2019年高考数学试题附答案
2019年高考数学试卷附答案

x2 1
x1x2 9
不满足{x1 3 ,必要性不成立,所以选 A. x2 3
考点:充要关系
3.D
解析:D 【解析】 因为全称命题的否定是特称命题, 所以命题“对任意 x∈R,都有 x2≥0”的否定为.存在 x0∈R,使得 x02<0. 故选 D.
4.B
解析:B 【解析】
【分析】 【详解】
由 a=14,b=18,a<b, 则 b 变为 18﹣14=4,
.
2
14.复数 i 1 i 的实部为 .
15.在平面直角坐标系 xOy 中,角 α 与角 β 均以 Ox 为始边,它们的终边关于 y 轴对称.
若 sin 1 ,则 cos( ) =___________. 3
16.△ABC 的内角 A, B,C 的对边分别为 a,b, c .若 b 6, a 2c, B π ,则△ABC 的面 3
故选:C. 【点睛】 本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的 关键.
7.D
解析:D 【解析】 【分析】 【详解】 题目中当 n=k+1 时不等式的证明没有用到 n=k 时的不等式,正确的证明过程如下:
在(2)中假设 n k 时有 k2 k k 1 成立,即 (k 1)2 (k 1) (k 1) 1成 立,即 n k 1时成立,故选 D.
25.四棱锥
P
ABCD
中,底面
ABCD
是边长为
2
的菱形,
BAD
3
,
PAD
是等边
三角形, F 为 AD 的中点, PD BF .
(1)求证: AD PB ; (2)若 E 在线段 BC 上,且 EC 1 BC ,能否在棱 PC 上找到一点 G ,使平面 DEG
2019年数学高考试卷(及答案)

2019年数学高考试卷(及答案)一、选择题1.如图所示的圆锥的俯视图为()A.B.C.D.2.若复数21iz=-,其中i为虚数单位,则z=A.1+i B.1−i C.−1+i D.−1−i3.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是()A.①③④B.②④C.②③④D.①②③4.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b分别为14,18,则输出的a=()A.0B.2C.4D.145.设ω>0,函数y=sin(ωx+3π)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是A .23B .43C .32D .36.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i7.设向量a ,b 满足2a =,||||3b a b =+=,则2a b +=( ) A .6B .32C .10D .428.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( ) A .1-iB .-1-iC .1+iD .-1+i9.已知函数()3sin 2cos 2[0,]2f x x x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2]10.在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .011.已知锐角三角形的边长分别为2,3,x ,则x 的取值范围是( )A 513x <<B 135x <C .25x <<D 55x <<12.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B .122± C .1102± D .322± 二、填空题13.设函数()212log ,0log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若()()f a f a >-,则实数a 的取值范围是__________.14.复数()1i i +的实部为 .15.在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠=点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==则AE AF ⋅的值为 . 16.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.17.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.18.在ABC ∆中,若13AB =,3BC =,120C ∠=︒,则AC =_____. 19.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.20.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =,则PC PA ⋅的最小值为_______.三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.23.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B 、20005000步,C 、50008000步,D 、800010000步,E 、1000012000步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率. 24.已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围. 25.设函数()15,f x x x x R =++-∈. (1)求不等式()10f x ≤的解集;(2)如果关于x 的不等式2()(7)f x a x ≥--在R 上恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】找到从上往下看所得到的图形即可.【详解】由圆锥的放置位置,知其俯视图为三角形.故选C.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,本题容易误选B,属于基础题.2.B解析:B【解析】试题分析:22(1i)1i,1i 1i(1i)(1i)z z+===+∴=---+,选B.【考点】复数的运算,复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,一般考查复数运算与概念或复数的几何意义,也是考生必定得分的题目之一.3.A解析:A【解析】【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解.【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A.【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.4.B解析:B【解析】【分析】【详解】由a=14,b=18,a<b,则b变为18﹣14=4,由a >b ,则a 变为14﹣4=10, 由a >b ,则a 变为10﹣4=6, 由a >b ,则a 变为6﹣4=2, 由a <b ,则b 变为4﹣2=2, 由a=b=2, 则输出的a=2. 故选B .5.C解析:C 【解析】 函数sin 23y x πω⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后44sin 2sin 23333w y w x wx ππππ⎡⎤⎛⎫⎛⎫=-++=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以有43332013222w kk k w w k w ππ=∴=>∴≥∴=≥ 故选C6.C解析:C 【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C. 