c a A bc +-=, 联立以上两式整理得c 2=a 2+b 2,∴C =90°.故△ABC 为直角三角形.故选A . 12.【答案】C【解析】在△ABC 中,设∠ACD =∠BCD =β,∠CAB =α,由∠A ∶∠B =1∶2,得∠ABC =2α.∵∠A <∠B ,∴AC >BC ,∴S △ACD >S △BCD ,∴S △ACD ∶S △BCD =3∶2,∴1sin 3212sin 2AC DC BC DC ββ⋅⋅⋅=⋅⋅⋅,∴32AC BC =.由正弦定理得sin sin AC BC B A =,sin 2sin 2sin cos sin AC BC AC BCααααα=⇒=, ∴133cos 2224AC BC α==⨯=,即3cos 4A =.故选C .二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.815【解析】设△ABC 中,AB =AC =12,BC =6,由余弦定理222222121267cos 2212128AB AC BC A AB AC +-+-===⋅⨯⨯.∵()0,A ∈π,∴15sin A =,∴外接圆半径8152sin BC r A == 14.【答案】23π【解析】∵a 2+b 2<c 2,∴a 2+b 2-c 2<0,即cos C <0.又3sin C ,∴23C π∠=. 15.6【解析】∵a =3,26b =,∠B =2∠A ,由正弦定理326sin sin 2A A=, ∴2sin cos 26sin 3A A A =,∴6cos 3A =. 16.【答案】10 m【解析】画出示意图,如图所示,CO =10,∠OCD =40°,∠BCD =80°,∠ACB =45°, ∠AOB =30°,AB ⊥平面BCO ,令AB =x ,则BC =x ,3BO x ,在△BCO 中,由余弦定理得)()223100210cos 8040xx x =+-⨯⨯︒+︒,整理得25500x x -=-,解得10x =,5x =-(舍去),故塔高为10 m .三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3B π=;(2)112b ≤<. 【解析】(1)由已知得()cos cos cos 3cos 0A B A B A B -++-=, 即有sin sin 3sin cos 0A B A B =. 因为sin A ≠0,所以sin 30B B =. 又cos B ≠0,所以tan 3B =.又0<B <π,所以3B π=. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,1cos 2B =,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有2114b ≤<,即有112b ≤<. 18.【答案】(1)3A π=;(2)1sin 3C =. 【解析】(1)由题设知sin cos cos sin 2cos 66A A A ππ+=.从而sin 3A A ,所以cos A ≠0,tan A =.因为0<A <π,所以3A π=. (2)由1cos 3A =,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2, 故△ABC 是直角三角形,且2B π=.所以1sin cos 3C A ==. 19.【答案】(1)3A π=;(2)5sin sin 7B C =. 【解析】(1)由cos2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得1cos 2A =或cos A =-2(舍去). 因为0<A <π,所以3A π=.(2)由11sin sin 223S bc A bc π====bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =. 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.20.【答案】(1)34C π=;(2)tan α=1或tan α=4.【解析】(1)因为222a b c +=,由余弦定理有222cos 2a b c C ab +-===34C π=. (2)由题意得()()2sin sin cos cos sin sin cos cos cos A A B B ααααα--,因此()()tan sin cos tan sin cos A A B B αα--=,()2tan sin sin tan sin cos cos sin cos cos A B A B A B A B αα-++=,()2tan sin sin tan sin cos cos A B A B A B αα-++=因为34C π=,4A B π+=,所以()sin A B +=因为cos(A +B )=cos A cos B -sin A sin B ,即sin sin 52A B -=,解得sin sin 5210A B =-=.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. 21.【答案】(1)sin A ;(2)ABC S =△. 【解析】(1)由2C A π-=和A +B +C =π,得22A B π=-,04A π<<. ∴cos2A =sinB ,即2112sin 3A -=,∴sin A =.(2)由(1)得cos A sin sin BC AC A B =,∴sin 31sin 3AC ABC B===∵2C A π-=,∴2C A π=+,∴sin sin cos 2C A A π⎛⎫=+== ⎪⎝⎭,∴11sin 22ABC S AC BC C =⋅⋅==△. 22.【答案】当θ=30°时,S (θ). 【解析】∵CP ∥OB ,∴∠CPO =∠POB =60°-θ,∠OCP =120°. 在△OCP 中,由正弦定理,得sin sin OP CP OCP θ=∠,即2sin120sin CPθ=︒,∴CP θ.又()2sin 60sin120CO θ=︒-︒,∴()60OC θ=︒-.故△POC 的面积是()1sin1202S CP CO θ=⋅⋅︒()()160sin si 2n 60θθθθ=︒-︒-()1sin sin 21cos 2602θθθθ⎫⎤=-︒=-⎪-⎥⎪⎝⎦⎭,()0,60θ∈︒︒, ∴当θ=30°时,S (θ)单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在ABC △中,若90C =︒,6a =,30B =︒,则c b -等于( )A .1B .1-C .D .-2.在ABC △中,3AB =,2AC =,BC =BA ·AC 等于( )A .32-B .23-C .23D .323.在△ABC 中,已知a =,b =A =30°,则c 等于( )A .BC .D .以上都不对4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A B C D .6.在△ABC 中,2cos 22A b cc+⋅=(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a c =A =75°,则b 等于( )A .2B -C .4-D .4+8.在△ABC 中,已知b 2-bc -2c 2=0,a =7cos 8A =,则△ABC 的面积S 为( )A B C D .9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( )A B C D10.若sin cos cos A B Ca b c==,则△ABC 是( ) A .等边三角形 B .有一内角是30°的直角三角形 C .等腰直角三角形D .有一内角是30°的等腰三角形11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()222tan 3a c b B ac +-=,则角B 的值为( ) A .6π B .3π C .6π或56π D .3π或23π12.△ABC 中,3A π=,BC =3,则△ABC 的周长为( ) A .43sin 33B π⎛⎫++ ⎪⎝⎭B .43sin 36B π⎛⎫++ ⎪⎝⎭C .6sin 33B π⎛⎫++ ⎪⎝⎭D .6sin 36B π⎛⎫++ ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在△ABC 中,2sin sin sin a b cA B C--=________. 14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c b ac +-=, 则角B 的值为________.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,3b =, A +C =2B ,则sin C =________.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且4cos 5A =. (1)求2sin cos22B CA ++的值; (2)若b =2,△ABC 的面积S =3,求a .19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,3cos 5B =. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.21.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.22.(12分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(),a b m =, ()sin ,sin B A =n ,()2,2b a --p =.(1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,角3C π=,求△ABC 的面积.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】tan 30ba=︒,tan30b a =︒=2c b ==,c b -= 故选C . 2.【答案】A【解析】由余弦定理得22294101cos 2124AB AC BC A AB AC +-+-===⋅.∴13cos 3242AB AC AB AC A ⋅=⋅⋅=⨯⨯=.∴32BA AC AB AC ⋅=-⋅=-.故选A .3.【答案】C【解析】∵a 2=b 2+c 2-2bc cos A ,∴2515c c =+-. 化简得:2100c -+=,即(0c c -=,∴c =c = 故选C . 4.【答案】D 【解析】A 中,因sin sin a b A B =,所以16sin30sin 18B ⨯︒==,∴90B =︒,即只有一解;B 中,20sin 60sin 18C ︒==c b >,∴C B >,故有两解; C 中,∵A =90°,a =5,c =2,∴b = 故A 、B 、C 都不正确.故选D . 5.【答案】C【解析】设另一条边为x ,则2221232233x =+-⨯⨯⨯,∴29x =,∴3x =.设1cos 3θ=,则sin θ=.∴32sinR θ==,R =C . 6.【答案】A【解析】由2cos cos 22A b c b A c c+⋅=⇒⋅=,又222cos 2b c a A bc +-⋅=, ∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A . 7.【答案】A【解析】()sin sin 75sin 3045A =︒=︒+︒, 由a =c 知,C =75°,B =30°.1sin 2B =.由正弦定理:4sin sin b aB A===.∴b =4sin B =2.故选A .8.【答案】A【解析】由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即22276448c c c =+-⋅.∴c =2,从而b =4.∴11sin 4222ABCS bc A ==⨯⨯△A . 9.【答案】B【解析】设BC =a ,则2aBM MC ==. 在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即22217424cos 42aa AMB =+-⨯⨯⋅∠ ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即22216424cos 42aa AMB =++⨯⨯⋅∠ ②①+②得:22222176442a +=++,∴a =B .10.【答案】C 【解析】∵sin cos A Ba b=,∴a cos B =b sin A , ∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.故C 选项正确. 11.【答案】D【解析】∵()222tan a c b B +-,∴222tan 2a c b B ac +-⋅=,即cos tan sin B B B ⋅=0<B <π,∴角B 的值为3π或23π.故选D . 12.【答案】D 【解析】3A π=,BC =3,设周长为x ,由正弦定理知2sin sin sin BC AC ABR A B C ===, 由合分比定理知sin sin sin sin BC AB BC ACA ABC ++=++,=,∴()sin sin B A B x ⎤+++=⎥⎦,即3sin sin 3sin sin cos cos sin 333x B B B B B π⎤ππ⎛⎫⎫=+++=+++ ⎪⎪⎥⎝⎭⎭⎦133sin sin 3sin 22B B B B B ⎫⎫=+++=++⎪⎪⎪⎪⎭⎭136cos 36sin 26B B B ⎫π⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭.故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0 14.【答案】6π【解析】∵222a cb +-=,∴222cos 2a c b B ac +-==6B π=. 15.【答案】1【解析】在△ABC 中,A +B +C =π,A +C =2B .∴3B π=. 由正弦定理知,sin 1sin 2a B A b ==.又a <b .∴6A π=,2C π=.∴sin 1C =. 16.【答案】332a ≤< 【解析】由()()()()()()22222212120121212a a a a a a a a a a a ⎧⎪++>+⎪⎪++-+<⎨⎪++-+⎪≥-⎪+⎩,解得332a ≤<.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】2小时.【解析】设我艇追上走私船所需时间为t 小时, 则BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°,根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°,∴2t =. 答:我艇追上走私船所需的时间为2小时. 18.【答案】(1)5950;(2)a = 【解析】(1)()221cos 1cos 59sin cos2cos22cos 122250B C B C A A A A -++++=+=+-=. (2)∵4cos 5A =,∴3sin 5A =.由1sin 2ABC S bc A =△,得133225c =⨯⨯,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得24425225135a =+-⨯⨯⨯=,∴a = 19.【答案】(1;(2)AE=.【解析】(1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴()cos cos 4530CBE ∠=︒-︒= (2)在△ABE 中,AB =2,由正弦定理得sin sin AE ABABE AEB=∠∠, 即()()2sin 4515sin 9015AE =︒-︒︒+︒,故122sin 30cos15AE ⨯︒===︒20.【答案】(1)2sin 5A =;(2)b =5c =. 【解析】(1)∵3cos 05B =>,且0<B <π,∴4sin 5B ==. 由正弦定理得sin sin a bA B=,42sin 25sin 45a B Ab ⨯===. (2)∵1sin 42ABC S ac B ==△,∴142425c ⨯⨯⨯=,∴5c =.由余弦定理得2222232cos 25225175b a c ac B =+-=+-⨯⨯⨯=,∴b =21.【答案】(1)120A =︒;(2)△ABC 为等腰钝角三角形. 【解析】(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故1cos 2A =-,120A =︒.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C , 又A =120°,∴223sin sin sin sin 4B C B C ++=, ∵sin B +sin C =1,∴sin C =1-sin B . ∴()()223sin 1sin sin 1sin 4B B B B +-+-=, 即21sin sin 04B B -+=.解得1sin 2B =.故1sin 2C =.∴B =C =30°. 所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°,则C =60°-B , ∴sin B +sin C =sin B +sin(60°-B) 11sin sin sin 22B B B B B =-==sin(B +60°)=1, ∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.【答案】(1)见解析;(2)ABC S =△ 【解析】(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即22a ba b R R⋅=⋅, 其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴11sin 4sin 223ABC S ab C π==⨯⨯=△.。

(典型题)高中数学必修五第一章《数列》测试题(有答案解析)(1)

(典型题)高中数学必修五第一章《数列》测试题(有答案解析)(1)

一、选择题1.已知数列{}n a 是等比数列,满足51184a a a =,数列{}n b 是等差数列,且88b a =,则79b b +等于( )A .24B .16C .8D .42.已知数列{}n a 的前n 项和是n S ,且21n n S a =-,若()0,2021n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的和为( ) A .1022B .1023C .2046D .20473.已知数列{}n a 为等比数列,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则123n a a a a ⋅⋅⋅⋅⋅的最大值为( ) A .5B .512C .1024D .20484.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭5.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51016.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则( ) A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯-D .6236n n S n =⨯--7.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .20228.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( )A .64盏B .128盏C .192盏D .256盏9.已知数列{}n a 的通项公式为()*(1)1n a n N n n n n =∈+++,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .4510.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .27611.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-12.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .1024二、填空题13.数列{}n a 的前n 项和为n S ,已知2(2)n a n n =+,则4S =___________.14.设数列{}n a 中12a =,若等比数列{}n b 满足1n n n a a b +=,且10101b =,则2020a =__. 15.已知递增等比数列{}n a 的前n 项和为n S ,22a =,37S =,数列(){}2log 1+n S 的前n 项和为n T ,则122020111T T T +++=________.16.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 17.在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设某种传染病的基本传染数03R =(注:对于01R >的传染病,要隔离感染者,以控制传染源,切断传播途径),那么由1个初始感染者经过六轮传染被感染(不含初始感染者)的总人数为______(注:初始感染者传染0R 个人为第一轮传染,这0R 个人每人再传染0R 个人为第二轮传染……)18.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数).从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______.19.若数列}{n a2*3()n n n N =+∈,则n a =_______.20.记n S 为等差数列{}n a 的前n 项和,若22a =-,714S =,则10a =__________.三、解答题21.已知()23f x x x =-,数列{}n a 前n 项和为n S ,且()n S f n =.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 满足43nn na b =⨯,数列{}n b 的前n 项和为n T ,且对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,求实数m 的取值范围. 22.在①119n n a a +-=-,②113n na a +=-③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.设n S 是数列{}n a 的前n 项和,且19a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值:若不存在,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分23.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等比数列. (1)求数列{}n a 的通项公式; (2)若0d <,93n n na b -=,求数列{}n b 的前n 项和n S . 24.已知数列{}n a 的前n 项和为n S ,且n nS a 和2n a 的等差中项为1. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设41log n n b a +=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 25.已知正项等比数列{}n a ,24a =, 1232a a a +=;数列{}n b 的前n 项和n S 满足n n S na =.(Ⅰ)求n a ,n b ;(Ⅱ)证明:312412233412n n n b b b b a a a a a a a a ++++++<. 26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题 1. C 解析:C 【分析】利用等比数列和等差数列的性质计算. 【详解】∵数列{}n a 是等比数列,∴2511884a a a a ==,又80a ,∴84a =,又{}n b 是等差数列,∴7988228b b b a +===. 故选:C . 【点睛】关键点点睛:本题考查等差数列与等比数列的性质,掌握等差数列与等比数列的性质是解题关键.对正整数,,,m n p l ,若m n p l +=+,{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =,特别地若2m n p +=,{}n a 是等差数列,则2m n p a a a +=,若{}n a 是等比数列,则2m n p a a a =.2.D解析:D 【分析】由1(2)n n n a S S n -=-≥求出{}n a 的递推关系,再求出1a 后确定数列是等比数列,求出通项公式,根据新定义确定“和谐项”的项数及项,然后由等比数列前n 项和公式求解. 【详解】当2n ≥时,11121(221)2n n n n n n n a S S a a a a ---=--==---,∴12n n a a -=,又11121a S a ==-,11a =,∴{}n a 是等比数列,公比为2,首项为1, 所以12n na ,由122021n n a -=<得110n -≤,即11n ≤,∴所求和为1112204712S -==-.故选:D . 【点睛】关键点点睛:本题考查数列新定义,考查等比数列的通项公式与前n 项和公式,解题思路是由1(2)n n n a S S n -=-≥得出递推关系后确定数列是等比数列,从而求得通项公式.解题关键是利用新定义确定数列中“和谐项”的项数及项.3.C解析:C 【分析】用1a 和q 表示出2a 和3a 代入2312a a a ⋅=求得4a ,再根据3474422a a a a q +=+,求得q ,进而求得1a 到6a 的值,即得解. 【详解】2231112a a a q a q a ⋅=⋅=42a ∴=3474452224a a a a q +=+=⨯12q ∴=,41316a a q == 故1415116()2222n n n n a ---=⨯=⨯=,所以123456116,8,4,2,1,12a a a a a a ======<, 所以数列的前4或5项的积最大,且最大值为16842=1024⨯⨯⨯. 故选:C 【点睛】结论点睛:等比数列{}n a 中,如果11,01a q ><<,求123n a a a a ⋅⋅⋅⋅⋅的最大值,一般利用“1交界”法求解,即找到大于等于1的项,找到小于1的项,即得解.4.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a qa ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.5.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.6.D解析:D 【分析】利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误. 【详解】因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列,所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确,()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 【点睛】本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.7.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.8.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=. 故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.9.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ====. 12n n S a a a ∴=++⋯+1=1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B .【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.10.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果.【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=,故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.11.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.12.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.故选:C . 【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.二、填空题13.【分析】先化简再进行相加求解即可【详解】由知故答案为:【点睛】思路点睛:当数列的通项公式中分母是乘积形式求前n 项和时可以考虑裂项相消法即将数列拆分成两项的差的形式再进行求和 解析:1715【分析】 先化简112n a n n =-+,再进行相加求解即可. 【详解】 由21(2)12n a n n n n ==-++知,41234S a a a a =+++11111111111132435462561715⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-=+--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:1715. 【点睛】思路点睛:当数列的通项公式中,分母是乘积形式,求前n 项和n S 时,可以考虑裂项相消法,即将数列拆分成两项的差的形式,再进行求和.14.【分析】由变形可得进而由累乘法可得结合等比数列的性质即可得解【详解】根据题意数列满足即则有而数列为等比数列则则又由则故答案为:2【点睛】本题考查了等比数列的性质以及应用考查了累乘法求数列通项的应用及解析:【分析】由1n n n a a b +=变形可得1n n n a b a +=,进而由累乘法可得202020192018201711a b b b b a =⋅⋅⋅⋅⋅,结合等比数列的性质即可得解. 【详解】根据题意,数列{}n b 满足1n n n a a b +=,即1n n na b a +=, 则有20202020201920182201920182017112019201820171a a a a ab b b b a a a a a ⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 而数列{}n b 为等比数列,则()2019201920182017110101b b b b b ⋅⋅⋅⋅⋅==,则202011a a =, 又由12a =,则20202a =. 故答案为:2. 【点睛】本题考查了等比数列的性质以及应用,考查了累乘法求数列通项的应用及运算求解能力,属于中档题.15.【分析】首先根据等比数列的性质得到从而得到利用等差数列的求和公式得到再利用裂项法求的值即可【详解】因为所以即解得或又因为数列为递增数列所以所以因为所以故故答案为:【点睛】本题主要考查等差等比数列的求解析:40402021【分析】首先根据等比数列的性质得到21nn S =-,从而得到()2log 1+=n S n ,利用等差数列的求和公式得到()12n n n T +=,再利用裂项法求122020111+++T T T 的值即可.【详解】因为22a =,37S =, 所以31232227S a a a q q=++=++=,即22520q q -+=, 解得12q =-或2q .又因为数列{}n a 为递增数列,所以2q.所以11a =,122112nn n S -==--.因为()22log 1log 2+==nn S n ,()1122…+=+++=n n n T n ,所以()1211211⎛⎫==- ⎪++⎝⎭n T n n n n . 故122020111111112122320202021⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦T T T 140402*********⎛⎫=-=⎪⎝⎭ 故答案为:40402021【点睛】本题主要考查等差、等比数列的求和公式,同时考查裂项法求和,属于中档题.16.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.17.1092【分析】由题意分析传染模型为一个等比数列可解【详解】由题意:所以第六轮的传染人数为所以前六轮被传染的人数为故答案为:1092【点睛】数学建模是高中数学六大核心素养之一在高中数学中应用题是常见解析:1092 【分析】由题意分析,传染模型为一个101,3a q R ===等比数列,可解. 【详解】由题意:101,3a q R ===所以1113n n n a a q --==第六轮的传染人数为7a所以前六轮被传染的人数为771131109213S a --=-=-.故答案为:1092 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式: 求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;18.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.19.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题 解析:()241n +【分析】有已知条件可得出116a =,2n ≥时()()2*131()n n n N =-+-∈,与题中的递推关系式相减即可得出()241n a n =+,且当1n =时也成立.【详解】数列}{n a2*3()n n n N =+∈4=,即116a =2n ≥()()2*131()n n n N =-+-∈22n =+, 所以()241n a n =+(2n ≥ )当1n =时,116a =适合上式,所以()241n a n =+ 【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.20.14【分析】本题先求再求即可解题【详解】解:因为数列是等差数列所以解得所以故答案为:14【点睛】本题考查等差数列的基本量法是基础题解析:14 【分析】本题先求1a 、d ,再求10a 即可解题. 【详解】解:因为数列{}n a 是等差数列,22a =-,714S =所以217127(71)7142a a d S a d =+=-⎧⎪⎨⨯-=+=⎪⎩,解得142a d =-⎧⎨=⎩, 所以101914a a d =+= 故答案为:14 【点睛】本题考查等差数列的基本量法,是基础题.三、解答题21.(1)24n a n =-;(2)11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【分析】(1)易知23n S n n =-,再利用通项与前n 项和关系11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求解.(2)易得2424323n n nn n b --==⨯⨯,1160b =-<,20b =,3n ≥时,0n b >,则n T 的最小值为16-,再根据对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,由()min 16mf x ⎡⎤->⎣⎦求解. 【详解】(1)因为()23f x x x =-,()n S f n =,所以23n S n n =-,当2n ≥时,()()21131n S n n -=---,124n n n a S S n -=-=-, 当1n =时,112a S ==-,也满足24n a n =-, 故24n a n =-.(2)因为24n a n =-,43nn na b =⨯, 所以2424323n n n n n b --==⨯⨯,1160b =-<,20b =, 当3n ≥时,0n b >,故12T T =为n T 的最小值,n T 的最小值为16-, 因为对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,所以()min 16mf x ⎡⎤->⎣⎦, 因为[]2,4x ∈,()2239324f x x x x ⎛⎫=-=-- ⎪⎝⎭,所以()[]2,4f x ∈-, 当0m >时,()min16mf x ⎡⎤->⎣⎦,即126m ->-,解得112m >; 当0m <时,()min16mf x ⎡⎤->⎣⎦,即146m ->,解得124m <-, 0m =时,106->,显然不成立. 故实数m 的取值范围为11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【点睛】结论点睛:不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 . 22.答案见解析 【分析】选①:由等差数列通项公式得出通项n a 后,解0n a ≥,满足此不等式的最大的n 使得n S 最大,注意若n a 0=,则有两个值使得n S 最大,选②:由等比数列前n 项和公式得出n S ,由于公比是负数,因此按n 的奇偶性分类讨论求得n S 的最大值;选③:由累加法求得n a ,利用n a 的表达式是n 的二次函数形式,当15n ≥时,0n a >,确定n S 不存在最大值. 【详解】 选①因为119n n a a +-=-,19a =,所以{}n a 是首项为9,公差为19-的等差数列.所以()118291999n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭.由182099n -+≥,得82n ≤,即820a ≥ 所以n S 存在最大值,且最大值为81S 或82S , 因为818180181936929S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为369. 选② 因为113n n a a +=-,19a =,所以{}n a 是首项为9,公比为13-的等比数列. 所以1311933n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.1︒当n 为奇数时,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为271143n ⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为19S =; 2︒当n 为偶数的,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+, 且2712719434n n S ⎛⎫=-<< ⎪⎝⎭, 综上,n S 存在最大值,且最大值为9. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…,19n n a a n --=-, 以上1n -个等式相加得()()21791171622n n n n n a a -+---+-==, 因为19a =,所以()2173422n n n a n -+=≥,又19a =也满足上式,所以217342n n n a -+=. 当15n ≥时,0n a >,故n S 不存在最大值. 【点睛】关键点点睛:本题考查数列前n 项和的最大值问题,一种方法是求出n S 的表达式,由函数的性质确定n S 的最大值,一种是利用数列项的性质,如数列是递减的数列,10a >,则满足0n a ≥的最大的n 使得n S 最大.23.(1) 11n a n =-+或46,n a n n N *=+∈;(2)51112423n nn S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【分析】(1)由123,22,5a a a +成等比数列求得公差后可得通项公式n a ; (2)对23n b b b +++用错位相减法求和.【详解】解:(1)∵123,22,5a a a +成等比数列,∴()2231225a a a +=⋅,整理得2340d d --=,解得1d =-或4d =,当1d =-时,10(1)11n a n n =--=-+; 当4d =时,104(1)46n a n n =+-=+.所以11n a n =-+或46,n a n n N *=+∈.(2)设数列{}n a 前n 项和为n S , ∵0d <,∴1d =-,11n a n =-+23n nnb -=当1n =时,13n S =, 当2n ≥时,2341012233333n n n S -=++++⋅⋅⋅+ 令34122333n n T -=+++,则45111223333n n T +-=+++ 两式相减可得32345111112111122331333333313n n n n n n T -++⎛⎫- ⎪--⎝⎭=+++⋯+-=-- 整理可得11112423nn T ⎛⎫=+-⨯ ⎪⎝⎭, 则511,212423n nn S n ⎛⎫=+-⨯≥ ⎪⎝⎭ 且113S =满足上式,综上所述:51112423n n n S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【点睛】本题考查求等差数列的通项公式,分组(并项)求和法,错位相减法.数列求和的常用方法:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.24.(Ⅰ)2nn a =;(Ⅱ)22n nT n =+. 【分析】(Ⅰ)利用等差中项的定义得出n S 与n a 的关系,然后由1(2)n n n a S S n -=-≥得出数列{}n a 的递推关系,求出1a 其为等比数列,从而得通项公式;(Ⅱ)用裂项相消法求和n T . 【详解】解:(Ⅰ)因为n n S a 和2n a 的等差中项为1,所以22n n nS a a +=,即22n n S a =-, 当2n 时,1122n n S a --=-.两式相减得1122n n n n S S a a ---=-,整理得12n n a a -=. 在22n n S a =-中,令1n =得12a =,所以,数列{}n a 是以2为首项,2为公比的等比数列,因此1222n nn a -=⨯=.(Ⅱ)411log 2n n n b a ++==. 则114114(1)(2)12+⎛⎫==- ⎪++++⎝⎭n n b b n n n n . 所以11111111244233412222n n T n n n n ⎛⎫⎛⎫=⨯-+-++-=⨯-= ⎪ ⎪++++⎝⎭⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法;(4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.25.(Ⅰ)2nn a =;()112n n b n -=+⋅;(Ⅱ)证明见解析.【分析】(1)由题设求出数列{}n a 的基本量,即可确定n a ;再由1n n n b S S -=-确定n b ; (2)用错位相减法整理不等式左侧即可证明. 【详解】(1)设正项等比数列{}n a 的公比为q ,由1232a a a +=,得22q q +=解得2q 或1q =-(舍)又242nn a a =⇒=由n n S na =,得12b =2n ≥时,()()11121212n n n n n n b S S n n n ---=-=⋅--⋅=+⋅则()112n n b n -=+⋅(2)()()11112212222n n n n n n n n b n a a +++++⎛⎫==+ ⎪⋅⎝⎭设31241223341n n n n b b b bT a a a a a a a a ++=++++则()2341111134522222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()341211111341222222n n n T n n ++⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+++++ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得()2341211111131112222222n n n T n ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯-+ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭得()2111422n n T n +⎛⎫=-+⋅ ⎪⎝⎭得()112422n n T n +⎛⎫=-+⋅< ⎪⎝⎭【点睛】关键点睛:当数列{}n c 满足n n n c a b =,{}n a 为等差数列,{}n b 为等比数列时,数列{}n c 的前n 项求和可用错位相减法.26.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1n n a b a =即可求出; (2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】(1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212a b a ==,3313a b a ==, (2)设1n a k +=,n n n A b B =, 若n k B ≤,则+1n n n n nk A A b b B =≥=, 若n n B k A <<,则+1n n n n A b b B ==, 若n k A ≥,则+1n n n nn A k b b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=; (3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n n n A b q B -==, 由(2)可得1n n b b +≥,则1q ≥,当1q =时,1n nA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列; 当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =, 此时01n n n n n n A a b q B a -===,即01n n n a a q -=, 故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列. 【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b的变化特点.。