考点:本题主要考查复数的乘法运算公式.7.D解析:D 【解析】 【分析】3=,求得2a b ⋅=-,再根据向量模的运算,即可求解. 【详解】∵向量a ,b 满足2a =,3b a b =+=3=,解得2a b ⋅=-.则22224424a b a b a b +=++⋅=+.故选D . 【点睛】本题主要考查了向量的数量积的运算,及向量的模的运算问题,其中解答中熟记向量的数量积的运算和向量的模的运算公式,合理、准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.8.B解析:B【解析】【分析】利用复数的运算法则解得1iz=-+,结合共轭复数的概念即可得结果.【详解】∵复数z满足21iiz=-,∴()()()2121111i iiz ii i i+===---+,∴复数z的共轭复数等于1i--,故选B.【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.9.B解析:B【解析】【分析】【详解】试题分析:利用辅助角公式化简函数为()3sin2cos2f x x x m=+-,令,则,所以此时函数即为.令有,根据题意可知在上有两个解,根据在函数图像可知,.考点:辅助角公式;;零点的判断;函数图像.10.C解析:C【解析】分析:连结MN,结合几何性质和平面向量的运算法则整理计算即可求得最终结果.详解:如图所示,连结MN,由2,2BM MA CN NA == 可知点,M N 分别为线段,AB AC 上靠近点A 的三等分点, 则()33BC MN ON OM ==-, 由题意可知:2211OM ==,12cos1201OM ON ⋅=⨯⨯=-,结合数量积的运算法则可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-.本题选择C 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.11.A解析:A 【解析】试题分析:因为三角形是锐角三角形,所以三角形的三个内角都是锐角,则设边3对的锐角为角α,根据余弦定理得22223cos 04x xα+-=>,解得5x >x 边对的锐角为β,根据余弦定理得22223cos 012x β+-=>,解得013x <<x 的取值范513x << A. 考点:余弦定理.12.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+,CP CA AP =+,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+,CP CA AP =+,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 二、填空题13.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为 解析:(1,0)(1,)【解析】 【分析】 【详解】由题意()()f a f a >-⇒2120 log log a a a >⎧⎪⎨>⎪⎩或()()1220log log a a a <⎧⎪⎨->-⎪⎩01a a a >⎧⎪⇒⎨>⎪⎩或11a a a a<⎧⎪⇒>⎨->-⎪⎩或10a -<<,则实数a 的取值范围是()()1,01,-⋃+∞,故答案为()()1,01,-⋃+∞.14.【解析】复数其实部为考点:复数的乘法运算实部 解析:1-【解析】复数(1)11i i i i +=-=-+,其实部为1-. 考点:复数的乘法运算、实部.15.【解析】在等腰梯形ABCD 中由得所以考点:平面向量的数量积解析:2918【解析】 在等腰梯形ABCD 中,由AB DC ,2,1,60,AB BC ABC ==∠=得12AD BC ⋅=,1AB AD ⋅=,12DC AB =,所以()()AE AF AB BE AD DF ⋅=+⋅+ 22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-=⎪ ⎪⎝⎭⎝⎭.考点:平面向量的数量积.16.【解析】【分析】由已知棱柱体积与棱锥体积可得S 到下底面距离与棱柱高的关系进一步得到S 到上底面距离与棱锥高的关系则答案可求【详解】设三棱柱的底面积为高为则再设到底面的距离为则得所以则到上底面的距离为所解析:1【解析】 【分析】由已知棱柱体积与棱锥体积可得S 到下底面距离与棱柱高的关系,进一步得到S 到上底面距离与棱锥高的关系,则答案可求. 【详解】设三棱柱111ABC A B C -的底面积为'S ,高为h , 则9'9'S h S h==,, 再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h⋅⋅=, 所以'23h h =, 则S 到上底面111A B C 的距离为13h , 所以三棱锥111S A B C -的体积为111'91339S h ⋅=⋅=. 故答案为1. 【点睛】本题考查棱柱、棱锥体积的求法,考查空间想象能力、思维能力与计算能力,考查数形结合思想,三棱锥体积为1V 3S h =底,本题是中档题. 17.4【解析】试题分析:由x-3y+6=0得x=3y-6代入圆的方程整理得y2-33y+6=0解得y1=23y2=3所以x1=0x2=-3所以|AB|=(x1-x2)2+(y1-y2)2=23又直线l 的解析:4 【解析】 试题分析:由,得,代入圆的方程,整理得,解得,所以,所以.又直线的倾斜角为,由平面几何知识知在梯形中,.【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.18.1【解析】【分析】由题意利用余弦定理得到关于AC 的方程解方程即可确定AC 的值【详解】由余弦定理得解得或(舍去)【点睛】本题主要考查余弦定理解三角形的方法方程的数学思想等知识意在考查学生的转化能力和计解析:1 【解析】 【分析】由题意利用余弦定理得到关于AC 的方程,解方程即可确定AC 的值. 【详解】由余弦定理得21393AC AC =++,解得1AC =或4AC =-(舍去). 【点睛】本题主要考查余弦定理解三角形的方法,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.19.【解析】【分析】先还原几何体再从底面外心与侧面三角形的外心分别作相应面的垂线交于O 即为球心利用正弦定理求得外接圆的半径利用垂径定理求得球的半径即可求得表面积【详解】由该四棱锥的三视图知该四棱锥直观图 解析:1015π【解析】 【分析】先还原几何体,再从底面外心与侧面三角形SAB 的外心分别作相应面的垂线交于O ,即为球心,利用正弦定理求得外接圆的半径,利用垂径定理求得球的半径,即可求得表面积. 【详解】由该四棱锥的三视图知,该四棱锥直观图如图,因为平面SAB ⊥平面ABCD ,连接AC,BD 交于E ,过E 作面ABCD 的垂线与过三角形ABS 的外心作面ABS 的垂线交于O ,即为球心,连接AO 即为半径,令1r 为SAB ∆外接圆半径,在三角形SAB 中,SA=SB=3,AB=4,则cos 23SBA ∠=,∴sin3SBA ∠=,∴132sin r SBA ==∠,∴1r =,又OF=12AD =, 可得2221R r OF =+,计算得,28110112020R =+= , 所以210145S R ππ==. 故答案为101.5π 【点睛】本题考查了三视图还原几何体的问题,考查了四棱锥的外接球的问题,关键是找到球心,属于较难题.20.5﹣【解析】【分析】设圆心为OAB 中点为D 先求出再求PM 的最小值得解【详解】设圆心为OAB 中点为D 由题得取AC 中点M 由题得两方程平方相减得要使取最小值就是PM 最小当圆弧AB 的圆心与点PM 共线时PM 最解析:5﹣【解析】 【分析】设圆心为O,AB 中点为D,先求出2221944PC PA PM AC PM ⋅=-=-,再求PM 的最小值得解. 