(好题)高中数学必修五第一章《数列》检测卷(答案解析)

(好题)高中数学必修五第一章《数列》检测卷(答案解析)

一、选择题1.已知数列{}n a 的前n 项和为n S ,且0n a >,n *∈N ,若数列{}n a 和{}n S 都是等差数列,则下列说法不正确的是( ) A .{}n n a S +是等差数列 B .{}n n a S ⋅是等差数列 C .{}2na 是等比数列D .{}2nS 是等比数列2.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N*-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .173.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭4.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .25.已知数列{}n a 的前n 项和为n S ,对任意的*n N ∈有2233n n S a =-,且112k S <<,则k 的值为( ) A .2或4B .2C .3或4D .66.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列7.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .88.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( )A .11n + B .1n n + C .1n n- D .11n n -+ 9.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问相逢时驽马行几里?( ) A .540B .785C .855D .95010.设n S 是数列{}n a 的前n 项和,且()*2n n S a n n N =+∈,则{}na 的通项公式为na=( ) A .23n -B .23n -C .12n -D .12n -11.已知1,1x ,2x ,7成等差数列,1,1y ,2y ,8成等比数列,点()11,M x y ,()22,N x y ,则直线MN 的方程是( )A .10x y -+=B .10x y --=C .70x y --=D .70x y +-=12.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n -二、填空题13.在数列{}n a 中,11a =,0n a ≠,曲线3y x =在点()3,n n a a 处的切线经过点()1,0n a +,下列四个结论:①223a =;②313a =;③416527i i a ==∑;④数列{}n a 是等比数列;其中所有正确结论的编号是______.14.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈.若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则当1212nS S S n+++取最大值时n 的值为______.15.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+⎪⎝⎭,则2018S =______. 16.已知等差数列{}n a 中,268,0a a ==,等比数列{}n b 中, 122123,b a b a a a ==++,那么数列{}n b 的前4项和4S =________17.在平面直角坐标系xOy 中,直线l 经过坐标原点,()3,1n =是l 的一个法向量.已知数列{}n a 满足:对任意的正整数n ,点()n 1n a ,a +均在l 上,若2a 6=,则3a 的值为______.18.在数列{a n }中,已知a 1=1,1(1)sin2n n n a a π++-=,记S n 为数列{a n }的前n 项和,则S 2019=______19.已知正项等比数列{}n a ,12q =,若存在两项m a 、n a12a =,则9m n-的最小值为___________. 20.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____. 三、解答题21.已知等差数列{}n a 的公差1d =,且()1212,,,,n k k k n a a a k k k <<<<成等比数列,公比为q .(1)若11k =,22k =,34k =,求n a 和n k ,并求{}n n a k 的前n 项和n T ; (2)当1a 为何值时,数列{}n k 为等比数列.22.已知数列{}n a 满足:*111,21,n n a a a n n N +=-=-∈(1)证明{}n a n +是等比数列,并求出数列{}n a 的通项公式; (2)设21,n n n n b S a n+=+为数列{}n b 的前n 项和,求n S 23.设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式; (2)记数列n a n ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:3n T <. 24.已知正项数列{}n a 的前n 项和为n S .若214,n n n a S S a +==+ (1)求证:数列是等差数列;(2)设n b =,求数列{}n b 的前n 项和n T . 25.设数列{}n a 的前n 项和为n S ,已知14a =,124n n S a n +=+-,*n N ∈. (1)求数列{}n a 的通项公式; (2)设()()122121n n n n a b +-=++,数列{}n b 的前n 项和为n T ,求满足1340nT >的正整数n 的最小值.26.已知数列{}n a 是等差数列,n S 是数列{}n a 的前n 项和,35a =,749=S . (1)求数列{}n a 的通项公式及前n 项和n S ;(2)若数列{}n b满足2n b =,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意,判断出数列{}n a 是公差为0的等差数列,然后分别利用等差数列的定义与等比数列的定义判断每个选项即可. 【详解】因为数列{}n a 和{}n S 都是等差数列,1n n n a S S -=-,所以可判断n a 为定值,所以数列{}n a 是公差为0的等差数列,即10n n a a --=.对A ,()()1111----++-=-+-=n n n n n n n n n a S a S S S a a a ,所以数列{}n n a S +是等差数列;对B ,1121----=⋅⋅⋅⋅-=n n n n n n n n n a S a S a S a S a ,所以数列{}n n a S ⋅是等差数列;对C ,222211-==n n n n a a a a ,所以数列{}2n a 是等比数列;对D ,设n a a =,则222,==n n S na S n a ,则221222222(1)(1)-==--n n n a n n a n S S ,所以数列{}2n S 不是等比数列. 故选:D 【点睛】解答本题的关键在于判断出数列{}n a 是公差为0的等差数列,然后结合等差数列的定义,等比数列的定义列式判断是否为等差或者等比数列.2.C解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.3.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a q a ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.4.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅.故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 5.A解析:A 【分析】利用递推关系式求出{}n a 的通项公式,再求出{}n a 的前n 项和为n S ,即可求出k 的值. 【详解】对任意的*n N ∈有2233n n S a =-, 可得:1112233a S a ==- ,解得:1=2a -, 当2n ≥时:2233n n S a =-,112233n n S a --=- 两式相减得112233n n n n n S S a a a ---=-=,即12n n a a -=-, 所以{}n a 是首项为2-,公比为2-的等比数列,所以()2nn a =-,()()()212212123nn nS ⎡⎤-⨯--⎣⎦⎡⎤==---⎣⎦--, 所以211(2)123kk S ⎡⎤<=---<⎣⎦, 所以5(219)2k <-<, 当2k =和4k =时不等式成立,所以k 的值为2或4, 故选:A. 【点睛】本题主要考查了由递推公式求通项公式,考查了等比数列前n 项和公式,属于中档题.6.C解析:C 【分析】根据13n n a S +=得14n n S S +=,分类讨论当10S =和10S ≠两种情况分析得数列{}n a 可能为等差数列,但不会为等比数列. 【详解】解:13n n a S +=,13n n n S S S +∴=-, 14n n S S +∴=,若10S =,则数列{}n a 为等差数列;若10S ≠,则数列{}n S 为首项为1S ,公比为4的等比数列,114n n S S -∴=⋅,此时21134n n n n a S S S -==-⋅﹣(2n ≥),即数列从第二项起,后面的项组成等比数列.综上,数列{}n a 可能为等差数列,但不会为等比数列. 故选:C. 【点睛】本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.7.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1)即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列.所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nn S n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.8.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.9.C解析:C 【分析】由已知条件转化为两个等差数列的前n 项和为定值问题,进而计算可得结果. 【详解】由题可知,良马每日行程构成一个首项为103,公差13的等差数列{}n a , 驽马每日行程构成一个首项为97,公差为﹣0.5的等差数列{}n b , 则a n =103+13(n ﹣1)=13n +90,b n =97﹣0.5(n ﹣1)=97.5﹣0.5n , 则数列{a n }与数列{b n }的前n 项和为1125×2=2250,又∵数列{a n }的前n 项和为2n ×(103+13n +90)=2n×(193+13n ), 数列{b n }的前n 项和为2n ×(97+97.5﹣0.5n )=2n ×(194.5﹣2n), ∴2n ×(193+13n )+2n ×(194.5﹣2n)=2250,整理得:25n 2+775n ﹣9000=0,即n 2+31n ﹣360=0,解得:n =9或n =﹣40(舍),即九日相逢,相逢时驽马行了92×(194.5﹣92)=855. 故选:C 【点睛】本题以数学文化为背景,考查等差数列及等差数列的前n 项和,考查转化思想,考查分析问题、解决问题的能力,属于中档题.10.C解析:C 【分析】由()*2n nS a n n N =+∈结合11,1,2n nn S n a S S n -=⎧=⎨-≥⎩即可求出1a 和121n n a a -=-,通过构造法即可求出通项公式. 【详解】当1n =时,11121a S a ==+,解得1 1a =-;当2n ≥时,122(1)n n n a a n a n -=+---.∴121n n a a -=-,∴()1121n n a a --=-.∵112a -=-,∴12nn a -=-, ∴12nn a =-.故选:C . 【点睛】本题考查了数列通项公式的求解,考查了,n n a S 的递推关系求通项公式,考查了等比数列的通项公式,考查了构造法求数列的通项公式,属于中档题.11.B解析:B 【分析】本题先根据题意求出1x 、2x 、1y 、2y ,再写出点M 、N 的坐标并求MN k ,最后求直线MN 的方程即可. 【详解】解:∵1,1x ,2x ,7成等差数列,∴12121721x x x x +=+⎧⎨=+⎩,解得1235x x =⎧⎨=⎩,∵1,1y ,2y ,8成等比数列,∴12212181y y y y ⋅=⨯⎧⎨=⨯⎩,解得1224y y =⎧⎨=⎩∴点()3,2M ,()5,4N ,42153MN k -==- ∴直线MN 的方程:41(5)y x -=⨯-,即10x y --=.故选:B. 【点睛】本题考查等差中项,等比中项,根据两点求直线的一般式方程,是基础题.12.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31, 则a 1=1, 故an=2n−1. 故选A.二、填空题13.①③④【分析】先利用导数求得曲线在点处的切线方程由此求得与的递推关系式进而证得数列是等比数列由此判断出四个结论中正确的结论编号【详解】∵∴曲线在点处的切线方程为则∵∴则是首项为1公比为的等比数列从而解析:①③④ 【分析】先利用导数求得曲线3y x =在点()3,n n a a 处的切线方程,由此求得1n a +与n a 的递推关系式,进而证得数列{}n a 是等比数列,由此判断出四个结论中正确的结论编号. 【详解】∵2'3y x =,∴曲线3y x =在点()3,n n a a 处的切线方程为()323n n n y a a x a -=-,则()3213n n n n a a a a +-=-.∵0n a ≠,∴123n n a a +=, 则{}n a 是首项为1,公比为23的等比数列,从而223a =,349a =,4412165322713i i a =⎛⎫- ⎪⎝⎭==-∑. 故所有正确结论的编号是①③④. 故答案为:①③④ 【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前n 项和公式,属于基础题.14.8或9【分析】根据等差等比数列的通项公式先求出数列和的通项公式再结合等差数列的求和公式求得进而得到再结合数列取值即可求解【详解】各项均为正数的等比数列中若所以解得所以解得或因为所以所以又由所以则当时解析:8或9 【分析】根据等差、等比数列的通项公式,先求出数列{}n a 和{}n b 的通项公式,再结合等差数列的求和公式,求得()92n n n S -=,进而得到92n nc -=,再结合数列{}n c 取值,即可求解.【详解】各项均为正数的等比数列{}n a 中,若355a a +=,264a a =,所以35352656a a a a a a +=⎧⎨==⎩,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =或12q =-,因为()0,1q ∈,所以12q =, 所以55512n n n a a q --⎛⎫=⋅= ⎪⎝⎭.又由5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==,则92n n S nc n -==, 当9,n n N +<∈时,902n nc -=>;当9n =时,0n c =;当10,n n N +>∈时,0n c <,故当8n =或9n =时,1212nS S S n+++取最大值. 故答案为:8或9. 【点睛】本题主要考查了等差、等比数列的通项公式,以及等差数列的前n 项和公式的应用,其中解答中熟记等差、等比数列的通项公式,以及等差数列的求和公式,准确计算是解答解答的关键,着重考查推理与运算能力.15.【分析】分别计算出进而得出再由可得出的值【详解】由题意可得故答案为:【点睛】本题考查数列求和找出数列的规律是解答的关键考查计算能力属于中等题 解析:1008【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N*∈,进而得出43424146k k k k a a a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+=⎪⎝⎭,()424142sin 1342k k a k k π--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=, 201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008. 【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.16.320【分析】先求出等差数列的通项公式即可求出即可得通项再利用等比数列前项和公式求【详解】设等差数列的公差为则解得所以所以数列的公比为所以故答案为:320【点睛】本题主要考查了等比数列求和涉及等差数解析:320 【分析】先求出等差数列{}n a 的通项公式,即可求出1b ,2b ,即可得{}n b 通项,再利用等比数列前n 项和公式求4S【详解】设等差数列{}n a 的公差为d ,则2161850a a d a a d =+=⎧⎨=+=⎩,解得1102a d =⎧⎨=-⎩ , 1(1)10(1)(2)212n a a n d n n =+-=+-⨯-=-+ ,所以128b a ==,2123108624b a a a =+=++=+,所以数列{}n b 的公比q 为213b b = , 所以448(13)32013S ⨯-==-.故答案为:320 【点睛】本题主要考查了等比数列求和,涉及等差数列通项公式,等比数列通项公式,属于基础题.17.-2【分析】由直线的法向量可得直线的斜率和直线方程求得则数列为公比q 为的等比数列运用等比数列的通项公式可得所求值【详解】直线经过坐标原点是的一个法向量可得直线的斜率为即有直线的方程为点均在上可得即有解析:-2 【分析】由直线的法向量可得直线的斜率和直线方程,求得n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列,运用等比数列的通项公式可得所求值. 【详解】直线经过坐标原点,()n 3,1=是l 的一个法向量, 可得直线l 的斜率为3-, 即有直线l 的方程为y 3x =-,点()n 1n a ,a +均在l 上,可得n n 1a 3a +=-, 即有n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列, 可得321a a q 623⎛⎫==⨯-=- ⎪⎝⎭. 故答案为2-. 【点睛】本题主要考查等比数列的定义和通项公式的运用,考查直线方程的求法,考查运算能力,属于基础题.18.1010【分析】推导出从而得到数列是一个以4为周期的数列由此能求出的值【详解】数列中;可以判断所以数列是一个以4为周期的数列故答案为:1010【点睛】本题考查数列的求和考查数列的周期性三角函数性质等解析:1010 【分析】推导出1(1)sin2n n n a a π++=+,从而得到4n n a a +=,数列{}n a 是一个以4为周期的数列,由此能求出2019S 的值. 【详解】数列{}n a 中,11a =,1(1)sin2n n n a a π++-=, 1(1)sin2n n n a a π++∴=+, 21sin 1a a π∴=+=,323sin1102a a π=+=-=, 43sin 20a a π=+=,545sin0112a a π=+=+=, 511a a ∴==;可以判断4n n a a +=,所以数列{}n a 是一个以4为周期的数列.201945043=⨯+,20191234122504()504(1100)1101010S a a a a a a a ∴=⨯++++++=⨯++++++=,故答案为:1010. 【点睛】本题考查数列的求和,考查数列的周期性、三角函数性质等基础知识,意在考查学生对这些知识的理解掌握水平.19.【分析】由等比数列的通项公式结合可得出利用基本不等式可求得的最小值【详解】由于则即则由已知可得因此当且仅当时等号成立所以的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的 解析:2【分析】12a =可得出4m n =-,利用基本不等式可求得9m n-的最小值. 【详解】12a =,则214m n a a a =,即221121111124m n m n a a q a q a +---⎛⎫⋅=⋅= ⎪⎝⎭,则22m n +-=, 4m n ∴=-,由已知可得m 、n *∈N ,因此,()9994442m n n n n n -=--=+-≥=, 当且仅当3n =时,等号成立,所以,9m n-的最小值为2. 故答案为:2. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.20.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-三、解答题21.(1)n a n =,12n n k -=,()112n n T n =+-⋅;(2)11a =.【分析】(1)依题意可得124,,a a a 成等比数列,根据等比中项的性质,求出1a ,即可求出{}n a 的通项公式,又因为{}n k a 成等比数列,得到{}n k 的通项,再利用错位相减法求和即可;(2)由题意,可知{}n k 与{}n k a 都是等比数列,即可得到2132k k k a a a =⋅,2213k k k =,从而得到方程,求出1a ,即可得解; 【详解】解:(1)依据题意124,,a a a 成等比数列,有()()21113a d a a d +=+, 即()()211113a a a +=+,解得11a =,所以()111n a n n =+-⨯=,又因为{}n k a 成等比数列,且11k =,22k =,34k =,所以12n n k -=,所以12n n n a k n -=⋅,因为112233n n n T a k a k a k a k =++++, 所以121122322n n T n -=+⨯+⨯++⋅①()12312122232122n n n T n n -=⨯+⨯+⨯++-⋅+⋅②-①②,得()()()12111222212212112n n n n n n T n n n ---=++++-⋅=+--⋅=---⋅()112n n T n =+-⋅.(2)由题意,可知{}n k 与{}n k a 都是等比数列, 所以2132k k k a a a =⋅,2213k k k =,由2132k k k a a a =⋅,得()()()2121113111a k d a k d a k d +-=+-⋅+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,又1d =,所以得()()()2121113111a k a k a k +-=+-⋅+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,解得11a =.当11a =时,n a n =,所以n k n a k =,又因为1111n n n k k a a q k q --==,所以11n n k k q -=,所以1111nn n n k k q q k k q +-==,即数列{}n k 为等比数列. 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.22.(1)证明见解析,2nn a n =-;(2)()12552n S n ⎛⎫=-+⋅+⎪⎝⎭. 【分析】(1)根据条件可得112112n n n n a n a n n a n a n++++-++==++,从而可证,所以数列{}n a n +是首项为2,公比为2的等比数列,得出答案. (2)由题意可得21212n n n n n b a n ++==+,由错位相减法可得答案. 【详解】(1)数列{}n a 满足111,21n n a a a n +==+-112112n n n n a n a n n a n a n++++-++∴==++即公比12,12q a =+=∴数列{}n a n +是首项为2,公比为2的等比数列;2n n a n ∴+=(2)由题意,21212n n n n n b a n ++==+所以123123357212222n n nn S b b b b +=+++⋅⋅⋅+=+++⋅⋅⋅+.........① 234113572121 (222222)n n n n n S +--=+++++………② 由①-②,得123234113572135721212222222222n n n n n n n S ++-+⎡⎤⎡⎤=+++⋅⋅⋅+-+++⋅⋅⋅++⎢⎥⎢⎥⎣⎦⎣⎦234131111212?··222222n n n ++⎛⎫=+++++- ⎪⎝⎭ ()1111122121512251222212nn n n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎛⎫⎣⎦=+⨯-=-+⋅ ⎪⎝⎭- 从而()12552n S n ⎛⎫=-+⋅+ ⎪⎝⎭【点睛】关键点睛:本题考查由递推公式求数列的通项公式和利用错位相减法求和,解答本题的关键是根据21212n n n n n b a n ++==+得出求和的方法,利用错位相减法求和时计算要仔细,考查运算能力,属于中档题. 23.(1)()2121n a n n =≥-;(2)证明见解析. 【分析】(1)当1n =时,可求1a ,当2n ≥时,可得1213(23)2(1)n a a n a n -+++-=-与已知条件两式相减可得()212n n a -=,检验1a 满足221n a n =-,即可得{}n a 的通项公式; (2)由(1)知()2121n a n n =≥-,所以22111(21)(22)(1)1n a n n n n n n n n n=<==-----,计算其前n 项和即可证明. 【详解】(1)当1n =时,12a = 当2n ≥时,1213(23)(21)2n n a a n a n a n -+++-+-=①1213(23)2(1)n a a n a n -+++-=-②①-②得:()212n n a -=. ∴()2221n a n n =≥-.当1n =时,12a =,上式也成立. ∴()2121n a n n =≥- (2)由(1)知()221n a n n n=-. 当1n =时,2na n=, 当2n ≥时,22111(21)(22)(1)1n a n n n n n n n n n =<==----- ∴11111212231n T n n ⎛⎫⎛⎫⎛⎫≤+-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭133n =-< 【点睛】 方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.24.(1)证明见解析;(2)21n nT n =+. 【分析】(1)利用+1+1n n n a S S =-,消去n S ,因式分解后得到数列为等差数列,求通项公式; (2)先根据n b =求出2(1)n bn n =+,再拆项为2112()(1)1nb n n n n ==-++,然后求和.【详解】解:(1)由题意得,1n n n S S a+-=1nn a a +-=∴1=2=1=,∴数列是首项为1,公差为1的等差数列.(2)由(1n =,∴2n a n =,依题意,()211211n b n n n n ⎛⎫===- ⎪++⎝⎭, ∴11111212231n T n n ⎛⎫=-+-++- ⎪+⎝⎭122111n n n ⎛⎫=-=⎪++⎝⎭. 【点睛】(1)证明等差(比)数列的方法:定义法和等差(比)中项法; (2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法. 25.(1)22nn a =+;(2)6. 【分析】(1)利用1n n n a S S -=-求通项公式; (2)把n b 拆项为1112121n n n b +=-++,然后求和. 【详解】(1)因为124n n S a n +=+-,则()1262n n S a n n -=+-≥,当2n ≥时,112n n n n n a S S a a -+=-=-+,即122n n a a +=-,即()1222n n a a +-=-. ∵122a -=,取1n =,则()21112422a S a a -====-,对()1222n n a a +-=-也成立.所以{}2n a -是首项和公比都为2的等比数列,从而22nn a -=,所以22nn a =+.(2)由题设,()()()()()11112121211212121212121n n n n n n n n n n b +++++-+===-++++++, 则2231111111111212121212121321n n n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭. 由1111332140n +->+,得11113121340120n +<-=+,即121120n ++>,即12119n +>,则6n ≥.所以正整数n 的最小值为6.【点睛】数列求和常用方法:(1)公式法; (2)倒序相加法;(3)裂项相消法; (2)错位相减法.26.(1)21n a n =-,2n s n =;(2)21n nT n =+.【分析】(1)根据条件列出式子求出数列{}n a 的首项和公差,即可求出通项公式和前n 项和; (2)可得112+1n b n n ⎛⎫=- ⎪⎝⎭,利用裂项相消法即可求出. 【详解】(1)设等差数列{}n a 的公差为d ,则3171+25767+492a a d S a d ==⎧⎪⎨⨯==⎪⎩,解得1a 1,d 2, ()1+1221n a n n ∴=-⨯=-,()21+212n n n S n -==; (2)()2112+1+1n b n n n n ⎛⎫===- ⎪⎝⎭,1111122122311n n T n n n ⎛⎫∴=-+-++-=⎪++⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.。

(好题)高中数学必修五第一章《数列》测试卷(包含答案解析)

(好题)高中数学必修五第一章《数列》测试卷(包含答案解析)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N *-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .173.数列{}n a 中,11a =,113,3,3n n n n a N a n a N *+*-⎧+∉⎪⎪=⎨⎪∈⎪⎩,使2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为( ) A .1008B .2016C .2018D .20204.2020年12月17日凌晨1时59分,嫦娥五号返回器携带月球样品成功着陆,这是我国首次实现了地外天体采样返回,标志着中国航天向前又迈出了一大步.月球距离地球约38万千米,有人说:在理想状态下,若将一张厚度约为0.1毫米的纸对折n 次其厚度就可以超过到达月球的距离,那么至少对折的次数n 是( )(lg 20.3≈,lg3.80.6≈) A .40B .41C .42D .435.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列6.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .47.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .98.记数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列,且数列()()11211n n n a a a +++⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和n T 对任意的*n N ∈都有210n T λ-+≥恒成立,则λ的取值范围为( )A .1,6⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .5,6D .(],1-∞9.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则( ) A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯-D .6236n n S n =⨯--10.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-211.若n S 是等比数列{}n a 的前项和,3S ,9S ,6S 成等差数列,且82a =,则25a a +=( ) A .12-B .4-C .4D .1212.等差数列{}n a 的前n 项和为n S ,已知32110S a a =+,534a =,则1a =( ) A .2B .3C .4D .5二、填空题13.数列{}n a 中,1111,,21n n n a a a a --==+则n a =_____________.14.设数列{}2()n n n a +是等比数列,且116a =,2154a =,则数列{3}n n a 的前15项和为__________.15.在数列{}n a 中,已知11a =,()()122122n n n a a a a a n --=++++≥,则n a =____________.16.在数列{a n }中,已知a 1=1,1(1)sin 2n n n a a π++-=,记S n 为数列{a n }的前n 项和,则S 2019=______17.等比数列{}n a 的各项均为正数,且2414a a =,则2122232425log log log log log a a a a a ++++=___________.18.设,n n S T 分别是等差数列{}{},n n a b 的前n 项和,已知()*2142n n S n n N T n +=∈-,则10317a b b =+_________.19.已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2*12,n n S S n n n N -+=≥∈,若对任意*n N ∈,1n n a a +<恒成立,则a 的取值范围是___________.20.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=;②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数).从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______.三、解答题21.已知数列{}n a 满足:*111,21,n n a a a n n N +=-=-∈(1)证明{}n a n +是等比数列,并求出数列{}n a 的通项公式; (2)设21,n n n n b S a n+=+为数列{}n b 的前n 项和,求n S 22.在数列{}n a 中,11a =,()*21221,,k k k a a a k N -+∈成等比数列,公比为0k q >.(Ⅰ)若2k q =,求13521k a a a a -+++⋅⋅⋅+; (Ⅱ)若()*22122,,k k k a a a k N ++∈成等差数列,公差为k d ,设11k k b q =-. ①求证:{}n b 为等差数列;②若12d =,求数列{}k d 的前k 项和k D . 23.在①数列{}n a 为递增的等比数列,且2312a a +=,②数列{}n a 满足122n n S S +-=,③数列{}n a 满足1121222n n n n a a a na -++++=这三个条件中任选一个,补充在下面问题中,再完成解答.问题:设数列{}n a 的前n 项和为n S ,12a =,__________. (1)求数列{}n a 的通项公式; (2)设2221log log n n n b a a +=⋅,求数列{}n b 的前n 项和n T .24.在①246a a +=,945S =②222n n n S =+③()121n n a n n a n -=≥-,11a =这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{}n a 的前n 项和为n S ,________,数列{}n b 为等比数列,112b a =,222a b =,求数列{}n n a b 的前n 项和n T .25.从①()*123(1)2n n n b b b b n +++++=∈N ,②{}n b 为等差数列且215227b b b =+=,,这两个条件中选择一个条件补充到问题中,并完成解答.问题:已知数列{}{},n n a b 满足2n bn a =,且___________. (1)证明:数列{}n a 为等比数列;(2)若m c 表示数列{}n b 在区间()0,m a 内的项数,求数列{}m c 前m 项的和m T . 26.已知数列{}n a 的前n 项和()2*N n S nn =∈,{}n b 是递增等比数列,且11b a =,35b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)若()*N n n n c a b n =⋅∈,求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272n nn c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n n n c -=,则111252792222n n n nn n n nc c +++----=-=,当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.C解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.3.C解析:C 【分析】根据数列的通项公式,列出各项,找数列的规律,判断到哪一项是大于2021,即可得答案. 【详解】由已知可得,数列{}n a :1,4,7,4,7,10,7,10,13,,可得规律为1,4,7,4,7,10,7,10,13……此时将原数列分为三个等差数列:1,4,7,n a n =,{}31,n n n m m N ∈=+∈;4,7,10,2n a n =+,{}32,n n n m m N ∈=+∈;7,10,13,4n a n =+,{}33,n n n m m N ∈=+∈,当673m =时,312020n m =+=,即2020202120222020,2023,2026a a a ===. 而672m =时,312017n m =+=,即2017201820192017,2020,2023a a a ===, 所以满足2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为2018.故选:C. 【点睛】关于数列的项的判断,一般有两种题目类型,一种是具有周期的数列,可以通过列出前几项找出数列的周期,利用周期判断;另一种是数列的项与项之间存在规律,需要通过推理判断项与项之间的规律从而得数列的通项.4.C解析:C 【分析】设对折n 次时,纸的厚度为n a ,则{}n a 是以10.12a =⨯为首项,公比为2的等比数列,求出{}n a 的通项,解不等式460.12381010n n a =⨯≥⨯⨯即可求解【详解】设对折n 次时,纸的厚度为n a ,每次对折厚度变为原来的2倍, 由题意知{}n a 是以10.12a =⨯为首项,公比为2的等比数列,所以10.1220.12n nn a -=⨯⨯=⨯,令460.12381010n n a =⨯≥⨯⨯,即122 3.810n ≥⨯,所以lg 2lg 3.812n≥+,即lg 20.612n ≥+,解得:12.6420.3n ≥=, 所以至少对折的次数n 是42,故选:C 【点睛】关键点点睛:本题解题的关键是根据题意抽象出等比数列的模型,求出数列的通项,转化为解不等式即可.5.C解析:C【分析】根据13n n a S +=得14n n S S +=,分类讨论当10S =和10S ≠两种情况分析得数列{}n a 可能为等差数列,但不会为等比数列. 【详解】解:13n n a S +=,13n n n S S S +∴=-, 14n n S S +∴=,若10S =,则数列{}n a 为等差数列;若10S ≠,则数列{}n S 为首项为1S ,公比为4的等比数列,114n n S S -∴=⋅,此时21134n n n n a S S S -==-⋅﹣(2n ≥),即数列从第二项起,后面的项组成等比数列.综上,数列{}n a 可能为等差数列,但不会为等比数列. 故选:C. 【点睛】本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.6.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.7.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.8.C解析:C 【分析】直接利用递推关系式的应用求出数列的通项公式,进一步利用裂项相消法的应用和分离参数法及函数的恒成立问题的应用求出参数的取值范围. 【详解】数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列, 所以21n n a S =+①, 当1n =时,11a =.当2n ≥时,1121n n a S --=+②, ①﹣②得122n n n a a a --=,整理得12nn a a -=(常数), 所以数列{}n a 是以1为首项,2为公比的等比数列. 所以12n na .所以()()()()111122111121212121n n n n n n n n a a a +++++==-------,则1111111111337212121n n n n T ++=-+-++-=----. 由于对任意的*n N ∈都有210n T λ-+≥恒成立, 所以12n T λ+≥恒成立. 即()min 12n T λ+≥,当1n =时,()1min 5113n T T +=+=, 所以523λ≥,解得56λ≥, 所以5,6λ⎛⎤∈-∞ ⎥⎝⎦.故选:C 【点睛】本题主要考查了由递推关系式求数列的通项公式,考查了裂项求和以及恒成立问题,属于中档题.9.D解析:D 【分析】利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误. 【详解】因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列,所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确,()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 【点睛】本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.10.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.11.C解析:C 【分析】当公比q=1时,易推断不符合题意,故q 1≠,然后利用等比数列的前n 项和的公式和等差数列的性质得方程,再利用等比数列的性质求解. 【详解】设数列{}n a 的公比为q ,当1q =时,2n a =,则36S =,612S =,918S =,此时396,,S S S 不成等差数列,不符合题意,舍去;当1q ≠时,∵396,,S S S 成等差数列,∴3692S S S +=, 即()()()3691111112?111a q a q a q qq q---+=---,即96320q q q --=,解得312q =-或31q =(舍去)或30q =(舍去), ∴8268a a q ==,8534a a q==-,∴254a a +=,故选C. 【点睛】本题综合考查了等比数列与等差数列;在应用等比数列的前n 项和公式时,公比不能为1,故在解题过程中,应注意公比为1的这种特殊的等比数列,以防造成漏解.12.A解析:A 【解析】设等差数列{a n }的公差为d ,∵S 3=a 2+10a 1,a 5=34, ∴3a 1+3d =11a 1+d ,a 1+4d =34, 则a 1=2. 本题选择A 选项.二、填空题13.【分析】对两边取到数可得从而可得数列是等差数列求出数列的通项公式即可求出【详解】因为所以即又所以数列是以为首项2为公差的等差数列所以所以故答案为:【点睛】本题主要考查取到数构造新数列同时考查等差数列 解析:121n -【分析】 对1121n n n a a a --=+两边取到数可得1112n n a a --=,从而可得数列1{}n a 是等差数列,求出数列1{}na 的通项公式,即可求出n a . 【详解】 因为1121n n n a a a --=+,所以11121112n n n n a a a a ---+==+,即1112n n a a --=,又111a ,所以数列1{}na 是以1为首项,2为公差的等差数列, 所以11(1)221n n n a =+-⨯=-,所以121n a n =-. 故答案为:121n - 【点睛】本题主要考查取到数构造新数列,同时考查等差数列的概念及通项公式,属于中档题.14.【解析】等比数列首项为第二项为故是首项为公比为的等比数列所以所以其前项和为时为【点睛】本小题主要考查等比数列通项公式的求法考查利用裂项求和法求数列的前项和题目给定一个数列为等比数列并且给出和也就是要 解析:1516【解析】等比数列首项为1123a =,第二项为2169a =,故是首项为13,公比为13的等比数列.所以()21111333n n n nn a -+=⋅=,所以211131n n a n n n n ==-++,其前n 项和为111n -+,15n =时,为11511616-=. 【点睛】本小题主要考查等比数列通项公式的求法,考查利用裂项求和法求数列的前n 项和.题目给定一个数列()2n n n a +为等比数列,并且给出1a 和2a ,也就是要用这两项求得给定数列的第一和第二项,根据前两项求得等比数列的通项公式,由此得到211131n n a n n n n ==-++,利用裂项求和法求得数列的前n 项和. 15.【分析】(1)直接根据已知条件得到即进而求出数列的通项公式;再根据前项和与通项之间的关系即可求出数列的通项公式;【详解】∵∴数列是以为首项以3为公比的等比数列当时不适合上式数列的通项公式为故答案为:解析:21(1)23(2).n n n -=⎧⎨⋅⎩【分析】(1)直接根据已知条件得到112n n n S S S ---=,即13nn S S -=,进而求出数列{}n S 的通项公式;再根据前n 项和与通项之间的关系即可求出数列{}n a 的通项公式; 【详解】∵()()122122n n n a a a a a n --=++++≥,∴112n n n S S S ---=,∴13nn S S -=, ∴数列{}n S 是以111S a ==为首项,以3为公比的等比数列,13n n S -∴=.当2n 时,12213323n n n n n n a S S ----=-=-=⋅.11a =不适合上式,∴数列的通项公式为21(1)23(2).n n n a n -=⎧=⎨⋅⎩ 故答案为:21(1)23(2).n n n -=⎧⎨⋅⎩ 【点睛】本题考查递推公式求数列的通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将数列写成分段的形式.16.1010【分析】推导出从而得到数列是一个以4为周期的数列由此能求出的值【详解】数列中;可以判断所以数列是一个以4为周期的数列故答案为:1010【点睛】本题考查数列的求和考查数列的周期性三角函数性质等解析:1010 【分析】 推导出1(1)sin2n n n a a π++=+,从而得到4n n a a +=,数列{}n a 是一个以4为周期的数列,由此能求出2019S 的值. 【详解】数列{}n a 中,11a =,1(1)sin2n n n a a π++-=, 1(1)sin2n n n a a π++∴=+, 21sin 1a a π∴=+=,323sin1102a a π=+=-=,43sin 20a a π=+=,545sin0112a a π=+=+=, 511a a ∴==;可以判断4n n a a +=,所以数列{}n a 是一个以4为周期的数列.201945043=⨯+,20191234122504()504(1100)1101010S a a a a a a a ∴=⨯++++++=⨯++++++=,故答案为:1010. 【点睛】本题考查数列的求和,考查数列的周期性、三角函数性质等基础知识,意在考查学生对这些知识的理解掌握水平.17.【分析】由题意利用等比数列的性质求得的值再利用对数的运算性质求得结果【详解】解:等比数列{an}的各项均为正数且∴则故答案为:【点睛】本题考查等比中项的性质考查运算求解能力求解时注意对数运算法则的运用 解析:5-【分析】由题意利用等比数列的性质求得3a 的值,再利用对数的运算性质,求得结果. 【详解】解:等比数列{a n }的各项均为正数, 且224314a a a ==,∴312a =, 则2122232425log log log log log a a a a a ++++523231og 5log 5(1)5a a ===⋅-=-,故答案为:5-. 【点睛】本题考查等比中项的性质,考查运算求解能力,求解时注意对数运算法则的运用.18.【分析】利用等差数列的性质得到再根据求解【详解】因为所以故答案为:【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用还考查了运算求解的能力属于中档题 解析:39148【分析】利用等差数列的性质得到1013171191912a a a b b b b =⨯+++191912S T =⨯,再根据2142n n S n T n +=-求解.【详解】因为()*2142n n S n n N T n +=∈-, 所以()()110113171119191991921912221a a a b b b a b b b a =⨯=⨯+++++, 191911219139224192148S T ⨯+=⨯=⨯=⨯-, 故答案为:39148【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用,还考查了运算求解的能力,属于中档题.19.【分析】由化简可得从而可得由知则从而解得【详解】解:即即故由知;若对任意恒成立只需使即解得故故答案为:【点睛】本题考查了数列的性质的判断与应用同时考查了整体思想的应用及转化思想应用解析:24,33⎛⎫⎪⎝⎭【分析】由21n n S S n -+=化简可得1121n n S S n +--=+,从而可得22n n a a +-=,由1a a =知242a a =-,32a a =+,442a a =-,则1234a a a a <<<从而解得.【详解】解:21n n S S n -+=,21(1)n n S S n ++=+, 1121n n S S n +-∴-=+,即121n n a a n ++=+, 即2123n n a a n +++=+, 故22n n a a +-=, 由1a a =知2124a a +=, 214242a a a ∴=-=-,32a a =+, 462a a =-;若对任意n ∈+N ,1n n a a +<恒成立, 只需使1234a a a a <<<, 即42262a a a a <-<+<-, 解得2433a <<,故24,33a ⎛⎫∈ ⎪⎝⎭故答案为:24,33⎛⎫ ⎪⎝⎭. 【点睛】本题考查了数列的性质的判断与应用,同时考查了整体思想的应用及转化思想应用.20.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得 1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③.故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.三、解答题21.(1)证明见解析,2nn a n =-;(2)()12552n S n ⎛⎫=-+⋅+⎪⎝⎭. 【分析】 (1)根据条件可得112112n n n n a n a n n a n a n++++-++==++,从而可证,所以数列{}n a n +是首项为2,公比为2的等比数列,得出答案. (2)由题意可得21212n n n n n b a n ++==+,由错位相减法可得答案. 【详解】(1)数列{}n a 满足111,21n n a a a n +==+-112112n n n n a n a n n a n a n++++-++∴==++即公比12,12q a =+=∴数列{}n a n +是首项为2,公比为2的等比数列;2n n a n ∴+=(2)由题意,21212n n n n n b a n ++==+ 所以123123357212222n n nn S b b b b +=+++⋅⋅⋅+=+++⋅⋅⋅+.........① 234113572121 (222222)n n n n n S +--=+++++………② 由①-②,得123234113572135721212222222222n n n n n n n S ++-+⎡⎤⎡⎤=+++⋅⋅⋅+-+++⋅⋅⋅++⎢⎥⎢⎥⎣⎦⎣⎦234131111212?··222222n n n ++⎛⎫=+++++- ⎪⎝⎭()1111122121512251222212nn n n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎛⎫⎣⎦=+⨯-=-+⋅ ⎪⎝⎭- 从而()12552n S n ⎛⎫=-+⋅+ ⎪⎝⎭【点睛】关键点睛:本题考查由递推公式求数列的通项公式和利用错位相减法求和,解答本题的关键是根据21212n n n n n b a n ++==+得出求和的方法,利用错位相减法求和时计算要仔细,考查运算能力,属于中档题.22.(Ⅰ)413-k ;(Ⅱ)①证明见解析;②(3)2+=k k k D . 【分析】(Ⅰ)根据题中条件,得到221214k k k a q a +-==,求出21k a -的通项,利用等比数列的求和公式,即可求出结果;(Ⅱ)①先由条件,得到212222k k k a a a ++=+,推出112k kq q +=+,得出11k k b b +-=,即可证明数列是等差数列;②根据12d =,由①的结论,根据等差数列的通项公式,求出k b ,推出11k q k=+,得到221211k k a k a k +-+⎛⎫= ⎪⎝⎭,根据212k k k d a a +=-,求出{}k d 的通项,判断其是等差数列,由等差数列的求和公式,即可得出结果. 【详解】 (Ⅰ)由已知,221214k k k a q a +-==,所以1214k k a --=, 又11a =,所以数列{}21k a -是以1为首项,以4为公比的等比数列,所以()132111414413k k k a a a -⨯-=-++⋅⋅⋅+=-; (Ⅱ)①对任意的*k N ∈,2k a ,21k a +,22k a +成等差数列, 所以212222k k k a a a ++=+,即22221212k k k k a a a a +++=+,即112k kq q +=+, 所以111111111k k kq q q +==+---,即11k k b b +-=,所以{}n b 成等差数列,其公差为1.②若12d =,则21a q =,231a q =,322a a -=,所以21120q q --=,又0k q >,所以12q =,从而111111k k k q q =+-=--,即11k q k=+. 所以221211k k a k a k +-+⎛⎫= ⎪⎝⎭,可得235212111323k k k a a a a a k a a a ---=⨯⨯⨯⋅⋅⋅⨯=, 则221(1)k k k a a q k k -==+,所以2212(1)(1)1k k k d a a k k k k +=-=+-+=+,即{}k d 为等差数列,所以()1(3)22k k k d d k k D ++==. 【点睛】思路点睛:求解等差数列与等比数列的综合问题时,一般需要根据等差数列与等比数列的通项公式,以及求和公式,进行求解.(有时需要根据递推公式,先证明数列是等差数列或等比数列,再进一步求解)23.(1)选①②③均有2nn a =,*n N ∈;(2)32342(1)(2)n n T n n +=-++. 【分析】(1)选①,运用等比数列的通项公式解方程可得公比,可得所求通项公式;选②,运用构造等比数列,以及数列的递推式,可得所求通项公式;选③,将n 换为1n -,两式相减,结合等比数列的定义和通项公式,可得所求通项公式; (2)求得22211111()(2)22n n n b log a log a n n n n +===-⋅++,由数列的裂项相消求和,化简整理可得所求和. 【详解】(1)选①数列{}n a 为递增的等比数列,且2312a a +=,设等比数列{}n a 的公比为q ,(0)q >,则1(1)2(1)12a q q q q +=+=,解得2(3q =-舍去),所以2nn a =;选②数列{}n a 满足122n n S S +-=,可得122(2)n n S S ++=+,数列{2}n S +是首项为124S +=,公比为2的等比数列,则122n n S ++=,即为122n n S +=-,当2n 时,1122222n n n n n n a S S +-=-=--+=,12a =也满足上式,所以2nn a =,*n N ∈;选③1121222n n n n a a a na -+++⋯+=(1),当2n 时,12121222(1)n n n n a a a n a ---++⋯+=-(2),由(2)2⨯-(1)可得122(1)n n n a na n a +=--,即12n n a a +=, 又因为12a =,2124a a ==,也满足上式,故数列{}n a 为首项为2,公比为2的等比数列,所以2nn a =,*n N ∈;(2)由(Ⅰ)可得2nn a =,22211111()(2)22n n n b log a log a n n n n +===-⋅++,所以1111111111(1)232435112n T n n n n =-+-+-++-+--++ 1111323(1)221242(1)(2)n n n n n +=+--=-++++. 【点睛】方法点睛:本题考查等比数列的定义、通项公式和求和公式的运用,考查数列的求和,数列求和的方法总结如下:1.公式法,利用等差数列和等比数列的求和公式进行计算即可;2.裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;3.错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;4.倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.24.选①或②或③,()1122n n T n +=-⨯+.【分析】选①,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据已知条件建立有关1a 、d 的方程组,求出这两个量,并求出q 的值,可得出数列{}n a 、{}n b 的通项公式,进而利用错位相减法可求得n T ;选②,设等比数列{}n b 的公比为q ,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,并求出q ,可求得数列{}n b 的通项公式,再利用错位相减法可求得n T ;选③,设等比数列{}n b 的公比为q ,利用累乘法可求出数列{}n a 的通项公式,并求出q ,可求得数列{}n b 的通项公式,再利用错位相减法可求得n T . 【详解】选①,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由已知条件可得2419124693645a a a d S a d +=+=⎧⎨=+=⎩,解得11a d ==,()11n a a n d n ∴=+-=,22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅,1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--,因此,()1122n n T n +=-⨯+;选②,当1n =时,111a S ==;当2n ≥时,()()2211122n n n n n n n a S S n --+-+=-=-=. 11a =也满足n a n =,所以,对任意的n *∈N ,n a n =.22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅,1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--,因此,()1122n n T n +=-⨯+;选③,()121n n a nn a n -=≥-,且11a =, 由累乘法可得321121231121n n n a a a na a n a a a n -=⋅⋅⋅⋅=⨯⨯⨯⨯=-. 22122222a q a ∴===,111222n n n nb b q --∴==⨯=,2n n n a b n ∴=⋅,1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式可得()()2311121222222212212n n n n n n T n n n +++--=++++-⨯=-⨯=-⨯--, 因此,()1122n n T n +=-⨯+.【点睛】 方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.25.条件选择见解析;(1)证明见解析;(2)122m m T m +=--. 【分析】(1)选择①,可得(1)(1),22n n n n n b n +-=-=从而可得2,nn a =进而利用等比数列的定义可得结论;选择②,列出首项与公差的方程可得n b n =,从而可得2n n a =,进而利用等比数列的定义可得结论;(2)若选择①,则2n n a =,可得21m m c =-,利用分组求和法,结合等比数列的求和公式可得答案;选择②,则2n n a =,利用分组求和法,结合等比数列的求和公式可得答案;【详解】(1)选择①,因为()*123(1)2n n n b b b b n N +++++=∈, 当1n =时,11b =,当2n ≥时,(1)(1),122n n n n n b n n +-=-==时也成立,故n b n =. 所以1122,22n n n n n n a a a ++===, 所以数列{}n a 是以2为首项,2为公比的等比数列.若选择②,设数列{}n b 公差为d ,由题意1112247b d b b d +=⎧⎨++=⎩,,得111b d =⎧⎨=⎩,,得n b n =,即2log n a n =,得2nn a =,所以11222n n n n a a ++==. 所以数列{}n a 是以2为首项,2为公比的等比数列.(2)若选择条件①,则2n n a =,所以1c 对应的区间为(0,2),则121c c =;对应的区间为(0,4),则23c =;3c 对应的区间为(0,8),则37c =;m c 对应的区间为()0,2m ,则21m m c =-; 所以()1212122121212212m m m m T m m +-=-+-+-=-=---.若选择条件②,则2n n a =,所以1c 对应的区间为(0,2),则121c c =;对应的区间为(0,4),则23c =;3c 对应的区间为(0,8),则37c =;m c 对应的区间为()0,2m ,则21m m c =-; 所以()1212122121212212m m m mT m m +-=-+-+-=-=---. 【点睛】方法点睛:数列求和的常见方法:1、公式法;2、错位相减法;3、裂项相消法;4、分组求和法;5、倒序相加法.26.(1)()*21n a n n N=-∈,()1*3n n b n N -=∈;(2)()*(1)31n n T n n N =-⨯+∈. 【分析】(1)首先根据n S 与n a 的关系求数列{}n a 的通项公式,再根据条件求等比数列{}n b 的基本量,求数列{}n b 的通项公式;(2)()1*(21)3n n n n c a b n n N -=⋅=-⋅∈,利用错位相减法求和.【详解】(1)当1n =时,111a S ==;当1n >时,221(1)21n n n a S S n n n -=-=--=-; 当n=1时符合上式,∴()*21n a n n N =-∈;∴111b a ==,359==b a ,∴数列{}n b 的公比3q =,∴()1*3n n b n N -=∈; (2)由(1)可得()1*(21)3n n n n c a b n n N -=⋅=-⋅∈, ∴2211231113353(23)3(21)3n n n n n T c c c c c n n ---=+++++=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯,①2313133353(23)3(21)3n n n T n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯,②①-②,整理得()*(1)31n n T n n N=-⨯+∈.【点睛】本题考查已知数列n S 与n a 的关系式,求通项公式,和错位相减法求和,一般数列求和包含1.公式法,利用等差和等比数列的前n 项和公式求解;2.错位相减法求和,适用于等差数列乘以等比数列的数列求和;3.裂项相消法求和,适用于能变形为()()1n a f n f n =+-, 4.分组转化法求和,适用于n n n c a b =+;5.倒序相加法求和.。