【详解】设圆心为O,AB 中点为D, 由题得22sin2,36AB AC π=⋅⋅=∴=.取AC 中点M ,由题得2PA PC PMPC PA AC⎧+=⎨-=⎩,两方程平方相减得2221944PC PA PM AC PM ⋅=-=-, 要使PC PA ⋅取最小值,就是PM 最小, 当圆弧AB 的圆心与点P 、M 共线时,PM 最小.此时DM=1,22DM ∴==,所以PM 有最小值为2,代入求得PC PA ⋅的最小值为5﹣故答案为5﹣【点睛】本题主要考查直线和圆的位置关系,考查平面向量的数量积及其最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(1)0.5;(2)0.1 【解析】 【分析】(1)本题首先可以通过题意推导出()2P X =所包含的事件为“甲连赢两球或乙连赢两球”,然后计算出每种事件的概率并求和即可得出结果; (2)本题首先可以通过题意推导出4P X 所包含的事件为“前两球甲乙各得1分,后两球均为甲得分”,然后计算出每种事件的概率并求和即可得出结果.【详解】(1)由题意可知,()2P X =所包含的事件为“甲连赢两球或乙连赢两球” 所以20.50.40.50.60.5P X(2)由题意可知,4P X 包含的事件为“前两球甲乙各得1分,后两球均为甲得分”所以40.50.60.50.4+0.50.40.50.40.1P X【点睛】本题考查古典概型的相关性质,能否通过题意得出()2P X =以及4P X 所包含的事件是解决本题的关键,考查推理能力,考查学生从题目中获取所需信息的能力,是中档题.22.(1)3,2a c ==;(2)2327【解析】试题分析:(1)由2BA BC ⋅=和1cos 3B =,得ac=6.由余弦定理,得2213a c +=. 解,即可求出a ,c ;(2) 在ABC ∆中,利用同角基本关系得22sin .3B =由正弦定理,得42sin sin c C B b ==,又因为a b c =>,所以C 为锐角,因此27cos 1sin 9C C =-=,利用cos()cos cos sin sin B C B C B C -=+,即可求出结果. (1)由2BA BC ⋅=得,,又1cos 3B =,所以ac=6.由余弦定理,得2222cos a c b ac B +=+. 又b=3,所以2292213a c +=+⨯=. 解,得a=2,c=3或a=3,c=2.因为a>c,∴ a=3,c=2.(2)在ABC ∆中,2212sin 1cos 1()33B B =-=-= 由正弦定理,得22242sin sin 3c C B b ===a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=.于是cos()cos cos sin sin B C B C B C -=+=172242233927⋅+=. 考点:1.解三角形;2.三角恒等变换. 23.(Ⅰ)见解析(Ⅱ)35. 【解析】 【分析】(Ⅰ)所抽取的40人中,该天行走20008000~步的人数:男12人,女14人,由此能求出400位参与“微信运动”的微信好友中,每天行走20008000~步的人数. (Ⅱ)该天抽取的步数在800010000~的人数:男6人,女3人,共9人,再按男女比例分层抽取6人,则其中男4人,女2人,由此能求出其中至少有一位女性微信好友被采访的概率. 【详解】(Ⅰ)由题意,所抽取的40人中,该天行走20008000~步的人数:男12人,女14人, 所以400位参与“微信运动”的微信好友中,每天行走20008000~步的人数约为2640026040⨯=人; (Ⅱ)该天抽取的步数在800010000~的人数中,根据频率分布直方图可知,男生人数所占的频率为0.1520.3⨯=,所以男生的人数为为200.36⨯=人,根据柱状图可得,女生人数为3人,再按男女比例分层抽取6人,则其中男4人,女2人.再从这6位微信好友中随机抽取2人进行采访,基本事件总数2615n C ==种,至少1个女性的对立事件是选取中的两人都是男性,∴其中至少有一位女性微信好友被采访的概率:2426315C P C =-=.【点睛】本题主要考查了频率分布直方图的应用,以及古典概型及其概率的求解,以及分层抽样等知识的综合应用,其中解答中认真审题,正确理解题意,合理运算求解是解答此类问题的关键,着重考查了运算与求解能力,属于基础题. 24.(1)12x x ⎧⎫>⎨⎬⎩⎭;(2)(]0,2 【解析】分析:(1)将1a =代入函数解析式,求得()11f x x x =+--,利用零点分段将解析式化为()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,然后利用分段函数,分情况讨论求得不等式()1f x >的解集为12x x ⎧⎫⎨⎬⎩⎭;(2)根据题中所给的()0,1x ∈,其中一个绝对值符号可以去掉,不等式()f x x >可以化为()0,1x ∈时11ax -<,分情况讨论即可求得结果.详解:(1)当1a =时,()11f x x x =+--,即()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为12x x ⎧⎫⎨⎬⎩⎭.(2)当()0,1x ∈时11x ax x +-->成立等价于当()0,1x ∈时11ax -<成立. 若0a ≤,则当()0,1x ∈时11ax -≥; 若0a >,11ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(]0,2.点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果. 25.(1){}|37x x -≤≤;(2)(],9-∞. 【解析】 【分析】(1)分别在1x ≤-、15x -<<、5x ≥三种情况下去掉绝对值符号得到不等式,解不等式求得结果;(2)将不等式变为()()27a f x x ≤+-,令()()()27g x f x x =+-,可得到分段函数()g x 的解析式,分别在每一段上求解出()g x 的最小值,从而得到()g x 在R 上的最小值,进而利用()min a g x ≤得到结果.【详解】(1)当1x ≤-时,()154210f x x x x =--+-=-≤,解得:31x -≤≤- 当15x -<<时,()15610f x x x =++-=≤,恒成立 当5x ≥时,()152410f x x x x =++-=-≤,解得:57x ≤≤ 综上所述,不等式()10f x ≤的解集为:{}37x x -≤≤ (2)由()()27f x a x ≥--得:()()27a f x x ≤+-由(1)知:()42,16,1524,5x x f x x x x -≤-⎧⎪=-<<⎨⎪-≥⎩令()()()22221653,171455,151245,5x x x g x f x x x x x x x x ⎧-+≤-⎪=+-=-+-<<⎨⎪-+≥⎩当1x ≤-时,()()min 170g x g =-= 当15x -<<时,()()510g x g >= 当5x ≥时,()()min 69g x g == 综上所述,当x ∈R 时,()min 9g x =()a g x ≤恒成立 ()min a g x ∴≤ (],9a ∴∈-∞【点睛】本题考查分类讨论求解绝对值不等式、含绝对值不等式的恒成立问题的求解;求解本题恒成立问题的关键是能够通过分离变量构造出新的函数,将问题转化为变量与函数最值之间的比较,进而通过分类讨论得到函数的解析式,分段求解出函数的最值.。
2019年数学高考试题(带答案)

24.商场销售某种商品的经验表明,该商品每日的销售量 (单位:千克)与销售价格 (单
17.△ABC 的内角 A, B,C 的对边分别为 a,b, c .若 b 6, a 2c, B π ,则△ABC 的面 3
积为__________.