(好题)高中数学必修五第一章《数列》测试题(包含答案解析)

(好题)高中数学必修五第一章《数列》测试题(包含答案解析)

一、选择题1.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .62.已知等比数列{}n a 的前n 项和为n S ,则下列命题一定正确的是( ) A .若20200S >,则10a > B .若20210S >,则10a > C .若20200S >,则20a >D .若20210S >,则20a >3.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞4.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51015.对于数列{}n a ,定义11222n nn a a a Y n-++⋅⋅⋅+=为数列{}n a 的“美值”,现在已知某数列{}n a 的“美值”12n n Y +=,记数列{}n a tn -的前n 项和为n S ,若6n S S ≤对任意的*n N ∈恒成立,则实数t 的取值范围是( )A .712,35⎡⎤⎢⎥⎣⎦B .712,35⎛⎫ ⎪⎝⎭C .167,73⎡⎤⎢⎥⎣⎦D .167,73⎛⎫ ⎪⎝⎭6.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =( ) A .21nn - B .21nn + C .221nn + D .42nn + 7.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .28.已知等差数列{}n a 满足3434a a =,则该数列中一定为零的项为( )A .6aB .7aC .8aD .9a9.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212 C .2155D .236610.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .1211.已知{}n a 是等比数列,且2222212345123451060a a a a a a a a a a ++++=++++=,,则24a a +=( )A .2B .3C .4D .512.已知{}n a 为等比数列,13527a a a =,246278a a a =,以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是( ) A .4B .5C .6D .7二、填空题13.已知数列{}n a 的前n 项和为n S ,若11a =,22a =,0n a ≠,()111122n n n n n a n S a S nS +++--=-,其中2n ≥,且*n ∈N .设21n n b a -=,数列{}n b 的前n 项和为n T ,则100T =______.14.设数列{}n a 是等比数列,公比2q,n S 为{}n a 的前n 项和,记219n nn n S S T a +-=(*n N ∈),则数列{}n T 最大项的值为__________.15.已知数列{}n a 的前n 项和为n S ,若121(2)n n S S n -=+≥且23S =,则55S a =_________. 16.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________.17.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 18.已知函数()f x 在()1,∞-+上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则1100a a +等于________. 19.已知数列{}n a 与{}nb 满足11222n n a a a ++++=-,1(1)(1)nn n n a b a a +=--,数列{}n b 的前n 项的和为n S ,若n S M ≤恒成立,则M 的最小值为_________.20.著名的斐波那契数列:1,1,2,3,5,…,的特点是从三个数起,每一个数等于它前面两个数的和,则222212320482048a a a a a ++++是数列中的第______项.三、解答题21.给出以下三个条件:①11a =,22121n n a a n +-=+,*n N ∈;②22n n S a n =+,*n N ∈;③数列2211n n a ⎧⎫+⎨⎬+⎩⎭的前n 项和为n .请从这三个条件中任选一个,将下面题目补充完整,并求解.设数列{}n a 的前n 项和为n S ,0n a >,________. (1)求数列{}n a 的通项公式;(2)若12n a nn nS b a +=,*n N ∈,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.22.已知各项为正数的等比数列{}n a ,前n 项和为n S ,若2125,2,log a log a 成等差数列,37S =,数列{}n b 满足,11b =,数列11n n n b b a ++⎧⎫-⎨⎬⎩⎭的前n 项和为232n n+ (1)求{}n a 的公比q 的值; (2)求{}n b 的通项公式.23.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .24.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,且满足___________(从①()101051S a =+﹔②1a ,2a ,6a 成等比数列;③535S =,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题). (1)求n a ﹔(2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求证:13n T <. 25.已知数列{}n a 的前n 项和为n S ,且n nS a 和2n a 的等差中项为1. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设41log n n b a +=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 26.已知等比数列{}n a 满足26a =,13630a a +=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若12a >,设23n n b n a =⋅(*N n ∈),记数列{}n b 的前n 项和为n S ,求n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.2.B解析:B 【分析】根据等比数列的前n 项和公式分别讨论20200S >和20210S >即可得答案. 【详解】当1q =时,2020120200S a =>,故10a >,20a >, 当1q ≠时,()202012020101a q S q-=>-,分以下几种情况,当1q <-时,10a <,此时210a a q =>; 当10q -<<时,10a >,此时120a a q =<, 当01q <<时,10a >,此时210a a q =>; 当1q >时,10a >,此时210a a q =>; 故当20200S >时,1a 与2a 可正可负,故排除A 、C . 当1q =时, 2021120210S a =>,故10a >, 20a >; 当1q ≠时,()202112021101a q S q-=>-,由于20211q-与1q -同号,故10a >,所以21a a q =符号随q 正负变化,故D 不正确,B 正确; 故选:B 【点睛】关键点点睛:本题解决时根据等比数列的求和公式,分类讨论公比的情形是解决问题的关键,分析出首项及公比的情况即可确定第二项的符号,属于中档题.3.D解析:D 【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.4.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.5.C解析:C 【分析】由1112222n n n n a a a Y n-+++⋅⋅⋅+==,可得1112222n n n n a a a -+=⋅+⨯++⋅⋅进而求得22n a n =+,所以()22n a tn t n -=-+可得{}n a tn -是等差数列,由6n S S ≤可得660a t -≥,770a t -≤,即可求解【详解】由1112222n n n n a a a Y n-+++⋅⋅⋅+==可得1112222n n n n a a a -+=⋅+⨯++⋅⋅,当2n ≥时()21212221n n n a a a n --+⋅=⋅-+⋅+,又因为1112222n n n a a n a -+=++⋅⋅⋅+,两式相减可得:()()11122221n n n n n n n n a -+=--=+,所以22n a n =+, 所以()22n a tn t n -=-+, 可得数列{}n a tn -是等差数列, 由6n S S ≤对任意的*n N ∈恒成立, 可得:660a t -≥,770a t -≤, 即()2620t -⨯+≥且()2720t -⨯+≤, 解得:16773t ≤≤,所以实数t 的取值范围是167,73⎡⎤⎢⎥⎣⎦, 故选:C 【点睛】关键点点睛:本题解题的关键点是由已知条件得出1112222n n n n a a a -+=⋅+⨯++⋅⋅再写一式可求得n a ,等差数列前n 项和最大等价于0n a ≥,10n a +≤,6.B解析:B 【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T . 【详解】已知数列{}n a 满足11a =,+121nn n a a a =+, 在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n n a a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-,()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21n n =+. 故选:B. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.7.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 8.B解析:B 【分析】由条件可得34a d =-,进而得n a (7)n d =-,从而得解. 【详解】33a 44a =,33a ∴()33444a d a d =+=+, 34d a ∴=-n a ∴3(3)a n d =+-⋅4(3)d n d =-+- (7)n d =- 70a ∴=,故选:B 【点睛】本题主要考查了等差数列的通项公式,等差数列的性质,属于基础题.9.C解析:C 【解析】依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,…… 101110112221,,101155a a a a ==+=. 10.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.11.A解析:A 【分析】首先根据题意,利用等比数列求和公式,得到5112345(1)101a q a a a a a q-++++==-,222222101521234(1)601a q q a a a a a -=-++=++,两式相除得到51(1)61a q q+=+,即5112345(1)61a q a a a a a q+-+-+==+,与1234510a a a a a ++++=联立求得结果.【详解】设数列{}n a 的公比为q ,且1q ≠,则5112345(1)101a q a a a a a q -++++==-, 222222101521234(1)601a q qa a a a a -=-++=++, 两式相除得210551112(1)(1)(1)6111a q a q a q q q q --+÷==--+, 所以5112345(1)61a q a a a a a q+-+-+==+, 又123123452445)()2()104(6a a a a a a a a a a a a --+-+=+=++-+=+, 所以242a a +=, 故选:A. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的求和公式,这题思维的应用,属于中档题目.12.A解析:A 【分析】先求出首项和公比,得出{}n a 是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论. 【详解】{}n a 为等比数列,3135327a a a a ==,32464278a a a a ==, 33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A . 【点评】本题主要考查等比数列的性质,属于基础题.二、填空题13.【分析】根据已知条件推导出数列从第三项开始奇数项成等差数列且公差为然后利用等差数列的求和公式可求得的值【详解】当且时由可得即可得①所以②②①得所以则则所以数列从第三项开始奇数项成等差数列且公差为故答 解析:9901【分析】根据已知条件推导出数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,然后利用等差数列的求和公式可求得100T 的值. 【详解】当2n ≥且*n ∈N 时,0n a ≠, 由()111122n n n n n a n S a S nS +++--=-,可得()()11112n n n n n a S S n S S ++-+-=-,即()1112n n n n a a a na ++++=, 可得12n n a a n ++=,①,所以,()2121n n a a n +++=+,②, ②-①得22n n a a +-=,所以,32224a a +=⨯=,则32a =,则3112a a -=≠, 所以,数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,21n n b a -=,10099982199299012T ⨯⨯=+⨯+=. 故答案为:9901. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.14.【解析】数列是等比数列公比为的前项和当且仅当时取等号又或时取最大值数列最大项的值为故答案为 解析:3【解析】数列{}n a 是等比数列,公比q 2=,n S 为{}n a 的前n 项和,219()n n n n S S T n N a *+-=∈ ,2111(12)(12)9812129222n nn n n na a T a --⋅---∴==--⋅822n n +≥=, 当且仅当822nn =时取等号,又,1n N n *∈=或2 时,n T 取最大值19243T =--= .∴ 数列{}n T 最大项的值为3 .故答案为3 .15.【分析】先计算出数列的前两项分别为和由题意可知可得再结合得数列是首项为公比为的等比数列然后利用等比数列的相关公式计算【详解】由①得则所以得:②②-①得:即又成立所以数列是首项为公比为的等比数列则故故解析:3116.【分析】先计算出数列{}n a 的前两项分别为1和2,由题意可知()1121212n n nn S S S S n +-=+⎧⎨=+≥⎩可得()122n na n a +=≥,再结合212aa =得数列{}n a 是首项为1,公比为2的等比数列,然后利用等比数列的相关公式计算55S a . 【详解】由121(2)n n S S n -=+≥ ①得12121213S S a =+=+=,则11a =,所以2212a S a =-=,得:121n n S S +=+②, ②-①得:()122n n a a n +=≥,即()122n na n a +=≥ 又212a a =成立,所以数列{}n a 是首项为1,公比为2的等比数列, 则4451216a a q =⋅==,()()55151********a q S q-⨯-===--,故553116Sa =. 故答案为:3116【点睛】本题考查利用递推关系式求解数列的通项公式,考查等比数列的通项公式、求和公式的应用,较简单.16.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.17.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.18.【分析】根据的图象的对称性利用平移变换的知识得到的图象的对称性结合函数的单调性根据得到的值最后利用等差数列的性质求得所求答案【详解】由函数的图象关于对称则函数的图象关于对称又在上单调且所以因为数列是 解析:2-【分析】根据()2y f x =-的图象的对称性,利用平移变换的知识得到()f x 的图象的对称性,结合函数的单调性,根据()()5051f a f a =得到5051a a +的值,最后利用等差数列的性质求得所求答案. 【详解】由函数()2y f x =-的图象关于1x =对称,则函数()f x 的图象关于1x =-对称, 又()f x 在()1,∞-+上单调,且()()5051f a f a =,所以5051a a 2+=-,因为数列{}n a 是公差不为0的等差数列,所以11005051a a 2a a +=+=-, 故答案为:2-. 【点睛】本题考查函数的对称性和单调性,等差数列的性质,涉及函数的图象的平移变换,属中档题,小综合题,难度一般.19.【分析】由已知式写出为的式子相减求得检验是否相符求得用裂项相消法求得和由表达式得的范围从而得最小值【详解】∵所以时两式相减得又所以有从而显然所以的最小值为1故答案为:1【点睛】方法点睛:本题主要考查 解析:1【分析】由已知式写出n 为1n -的式子,相减求得n a ,检验1a 是否相符,求得n b ,用裂项相消法求得和n S ,由n S 表达式得M 的范围,从而得最小值. 【详解】 ∵11222n n a a a ++++=-,所以2n ≥时,12122n n a a a -+++=-,两式相减得1222n n nn a +=-=,又21222a =-=,所以*n N ∈,有2nn a =,从而11211(21)(21)2121n n n n n n b ++==-----,122231111111212121212121n n n n S b b b +⎛⎫⎛⎫⎛⎫=+++=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11121n +=--,显然1n S <,所以1M ≥,M 的最小值为1.故答案为:1. 【点睛】方法点睛:本题主要考查求数列的通项公式,考查裂项相消法求和,数列求和的常用方法有:(1)公式法,(2)错位相减法,(3)裂项相消法,(4)分组(并项)求和法,(5)倒序相加法.20.【分析】由题意可得进而可得然后再利用累加法即可求出结果【详解】由题意可知所以即所以……所以又所以∴所以是数列中的第项故答案为:【点睛】本题考查了数列的递推公式和累加法的应用考查学生的计算能力属于中档题 解析:2049【分析】由题意可得21n n n a a a ++=+,进而可得21211n n n n n a a a a a ++++⋅=+⋅,然后再利用累加法,即可求出结果. 【详解】由题意可知21n n n a a a ++=+,所以()1211n n n n n a a a a a ++++⋅=⋅+,即21211n n n n n a a a a a ++++⋅=+⋅所以220482049204820482047a a a a a ⋅=+⋅,220472048204720472046a a a a a ⋅=+⋅,……223221·a a a a a ⋅=+,所以2222048204920482047221·a a a a a a a ⋅=++⋯++, 又21a a =所以2222204820492048204721a a a a a a ⋅=++⋯++∴2222123204820492048a a a a a a ++++=.所以222212320482048a a a a a ++++是数列中的第2049项.故答案为:2049 . 【点睛】本题考查了数列的递推公式和累加法的应用,考查学生的计算能力,属于中档题.三、解答题21.(1)条件性选择见解析,n a n =;(2)12n n T n +=⋅.【分析】(1)选择①,由累加法求得2n a ,从而得n a ;选择②,由当2n ≥时1n n n a S S -=-得出数列{}n a 的递推关系,利用0n a >排除一个,由另一个得出通项公式n a ;选择③,类似选择②求出通项2211n n a ++,从而得n a .(2)由(1)可得n b ,然后用错位相减法求和n T . 【详解】 (1)选择①,因为22121n n a a n +-=+,*n ∈N ,所以2n ≥时,2221211a a -=⨯+, 2232221a a -=⨯+,()221211n n a a n --=-+,2n ≥,所以当2n ≥时,()()221212311n a a n n -=++++-+-⎡⎤⎣⎦,因为11a =,所以当2n ≥时,22n a n =,当1n =时,也满足上式. 因为0n a >,所以n a n =. 选择②,因为22n n S a n =+,所以当2n ≥时,21121n n S a n --=+-,两式相减,得22121n n n a a a -=-+,即()2211n n a a --=,所以11n n a a --=或11n n a a --=,因为21121a a =+,所以11a =,因为0n a >,所以11n n a a --=舍去, 所以11n n a a --=,即11n n a a --=,2n ≥, 所以n a n =. 选择③,因为数列2211n n a ⎧⎫+⎨⎬+⎩⎭的前n 项和为n ,所以当2n ≥时,()221111n n n n a +=--=+,即22n a n =, 当1n =时,211111a +=+,即211a =,也满足上式, 所以22n a n =,因为0n a >,所以n a n =. (2)()()11122212n n a n nn nn n S b n a n+++⨯===+⋅, 所以()1212223212n n n T b b b n =+++=⋅+⋅+++⋅,()23122232212n n n T n n +=⋅+⋅++⋅++⋅,所以()()231422212n n n T n +-=++++++⋅()()1141241212n n n -+-=+-+⋅-12n n +=-⋅,所以12n n T n +=⋅.【点睛】方法点睛:本题考查累加法求通项公式,错位相减法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 22.(1)2q ;(2)()121n n b n =-⋅+.【分析】(1)对正项的等比数列{}n a ,利用基本量代换,列方程组,解出公比q ; (2)设11n nn n b b d a ++-=,由题意分析、计算得 1n d n =+,从而得到()112n n n b b n +-=+⋅,用累加法和错位相减法求出 n b .【详解】(1)∵2125log ,2,log a a 成等差数列,∴ ()225215log log log 4a a a a +==,即132516a a a ==,又0,n a >34a ∴=,又37,S =21211147a q a a q a q ⎧=∴⎨++=⎩ 解得2q或23q =-(舍).()2记11n n n n b b d a ++-=,当2n ≥时,()()221313122n n n n n d n -+-+=-=+又12d =也符合上式,1n d n ∴=+.而31322n n n a a --=⋅=,()112n n n b b n +∴-=+⋅,()()()21121321122322,)2(n n n n b b b b b b b b n n --∴=+-+-+⋯+-=+⋅+⋅+⋯+⋅≥,()231222232122n n n b n n -∴=+⋅+⋅+⋅⋅⋅+-⋅+⋅两式相减得()2112222121n n n n b n n --=+++⋯+-⋅=-⋅-,()2)2(11,n n b n n ∴=-⋅+≥.而11b =也符合上式, 故()121nn b n =-⋅+.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换; (2)数列求和常用方法:①公式法;②倒序相加法;③裂项相消法;④错位相减法.23.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n na a n n+=+,得到{}n b 为等比数列, (2)由(1)得到{}n a 的通项公式,用错位相减法求得n S 【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅, 12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和. 24.条件选择见解析;(1)32n a n =-;(2)证明见解析. 【分析】(1)由①可得11a =,由②可得13d a =,由③可得3127a a d =+=,选择①②、①③、②③条件组合,均得11a =,3d =,即得解析式;(2)可得11133231n b n n ⎛⎫=- ⎪-+⎝⎭,由裂项相消法求出n T 即可证明.【详解】(1)①由()101051S a =+,得()11109105912a d a d ⨯+=++,即11a =; ②由1a ,2a ,6a 成等比数列,得2216a a a =,222111125a a d d a a d ++=+,即13d a =;③由535S =,得()15355352a a a +==,即3127a a d =+=; 选择①②、①③、②③条件组合,均得11a =,3d =, 故()13132n a n n =+-=-. (2)()()111111323133231n n nb a a n n n n +⎛⎫===- ⎪-+-+⎝⎭∴123n n T b b b b =++++11111111134477103231n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111331n ⎛⎫=- ⎪+⎝⎭, ∵n *∈N ,∴1031n >+,∴13n T <.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 25.(Ⅰ)2nn a =;(Ⅱ)22n nT n =+. 【分析】(Ⅰ)利用等差中项的定义得出n S 与n a 的关系,然后由1(2)n n n a S S n -=-≥得出数列{}n a 的递推关系,求出1a 其为等比数列,从而得通项公式;(Ⅱ)用裂项相消法求和n T . 【详解】解:(Ⅰ)因为n n S a 和2n a 的等差中项为1,所以22n n nS a a +=,即22n n S a =-, 当2n 时,1122n n S a --=-.两式相减得1122n n n n S S a a ---=-,整理得12n n a a -=. 在22n n S a =-中,令1n =得12a =,所以,数列{}n a 是以2为首项,2为公比的等比数列,因此1222n nn a -=⨯=.(Ⅱ)411log 2n n n b a ++==. 则114114(1)(2)12+⎛⎫==- ⎪++++⎝⎭n n b b n n n n . 所以11111111244233412222n n T n n n n ⎛⎫⎛⎫=⨯-+-++-=⨯-= ⎪ ⎪++++⎝⎭⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.26.(Ⅰ)123n n a -=⨯或132n n a -=⨯;(Ⅱ)1(1)22n n S n +=-⨯+.【分析】(Ⅰ)设等比数列{}n a 的公比为q ,由已知建立方程组,求得数列的首项和公比,从而求得数列的通项;(Ⅱ)由(Ⅰ)及已知可得132n n a -=⨯和223n n n b n a n =⋅=⋅(*n ∈N ),运用错位相减法可求得数列的和.【详解】解:(Ⅰ)设等比数列{}n a 的公比为q ,由26a =,可得16a q =,记为①. 又因为13630a a +=,可得12630a a q +=,即15a q +=记为②,由①②可得123a q =⎧⎨=⎩或132a q =⎧⎨=⎩, 故{}n a 的通项公式为123n n a -=⨯或132n n a -=⨯.(Ⅱ)由(Ⅰ)及12a >可知132n n a -=⨯,所以223n n n b n a n =⋅=⋅(*n ∈N ), 所以1212222n n S n =⨯+⨯++⨯ ③231212222n n S n +=⨯+⨯++⨯ ④ ③-④得1212222n n n S n +-=+++-⨯111222(1)22n n n n n +++=--⨯=-⨯-,所以1(1)22n n S n +=-⨯+.【点睛】 方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等. (4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.。