18.若 (x a )9 的展开式中 x3 的系数是 84 ,则 a . x
19.等边三角形 ABC 与正方形 ABDE 有一公共边 AB ,二面角 C AB D 的余弦值为
2
22
22
2
4
1 (0,1) ,∴ D( ) 先增后减,因此选 D. 2
【点睛】
n
n
n
E( ) xi pi , D( ) (xi E( ))2 pi xi2 pi E2 ( ).
i 1
i 1
i 1
5.C
解析:C 【解析】
【分析】
这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的
A.2
B.1
C.-2
D.-1
3.设 >0,函数 y=sin( x+ )+2 的图象向右平移 4 个单位后与原图象重合,则 的最小
3
3
值是
A. 2 3
B. 4 3
C. 3 2
D.3
4.设 0 p 1 ,随机变量 的分布列如图,则当 p 在 0,1 内增大时,( )
2019年数学高考试卷(附答案)

2019 年数学高考试卷(附答案)
一、选择题
1.如图所示的圆锥的俯视图为( )
A.
B.
C.
D.
2.{x1
3
是{x1
x2
6
成立的(
)
x2 3 x1x2 9
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.即不充分也不必要条件
3.如图,
F1 ,
F2
是双曲线 C :
x2 a2
y2 b2
1(a
0,b
BAF 90 , AD 2 , AB AF 1,点 P 在线段 DF 上.
(1)求证: AF 平面 ABCD;
(2)若二面角 D AP C 的余弦值为 6 ,求 PF 的长度. 3
24.△ABC 在内角 A、B、C 的对边分别为 a,b,c,已知 a=bcosC+csinB.
(Ⅰ)求 B;
(Ⅱ)若 b=2,求△ABC 面积的最大值.
0) 的左、右焦点,过
F2
的直线与双曲线
C 交于 A, B 两点.若 AB : BF1 : AF1 3: 4 : 5 ,则双曲线的渐近线方程为( )
A. y 2 3x
B. y 2 2x
4.函数 f (x) e|x|x2 的图象是( )
C. y 3x
A.
B.
D. y 2x
C.
D.
5.圆 C1:x2+y2=4 与圆 C2:x2+y2﹣4x+4y﹣12=0 的公共弦的长为( )
2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)

绝密★启用前 全国卷Ⅰ2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .B .C . D二、填空题:本题共4小题,每小题5分,共20分。
2019年高考数学试题(含答案)

一、选择题
1.定义运算
a
b
a(a b(a
b) b)
,则函数
f
(x)
1
2x
的图象是(
).
A.
B.
C.
D.
2.在复平面内, O 为原点,向量 OA 对应的复数为 1 2i ,若点 A 关于直线 y x 的对
称点为点 B ,则向量 OB 对应的复数为( )
A. 2 i
B. 2 i
C.1 2i
D. 1 2i
3.已知向量 a , b 满足 a 2 ,| b | 1 ,且 b a 2 ,则向量 a 与 b 的夹角的余弦值
为( )
A. 2 2
B. 2 3
C. 2 8
D. 2 4
4.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人
所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分 5 钱,甲、乙
C
的极坐标方程为
2
2
3 sin 1
(1)写出点 P 的直角坐标及曲线 C 的普通方程;
x 3 2t
(2)若 Q
为
C
上的动点,求
PQ
中点
M
到直线 l
:
y
2
t
(t
为参数)距离的最小值.
22.已知圆 O1 和圆 O2 的极坐标方程分别为 ρ=2,ρ2-2 ρcos(θ- )=2.
(1)把圆 O1 和圆 O2 的极坐标方程化为直角坐标方程. (2)求经过两圆交点的直线的极坐标方程. 23.某公司培训员工某项技能,培训有如下两种方式: 方式一:周一到周五每天培训 1 小时,周日测试 方式二:周六一天培训 4 小时,周日测试
2019年高考数学试题(带答案)

19.已知 OA 1 , OB 3 , OA • OB 0 ,点 C 在 AOB 内,且 AOC 30 ,设
OC
mOA
nOB
,
(m,
n
R)
,则
m n
__________.
20.若函数 f (x) x2 x 1 a ln x 在 (0, ) 上单调递增,则实数 a 的最小值是
附:参考数据与公式 6.92 2.63 ,若 X ~ N , 2 ,则①
P( X ) 0.6827 ;② P( 2 X 2 ) 0.9545;③ P( 3 X 3 ) 0.9973 . (1)根据频率分布直方图估计 50 位农民的年平均收入 x (单位:千元)(同一组数据用
A. 2
B. 3
C. 2 2
D. 3 2
6.若干年前,某教师刚退休的月退休金为 6000 元,月退休金各种用途占比统计图如下面
的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折
线图.已知目前的月就医费比刚退休时少 100 元,则目前该教师的月退休金为( ).
A.6500 元
2019 年高考数学试题(带答案)
一、选择题
1.如图,点 是抛物线
的焦点,点 , 分别在抛物线 和圆
线部分上运动,且 总是平行于 轴,则
周长的取值范围是( )
的实
A.
B.
ห้องสมุดไป่ตู้C.
D.
2. 1
1 x2
1
x6 展开式中
x2
的系数为(
)
A.15
B.20
C.30
D.35
3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
2019年高考数学试题及答案

2019年高考数学试题及答案一、选择题1. 下列四个数中,哪一个是素数?A) 12B) 25C) 37D) 44答案: C) 372. 已知函数 f(x) = 2x + 3,求 f(5) 的值是多少?A) 8B) 10C) 13D) 15答案: B) 133. 在坐标平面上,已知点 A(1, 2) 和点 B(-3, 5),则线段 AB 的斜率是多少?A) 1/2B) 3/4C) -3/4D) -2答案: C) -3/44. 已知函数 f(x) = x^2 + 5x,求 f(-2) 的值是多少?A) 2B) 4C) 9D) 14答案: B) 45. 一辆汽车以每小时60公里的速度行驶,行驶2小时后行驶的距离是多少?A) 40公里B) 80公里C) 120公里D) 240公里答案: D) 120公里二、填空题1. 将 50% 写成最简分数形式是 ______。
答案: 1/22. 三条相互垂直的直线所围成的图形是 ______。
答案:正方形3. (x + 2)² = 49 的解是 ______。
答案: x = 5 或 x = -94. log₄16 = ______。
答案: 25. 黑笔一支比红笔贵5元,红笔一支比蓝笔贵3元,那么黑笔一支和蓝笔一支的价格差是 ______。
答案: 8元三、计算题1. 计算以下方程的解:2x + 5 = 9 - x答案: x = 2解析:将方程中的 x 移至一边得到 2x + x = 9 - 5,化简得到 3x = 4。
进一步求解得 x = 2。
2. 求以下函数的零点:f(x) = x² - 4x - 5答案: x = -1 或 x = 5解析:将函数等于零,得到 x² - 4x - 5 = 0。
通过因式分解或配方法,可以得到 (x - 5)(x + 1) = 0。
通过求解得 x = -1 或 x = 5。
3. 若两个互为倒数的数的和为 10,求这两个数。
2019高考数学试题及答案word

2019高考数学试题及答案word一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + m,且f(0) = m,则m的值为:A. 0B. 1C. 2D. 3答案:C2. 已知等差数列{an}的前n项和为Sn,若a1 = 1,S3 = 6,则公差d 为:A. 1B. 2C. 3D. 4答案:A3. 若直线l的方程为y = kx + b,且经过点(1, 2)和(2, 3),则k和b的值分别为:A. k = 1, b = 1B. k = 1, b = 2C. k = 2, b = 1D. k = 2, b = 2答案:B4. 已知抛物线C的方程为y^2 = 4x,点P(1, 2)在C上,则点P关于C的焦点的对称点Q的坐标为:A. (0, 2)B. (1, -2)C. (0, -2)D. (1, 2)答案:C5. 若复数z满足|z| = 1,且z的实部为1/2,则z的虚部为:A. √3/2B. -√3/2C. √3/2iD. -√3/2i答案:B6. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值为:A. √2B. 1C. 2D. 0答案:A7. 若向量a和向量b的点积为0,且|a| = 3,|b| = 4,则向量a和向量b的夹角θ的余弦值为:A. 3/5B. 4/5C. -3/5D. -4/5答案:A8. 已知椭圆E的方程为x^2/a^2 + y^2/b^2 = 1,且a = 2b,若椭圆E经过点(1, √3),则b的值为:A. 1B. √2C. 2D. √3答案:A9. 已知双曲线H的方程为x^2/a^2 - y^2/b^2 = 1,且a = 2,b = 1,若双曲线H经过点(2, 1),则该点为:A. 顶点B. 焦点C. 渐近线与双曲线的交点D. 双曲线上的点答案:D10. 若函数g(x) = x^3 - 3x^2 + 2x,求g'(x)的值为:A. 3x^2 - 6x + 2B. x^2 - 6x + 2C. x^3 - 3x^2 + 2D. 3x^2 - 6x答案:A二、填空题(每题4分,共20分)11. 已知等比数列{bn}的前n项和为Tn,若b1 = 2,q = 2,则T3的值为______。
2019年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合A = {-1, 0,1, 2},B = {x x2≤1} ,则AA.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1, 2}2.若z(1+ i) = 2i ,则z=A.-1- iB.-1+iC.1- iD.1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100 学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.84.(1+2x2)(1+x)4的展开式中x3的系数为A.12 B.16 C.20 D.245.已知各项均为正数的等比数列{a n}的前4 项为和为15,且a5=3a3+4a1,则a3=A.16 B.8 C.4 D.26.已知曲线y =a e x+x ln x 在点(1,a e)处的切线方程为y=2x+b,则A. a = e,b =-1 b =-1B.a=e,b=1 C.a = e-1,b = 1 D .a = e-1,B =7.函数y =2x32x + 2-x在[-6, 6]的图象大致为A.B.C.D.8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD⊥平面ABCD,M是线段ED 的中点,则A.BM=EN,且直线BM、EN 是相交直线B.BM≠EN,且直线BM,EN 是相交直线C.BM=EN,且直线BM、EN 是异面直线D.BM≠EN,且直线BM,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于yA. 2 - 124B. 2 - 125C. 2 - 126D. 2 - 12710. 双曲线 C :x2- =1 的右焦点为 F ,点 P 在 C 的一条渐进线上,O 为坐标原点,若 4 2PO = PF ,则△PFO 的面积为A. 3 24B. 3 22C. 2D. 311. 设 f( x ) 是定义域为 R 的偶函数,且在(0, ∞) 单调递减,则A. f (log1 )> f (- 3)>f ( - 2 )B. f (log 34 1)> f ( 2 2- 2)> f ( 2 3- 3 )3 4 2 3 2 2C. f ( - 3)> f ( -2)> f (log1)2 22 334D. f ( - 2)> f ( -3)> f (log1 )2 32 23412. 设函数 f( x ) =sin (ω x + π)( ω >0),已知 f (x ) 在[0, 2π]有且仅有 5 个零点,下述 5四个结论:① f (x ) 在( 0, 2π )有且仅有 3 个极大值点 2 22, xy ② f (x ) 在( 0, 2π )有且仅有 2 个极小值点③ f (x ) 在( 0, π)单调递增10④ ω 的取值范围是[12 29) 5 10其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2019年高考数学试卷(带答案)