数学必修5第一章测试题及答案

数学必修5第一章测试题及答案

第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23C .3D .325.在△ABC 中,若B a b sin 2=,则A 等于( )A .06030或 B .06045或 C .060120或 D .015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090 B .0120 C .0135 D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。

2.在△ABC 中,若=++=A c bc b a 则,222_________。

3.在△ABC 中,若====a C B b 则,135,30,200_________。

4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。

5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。

三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,设,3,2π=-=+C A b c a 求B sin 的值。

(数学5必修)第一章 [基础训练A 组]一、选择题1.C 00tan 30,tan 302b b a c b c b a=====-=2.A 0,sin 0A A π<<> 3.C cos sin()sin ,,22A AB A B ππ=->-都是锐角,则,,222A B A B C πππ->+<>4.D 作出图形5.D 012sin ,sin 2sin sin ,sin ,302b a B B A B A A ====或01506.B 设中间角为θ,则22200005871cos ,60,180601202582θθ+-===-=⨯⨯为所求 二、填空题1.12 11sin sin sin cos sin 222A B A A A ==≤ 2.0120 22201cos ,12022b c a A A bc +-==-=3.26- 00sin 15,,4sin 4sin154sin sin sin a b b A A a A A B B ====== 4. 0120 a ∶b ∶c =sin A ∶sin B ∶sin C =7∶8∶13,令7,8,13a k b k c k === 22201cos ,12022a b c C C ab +-==-= 5. 4,,sin sin sin sin sin sin AC BC AB AC BC ABB AC B A C+===+AC BC +sin )cos22A B A BA B +-=+= max 4cos 4,()42A BAC BC -=≤+=三、解答题1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+=sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+=cos 0A =或cos 0B =,得2A π=或2B π=。

高中数学必修5第一章《解三角形》综合测试

高中数学必修5第一章《解三角形》综合测试

第3页 共 4页
● 以下两题任选一题作答 20. (本题满分 14 分) 在锐角 ABC 中,边 a 、 b 是方程 x2 2 3x 2 0 的两根, A 、 B 满足
2sin( A B ) 3 0 ,解答下列问题: ( 1)求 C 的度数; ( 2)求边 c 的长度; ( 3)求 ABC 的面积 .
3 ,则
abc
的值为 _________.
sin A sin B sin C
13. 一蜘蛛沿正北方向爬行 x cm 捉到一只小虫,然后向右转 105o ,爬行 10 cm 捉到另一只小虫,这
时它向右转 135o 爬行回它的出发点,那么 x _________.
14. ABC 的内角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,向量 m ( 3, 1) , n (cos A,sin A) ,
高中数学必修 5 第一章《解三角形》综合测试
一、选择题 (每小题 5 分,共 40 分 . 在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 某三角形的两个内角为 45o 和 60o ,若 45o 角所对的边长是 6 ,则 60o 角所对的边长是【

A. 3 6 2. 在 ABC 中,已知 a
且 ABC 最大边是 12,最小角的正弦值是 . 3
( 1)判断 ABC 的形状; ( 2)求 ABC 的面积 .
必修 5 第一章综合测试题
第2页 共 4页
19. (本题满分
14 分) 海上某货轮在
A 处看灯塔 B 在货轮的北偏东
o
75 ,距离为
12
6 海里;在
A
处看灯塔 C 在货轮的北偏西
o
30 ,距离为
若 m n ,且 a cosB b cos A c sin C ,则 B _________.

(好题)高中数学必修五第一章《数列》检测卷(答案解析)(1)

(好题)高中数学必修五第一章《数列》检测卷(答案解析)(1)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.某大楼共有12层,有11人在第一层上了电梯,他们分别要去第2至12层,每层1人,因特殊原因,电梯只能停在某一层,其余10人都要步行到所要去的楼层,假设初始的“不满意度”为0,每位乘客每向下步行一层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,要使得10人“不满意度”之和最小,电梯应该停在第几层( ) A .7B .8C .9D .103.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N *-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .174.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .65.在等比数列{n a }中,13a =,424a =,则345a a a ++的值为( ) A .33B .72C .84D .1896.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ) A .810B .840C .870D .9007.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .98.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D .2599.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .410.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-211.根据下面一组等式:11s =, 2235s =+=,345615s =++=, 47891034s =+++=, 5111213141565s =++++=, 6161718192021111s =+++++=,……可得21n S -=( )A .324641n n n -+-B .1413n -C .2184023n n -+D .(1)12n n -+12.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .1024二、填空题13.已知数列{}n a 的各项均不为零,其前n 项和为n S ,且11a =,()12n n n S a a n *+=∈N .若11n n n b a a +=,则数列{}n b 的前n 项和n T =______. 14.设S n 是数列{}n a 的前n 项和,且*1111,20,3n n n a a S S n N ++=+=∈,则1223910S S S S S S ++⋅⋅⋅⋅⋅+=___________.15.在数列{}n a 中,11a =,0n a ≠,曲线3y x =在点()3,n n a a 处的切线经过点()1,0n a +,下列四个结论:①223a =;②313a =;③416527ii a==∑;④数列{}n a 是等比数列;其中所有正确结论的编号是______.16.已知等差数列{}n a 的前n 项和为n S ,1a 为整数,213a =-,8n S S ≥,则数列{}n a 的通项公式为n a =________.17.设,n n S T 分别是等差数列{}{},n n a b 的前n 项和,已知()*2142n n S n n N T n +=∈-,则10317a b b =+_________.18.对于数列{}n a ,存在x ∈R ,使得不等式()2*144n na x x n N a +≤≤-∈成立,则下列说法正确的有______.(请写出所有正确说法的序号). ①数列{}n a 为等差数列; ②数列{}n a 为等比数列; ③若12a =,则212n na -=;④若12a =,则数列{}n a 的前n 项和21223n n S +-=.19.记n S 为等差数列{}n a 的前n 项和,若22a =-,714S =,则10a =__________. 20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________.三、解答题21.已知各项为正数的等比数列{}n a ,前n 项和为n S ,若2125,2,log a log a 成等差数列,37S =,数列{}n b 满足,11b =,数列11n n n b b a ++⎧⎫-⎨⎬⎩⎭的前n 项和为232n n+ (1)求{}n a 的公比q 的值; (2)求{}n b 的通项公式.22.已知正项等比数列{}n a 的前n 项和为n S ,12a =,2232S a a =+. (1)求数列{}n a 的通项公式; (2)设21n nn b a -=,求数列{}n b 的前n 项和. 23.已知公差为2的等差数列{}n a ,且1a ,7a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的前n 项和为n S ,求数列n S n ⎧⎫⎨⎬⎩⎭的最小项. 24.已知等差数列{}n a 的前n 项和为n S ,35a =,636S =. (1)求数列{}n a 的通项公式; (2)记m b 为2log k 在区间(]()*0,m a m N∈中正整数k 的个数,求数列{}mb 的前m 项和.25.已知数列{}n a 的前n 项和为n S ,首项11a =,121n n S S +=+. (1)求数列{}n a 的通项公式;(2)设n n b na =,记数列{}n b 的前n 项和为n T ,是否存在正整数n ,使得2021n T =?若存在,求出n 的值;若不存在,说明理由.26.已知等比数列{}n a 的公比不为1,且11a =,32a 是23a 与4a 的等差中项.(Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 满足()()1211nn n n a b a a +=++,求数列{}n b的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272n nn c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n n n c -=,则111252792222n n n nn n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><>即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.C解析:C 【分析】根据题意,假设电梯所停的楼层,表达出“不满意度”之和,利用等差数列的求和公式即可求得结论. 【详解】解:设电梯所停的楼层是(212)n n ,则12(2)2[12(12)]S n n =++⋯+-+++⋯+- (2)(1)(12)(13)222n n n n ----=+⨯ 22235335353()157()157232624n n n =-+=--+ 开口向上,对称轴为5396x =≈, 故S 在9n =时取最小值239539314402min S ⨯-⨯+==.故选:C . 【点睛】本题考查数列知识,考查函数思想的运用,考查计算能力,求得“不满意度”之和是关键.3.C解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.4.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.5.C解析:C 【分析】根据341a a q =,可求出q ,再根据等比数列通项公式求出35,a a 即可.【详解】因为341a a q =,即3243q =,所以2q,所以22313212a a q ==⨯=,44513248a a q ==⨯=,所以34512244884a a a ++=++=. 故选:C本题主要考查等比数列的通项公式的应用,属于基础题.6.B解析:B 【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为10(3165)8402+= ,选B. 7.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.8.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k =【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.9.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.10.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.11.A解析:A 【分析】求出第()1n -行最后一项,可得第n 行为第一项,求出第n 行最后一项,根据第n 是等差数列求出n S ,即可求出21n S -. 【详解】易得第()1n -行最后一项为[]21(1)(1)22n n n n +---=,则第n 行第一项为212n n-+,第n 行最后一项为2(1)22n n n n++=, 故第n 行为第一项212n n -+,最后一项为22n n+,项数为n 的等差数列, 故22312222n n n n n n n n S ⎛⎫-+++ ⎪+⎝⎭==, 所以32214641n S n n n -=-+-.故选:A. 【点睛】本题考查对数列的理解,以及等差数列的前n 项和的求法,属于中档题.12.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.故选:C .【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.二、填空题13.【分析】由得数列的递推关系数列奇数项成等差数列偶数项成等差数列分别求出通项公式后合并可得然后用裂项相消法求和【详解】∵∴两式相减得又∴由且得因此综上∴故答案为:【点睛】本题考查求等差数列的通项公式裂解析:1n n + 【分析】由11n n n a S S ++=-得数列{}n a 的递推关系,数列奇数项成等差数列,偶数项成等差数列,分别求出通项公式后,合并可得n a ,然后用裂项相消法求和n T . 【详解】∵12n n n S a a +=,∴1122n n n S a a +++=,两式相减得11121222n n n n n n n a S S a a a a +++++=-=-,又10n a +≠,∴22n n a a +-=, 由1122S a a =且11a =得22a =,因此2112(1)12(1)21n a a n n n -=+-=+-=-,222(1)22(1)2n a a n n n =+-=+-=, 综上,n a n =,*n N ∈,111(1)1n b n n nn ,∴11111111223111n n T n n n n =-+-++-=-=+++. 故答案为:1n n +. 【点睛】本题考查求等差数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.14.【分析】由代入化简求得再结合求和方法计算可得结果【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以所以故答案为:【点晴】由代入化简求得数列是等差数列是解题的关键解析:17【分析】由11n n n a S S ++=-代入化简求得n S ,再结合求和方法计算可得结果. 【详解】因为1120n n n a S S +++= 所以1120n n n n S S S S ++-+= 所以112n n n n S S S S ++-=所以1112n nS S +-= 又11113S a == 所以数列1n S ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列, 所以()131221nn n S =+-⨯=+ 所以121n S n =+ 所以111111212322123n n S S n n n n +⎛⎫=⋅=- ⎪++++⎝⎭所以12239101111111111123557192123217S S S S S S ⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭ 故答案为:17【点晴】由11n n n a S S ++=-代入化简求得数列1n S ⎧⎫⎨⎬⎩⎭是等差数列是解题的关键. 15.①③④【分析】先利用导数求得曲线在点处的切线方程由此求得与的递推关系式进而证得数列是等比数列由此判断出四个结论中正确的结论编号【详解】∵∴曲线在点处的切线方程为则∵∴则是首项为1公比为的等比数列从而解析:①③④ 【分析】先利用导数求得曲线3y x =在点()3,n n a a 处的切线方程,由此求得1n a +与n a 的递推关系式,进而证得数列{}n a 是等比数列,由此判断出四个结论中正确的结论编号. 【详解】∵2'3y x =,∴曲线3y x =在点()3,n n a a 处的切线方程为()323n n n y a a x a -=-,则()3213n n n n a a a a +-=-.∵0n a ≠,∴123n n a a +=, 则{}n a 是首项为1,公比为23的等比数列, 从而223a =,349a =,4412165322713i i a =⎛⎫- ⎪⎝⎭==-∑. 故所有正确结论的编号是①③④. 故答案为:①③④ 【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前n 项和公式,属于基础题.16.【分析】设等差数列的公差为由等差数列的性质及前n 项和公式可得再由二次函数的图象与性质可得求得后再由等差数列的通项公式即可得解【详解】设等差数列的公差为则为整数所以由结合二次函数的图象与性质可得解得所 解析:217n -【分析】设等差数列{}n a 的公差为d ,由等差数列的性质及前n 项和公式可得231322n n d d S n ⎛⎫+ ⎝-⎪⎭=,再由二次函数的图象与性质可得313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯,求得d 后再由等差数列的通项公式即可得解. 【详解】设等差数列{}n a 的公差为d ,则1213a a d d =-=--,d 为整数, 所以()()()2131313112222n d S d n n n n d a n d d n n n --=+⎛⎫--++ ⎪⎝=⎭=-, 由8n S S ≥,结合二次函数的图象与性质可得0d >,313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯,解得131376d ≤≤, 所以2d =,所以1215a a d =-=-,所以()()111521217n a a n d n n =+-=-+-=-. 故答案为:217n -. 【点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了利用二次函数的图象与性质解决等差数列前n 项和最值的问题,属于中档题.17.【分析】利用等差数列的性质得到再根据求解【详解】因为所以故答案为:【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用还考查了运算求解的能力属于中档题 解析:39148【分析】利用等差数列的性质得到1013171191912a a a b b b b =⨯+++191912S T =⨯,再根据2142n n S n T n +=-求解.【详解】 因为()*2142n n S n n N T n +=∈-, 所以()()110113171119191991921912221a a a b b b a b b b a =⨯=⨯+++++, 191911219139224192148S T ⨯+=⨯=⨯=⨯-, 故答案为:39148【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用,还考查了运算求解的能力,属于中档题.18.②③④【分析】由题意可得存在使求得值可得再由等比数列的定义通项公式及前项和逐一核对四个命题得答案【详解】解:由存在使得不等式成立得即则则数列为等比数列故①错误②正确;若则故③正确;若则数列的前项和故解析:②③④ 【分析】由题意可得,存在x ∈R ,使244x x -,求得x 值,可得14n na a +=,再由等比数列的定义、通项公式及前n 项和逐一核对四个命题得答案. 【详解】解:由存在x ∈R ,使得不等式2*144()n na xx n N a +-∈成立, 得244x x -,即2440x x -+,则2(2)0x -,2x ∴=.∴14n na a +=. 则数列{}n a 为等比数列,故①错误,②正确; 若12a =,则121242n n n a --==,故③正确;若12a =,则数列{}n a 的前n 项和212(14)22143n n n S +⨯--==-,故④正确. 故答案为:②③④. 【点睛】本题考查命题的真假判断与应用,考查等比数列的判定,训练了等比数列通项公式与前n 项和的求法,属于中档题.19.14【分析】本题先求再求即可解题【详解】解:因为数列是等差数列所以解得所以故答案为:14【点睛】本题考查等差数列的基本量法是基础题解析:14 【分析】本题先求1a 、d ,再求10a 即可解题. 【详解】解:因为数列{}n a 是等差数列,22a =-,714S =所以217127(71)7142a a d S a d =+=-⎧⎪⎨⨯-=+=⎪⎩,解得142a d =-⎧⎨=⎩, 所以101914a a d =+= 故答案为:14 【点睛】本题考查等差数列的基本量法,是基础题.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)2q ;(2)()121n n b n =-⋅+.【分析】(1)对正项的等比数列{}n a ,利用基本量代换,列方程组,解出公比q ; (2)设11n nn n b b d a ++-=,由题意分析、计算得 1n d n =+,从而得到()112n n n b b n +-=+⋅,用累加法和错位相减法求出 n b .【详解】(1)∵2125log ,2,log a a 成等差数列,∴ ()225215log log log 4a a a a +==,即132516a a a ==,又0,n a >34a ∴=,又37,S =21211147a q a a q a q ⎧=∴⎨++=⎩ 解得2q或23q =-(舍).()2记11n n n n b b d a ++-=,当2n ≥时,()()221313122n n n n n d n -+-+=-=+又12d =也符合上式,1n d n ∴=+.而31322n n n a a --=⋅=,()112n n n b b n +∴-=+⋅,()()()21121321122322,)2(n n n n b b b b b b b b n n --∴=+-+-+⋯+-=+⋅+⋅+⋯+⋅≥, ()231222232122n n n b n n -∴=+⋅+⋅+⋅⋅⋅+-⋅+⋅两式相减得()2112222121n n n n b n n --=+++⋯+-⋅=-⋅-,()2)2(11,n n b n n ∴=-⋅+≥.而11b =也符合上式, 故()121nn b n =-⋅+.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换; (2)数列求和常用方法:①公式法;②倒序相加法;③裂项相消法;④错位相减法.22.(1)2nn a =;(2)()13232nn T n ⎛⎫=-+⨯ ⎪⎝⎭. 【分析】(1)求等比数列的通项公式用公式法,基本量代换;(2) ()121221n nn n n b a ⎛⎫=- ⎝=⎪⎭-,用错位相减法求和.【详解】解:(1)设{}n a 的公比为q ,0q >2232S a a =+∴()12122a a a q a q +=+ ∴2q∴1222n nn a -=⋅=.(2)()1212nn b n ⎛⎫=- ⎪⎝⎭设{}n b 的前n 项和为n T∴()()23111111135232122222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⨯+-⨯ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭①()()2311111113232122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭②①-②()23111111122221222222nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++⨯--⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()111112211121122212n n n T n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+--⨯ ⎪⎝⎭-()1111112212222n n n T n +⎛⎫⎛⎫=+-⋅--⨯ ⎪ ⎪⎝⎭⎝⎭所以()11342122nnn T n ⎛⎫⎛⎫=-⋅--⨯ ⎪ ⎪⎝⎭⎝⎭所以()13232nn T n ⎛⎫=-+⨯ ⎪⎝⎭.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换;(2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法. 23.(1)211n a n =-;(2)最小项为第7项为297. 【分析】(1)由等比中项的性质以及等差数列的通项公式求出数列{}n a 的通项公式; (2)当5n ≤时,由112n a n =-得出n S ,由二次函数的性质得出数列n S n ⎧⎫⎨⎬⎩⎭的最小项,当6n >时,由211n a n =-得出n S 结合导数数列n S n ⎧⎫⎨⎬⎩⎭的最小项.【详解】(1)由题知:2715a a a =⋅,则()()2111128a a a +=⋅+得:19a =-即1(1)211n a a n d n =+-=- (2)当5n ≤时,112n a n =-,29112102n nS n n n +-=⨯=- 则21010n S n n n n n-==-,即5n =时,min 5n S n ⎛⎫= ⎪⎝⎭当6n ≥时,211n a n =-,251211(5)10502n n S S n n n +-=+⨯-=-+,则5010n S n n n=+- 令50()10,6f x x x x =+-≥,2225050()1x f x x x -'=-=当6x <<()0f x '<,当x >时,()0f x '>即函数()f x在(上单调递减,在()+∞上单调递增 即7n =时,min297n S n ⎛⎫=⎪⎝⎭ 最小项为第7项为297【点睛】关键点睛:解决本题的关键在于先讨论211n a n =-的正负,从而确定{}n a 的通项公式,进而得出n S ,最后由二次函数的性质以及导数得出数列n S n ⎧⎫⎨⎬⎩⎭的单调性,由此得出最小值. 24.(1)21n a n =-;(2)212233m m +--【分析】(1)根据等差数列的通项公式和前n 项和公式列出式子求出首项和公差即可求出通项公式;(2)由20log 21m k a m ≤=-<解得2112m k -<≤,即可得出1241m m b -=⨯-,再分组求和即可得出. 【详解】(1)设等差数列{}n a 的公差为d ,则3161+25656+362a a d S a d ==⎧⎪⎨⨯==⎪⎩,解得1a 1,d 2, ()11221n a n n ∴=+-⨯=-;(2)由20log 21m k a m ≤=-<,解得2112m k -<≤,m b 为2log k 在区间(]()*0,m a m N ∈中正整数k 的个数,21121241m m m b --∴=-=⨯-,设数列{}m b 的前m 项和为m T , 则()21214221433m m mT m m +-=-=---.【点睛】本题考查等差数列基本量的计算,解题的关键是求出首项和公差,考查等比数列的求和公式,解题的关键是求出1241m m b -=⨯-.25.(1)12n n a ;(2)不存在,理由见解析.【分析】(1)根据11n n n a S S ++=-以及等比数列的通项公式可求得结果;(2)利用错位相减法求出n T ,分别对1,2n n ==和3n ≥讨论等式是否成立可得答案. 【详解】(1)由121n n S S +=+①,知2n ≥时,121n n S S -=+②, ①-②得()122n n a a n +=≥,在①式中令12121212n a a a a =⇒+=+⇒=,212a a =, ∴对任意*n ∈N ,均有12n na a +=,∴{}n a 为等比数列,11122n n n a --=⨯=, (2)由(1)得12n n b n -=⋅,所以()01221122232122n n n T n n --=⋅+⋅+⋅++-⋅+⋅,所以()()12212122222122n n n n T n n n --=⋅+⋅++-⋅+-⋅+⋅,所以()12111212222221212nn n nn n nT n n n -⋅--=++++-⋅=-⋅=--⋅-,所以(1)21nn T n =-⋅+,令()()1212021122020nnn n -⋅+=⇒-⋅=,当1n =和2n =时,等式显然不成立;当3n ≥时,方程化为()212505n n --⋅=,左边为偶数,右边等于505为奇数,等式也不成立,故不存在正整数n ,使得2021n T =成立. 【点睛】关键点点睛:利用11n n n a S S ++=-求出通项公式,根据错位相减法求出n T 是解题关键. 26.(Ⅰ)13-=n n a ;(Ⅱ)11231n n T =-+. 【分析】(Ⅰ)设数列{}n a 的公比为q ,由32a 是23a 与4a 的等差中项.求出q 后可得通项公式; (Ⅱ)求出n b ,用裂项相消法求和n T . 【详解】(Ⅰ)设数列{}n a 的公比为q ,由条件知32443a a a =+,即2311143a q a q a q =+,整理可得2430q q -+=,解得3q =(1q =舍去),所以11133n n n a a --=⋅=.(Ⅱ)()()()()1111223111131313131n n nn n n n n n a b a a ---+⋅===-++++++,所以01121111111313131313131n n nT -⎫⎫⎫⎛⎛⎛=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎝⎝⎭⎭⎭011113131231n n =-=-+++. 【点睛】本题考查求等差数列的通项公式,裂项相消法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.。