2019年高考数学试卷(带答案)一、选择题1.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .1122.给出下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确说法的个数是( ) A .0B .1C .2D .33.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( ) A .A 与BB .B 与CC .A 与DD .C 与D4.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .17 5.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( )A .-15x 4B .15x 4C .-20i x 4D .20i x 46.已知()3sin 30,601505αα︒+=︒<<︒,则cos α为( ) A 310B .310C 433- D 343-7.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( ) A .1-iB .-1-iC .1+iD .-1+i8.设集合{1,2,3,4,5,6}U =,{1,2,4}A =,{2,3,4}B =,则()C U A B ⋃等于( ) A .{5,6}B .{3,5,6}C .{1,3,5,6}D .{1,2,3,4}9.当1a >时, 在同一坐标系中,函数xy a -=与log a y x =-的图像是( )A .B .C .D .10.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3πB .2,-6π C .4,-6πD .4,3π 11.已知236a b ==,则a ,b 不可能满足的关系是()A .a b ab +=B .4a b +>C .()()22112a b -+-<D .228a b +>12.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )x3 4 5 6 y 2.5t44.5A.产品的生产能耗与产量呈正相关B.回归直线一定过4.5,3.5()C.A产品每多生产1吨,则相应的生产能耗约增加0.7吨D.t的值是3.15二、填空题13.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.14.设函数()212 log,0log(),0x xf x x x>⎧⎪=⎨-<⎪⎩,若()()f a f a>-,则实数a的取值范围是__________.15.函数()22,026,0x xf xx lnx x⎧-≤=⎨-+>⎩的零点个数是________.16.函数log(1)1(01)ay x a a=-+>≠且的图象恒过定点A,若点A在一次函数y mx n=+的图象上,其中,0,m n>则12m n+的最小值为17.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.18.在平行四边形ABCD中,3Aπ∠=,边AB,AD的长分别为2和1,若M,N分别是边BC,CD上的点,且满足CNCDBMBC=,则AM AN⋅的取值范围是_________.19.函数()lg 12sin y x =-的定义域是________.20.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________.三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.已知()f x 是二次函数,不等式()0f x <的解集是0,5,且()f x 在区间[]1,4-上的最大值是12.(1)求()f x 的解析式;(2)设函数()f x 在[],1x t t ∈+上的最小值为g t ,求g t 的表达式. 23.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与11A B 所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.24.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF 的位置关系,并给出证明; ()2求二面角M EF D --的余弦值.25.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为222422226C Cn AA=⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A==,所以乙丙两人恰好参加同一项活动的概率为13mpn==,故选B.【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题. 2.A解析:A【解析】【分析】①②③根据定义得结论不一定正确.④画图举出反例说明题目是错误的.【详解】解:①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③不一定.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.故答案为:A【点睛】(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定; (3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.3.C解析:C【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可. 详解:在A 中,A 与B 是对立事件,故不正确;在B 中,B 与C 能同时发生,不是互斥事件,所以不正确;在C 中,A 与D 两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D 中,C 与D 能同时发生,不是互斥事件,所以是错误的. 综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.4.B解析:B 【解析】 【分析】计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果. 【详解】由题意可知,样本在[)2060,的数据个数为300.824⨯=, 样本在[)20,40的数据个数为459+=,因此,样本在[)40,50、[)50,60内的数据个数为24915. 故选:B. 【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.5.A解析:A 【解析】 试题分析:二项式的展开式的通项为,令,则,故展开式中含的项为,故选A.【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式可以写为,则其通项为,则含的项为.6.D解析:D 【解析】分析:先求出()cos 30α︒+的值,再把cos α变形为0cos[(30)30]α+-,再利用差角的余弦公式展开化简即得cos α的值.详解:∵60150α︒<<︒, ∴90°<30α︒+<180°, ∴()cos 30α︒+=-45, ∵c os α=00cos[(30)30]α+-,∴c os α=-453152⨯=, 故选D.点睛:三角恒等变形要注意“三看(看角看名看式)”和“三变(变角变名变式)”,本题主要利用了看角变角,0(30)30αα=+-,把未知的角向已知的角转化,从而完成解题目标.7.B解析:B 【解析】 【分析】利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果. 【详解】 ∵复数z 满足21ii z=-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B. 【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.8.A解析:A 【解析】 【分析】先求并集,得到{1,2,3,4}A B ⋃=,再由补集的概念,即可求出结果. 【详解】因为{1,2,4}A =,{2,3,4}B =,所以{1,2,3,4}A B ⋃=, 又{1,2,3,4,5,6}U =,所以()C {5,6}U A B ⋃=. 故选A. 【点睛】本题主要考查集合的并集与补集的运算,熟记概念即可,属于基础题型.9.D解析:D 【解析】根据指数型函数和对数型函数单调性,判断出正确选项. 【详解】由于1a >,所以1xxa y a-=⎛⎫= ⎪⎝⎭为R 上的递减函数,且过()0,1;log a y x =-为()0,∞+上的单调递减函数,且过()1,0,故只有D 选项符合. 