(好题)高中数学必修五第一章《数列》测试(含答案解析)

(好题)高中数学必修五第一章《数列》测试(含答案解析)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .54 3.已知数列{}n a 为等比数列,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则123n a a a a ⋅⋅⋅⋅⋅的最大值为( ) A .5B .512C .1024D .20484.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( ) A .-784B .-368C .-389D .-3925.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .96.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1nii i xy =+=∑( )A .0B .nC .2nD .3n7.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .20228.公元1202年意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…,即121a a ==,12n n n a a a --=+(*3,n n ≥∈N ).此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用.若记212n n n n b a a a ++=-(*n ∈N ),数列{}n b 的前n 项和为n S ,则2020S =( ) A .0B .1C .2019D .20209.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-10.若n S 是等比数列{}n a 的前项和,3S ,9S ,6S 成等差数列,且82a =,则25a a +=( ) A .12-B .4-C .4D .1211.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-12.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.数列{}n a 满足()()1232312n a a a na n n n ++++=++,则n a = __________.14.已知等差数列{}n a 的首项是19-,公差是2,则数列{}n a 的前n 项和n S 的最小值是_______.15.数列{}n a 满足11a =,22a =,且2221sin 2cos 22n nn n a a ππ+⎛⎫=+⋅+ ⎪⎝⎭(*n N ∈),则2020a =__.16.等比数列{}n a 的各项均为正数,且2414a a =,则2122232425log log log log log a a a a a ++++=___________.17.数列{}n a 中,若31()n na a n *+=∈N ,13a =,则{}n a 的通项公式为________. 18.已知等差数列{}n a 的前n 项和为()*n S n N∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,当0n S >时,n 的最大值为______.19.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,1121(2)(2)n n n n n n b a a +++=++,对任意的*n N ∈,n k T >,恒成立,则k 的最小值是__________.20.已知数列{}n a 的通项公式为3217n n a n -=-,前n 项和为n S ,则n S 取得最小值时n 的值为_________.三、解答题21.在①119n n a a +-=-,②113n n a a +=-③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.设n S 是数列{}n a 的前n 项和,且19a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值:若不存在,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分22.在数列{}n a ,{}n b 和{}n c 中,{}n a 为等差数列,设{}n a 前n 项的和为n S ,{}n c 的前n 项和为n T ,11a =,410S a =,12b =,n n n c a b =⋅,22n n T c =-. (1)求数列{}n a ,{}n b 的通项公式; (2)求证:()()()()()()12122311111111nn n c c c c c c c c c ++++<------.23.已知正项数列{}n a 、{}n b ,记数列{}n a 的前n 项和为n S ,若1143a b +=,21n n S a +=,2211(1)0n n n n nb b b n b ----+=(1)求数列{}n a 、{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和n T .24.从①1a 、2a 、5a 成等比数列,②525S =,③222n nS S n n+-=+,这三个条件中任选一个,补充在下面问题中并作答.已知等差数列{}n a 的前n 项和为n S ,47a =, ,122na n nb a +=+,求数列{}n b 的前n 项和为n T .25.已知数列{}n a 是等差数列,n S 是数列{}n a 的前n 项和,35a =,749=S . (1)求数列{}n a 的通项公式及前n 项和n S ;(2)若数列{}n b 满足2n b =,求数列{}n b 的前n 项和n T .26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥ ⎪⎝⎭,设272n n n c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n nn n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.B解析:B本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】 因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.3.C解析:C 【分析】用1a 和q 表示出2a 和3a 代入2312a a a ⋅=求得4a ,再根据3474422a a a a q +=+,求得q ,进而求得1a 到6a 的值,即得解. 【详解】2231112a a a q a q a ⋅=⋅=42a ∴=3474452224a a a a q +=+=⨯12q ∴=,41316a a q ==故1415116()2222n n n n a ---=⨯=⨯=,所以123456116,8,4,2,1,12a a a a a a ======<, 所以数列的前4或5项的积最大,且最大值为16842=1024⨯⨯⨯. 故选:C结论点睛:等比数列{}n a 中,如果11,01a q ><<,求123n a a a a ⋅⋅⋅⋅⋅的最大值,一般利用“1交界”法求解,即找到大于等于1的项,找到小于1的项,即得解.4.D解析:D 【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D.【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值.5.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.6.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124n i n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122n i n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.7.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.8.A解析:A 【分析】由1n nb b +用递推式可得到值为-1,{}n b 是等比数列,再求前2020项和. 【详解】 由题意可知()2221121213221212n n n n n n n n n n n n n n n a a a a b a a a b a a a a a a ++++++++++++-+-===--()222211212212121n n n n n n n n n n n n n a a a a a a a a a a a a a ++++++++++---==---, 又212131b a a a =-=-,因此()1nn b =-,故()()()20201111110S =-++-+++-+=,故选:A. 【点睛】本题考查了通过递推数列揭示数列存在的规律即等比数列,还考查了数列求和,属于中档题.9.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.10.C解析:C 【分析】当公比q=1时,易推断不符合题意,故q 1≠,然后利用等比数列的前n 项和的公式和等差数列的性质得方程,再利用等比数列的性质求解. 【详解】设数列{}n a 的公比为q ,当1q =时,2n a =,则36S =,612S =,918S =,此时396,,S S S 不成等差数列,不符合题意,舍去;当1q ≠时,∵396,,S S S 成等差数列,∴3692S S S +=, 即()()()3691111112?111a q a q a q qq q---+=---,即96320q q q --=,解得312q =-或31q =(舍去)或30q =(舍去), ∴8268a a q ==,8534a a q ==-,∴254a a +=,故选C. 【点睛】本题综合考查了等比数列与等差数列;在应用等比数列的前n 项和公式时,公比不能为1,故在解题过程中,应注意公比为1的这种特殊的等比数列,以防造成漏解.11.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.【分析】对递推关系多递推一次再相减可得再验证是否满足;【详解】∵①时②①-②得时满足上式故答案为:【点睛】数列中碰到递推关系问题经常利用多递推一次再相减的思想方法求解 解析:31n【分析】对递推关系多递推一次,再相减,可得31n a n ,再验证1n =是否满足;【详解】 ∵()()1232312n a a a na n n n ++++=++①2n ∴≥时,()()()123123111n a a a n a n n n -++++-=-+② ①-②得31,31n nna n n a n ,1n =时,1123=6,a 满足上式,31na n .故答案为:31n . 【点睛】数列中碰到递推关系问题,经常利用多递推一次再相减的思想方法求解.14.【分析】本题先求等差数列前n 项和再由此求出数列的前n 项和的最小值【详解】解:∵等差数列的首项是公差是2∴∴时数列的前n 项和的最小值是故答案为:【点睛】本题考查等差数列前n 项和的最小值的求法考查等差数解析:100-. 【分析】本题先求等差数列前n 项和()()22119220101002n n n S n n n n -=-+⨯=-=--,再由此求出数列{}n a 的前n 项和n S 的最小值. 【详解】解:∵等差数列{}n a 的首项是19-,公差是2, ∴()()22119220101002n n n S n n n n -=-+⨯=-=--, ∴10n =时,数列{}n a 的前n 项和n S 的最小值是100-. 故答案为:100-. 【点睛】本题考查等差数列前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.15.2020【分析】当n 为偶数时可得出故偶数项是以2为首项公差为2的等差数列求出通项公式代值计算即可得解【详解】当n 为偶数时即故数列的偶数项是以2为首项公差为2的等差数列所以所以故答案为:2020【点睛解析:2020 【分析】当n 为偶数时,可得出22n n a a +=+,故偶数项是以2为首项,公差为2的等差数列,求出通项公式,代值计算即可得解. 【详解】 当n 为偶数时,2223cos 1sin 2cos 1cos 2222n n n n n n n a a a n a ππππ+-⎛⎫=+⋅+=⋅++=+ ⎪⎝⎭, 即22n n a a +=+,故数列{}n a 的偶数项是以2为首项,公差为2的等差数列,所以2122n n a n ⎛⎫=+-⨯= ⎪⎝⎭,所以20202020a =. 故答案为:2020.【点睛】本题考查数列的递推式,解题关键是得出当n 为偶数时,可得出2n a +与n a 的关系式,进而求出{}n a 的通项公式,考查逻辑思维能力和计算能力,属于常考题.16.【分析】由题意利用等比数列的性质求得的值再利用对数的运算性质求得结果【详解】解:等比数列{an}的各项均为正数且∴则故答案为:【点睛】本题考查等比中项的性质考查运算求解能力求解时注意对数运算法则的运用 解析:5-【分析】由题意利用等比数列的性质求得3a 的值,再利用对数的运算性质,求得结果. 【详解】解:等比数列{a n }的各项均为正数, 且224314a a a ==,∴312a =, 则2122232425log log log log log a a a a a ++++523231og 5log 5(1)5a a ===⋅-=-,故答案为:5-. 【点睛】本题考查等比中项的性质,考查运算求解能力,求解时注意对数运算法则的运用.17.【分析】两边取对数化简整理得得到数列是以为首项公比为3的等比数列结合等比数列的通项公式即可求解【详解】由两边取对数可得即又由则所以数列是以为首项公比为3等比数列则所以故答案为:【点睛】本题主要考查了 解析:133()n n a n -*=∈N【分析】两边取对数,化简整理得313log 3log n na a +=,得到数列3{log }n a 是以1为首项,公比为3的等比数列,结合等比数列的通项公式,即可求解. 【详解】由31()n na a n *+=∈N ,两边取对数,可得313log 3log n n a a +=,即313log 3log n na a +=, 又由13a =,则31log 1a =,所以数列3{log }n a 是以31log 1a =为首项,公比为3等比数列,则113log 133n n n a --=⋅=,所以133()n n a n -*=∈N . 故答案为:133()n n a n -*=∈N 【点睛】本题主要考查了对数的运算性质,以及等比数列的通项公式的求解,其中解答中合理利用对数的运算性质,结合等比数列的通项公式求解是解答的关键,着重考查推理与运算能力.18.【分析】根据是与的等比中项求出和再根据等差数列的求和公式求出解不等式即可得解【详解】因为是与的等比中项所以所以化简得因为所以因为所以即将代入得解得所以所以由得即解得所以正整数的最大值为故答案为:20解析:【分析】根据690S =,7a 是3a 与9a 的等比中项求出1a 和d ,再根据等差数列的求和公式求出n S ,解不等式0n S >即可得解.【详解】因为7a 是3a 与9a 的等比中项,所以2739a a a =⋅,所以()()()2111628a d a d a d +=++,化简得21100a d d +=,因为0d ≠,所以110a d =-, 因为690S =,所以1656902a d ⨯+=,即15152a d +=, 将110a d =-代入得510152d d -+=,解得2d =-,所以120a =, 所以2(1)20(2)212n n n S n n n -=+⨯-=-+, 由0n S >得2210n n -+>,即2210n n -<,解得021n <<, 所以正整数n 的最大值为20. 故答案为:20 【点睛】关键点点睛:熟练掌握等差数列的通项公式和求和公式以及等比中项的应用是解题关键.19.【分析】首先利用与的关系式求数列的通项公式再利用裂项相消法求再利用的最值求的最小值【详解】当时解得或当两式相减后可得整理后得:所以数列是公差为1的等差数列即数列单调递增当时对任意的恒成立即的最小值是解析:13【分析】首先利用n S 与n a 的关系式,求数列{}n a 的通项公式,再利用裂项相消法求n T ,再利用n T 的最值求k 的最小值. 【详解】当1n =时,2111122S a a a =+=,解得10a =或11a =,0n a >,11a ∴=,当2n ≥,2211122n n nn n n S a a S a a ---⎧=+⎨=+⎩,两式相减后可得()()()221112n n n n n n S S a a a a ----=-+-,整理后得:()()1110n n n n a a a a --+--=,所以11n n a a --=,∴数列{}n a 是公差为1的等差数列,即n a n =,()()112111221221n n n n n n b n n n n +++==-++++++, 2231111111...21222223221n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭1112121n n +=-+++ 111321n n +=-++, 数列{}n T 单调递增,当n →+∞时,13n T → 对任意的*n N ∈,n k T >,恒成立,()max n k T ∴>,即13k ≥,k 的最小值是13.故答案为:13【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.20.8【分析】求出数列在n 的不同取值范围的正负判断出的单调性可求出【详解】令解得或当时单调递增当时单调递减当时单调递增所以取得最小值时的值为8故答案为:8【点睛】本题考查数列前n 项和的最值的求法解题的关解析:8 【分析】求出数列在n 的不同取值范围的正负判断出n S 的单调性可求出. 【详解】 令30217n n a n -=≥-,解得3n ≤或172n ≥,∴当3n ≤时,0n a ≥,n S 单调递增,当47n ≤≤时,0n a <,n S 单调递减, 当8n ≥时,0n a >,n S 单调递增, 所以n S 取得最小值时n 的值为8. 故答案为:8.【点睛】本题考查数列前n 项和的最值的求法,解题的关键是根据数列的正负判断n S 的单调性.三、解答题21.答案见解析 【分析】选①:由等差数列通项公式得出通项n a 后,解0n a ≥,满足此不等式的最大的n 使得n S 最大,注意若n a 0=,则有两个值使得n S 最大,选②:由等比数列前n 项和公式得出n S ,由于公比是负数,因此按n 的奇偶性分类讨论求得n S 的最大值;选③:由累加法求得n a ,利用n a 的表达式是n 的二次函数形式,当15n ≥时,0n a >,确定n S 不存在最大值. 【详解】 选①因为119n n a a +-=-,19a =,所以{}n a 是首项为9,公差为19-的等差数列.所以()118291999n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭. 由182099n -+≥,得82n ≤,即820a ≥ 所以n S 存在最大值,且最大值为81S 或82S , 因为818180181936929S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为369. 选② 因为113n n a a +=-,19a =,所以{}n a 是首项为9,公比为13-的等比数列. 所以1311933n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.1︒当n 为奇数时,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为271143n ⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为19S =;2︒当n 为偶数的,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+, 且2712719434n n S ⎛⎫=-<< ⎪⎝⎭, 综上,n S 存在最大值,且最大值为9. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…,19n n a a n --=-, 以上1n -个等式相加得()()21791171622n n n n n a a -+---+-==, 因为19a =,所以()2173422n n n a n -+=≥,又19a =也满足上式,所以217342n n n a -+=. 当15n ≥时,0n a >,故n S 不存在最大值. 【点睛】关键点点睛:本题考查数列前n 项和的最大值问题,一种方法是求出n S 的表达式,由函数的性质确定n S 的最大值,一种是利用数列项的性质,如数列是递减的数列,10a >,则满足0n a ≥的最大的n 使得n S 最大.22.(1)n a n =,2nn b n=;(2)证明见解析;【分析】(1)设{}n a 的公差为d ,由410S a =,即可得到1d a =,从而求出{}n a 的通项公式,再由1122n n n n n c T T c c --=-=-,可得{}n c 是首项为2,公比为2的等比数列,即可求出{}n c 的通项,最后由n n n c a b =⋅,求出{}n b 的通项公式;(2)依题意可得()()1111112121n n n n n c c c ++=-----,利用裂项相消法求和即可得证;【详解】解:(1)因为{}n a 为等差数列,且{}n a 前n 项的和为n S ,设其公差为d , 因为410S a =,11a =,所以()11441492a d a d ⨯-+=+,所以11d a ==,所以n a n =,因为11a =,12b =,n n n c a b =⋅,所以1112c a b =⋅=,因为{}n c 的前n 项和为n T 且22n n T c =-,当2n ≥时,()()111222222n n n n n n n c T T c c c c ---=-=---=-,所以()122n n c c n -=≥,所以{}n c 是首项为2,公比为2的等比数列,所以2n n c =,因为n n n c a b =⋅,所以2nn n n c b a n==(2)因为()()()()1112111121212121n n n n n n n n c c c +++==-------所以()()()()()()1212231111111nn n c c c c c c c c c ++++------122311111111111111212121212121212121n n n n +++=-+-++-=-=-<--------- 【点睛】数列求和的方法技巧 (1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和. 23.(1)13n n a =,12n n b +=;(2)151144323nn nn T -+=--⋅⋅ 【分析】(1)由1n =求得1a ,再風1b ,然后由11n n n a S S ++=-得到数列{}n a 的递推关系,知其为等比数列,从而得通项公式,由n b 的递推关系得1(1)n n nb n b -=+,用累乘的方法求得n b ;(2)用错位相减法求和n T . 【详解】(1)由题意知:1111221S a a a +=+=,113a =,∴11413b a =-=, ∵1121,21n n n n S a S a +++=+= ∴111333n n n n a a q a +=⇒=⇒= 又∵()[]11(1)0,0n n n n n b b nb n b b --+⋅-+=> ∴121121131(1)122n n n n n n n b b b n n n nb n b b b b b n n ----++=+⇒⋅=⋅⋅⇒=-(1b 也适合), (2)∵123n n nn a b +=∴2323413333n n n T +=++++ 231123133333n n n n T ++=++++ ∴12311111221111219313333333313n n n n n n n T -++⎛⎫- ⎪++⎝⎭=++++-=+-- 11211113633n n n -++⎛⎫=+-- ⎪⎝⎭ ∴151144323n n n n T -+=--⋅⋅. 【点睛】本题考查求等比数列的通项公式,累乘法求通项公式,错位相减法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 24.答案见解析. 【分析】选①,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而可求得n T ;选②,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T ; 选③,设等差数列{}n a 的公差为d ,利用等差数列的求和公式求出d 的值,可求得1a 的值,求出数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T . 【详解】解:选①,设数列{}n a 的公差为d ,则由47a =可得137a d +=,由1a 、2a 、5a 成等比数列得()()21114a a d a d +=+,可得212d a d =,所以,121372a d d a d +=⎧⎨=⎩,解得170a d =⎧⎨=⎩或112a d =⎧⎨=⎩,若17a =,0d =,则7n a =,23n b =,23n T n =;若11a =,2d =,则()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选②,设数列{}n a 的公差为d ,则由47a =可得137a d +=, 由525S =得1545252a d ⨯+=,即125a d +=, 联立以上两式可得11a =,2d =,所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选③,设数列{}n a 的公差为d ,则由47a =可得137a d +=,()112n n n d S na -=+,()112n n d Sa n -∴=+,()21122n n d S a n ++∴=++, 由222n nS S n n+-=+得2d =,则11a =, 所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212n n T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.25.(1)21n a n =-,2n s n =;(2)21n nT n =+. 【分析】(1)根据条件列出式子求出数列{}n a 的首项和公差,即可求出通项公式和前n 项和; (2)可得112+1n b n n ⎛⎫=- ⎪⎝⎭,利用裂项相消法即可求出. 【详解】(1)设等差数列{}n a 的公差为d ,则3171+25767+492a a d S a d ==⎧⎪⎨⨯==⎪⎩,解得1a 1,d 2, ()1+1221n a n n ∴=-⨯=-,()21+212n n n S n -==; (2)()2112+1+1n b n n n n ⎛⎫===- ⎪⎝⎭, 1111122122311n nT n n n ⎛⎫∴=-+-++-=⎪++⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1nn a b a =即可求出;(2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】(1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212a b a ==,3313a b a ==, (2)设1n a k +=,n n n A b B =, 若n k B ≤,则+1n n n n nk A A b b B =≥=, 若n n B k A <<,则+1n n n n A b b B ==, 若n k A ≥,则+1n n n nn A k b b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=; (3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n n n A b q B -==, 由(2)可得1n n b b +≥,则1q ≥,当1q =时,1n nA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列; 当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =, 此时01n n n n n n A a b q B a -===,即01n n n a a q -=, 故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列. 【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.。

(好题)高中数学必修五第一章《数列》测试(包含答案解析)

(好题)高中数学必修五第一章《数列》测试(包含答案解析)

一、选择题1.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-2.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40423.已知数列{}n a 是等比数列,满足51184a a a =,数列{}n b 是等差数列,且88b a =,则79b b +等于( )A .24B .16C .8D .44.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .65.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭6.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .87.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D .2598.已知等差数列{}n a 中, 23a =,59a =,则数列{}n a 的前6项之和等于( ) A .11 B .12 C .24D .369.已知{}n a 是等比数列,且2222212345123451060a a a a a a a a a a ++++=++++=,,则24a a +=( )A .2B .3C .4D .510.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( )A .1B .1-或2C .3D .1-11.等差数列{}n a 的前n 项和为n S ,已知32110S a a =+,534a =,则1a =( ) A .2B .3C .4D .512.已知数列{}n a 中,11a =,又()1,1n a a +=,()21,1n b a =+,若//a b ,则4a =( ) A .7B .9C .15D .17二、填空题13.设S n 是数列{}n a 的前n 项和,且*1111,20,3n n n a a S S n N ++=+=∈,则1223910S S S S S S ++⋅⋅⋅⋅⋅+=___________.14.设数列{}n a 中12a =,若等比数列{}n b 满足1n n n a a b +=,且10101b =,则2020a =__. 15.已知等差数列{}n a 中,268,0a a ==,等比数列{}n b 中, 122123,b a b a a a ==++,那么数列{}n b 的前4项和4S =________16.数列{}n a 满足11a =,22a =,且2221sin 2cos 22n nn n a a ππ+⎛⎫=+⋅+ ⎪⎝⎭(*n N ∈),则2020a =__.17.已知数列{a n }的前n 项和为S n ,若S n ﹣1是a n 和S n 的等比中项,设1(1)(21)n n n b n a +=-⋅+,则数列{b n }的前100项和为_____.18.已知等差数列{a n }的前n 项和为S n ,且a 2=4,S 5=30,则数列{1nS }的前n 项和为_____.19.等比数列{}n a 前n 项和为n S ,若634S S =,则96S S =______. 20.对于数列{}n a ,存在x ∈R ,使得不等式()2*144n na x x n N a +≤≤-∈成立,则下列说法正确的有______.(请写出所有正确说法的序号). ①数列{}n a 为等差数列; ②数列{}n a 为等比数列; ③若12a =,则212n na -=;④若12a =,则数列{}n a 的前n 项和21223n n S +-=.三、解答题21.已知数列{}n a 满足:*111,21,n n a a a n n N +=-=-∈(1)证明{}n a n +是等比数列,并求出数列{}n a 的通项公式;(2)设21,n n n n b S a n+=+为数列{}n b 的前n 项和,求n S 22.已知等差数列{}n a 的前n 项和为n S ,满足332S a =,8522a a =-. (1)求数列{}n a 的通项公式; (2)记121n n n n b a a a ++=⋅⋅,求数列{}n b 的前n 项和n T .23.已知等比数列{}n a 的公比不为1,且11a =,32a 是23a 与4a 的等差中项. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 满足()()1211nn n n a b a a +=++,求数列{}n b的前n 项和n T .24.已知正项等比数列{}n a ,首项13a =,且13213,,22a a a 成等差数列. (1)求数列{}n a 的通项公式; (2)若数列{}nb 满足3321log log n n n b a a +=⋅,求数列{}n b 的前n 项和n S .25.在数列{}n a 中,已知12a =,且12(1)(1)n n na n a n n +=+-+,*n ∈N . (1)设1nn a b n=-,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n T .26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.2.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.3.C解析:C 【分析】利用等比数列和等差数列的性质计算. 【详解】∵数列{}n a 是等比数列,∴2511884a a a a ==,又80a ,∴84a =,又{}n b 是等差数列,∴7988228b b b a +===. 故选:C . 【点睛】关键点点睛:本题考查等差数列与等比数列的性质,掌握等差数列与等比数列的性质是解题关键.对正整数,,,m n p l ,若m n p l +=+,{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =,特别地若2m n p +=,{}n a 是等差数列,则2m n p a a a +=,若{}n a 是等比数列,则2m n p a a a =.4.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.5.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a qa ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.6.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1)即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列.所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nn S n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.7.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.8.D解析:D 【分析】根据等差数列的性质得162512a a a a +=+=,再根据等差数列前n 项和公式计算即可得答案. 【详解】解:因为等差数列{}n a 中, 23a =,59a =, 所以根据等差数列的性质得162512a a a a +=+=, 所以根据等差数列前n 项和公式()12n n n a a S +=得()16666123622a a S +⨯===. 故数列{}n a 的前6项之和等于36. 故选:D. 【点睛】本题考查等差数列的性质,前n 项和公式,考查运算能力,是中档题.9.A解析:A 【分析】首先根据题意,利用等比数列求和公式,得到5112345(1)101a q a a a a a q -++++==-,222222101521234(1)601a q q a a a a a -=-++=++,两式相除得到51(1)61a q q+=+,即5112345(1)61a q a a a a a q+-+-+==+,与1234510a a a a a ++++=联立求得结果.【详解】设数列{}n a 的公比为q ,且1q ≠,则5112345(1)101a q a a a a a q -++++==-, 222222101521234(1)601a q q a a a a a -=-++=++,两式相除得210551112(1)(1)(1)6111a q a q a q q q q--+÷==--+, 所以5112345(1)61a q a a a a a q+-+-+==+, 又123123452445)()2()104(6a a a a a a a a a a a a --+-+=+=++-+=+, 所以242a a +=, 故选:A. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的求和公式,这题思维的应用,属于中档题目.10.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.11.A解析:A 【解析】设等差数列{a n }的公差为d ,∵S 3=a 2+10a 1,a 5=34, ∴3a 1+3d =11a 1+d ,a 1+4d =34, 则a 1=2. 本题选择A 选项.12.C解析:C 【分析】利用向量平行的坐标运算公式得出121n n a a +=+,可得出1121n n a a ++=+,所以数列{}1n a +是以2为首项,公比为2的等比数列,然后求解4a . 【详解】因为//a b ,所以121n na a +=+,则()112221n n n a a a ++=+=+,即1121n n a a ++=+, 又11a =,所以112a +=,所以数列{}1n a +是以2为首项,公比为2的等比数列, 所以441216a +==,得415a =. 故选:C. 【点睛】本题考查向量的平行,考查数列的通项公式求解及应用,难度一般. 一般地,若{}n a 满足()10,1,0n n a pa q p p q +=+≠≠≠,则只需构造()1n n a x p a x ++=+,其中1q x p =-,然后转化为等比数列求通项.二、填空题13.【分析】由代入化简求得再结合求和方法计算可得结果【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以所以故答案为:【点晴】由代入化简求得数列是等差数列是解题的关键解析:17【分析】由11n n n a S S ++=-代入化简求得n S ,再结合求和方法计算可得结果. 【详解】因为1120n n n a S S +++= 所以1120n n n n S S S S ++-+= 所以112n n n n S S S S ++-= 所以1112n nS S +-= 又11113S a ==所以数列1n S ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列, 所以()131221nn n S =+-⨯=+ 所以121n S n =+ 所以111111212322123n n S S n n n n +⎛⎫=⋅=- ⎪++++⎝⎭所以12239101111111111123557192123217S S S S S S ⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭ 故答案为:17【点晴】由11n n n a S S ++=-代入化简求得数列1n S ⎧⎫⎨⎬⎩⎭是等差数列是解题的关键. 14.【分析】由变形可得进而由累乘法可得结合等比数列的性质即可得解【详解】根据题意数列满足即则有而数列为等比数列则则又由则故答案为:2【点睛】本题考查了等比数列的性质以及应用考查了累乘法求数列通项的应用及解析:【分析】 由1n n n a a b +=变形可得1n n n a b a +=,进而由累乘法可得202020192018201711ab b b b a =⋅⋅⋅⋅⋅,结合等比数列的性质即可得解. 【详解】根据题意,数列{}n b 满足1n n n a a b +=,即1n n na b a +=, 则有20202020201920182201920182017112019201820171a a a a ab b b b a a a a a ⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 而数列{}n b 为等比数列,则()2019201920182017110101b b b b b ⋅⋅⋅⋅⋅==,则202011a a =, 又由12a =,则20202a =. 故答案为:2. 【点睛】本题考查了等比数列的性质以及应用,考查了累乘法求数列通项的应用及运算求解能力,属于中档题.15.320【分析】先求出等差数列的通项公式即可求出即可得通项再利用等比数列前项和公式求【详解】设等差数列的公差为则解得所以所以数列的公比为所以故答案为:320【点睛】本题主要考查了等比数列求和涉及等差数解析:320 【分析】先求出等差数列{}n a 的通项公式,即可求出1b ,2b ,即可得{}n b 通项,再利用等比数列前n 项和公式求4S【详解】设等差数列{}n a 的公差为d ,则2161850a a d a a d =+=⎧⎨=+=⎩,解得1102a d =⎧⎨=-⎩ , 1(1)10(1)(2)212n a a n d n n =+-=+-⨯-=-+ ,所以128b a ==,2123108624b a a a =+=++=+, 所以数列{}n b 的公比q 为213b b = , 所以448(13)32013S ⨯-==-.故答案为:320 【点睛】本题主要考查了等比数列求和,涉及等差数列通项公式,等比数列通项公式,属于基础题.16.2020【分析】当n 为偶数时可得出故偶数项是以2为首项公差为2的等差数列求出通项公式代值计算即可得解【详解】当n 为偶数时即故数列的偶数项是以2为首项公差为2的等差数列所以所以故答案为:2020【点睛解析:2020 【分析】当n 为偶数时,可得出22n n a a +=+,故偶数项是以2为首项,公差为2的等差数列,求出通项公式,代值计算即可得解. 【详解】 当n 为偶数时,2223cos 1sin 2cos 1cos 2222n n n n n n n a a a n a ππππ+-⎛⎫=+⋅+=⋅++=+ ⎪⎝⎭, 即22n n a a +=+,故数列{}n a 的偶数项是以2为首项,公差为2的等差数列, 所以2122n n a n ⎛⎫=+-⨯=⎪⎝⎭, 所以20202020a =. 故答案为:2020. 【点睛】本题考查数列的递推式,解题关键是得出当n 为偶数时,可得出2n a +与n a 的关系式,进而求出{}n a 的通项公式,考查逻辑思维能力和计算能力,属于常考题.17.【分析】利用等比中项列方程然后求得再利用裂项求和法求得数列的前项和【详解】依题意当时解得当时解得当时解得以此类推猜想下用数学归纳法证明:当时成立假设当时当时所以假设成立所以对任意(证毕)所以所以数列 解析:100101【分析】利用等比中项列方程,然后求得n a ,再利用裂项求和法求得数列{}n b 的前100项和. 【详解】依题意()21n n n S a S -=⋅,当1n =时,()22111a a -=,解得111212a ==⨯, 当2n =时,()()2122121a a a a a +-=⋅+,解得211623a ==⨯, 当3n =时,()()212331231a a a a a a a ++-=⋅++,解得3111234a ==⨯, 以此类推,猜想()11111n a n n n n ==-++,1111111223111n n S n n n n 1=-+-++-=-=+++. 下用数学归纳法证明: 当1n =时,1112S a ==成立. 假设当n k =时,1k k S k =+ 当1n k =+时,()21111k k k S a S +++-=⋅,()()21111k k k k S S S S +++-=-⋅,22111121k k k k k S S S S S ++++-+=-⋅,1121k k k S S S ++-+=-⋅,()121k k S S +⋅-=-,1122111k k k k S S k k ++--⎛⎫⋅-=⋅=- ⎪++⎝⎭,()111211k k k S k k +++==+++,所以假设成立.所以对任意*N n ∈,()11111n a n n n n ==-++,1n n S n =+.(证毕) 所以()11111(1)(21)(1)(21)(1)111n n n n n b n a n n n n n +++⎛⎫=-⋅+⋅-⋅+⎪==+⋅-⋅+ +⎝⎭,所以数列{}n b 的前100项和为111111111001122334100101101101⎛⎫⎛⎫⎛⎫⎛⎫+-+++--+=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:100101【点睛】本小题主要考查等比中项的性质,考查裂项求和法,属于中档题.18.【分析】依据等差数列通项及前n 项和公式求得等差数列{an}的基本量应用等差数列前n 项和公式表示出进而得到数列{}的通项并利用裂项法求前n 项和即可【详解】根据等差数列通项及前n 项和公式知解得∴由等差数 解析:1n n + 【分析】依据等差数列通项及前n 项和公式求得等差数列{a n }的基本量122a d =⎧⎨=⎩,应用等差数列前n项和公式表示出n S ,进而得到数列{1nS }的通项,并利用裂项法求前n 项和即可 【详解】根据等差数列通项及前n 项和公式,知2151451030a a d S a d =+=⎧⎨=+=⎩解得122a d =⎧⎨=⎩ ∴由等差数列前n 项和公式:22(1)n S n n n n n =+-=+,()n N +∈对于数列{1n S }有211111n S n n n n ==-++∴数列{1n S }的前n 项和1111111...1223111n n T nn n n故答案为:1nn + 【点睛】本题考查了等差数列,根据已知量,结合等差数列的通项公式和前n 项和公式列方程求基本量,进而得到其前n 项和公式,根据新数列与等差数列前n 项和的关系求得数列通项公式,结合裂项法得到新数列的前n 项和公式19.【分析】根据等比数列的性质得到成等比从而列出关系式又接着用表示代入到关系式中可求出的值【详解】因为等比数列的前n 项和为则成等比且所以又因为即所以整理得故答案为:【点睛】本题考查学生灵活运用等比数列的 解析:134【分析】根据等比数列的性质得到232,,n n n n n S S S S S --成等比,从而列出关系式,又634S S =,接着用6S 表示3S ,代入到关系式中,可求出96S S 的值. 【详解】因为等比数列{}n a 的前n 项和为n S ,则232,,n n n n n S S S S S --成等比,且0n S ≠,所以6396363--=-S S S S S S S ,又因为634S S =,即3614=S S ,所以6696666141144--=-S S S S S S S ,整理得96134=S S . 故答案为:134. 【点睛】本题考查学生灵活运用等比数列的性质化简求值,是一道基础题。

高中数学必修五第一章测试题含答案 精校打印版 名校用过

高中数学必修五第一章测试题含答案 精校打印版 名校用过

高中数学必修五第一章测试题含答案精校打印版名校用过第一章测试一、选择题1.在△ABC中,AB=5,BC=6,AC=8,则△ABC的形状是()A。

锐角三角形B。

直角三角形C。

钝角三角形D。

非钝角三角形2.在△ABC中,已知a=1,b=3,A=30°,B为锐角,那么A,B,C的大小关系为()A。

A>B>CB。

B>A>CC。

C>B>AD。

C>A>B3.在△ABC中,已知a=8,B=60°,C=75°,则b等于()A。

42B。

43C。

46D。

324.在△ABC中,AB=5,BC=7,AC=8,则BA·BC的值为()A。

5B。

-5C。

15D。

-155.若三角形三边长之比是1:3:2,则其所对角之比是()A。

1:2:3B。

1:3:2C。

1:2:3D。

2:3:26.在△ABC中,若a=6,b=9,A=45°,则此三角形有()A。

无解B。

一解C。

两解D。

解的个数不确定7.已知△ABC的外接圆半径为R,且2R(sin2A-sin2C)=(2a-b)sinB(其中a,b分别为A,B的对边),那么角C的大小为()A。

30°B。

45°C。

60°D。

90°8.在△ABC中,已知sin2A+sin2B-sinAsinB=sin2C,且满足ab=4,则该三角形的面积为()A。

1B。

2C。

2D。

39.在△ABC中,A=120°,AB=5,BC=7,则sinB/sinC 的值为()A。

8553/5835B。

5835/8553C。

1D。

7/510.在三角形ABC中,AB=5,AC=3,BC=7,则∠BAC的大小为()A。

2π/5B。

3π/5C。

π/3D。

4π/311.有一长为1km的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长()A。

0.5kmB。

(好题)高中数学必修五第一章《数列》检测卷(含答案解析)(3)