故选:D. 【点睛】本小题主要考查指数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础题.10.A解析:A 【解析】 【分析】由函数f (x )=2sin (ωx+φ)的部分图象,求得T 、ω和φ的值. 【详解】由函数f (x )=2sin (ωx+φ)的部分图象知,3T 5π412=-(π3-)3π4=, ∴T 2πω==π,解得ω=2; 又由函数f (x )的图象经过(5π12,2), ∴2=2sin (25π12⨯+φ), ∴5π6+φ=2kππ2+,k∈Z, 即φ=2kππ3-, 又由π2-<φπ2<,则φπ3=-; 综上所述,ω=2、φπ3=-. 故选A . 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题.11.C解析:C 【解析】根据236a b ==即可得出21l 3og a =+,31l 2og b =+,根据23log log 132⋅=,33log log 222+>,即可判断出结果.【详解】 ∵236a b ==;∴226log 1og 3l a ==+,336log 1og 2l b ==+;∴2332log 2log 4a b +=++>,2332log og 42l ab =++>,故,A B 正确;()()()()2322223211log log 2log 323log 22a b =>⋅-+-+=,故C 错误;∵()()()22232223log log 2log 2323log 2a b =+++++23232324log log l 23og log 82>+⋅+=⋅,故D 正确故C . 【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:2a b ab +≥和不等式222a b ab +≥的应用,属于中档题12.D解析:D 【解析】 由题意,x =34564+++=4.5, ∵ˆy=0.7x+0.35, ∴y =0.7×4.5+0.35=3.5, ∴t=4×3.5﹣2.5﹣4﹣4.5=3, 故选D .二、填空题13.1006【解析】试题分析:由题设可知在中由此可得由正弦定理可得解之得又因为所以应填1006考点:正弦定理及运用 解析:【解析】试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.14.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为 解析:(1,0)(1,)【解析】 【分析】 【详解】由题意()()f a f a >-⇒2120 log log a a a >⎧⎪⎨>⎪⎩或()()1220log log a a a <⎧⎪⎨->-⎪⎩01a a a >⎧⎪⇒⎨>⎪⎩或11a a a a<⎧⎪⇒>⎨->-⎪⎩或10a -<<,则实数a 的取值范围是()()1,01,-⋃+∞,故答案为()()1,01,-⋃+∞.15.2【解析】【详解】当x≤0时由f (x )=x2﹣2=0解得x=有1个零点;当x >0函数f (x )=2x ﹣6+lnx 单调递增则f (1)<0f (3)>0此时函数f (x )只有一个零点所以共有2个零点故答案为:解析:2 【解析】 【详解】当x≤0时,由f (x )=x 2﹣2=0,解得x=1个零点; 当x >0,函数f (x )=2x ﹣6+lnx ,单调递增,则f (1)<0,f (3)>0,此时函数f (x )只有一个零点, 所以共有2个零点. 故答案为:2. 【点睛】判断函数零点个数的方法直接法(直接求零点):令f (x )=0,如果能求出解,则有几个不同的解就有几个零点, 定理法(零点存在性定理):利用定理不仅要求函数的图象在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点,图象法(利用图象交点的个数):画出函数f (x )的图象,函数f (x )的图象与x 轴交点的个数就是函数f (x )的零点个数;将函数f (x )拆成两个函数h (x )和g (x )的差,根据f (x )=0⇔h (x )=g (x ),则函数f (x )的零点个数就是函数y =h (x )和y =g (x )的图象的交点个数,性质法(利用函数性质):若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数16.8【解析】∵函数(且)的图象恒过定点A∴当时∴又点A 在一次函数的图象上其中∴又∴∴(当且仅当时取)故答案为8点睛:本题主要考查了基本不等式基本不等式求最值应注意的问题(1)使用基本不等式求最值其失误解析:8 【解析】∵函数log 11a y x =-+()(0a >,且1a ≠)的图象恒过定点A , ∴当2x =时,1y =,∴()21A ,,又点A 在一次函数y mx n =+的图象上,其中0mn >,∴21m n +=,又0mn >,∴0m >,0n >,∴()12124 248n mm n m n m n m n+=+⋅+=++≥(),(当且仅当122n m ==时取“=”),故答案为8.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.17.8【解析】分析:先判断是否成立若成立再计算若不成立结束循环输出结果详解:由伪代码可得因为所以结束循环输出点睛:本题考查伪代码考查考生的读图能力难度较小解析:8 【解析】分析:先判断6I <是否成立,若成立,再计算I S ,,若不成立,结束循环,输出结果.详解:由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S =点睛:本题考查伪代码,考查考生的读图能力,难度较小.18.【解析】【分析】画出图形建立直角坐标系利用比例关系求出的坐标然后通过二次函数求出数量积的范围【详解】解:建立如图所示的直角坐标系则设则所以因为二次函数的对称轴为:所以时故答案为:【点睛】本题考查向量解析:[2]5, 【解析】 【分析】画出图形,建立直角坐标系,利用比例关系,求出M ,N 的坐标,然后通过二次函数求出数量积的范围. 【详解】解:建立如图所示的直角坐标系,则(2,0)B ,(0,0)A ,12D ⎛ ⎝⎭,设||||||||BM CN BC CD λ==,[]0,1λ∈,则(22M λ+),5(22N λ-,所以(22AM AN λ=+5)(22λ-2253542544λλλλλλ=-+-+=--+,因为[]0,1λ∈,二次函数的对称轴为:1λ=-,所以[]0,1λ∈时,[]2252,5λλ--+∈.故答案为:[2]5,【点睛】本题考查向量的综合应用,平面向量的坐标表示以及数量积的应用,二次函数的最值问题,考查计算能力,属于中档题.19.【解析】由题意可得函数满足即解得即函数的定义域为解析:513|22,66x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭【解析】由题意可得,函数lg(12sin )y x =-满足12sin 0x ->,即1sin 2x , 解得51322,66k x k k Z ππππ+<<+∈, 即函数lg(12sin )y x =-的定义域为513{|22,}66x k x k k Z ππππ+<<+∈. 20.【解析】令函数有两个极值点则在区间上有两个实数根当时则函数在区间单调递增因此在区间上不可能有两个实数根应舍去当时令解得令解得此时函数单调递增令解得此时函数单调递减当时函数取得极大值当近于与近于时要使解析:.【解析】()()()2ln 0,'ln 12f x x x ax x f x x ax =->=+-,令()ln 12,g x x ax =+-函数()()ln f x x x ax =-有两个极值点,则()0g x =在区间()0,∞+上有两个实数根,()112'2axg x a x x-=-=,当0a ≤时,()'0g x >,则函数()g x 在区间()0,∞+单调递增,因此()0g x =在区间()0,∞+上不可能有两个实数根,应舍去,当0a >时,令()'0g x =,解得12x a =,令()'0g x >,解得102x a <<,此时函数()g x 单调递增,令()'0g x <,解得12x a >,此时函数()g x 单调递减,∴当12x a=时,函数()g x 取得极大值,当x 近于0与x 近于+∞时,()g x →-∞,要使()0g x =在区间()0,∞+有两个实数根,则11ln 022g a a ⎛⎫=> ⎪⎝⎭,解得10,2a <<∴实数a 的取值范围是102a <<,故答案为102a <<. 