(好题)高中数学必修五第一章《数列》检测卷(含答案解析)(3)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-3.已知数列{}n a 中,11n na a n +-=+,11a =,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则满足143n S n n ⎛⎫≥- ⎪⎝⎭)的n 的最大值为( )A .3B .4C .5D .64.数列{}n a 中,11a =,113,3,3n n n n a N a n a N *+*-⎧+∉⎪⎪=⎨⎪∈⎪⎩,使2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为( ) A .1008B .2016C .2018D .20205.已知等比数列{}n a 的前n 项和为n S ,则下列命题一定正确的是( ) A .若20200S >,则10a > B .若20210S >,则10a > C .若20200S >,则20a >D .若20210S >,则20a >6.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( ) A .-784B .-368C .-389D .-3927.某食品加工厂2019年获利20万元,经调整食品结构,开发新产品.计划从2020年开始每年比上一年获利增加20%,则从( )年开始这家加工厂年获利超过60万元.(已知lg 20.3010=,lg30.4771=) A .2024年 B .2025年C .2026年D .2027年8.已知数列1a ,21a a ,…1nn a a -,…是首项为1,公比为2的等比数列,则2log n a =( ) A . (1)n n +B .(1)4n n - C .(1)2n n + D .(1)2n n -9.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .210.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则( ) A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯-D .6236n n S n =⨯--11.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-12.正整数数列{}n a 满足:1,2(*)22,21n n n k a ka k N k a k +=⎧=∈⎨+=-⎩,则( ) A .数列{}n a 中不可能同时有1和2019两项 B .n a 的最小值必定为1 C .当n a 是奇数时,2n n a a +≥D .n a 的最小值可能为2二、填空题13.已知数列{}n a 的前n 项和n S ,且满足1n n a S +=,则39121239S S S S a a a a +++⋅⋅⋅+=___________. 14.设数列{}2()n n n a +是等比数列,且116a =,2154a =,则数列{3}nn a 的前15项和为__________.15.设数列{}n a 满足12a =,26a =,且2122n n n a a a ++-+=,则n a =______. 16.已知等差数列{}n a 的首项是19-,公差是2,则数列{}n a 的前n 项和n S 的最小值是_______.17.数列{}n a 的通项()sin2n n a n n N π*=⋅∈,则前10项的和12310a a a a ++++=______18.已知数列{a n }的前n 项和为S n ,若S n ﹣1是a n 和S n 的等比中项,设1(1)(21)n n n b n a +=-⋅+,则数列{b n }的前100项和为_____.19.在数列{}n a 中,121a a ==,32a =,且数列1n n a a +⎧⎫⎨⎬⎩⎭为等比数列,则n a =__________.20.著名的斐波那契数列:1,1,2,3,5,…,的特点是从三个数起,每一个数等于它前面两个数的和,则222212320482048a a a a a ++++是数列中的第______项.三、解答题21.设数列{}n a 的前n 项和为n S ,已知11a =,()*121n n S S n N +-=∈.(1)求证:数列{}n a 为等比数列 (2)若数列{}n b 满足:11b =,1112n n n b b a ++=+,求数列{}n b 的通项公式及数列{}n b 的前n 项和n T .22.已知数列{}n a 满足1*111,33().n n n a a a n ++==+∈N(1)求证:数列{}3nna 是等差数列. (2)求数列{}n a 的通项公式.(3)设数列{}n a 的前n 项和为,n S 求证:37.324n n S n >- 23.在①242n n n S a a =+,②12a =,12n n na S +=这两个条件中任选一个,补充到下面横线处,并解答.已知正项数列{}n a 的前n 项和为n S , . (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足131log 12n n b a =-,且n n n c a b =,求数列{}n c 的前n 项和n M . 注:如果选择多个条件分别进行解答,按第一个解答进行计分.24.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等比数列. (1)求数列{}n a 的通项公式; (2)若0d <,93n n na b -=,求数列{}n b 的前n 项和n S . 25.已知{}n a 是等差数列,{}n b 是递增的等比数列且前n 和为n S ,112822,10a b a a ==+=,___________.在①2345,,4b b b 成 等差数列,②12n n S λ+=+(λ为常数)这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件分别解答,按第一个解答计分). (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T .26.从条件①()21n n S n a =+,(2)n a n =≥,③0n a >,22n n n a a S +=,中任选一个,补充到下面问题中,并给出解答.(注:如果选择多个条件分别作答,按照第一个解答计分.)已知数列{}n a 的前n 项和为n S ,11a =,___________. (1)求数列{}n a 的通项公式;(2)若1a ,k a ,2k S +成等比数列,求正整数k 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥ ⎪⎝⎭,设272n n n c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥⎪⎝⎭.设272n nn c -=,则111252792222n nn n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.A解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.3.C解析:C 【分析】利用累加法可求得数列{}n a 的通项公式,利用裂项求和法可求得n S ,然后解不等式143n S n n ⎛⎫≥- ⎪⎝⎭即可得解.【详解】因为2132123n n a a a a a a n --=⎧⎪-=⎪⎨⋅⋅⎪⎪-=⎩,所以123n a n a =+-++,()11232n n n a n +∴=++++=,()1211211n a n n n n ⎛⎫∴==- ⎪++⎝⎭,所以1111122122311n nS n n n ⎛⎫=⨯-+-++-=⎪++⎝⎭, 由21413n n S n n n ⎛⎫=≥- ⎪+⎝⎭,化简得2311200n n --≤,解得453n -≤≤, *n ∈N ,所以,满足143n S n n ⎛⎫≥- ⎪⎝⎭的n 的最大值为5.故选:C. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.4.C解析:C 【分析】根据数列的通项公式,列出各项,找数列的规律,判断到哪一项是大于2021,即可得答案. 【详解】由已知可得,数列{}n a :1,4,7,4,7,10,7,10,13,,可得规律为1,4,7,4,7,10,7,10,13……此时将原数列分为三个等差数列:1,4,7,n a n =,{}31,n n n m m N ∈=+∈;4,7,10,2n a n =+,{}32,n n n m m N ∈=+∈;7,10,13,4n a n =+,{}33,n n n m m N ∈=+∈,当673m =时,312020n m =+=,即2020202120222020,2023,2026a a a ===. 而672m =时,312017n m =+=,即2017201820192017,2020,2023a a a ===, 所以满足2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为2018.故选:C.【点睛】关于数列的项的判断,一般有两种题目类型,一种是具有周期的数列,可以通过列出前几项找出数列的周期,利用周期判断;另一种是数列的项与项之间存在规律,需要通过推理判断项与项之间的规律从而得数列的通项.5.B解析:B 【分析】根据等比数列的前n 项和公式分别讨论20200S >和20210S >即可得答案. 【详解】当1q =时,2020120200S a =>,故10a >,20a >, 当1q ≠时,()202012020101a q S q-=>-,分以下几种情况,当1q <-时,10a <,此时210a a q =>; 当10q -<<时,10a >,此时120a a q =<, 当01q <<时,10a >,此时210a a q =>; 当1q >时,10a >,此时210a a q =>; 故当20200S >时,1a 与2a 可正可负,故排除A 、C . 当1q =时, 2021120210S a =>,故10a >, 20a >; 当1q ≠时,()202112021101a q S q-=>-,由于20211q-与1q -同号,故10a >,所以21a a q =符号随q 正负变化,故D 不正确,B 正确; 故选:B 【点睛】关键点点睛:本题解决时根据等比数列的求和公式,分类讨论公比的情形是解决问题的关键,分析出首项及公比的情况即可确定第二项的符号,属于中档题.6.D解析:D 【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D.【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n值.7.C解析:C 【分析】本题根据题意各年获利构成一个等比数列,然后得到通项公式,根据题意可得出关于n 的不等式,解出n 的值,注意其中对数式的计算. 【详解】由题意,设从2019年开始,第n 年的获利为()n a n *∈N万元,则数列{}n a 为等比数列,其中2019年的获利为首项,即120a =.2020年的获利为()2620120%205a =⋅+=⋅万元,2021年的获利为()223620120%205a ⎛⎫=⋅+=⋅ ⎪⎝⎭万元,∴数列{}n a 的通项公式为()16205n n n N a *-⎛⎫⋅⎪⎝⎭∈= ,由题意可得1620605n n a -⎛⎫=⋅> ⎪⎝⎭,即1635n -⎛⎫> ⎪⎝⎭,()65lg3lg3lg3lg30.47711log 3610lg 6lg52lg 2lg3120.30100.47711lg lg 23lg 52n ∴->=====-+-⨯+-⨯-6.03166=>,8n ∴≥,∴从2026年开始这家加工厂年获利超过60万元. 故选:C . 【点评】本题主要考查等比数列在实际生活中的应用,考查了等比数列的通项公式,不等式的计算,对数运算.属于中档题.8.D解析:D 【分析】 根据题意,求得1nn a a -,再利用累乘法即可求得n a ,再结合对数运算,即可求得结果. 【详解】 由题设有111122(2)n n nn a n a ---=⨯=≥, 而(1)1213221121122(2)n n n n n n a aa a a n a a a -+++--=⨯⨯⨯⨯=⨯=≥,当1n =时,11a =也满足该式,故(1)22(1)n n n a n -=≥,所以2(1)log 2n n n a -=, 故选:D. 【点睛】本题考查利用累乘法求数列的通项公式,涉及对数运算,属综合基础题.9.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =, 且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.10.D解析:D【分析】利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误. 【详解】因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列,所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确,()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 【点睛】本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.11.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.12.A解析:A 【分析】根据题意知,数列{}n a 中的任意一项都是正整数,利用列举法直接写出数列中的项,进而可得结论. 【详解】对于选项A ,假设:12019a =,则后面依次为:2022,1011,1014,507,510,255,258,129,132,66,33,36,18,9,12,6,3,6,3…循环; 假设:11a =,则后面依次为:4,2,1,4,2,1,4,2,1,4,2……循环, 综上,数列{}n a 中不可能同时有1和2019两项,故选项A 正确; 由选项A 知,选项B 、D 都不对;对于选项C ,令11a =,则24a =,32a =,所以13a a <,故选项C 不正确. 故选:A. 【点睛】本题考查数列中的项数的求法,考查数列的递推公式求通项公式,属于基础题.二、填空题13.【分析】由推得得到数列表示首项为公比为的等比数列求得和进而得到再结合等比数列求和公式即可求解【详解】由数列的前项和且满足当时两式相减可得即令可得解得所以数列表示首项为公比为的等比数列所以则所以所以故 解析:1013【分析】由1n n a S +=,推得11(2)2n n a n a -=≥,得到数列{}n a 表示首项为12,公比为12的等比数列,求得n a 和 n S ,进而得到21n nnS a =-,再结合等比数列求和公式,即可求解. 【详解】由数列{}n a 的前n 项和n S ,且满足1n n a S +=, 当2n ≥时,111n n a S --+=,两式相减,可得()11120n n n n n n a a S S a a ----+-=-=,即11(2)2n n a n a -=≥, 令1n =,可得11121a S a +==,解得112a =, 所以数列{}n a 表示首项为12,公比为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭, 则11122111212nn nS ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭-,所以1122112nn n n n S a ⎛⎫- ⎪⎝⎭==-⎛⎫ ⎪⎝⎭,所以()2939121239222(111)S S S S a a a a ++++=+++-+++()9102129211101312-=-=-=-.故答案为:1013. 【点睛】关键点睛:由1n n a S +=,利用1,1=,2n n n n S n a S S n -=⎧⎨-≥⎩,推得11(2)2n n a n a -=≥从而证得数列{}n a 为等比数列是解答本题的关键.14.【解析】等比数列首项为第二项为故是首项为公比为的等比数列所以所以其前项和为时为【点睛】本小题主要考查等比数列通项公式的求法考查利用裂项求和法求数列的前项和题目给定一个数列为等比数列并且给出和也就是要 解析:1516【解析】等比数列首项为1123a =,第二项为2169a =,故是首项为13,公比为13的等比数列.所以()21111333n n n n n a -+=⋅=,所以211131n n a n n n n ==-++,其前n 项和为111n -+,15n =时,为11511616-=. 【点睛】本小题主要考查等比数列通项公式的求法,考查利用裂项求和法求数列的前n 项和.题目给定一个数列()2n n n a +为等比数列,并且给出1a 和2a ,也就是要用这两项求得给定数列的第一和第二项,根据前两项求得等比数列的通项公式,由此得到211131n n a n n n n ==-++,利用裂项求和法求得数列的前n 项和. 15.【分析】构造求出由题意可得利用等差数列的通项公式可得利用累加法即可求得【详解】构造则由题意可得故数列是以4为首项2为公差的等差数列故所以以上n-1个式子相加可得解得故答案为:【点睛】本题考查等差数列 解析:()()*1n n n N+∈【分析】构造1n n n b a a +=-,求出1b ,由题意可得()()21112n n n n n n a a a a b b ++++---=-=,利用等差数列的通项公式可得n b ,利用累加法即可求得n a . 【详解】构造1n n n b a a +=-,则1214b a a =-=,由题意可得()()21112n n n n n n a a a a b b ++++---=-=, 故数列{}n b 是以4为首项2为公差的等差数列,故()*142(1)22n n n b a a n n n N +=-=+-=+∈,所以21324314,6,8,2n n a a a a a a a a n --=-=-=-=,以上n -1个式子相加可得1(1)(42)2n n n a a -+-=,解得()*(1)n a n n n N =+∈,故答案为:()()*1n n n N +∈【点睛】本题考查等差数列,累加法求数列通项公式,属于基础题.16.【分析】本题先求等差数列前n 项和再由此求出数列的前n 项和的最小值【详解】解:∵等差数列的首项是公差是2∴∴时数列的前n 项和的最小值是故答案为:【点睛】本题考查等差数列前n 项和的最小值的求法考查等差数解析:100-. 【分析】本题先求等差数列前n 项和()()22119220101002n n n S n n n n -=-+⨯=-=--,再由此求出数列{}n a 的前n 项和n S 的最小值. 【详解】解:∵等差数列{}n a 的首项是19-,公差是2, ∴()()22119220101002n n n S n n n n -=-+⨯=-=--, ∴10n =时,数列{}n a 的前n 项和n S 的最小值是100-. 故答案为:100-. 【点睛】本题考查等差数列前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.17.5【分析】利用的周期性求解即可【详解】的周期当时的值为10-10则前10项的和故答案为:5【点睛】本题考查利用数列的周期性求和属于基础题解析:5 【分析】利用()sin2n n N π*∈的周期性求解即可. 【详解】()sin 2n n N π*∈的周期2=42T ππ=,当1,2,3,4n =时sin 2n π的值为1,0,-1,0,则前10项的和123101+0305070905a a a a ++++=-+++-+++=,故答案为:5【点睛】本题考查利用数列的周期性求和,属于基础题.18.【分析】利用等比中项列方程然后求得再利用裂项求和法求得数列的前项和【详解】依题意当时解得当时解得当时解得以此类推猜想下用数学归纳法证明:当时成立假设当时当时所以假设成立所以对任意(证毕)所以所以数列 解析:100101【分析】利用等比中项列方程,然后求得n a ,再利用裂项求和法求得数列{}n b 的前100项和. 【详解】依题意()21n n n S a S -=⋅,当1n =时,()22111a a -=,解得111212a ==⨯, 当2n =时,()()2122121a a a a a +-=⋅+,解得211623a ==⨯, 当3n =时,()()212331231a a a a a a a ++-=⋅++,解得3111234a ==⨯, 以此类推,猜想()11111n a n n n n ==-++,1111111223111n n S n n n n 1=-+-++-=-=+++. 下用数学归纳法证明: 当1n =时,1112S a ==成立. 假设当n k =时,1k k S k =+ 当1n k =+时,()21111k k k S a S +++-=⋅,()()21111k k k k S S S S +++-=-⋅,22111121k k k k k S S S S S ++++-+=-⋅,1121k k k S S S ++-+=-⋅,()121k k S S +⋅-=-,1122111k k k k S S k k ++--⎛⎫⋅-=⋅=- ⎪++⎝⎭,()111211k k k S k k +++==+++,所以假设成立.所以对任意*N n ∈,()11111n a n n n n ==-++,1n n S n =+.(证毕) 所以()11111(1)(21)(1)(21)(1)111n n n n n b n a n n n n n +++⎛⎫=-⋅+⋅-⋅+⎪==+⋅-⋅+ +⎝⎭,所以数列{}n b 的前100项和为111111111001122334100101101101⎛⎫⎛⎫⎛⎫⎛⎫+-+++--+=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:100101【点睛】本小题主要考查等比中项的性质,考查裂项求和法,属于中档题.19.【分析】由等比数列通项公式求出然后由累乘法求得【详解】∵为等比数列由已知∴∴时也适合此式∴故答案为:【点睛】本题考查等比数列的通项公式考查累乘法求数列通项公式如果已知则用累加法求通项公式如果已知则用 解析:()()2122n n --【分析】由等比数列通项公式求出1n na a +,然后由累乘法求得n a .【详解】∵1n n a a +⎧⎫⎨⎬⎩⎭为等比数列,由已知211a a =,322a a =,32212a a q a a ==, ∴112n n na a -+=,∴2n ≥时, (2)(1)2212(2)3242112311122222n n n n n n n a aa aa a a a a a ---+++--=⨯⨯⨯⨯⨯=⨯⨯⨯⨯==,1n =也适合此式, ∴(2)(1)22n n na --=.故答案为:(2)(1)22n n --.【点睛】本题考查等比数列的通项公式,考查累乘法求数列通项公式.如果已知1()n n a a f n --=,则用累加法求通项公式,如果已知1()nn a f n a -=,则用连乘法求通项公式. 20.【分析】由题意可得进而可得然后再利用累加法即可求出结果【详解】由题意可知所以即所以……所以又所以∴所以是数列中的第项故答案为:【点睛】本题考查了数列的递推公式和累加法的应用考查学生的计算能力属于中档题 解析:2049【分析】由题意可得21n n n a a a ++=+,进而可得21211n n n n n a a a a a ++++⋅=+⋅,然后再利用累加法,即可求出结果. 【详解】由题意可知21n n n a a a ++=+,所以()1211n n n n n a a a a a ++++⋅=⋅+,即21211n n n n n a a a a a ++++⋅=+⋅所以220482049204820482047a a a a a ⋅=+⋅,220472048204720472046a a a a a ⋅=+⋅,……223221·a a a a a ⋅=+,所以2222048204920482047221·a a a a a a a ⋅=++⋯++, 又21a a =所以2222204820492048204721a a a a a a ⋅=++⋯++∴2222123204820492048a a a a a a ++++=.所以222212320482048a a a a a ++++是数列中的第2049项.故答案为:2049 . 【点睛】本题考查了数列的递推公式和累加法的应用,考查学生的计算能力,属于中档题.三、解答题21.(1)证明见解析;(2)112n n b n -⎛⎫=⋅ ⎪⎝⎭,()14242nn T n ⎛⎫=-+⋅ ⎪⎝⎭. 【分析】(1)由121n n S S +-=,得()1212n n S S n --=≥,两式相减得12n n a a +=,结合11a =,计算出2a ,确定212a a =,从而证明出等比数列; (2)由(1)求得1n a +,对{}n b 的递推关系式变形得数列{}12n n b -是首项为1,公差为1的等差数列.,从而求得12n n b -,得出n b 后用错位相减法求得和n T .【详解】(1)证明:由11a =,121n n S S +-=,得()1212n n S S n --=≥, 两式相减,得120n n a a +-=,因为11a =,由()12121a a a +-=,得22a =,所以212a a =, 所以12n na a +=对任意*N π∈部成立. 所以数列{}n a 为等比数列,首项为1,公比为2; (2)由(1)知,12n na ,11111222nn n n n b b b a ++⎛⎫=+=+ ⎪⎝⎭,即11221n n n n b b -+=+,因为11b =,所以数列{}12n n b -是首项为1,公差为1的等差数列.所以1211n n b n n -=+-=,所以112n n b n -⎛⎫=⋅ ⎪⎝⎭.②设数列{}n b 的前n 项和1111123242n n T n -⎛⎫=+⋅+⋅++⋅ ⎪⎝⎭,111112322482nn T n ⎛⎫=+⋅+⋅++⋅ ⎪⎝⎭,相减可得11111111121122422212n nnn n T n n --⎛⎫⎛⎫⎛⎫=+++⋯+-⋅=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-, 化简可得数列{}n b 的前n 项和为()14242nn T n ⎛⎫=-+⋅ ⎪⎝⎭. 【点睛】本题考查求等差、等比数列的通项公式,错位相减法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 22.(1)证明见解析;(2)233nn a n ⎫⎛=-⋅ ⎪⎝⎭;(3)证明见解析.【分析】(1)利用已知条件通分计算或者直接整理,证明11133n nn n a a ++-=,即证结论; (2)利用(1)求得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,即求得{}n a 的通项公式; (3)结合(2)的结果,利用错位相减法求得n S ,并计算整理3n n S ,根据7043n>⨯即证得结论. 【详解】解:(1)解法1:由()1*133n n n a a n N ++=+∈,得111111333313333n n n n n n nn n n n a a a a a a ++++++-+--===. 又11133a =,故数列3n n a ⎧⎫⎨⎬⎩⎭是以13为首项,以1为公差的等差数列.解法2:由()1*133n n n a a n N ++=+∈,得11133n nn n a a ++=+,即11133n n n n a a ++-=. 又11133a =,故数列3n n a ⎧⎫⎨⎬⎩⎭是以13为首项,以1为公差的等差数列. (2)由(1)得()111133n n a n =+-⨯,*N n ∈, 即233n n a n =-,故233n n a n ⎫⎛=-⋅ ⎪⎝⎭;(3)由(2)可知()121222213231333333n nn S n n -⎫⎫⎫⎛⎛⎡⎤⎛=-⨯+-⨯+⋅⋅⋅+--⨯+-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎝⎣⎦⎝⎭⎭⎭① ()2312222313231333333n n n S n n +⎫⎫⎫⎛⎛⎡⎤⎛=-⨯+-⨯+⋅⋅⋅+--⨯+-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎝⎣⎦⎝⎭⎭⎭② 由①②得1112397723133262n n n n S n n +++-⎫⎫⎛⎛=-⨯--=-⨯+ ⎪ ⎪⎝⎝⎭⎭ 故17732124n n n S +⎫⎛=-⨯+ ⎪⎝⎭,从而1737377372123343244324n n n n n n n S n n +⎫⎛-⨯ ⎪⎫⎛⎝⎭=+=-+>- ⎪⨯⨯⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:利用等差数列和等比数列前n 项和公式进行计算即可;(2)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法;(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(4)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(5)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(6)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.23.(1)条件性选择见解析,2n a n =;(2)1931223n n M n -⎫⎫⎛⎛=-+⨯ ⎪ ⎪⎝⎝⎭⎭.【分析】(1)若选①,先求出12a =,由242n n n S a a =+可得111242n n n S a a +++=+,两式相减可得()()1120n n n n a a a a +++--=,从而12n n a a +-=得出答案; 若选②,由12n n na S +=可得1(1)2n n n a S --=,两式相减可得11n n a n a n++=,由累乘法可得答案. (2)由(1)可得13log 1n b n =-,则113n n b -⎛⎫= ⎪⎝⎭,于是1123n n n n c a b n -⎫⎛==⨯ ⎪⎝⎭,由错位相减法可求和得出答案. 【详解】(1)选①时,当1n =时,211142a a a =+,因为10a >,所以12a =, 由242n n n S a a =+,① 可得111242n n n S a a +++=+,②②-①得,22111422n n n n n a a a a a +++=-+-, 整理得2211220n n n n a a a a ++---=,所以()()1120n n n n a a a a +++--= 因为0n a >,所以12n n a a +-=,所以数列{}n a 是首项为2,公差为2的等差数列, 所以2n a n =; 选②时, 因为12n n na S +=①所以当2n ≥时,1(1)2n n n a S --=②①-②得:1(1)n n na n a +=+,即11n n a n a n++= ①中,令1n =,得2124a a ==,212a a =适合上式 所以当2n ≥时,1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋅12322212321n n n n n n n --=⋅⋅⋅⋅⨯⨯=--- 又1n =,1221a ==⨯ 所以对任意*N n ∈,2n a n = (2)因为13log 12nn a b =-即13log 1n b n =-所以113n n b -⎛⎫= ⎪⎝⎭,于是1123n n n n c a b n -⎫⎛==⨯ ⎪⎝⎭,2111121462333n n M n -⎫⎫⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪⎝⎝⎭⎭③2311111246233333nn M n ⎫⎫⎫⎛⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭④ ③-④得231211111222222333333n nn M n -⎫⎫⎫⎫⎛⎛⎛⎛=+⨯+⨯+⨯+⋯+⨯-⨯ ⎪ ⎪ ⎪⎪⎝⎝⎝⎝⎭⎭⎭⎭1111212333n nn -⎡⎤⎫⎫⎛⎛=⨯++⋯+-⨯⎢⎥ ⎪ ⎪⎝⎝⎭⎭⎢⎥⎣⎦1113221313nnn ⎫⎛- ⎪⎫⎛⎝⎭=⨯-⨯ ⎪⎝⎭-所以1931223n n M n -⎫⎫⎛⎛=-+⨯ ⎪ ⎪⎝⎝⎭⎭【点睛】关键点睛:本题考查求数列的通项公式和应用错位相减法求数列的前n 项和,解答本题的关键是按照步骤求解,考查计算能力,由2111121462333n n M n -⎫⎫⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪⎝⎝⎭⎭,得出2311111246233333nn M n ⎫⎫⎫⎛⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,两式相减再化简得出答案,属于中档题.24.(1) 11n a n =-+或46,n a n n N *=+∈;(2)51112423n nn S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N .【分析】(1)由123,22,5a a a +成等比数列求得公差后可得通项公式n a ;(2)对23n b b b +++用错位相减法求和.【详解】解:(1)∵123,22,5a a a +成等比数列,∴()2231225a a a +=⋅,整理得2340d d --=,解得1d =-或4d =,当1d =-时,10(1)11n a n n =--=-+;当4d =时,104(1)46n a n n =+-=+.所以11n a n =-+或46,n a n n N *=+∈.(2)设数列{}n a 前n 项和为n S ,∵0d <,∴1d =-,11n a n =-+23n nn b -= 当1n =时,13n S =, 当2n ≥时,2341012233333n n n S -=++++⋅⋅⋅+ 令34122333n n T -=+++,则45111223333n n T +-=+++ 两式相减可得32345111112111122331333333313n n n n n n T -++⎛⎫- ⎪--⎝⎭=+++⋯+-=-- 整理可得11112423n n T ⎛⎫=+-⨯ ⎪⎝⎭, 则511,212423n n n S n ⎛⎫=+-⨯≥ ⎪⎝⎭ 且113S =满足上式, 综上所述:51112423n n n S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N .【点睛】本题考查求等差数列的通项公式,分组(并项)求和法,错位相减法.数列求和的常用方法:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.25.条件选择见解析;(1)n a n =,2n n b =;(2)212222n n n n T +=-++. 【分析】选①,(1)列出关于首项与公差、首项与公比的方程组,求出首项与公差、首项与公比,从而求出数列{}n a 和{}n b 的通项公式;(2)由(1)知2n n n a b n +=+,利用分组求和法,结合等差数列与等比数列的求和公式求解即可.选②,(1)列出关于首项与公差的方程组可求出数列{}n a 的通项公式,利用1n n n b S S -=-可求{}n b 的通项公式;(2)由(1)知2n n n a b n +=+,利用分组求和法,结合等差数列与等比数列的求和公式求解即可.【详解】选①解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==,1(1)1n a n n ∴=+-⨯=. 由题意知132452,24b b b b ⎛⎫=⋅=+ ⎪⎝⎭,得324522b b b =+, 设等比数列{}n b 的公比为2222,522q b q b b q ⋅=+,即22520q q -+=, 解得2q ,或12q =,由数列{}n b 为递增等比数列可知12q =不合题意, 所以{}n b 是一个以2为首项,2为公比的等比数列.1222n n n b -∴=⨯=(2)由(1)知2n n n a b n +=+,()()()()1231222322n n T n ∴=++++++⋯++,()123(123)2222n n T n ∴=+++⋯+++++⋯+,()212(1)212n n n n T -+∴=+- 212222n n n n T +∴=-++. 选②解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==,1(1)1n a n n ∴=+-⨯=.令1n =,则111112,42,2S b S λλλ+=+∴==+=∴=-,122n n S +∴=-当2n ≥时,()()1122222n n n n n n b S S +-=-=---=当1n =时,12b =也满足上式. 2n n b =(2)由(1)知2n n n a b n +=+,()()()()1231222322n n T n ∴=++++++⋯++,()123(123)2222n n T n ∴=+++⋯+++++⋯+,()212(1)212n n n n T -+∴=+- 212222n n n n T +∴=-++. 【点睛】方法点睛:利用“分组求和法”求数列前n 项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减. 26.(1)答案见详解;(2)答案见详解.【分析】选①时,先写()1122n n S n a ++=+,作差得到n a n ⎧⎫⎨⎬⎩⎭是等差数列,即求得n a n =,再按要求列方程解得正整数k 的值即可;选②时,代入1n n n a S S -=-,化简得到是等差数列,求得2n S n =,再计算n a 即可,再按要求列方程解得正整数k 的值即可;选③时,先写21112n n n a a S ++++=,作差得到数列{}n a 是等差数列,即求得na n =,再按要求列方程解得正整数k 的值即可.【详解】解:若选①,()21n n S n a =+,则()1122n n S n a ++=+,两式作差得()()11221n n n a n a n a ++-=++,即101n n a a n n ,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭是等差数列,首项是111a =,公差是0,故1n a n =, 所以n a n =;由{}n a 通项公式知,()12n n n S +=,故()()2232k k k S +++=,又11a =,k a k =, 结合题意知,()()22312k k k ++=⨯,即2560k k --=,解得1k =-或6k =, 因为k 是正整数,所以6k =.若选②(2)n a n =≥,11a =,故0n S >1n n n a S S -=-=,=1=,2n ≥,故1=,公差是1n =,故2n S n =.2n ≥时,()221121n n n a S S n n n -=-=--=-,且11a =也适合该式,故数列{}n a 的通项公式21n a n =-;11a =,21k a k =-,()222k S k +=+,结合题意知,()()222112k k -=⋅+, 即23830k k --=,解得3k =或13k =-,因为k 是正整数,所以3k =.若选③,0n a >,22n n n a a S +=,则21112n n n a a S ++++=, 两式作差得()211n n a a +++()212n n n a a a +-+=,化简得()()1110n n n n a a a a +++--=, 由0n a >知,10n n a a ++>,得110n n a a +--=,即11n n a a +-=, 数列{}n a 是等差数列,首项是1,公差为1,故n a n =;由{}n a 通项公式知,()12n n n S +=,故()()2232k k k S +++=,又11a =,k a k =, 结合题意知,()()22312k k k ++=⨯,即2560k k --=,解得1k =-或6k =, 因为k 是正整数,所以6k =.【点睛】方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,若已知式是关于n a 和n S 关系式时,也通常利用两式作差得到1n n n S S a --=消去n S ,或者代入1n n n a S S -=-消去n a ,进行化简计算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修五第一章复习测试卷
一、选择题:
1.在△ABC 中,一定成立的等式是 ( )
A.a sinA=b sinB
B.a cosA=b cosB
C.a sinB=b sinA
D.a cosB=b cosA
2. .在△ABC 中,根据下列条件解三角形,则其中有两个解的是
A .b = 10,A = 45°,
B = 70° B .a = 60,c = 48,B = 100° ( )
C .a = 7,b = 5,A = 80°
D .a = 14,b = 16,A = 45°
3. 在ABC ∆中,已知角,3
34,22,45===b c B ο则角A 的值是( ) A .15° B .75° C .105° D .75°或15°
4.在ABC ∆中,若2=a ,22=b ,26+=c ,则A ∠的度数是( )
A .︒30
B .︒45
C .︒60
D .︒75 5. 若
c C b B a A cos cos sin ==则△ABC 为 ( )
A .等边三角形
B .等腰三角形
C .有一个内角为30°的直角三角形
D .有一个内角为30°的等腰三角形 6. 在ABC ∆中,已知,,8,45,60D BC AD BC c B 于⊥===οο则AD 长为( )
A .1)34-(
B .1)34+(
C .3)34+(
D .)334-( 7. 钝角ABC ∆的三边长为连续自然数,则这三边长为( )
A .1、2、3、
B .2、3、4
C .3、4、5
D .4、5、6
8.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于( )
A .1∶2∶3
B .2∶3∶1
C .1∶3∶2
D .3∶1∶2
9. 在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( )
A sin cos A A >
B sin cos B A >
C sin cos A B >
D sin cos B B >
二、填空题:
1、已知在ABC △中,6,30a c A ===o ,ABC △的面积S .
2.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.
3.在平行四边形ABCD 中,已知310=AB ,︒=∠60B ,30=AC ,则平行四边形ABCD 的面积 .
4.在△ABC 中,已知2cos B sin C =sin A ,则 △
ABC 的形状
是 .
三、解答题:
1、已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且222a c b ac +-=.
(Ⅰ)求角B 的大小;
(Ⅱ)若3c a =,求tan A 的值.
2.在四边形ABCD 中,AC 平分∠DAB ,∠ABC=600,AC=7,AD=6,
S △ADC =
2
315,求AB 的长.
3.如果△ABC 内接于半径为R 的圆,且,sin )2()sin (sin 222B b a C A R -=-求△ABC 的面积的最大值.
4.一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处,随后货轮按北偏
西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45°,求货轮的速度.
答案:
一、1.C 2. D 3. D 4. A. 5. B 6. D 7. B 8.A 二、1.36或33 2.22 3.3300 4.等腰三角形
三、1.(1)由余弦定理得2
12cos 222=-+=ac b c a B , 且 π<<B 0, 3π
=∴B
(2)将a c 3=代入ac b c a =-+222,得 a b 7=, 由余弦定理得14
752cos 222=-+=ac b c a B 14
21cos 1sin ,02=
-=∴<<A A A πΘ 53cos sin tan ==∴A A A 2. △ADC 的面积 sin 21⋅⋅⋅=AC AD S ∠DAC 762
1⨯⨯=sin ∠DAC 2315=. sin ∴∠DAC 14
35=, 在△ABC 中,可求5=BC ,由余弦定理可求8=AB 。

3.解:2sin sin 2sin sin )sin ,R A A R C C b B ⋅-⋅=-
222sin sin )sin ,,a A c C b B a c b -=--=-
222
222
0,cos 4522
a b c a b c C C ab +-+-====
2222,2sin ,2,sin c R c R C a b R C ===+-= 2
222
22,
R a b ab ab +=+≥≤
2
1sin
244S ab C ab ==≤2max 2
12R S +=
另法:1sin 2sin 2sin 244
S ab C R A R B ===⨯⨯
22sin 2sin sin sin R A R B A B =⨯=
21[cos()cos()]2
A B A B =⨯⨯--+
221[cos()22(122
A B =⨯⨯-+≤⨯+
2max 12S R ∴=
此时A B =取得等号
4.先求∠SMN οο1530+=,∠SNM οοοο1053045180=--=,
∠NSM οοοο3010545180=--=
在△SMN 中,οο105
sin 2030sin =MN , )26(10-=∴MN )26(2021
)26(10-=-。

相关文档
最新文档