三、解答题21.(1)0.5;(2)0.1 【解析】 【分析】(1)本题首先可以通过题意推导出()2P X =所包含的事件为“甲连赢两球或乙连赢两球”,然后计算出每种事件的概率并求和即可得出结果; (2)本题首先可以通过题意推导出4P X 所包含的事件为“前两球甲乙各得1分,后两球均为甲得分”,然后计算出每种事件的概率并求和即可得出结果.【详解】(1)由题意可知,()2P X =所包含的事件为“甲连赢两球或乙连赢两球” 所以20.50.40.50.60.5P X(2)由题意可知,4P X 包含的事件为“前两球甲乙各得1分,后两球均为甲得分”所以40.50.60.50.4+0.50.40.50.40.1P X【点睛】本题考查古典概型的相关性质,能否通过题意得出()2P X =以及4P X 所包含的事件是解决本题的关键,考查推理能力,考查学生从题目中获取所需信息的能力,是中档题.22.(1)2()210f x x x =-(2)223268,,22535(),,2225210,,2t t t g t t t t t ⎧--≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩【解析】(1)因为()f x 是二次函数,不等式()0f x <的解集是0,5,所以可设()(5)(0).f x ax x a =->,然后因为-1比5离对称轴的距离远,所以最大值为(-1)=6a,求出a值,从而求出f(x)的解析式.(II )本小题属于二次函数轴定区间动的问题,分三种情况讨论分别求其最小值即可. 解:(1)()f x 是二次函数,且()0f x <的解集是(0,5),∴可设()(5)(0).f x ax x a =->()f x ∴在区间[]1,4-上的最大值是(1)6.f a -=由已知,得612,a =2,a ∴=2()2(5)210().f x x x x x x R ∴=-=-∈(2)由(1)知22525()2102.22f x x x x ⎛⎫∴=-=-- ⎪⎝⎭,开口向上,对称轴为52x = ①当512t +≤,即32t ≤时,()f x 在[],1t t +上是单调递减, ()()()2221101268g t t t t t ∴=+-+=--②当52t ≥时,()f x 在[],1t t +上是单调递减 ()22210210g t t t t t ∴=-=-③当512t t ≤≤+,即3522t ≤≤时,()f x 在对称轴处取得最小值 ()52522g t f ⎛⎫∴==- ⎪⎝⎭23.(Ⅰ)3;(Ⅱ;(Ⅲ【解析】 【分析】(Ⅰ)以B 为坐标原点,BA 所在直线为x 轴,1BB 所在直线为y 轴,建立坐标系,设异面直线AC 与11A B 所成角为α,算出11,AC A B ,再利用cos α=11|cos ,|AC A B 〈〉计算即可;(Ⅱ)分别求出平面11AA C 的法向量m 与平面111B AC 的法向量n ,再利用向量的夹角公式算得cos ,m n 〈〉即可;(Ⅲ)设(,,0)M a b ,由MN ⊥平面111A B C ,得111100MN A B MN A C ⎧⋅=⎪⎨⋅=⎪⎩,进一步得到M 的坐标,再由模长公式计算BM 的长. 【详解】如图所示,建立空间直角坐标系,其中点B 为坐标原点,BA 所在直线为x 轴,1BB 所在直线为y 轴, 由题意,111(0,0,0),B A C A B C ,(Ⅰ)11(2,2,5),(22,0,0)AC A B =--=-,所以111111cos ,3||||3AC A B AC A B AC A B ⋅〈〉===⨯,设异面直线AC 与11A B 所成角为α, 则cos α=112|cos ,|3AC A B 〈〉=,所以异面直线AC 与11A B 所成角的余弦值为3. (Ⅱ)易知111(0,22,0),(2,AA AC ==-, 设平面11AA C 的法向量(,,)mx y z =,则11100m ACm AA ⎧⋅=⎪⎨⋅=⎪⎩,即00⎧+=⎪⎨=⎪⎩,令x =z =,所以(5,0,m =,同理,设平面111B AC 的法向量(,,)n x y z=,则111100n A Cn A B ⎧⋅=⎪⎨⋅=⎪⎩,即00⎧-+=⎪⎨-=⎪⎩, 令y =2z =,所以(0,5,n =,所以2cos ,7||||7m n m n m n ⋅〈〉===⋅⋅,设二面角111A AC B --的大小为θ,则sin 7θ==, 所以二面角111A AC B --的正弦值为7. (Ⅲ)由N 为棱11BC 的中点,得,22N ⎛ ⎝⎭,设(,,0)M a b ,则2MN a b ⎛=--⎝⎭,由MN ⊥平面111A B C ,得111100MN A B MN A C ⎧⋅=⎪⎨⋅=⎪⎩,即2(22)022325(2)(2)50222a a b ⎧⎛⎫-⋅-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎛⎫⎪-⋅-+-⋅-+⋅= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎩,解得2224a b ⎧=⎪⎪⎨⎪=⎪⎩,故22,,024M ⎛⎫⎪⎝⎭,因此22,,024BM ⎛⎫= ⎪⎝⎭, 所以线段BM 的长为10||BM =.【点睛】本题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查学生的空间想象能力、运算能力和推理论证能力. 24.(1)见解析;(26【解析】 【分析】(1)根据线面平行的判定定理直接证明即可;(2)连接BD 交EF 与点N ,先由题中条件得到MND ∠为二面角M EF D ﹣﹣的平面角,再解三角形即可得出结果. 【详解】(1)PB 平面MEF .证明如下:在图1中,连接BD ,交EF 于N ,交AC 于O , 则1124BN BO BD ==, 在图2中,连接BD 交EF 于N ,连接MN ,在DPB 中,有14BN BD =,14PM PD =, MN PB ∴. PB ⊄平面MEF ,MN ⊂平面MEF ,故PB 平面MEF ;(2)连接BD 交EF 与点N ,图2中的三角形PDE 与三角形PDF 分别是图1中的Rt ADE 与Rt CDF ,PD PE PD PF ∴⊥⊥,,又PE PE P ⋂=,PD ∴⊥平面PEF ,则PD EF ⊥,又EF BD ⊥,EF ∴⊥平面PBD , 则MND ∠为二面角M EF D ﹣﹣的平面角.可知PM PN ⊥,则在Rt MND 中,12PM PN =,=,则22PM PN 3MN =+=.在MND 中,332MD DN ==,,由余弦定理,得22262MN DN MD cos MND MN DN +-∠==⋅. ∴二面角M EF D ﹣﹣的余弦值为6.【点睛】本题主要考查线面平行的判定,以及二面角的求法,熟记线面平行的判定定理以及二面角的概念即可,属于常考题型. 25.(1)见证明;(2)见解析 【解析】 【分析】(1)利用余弦定理计算BC ,根据勾股定理可得BC ⊥BD ,结合BC ⊥PD 得出BC ⊥平面PBD ,于是平面PBD ⊥平面PBC ;(2)建立空间坐标系,设CMCP=λ,计算平面ABM 和平面PBD 的法向量,令法向量的夹角的余弦值的绝对值等于12,解方程得出λ的值,即可得解. 【详解】(1)证明:因为四边形ABCD 为直角梯形, 且//AB DC , 2AB AD ==,2ADC π∠=,所以22BD = 又因为4,4CD BDC π=∠=.根据余弦定理得22,BC =所以222CD BD BC =+,故BC BD ⊥.又因为BC PD ⊥, PD BD D ⋂=,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD , 又因为BC ⊂平面PBC ,所以PBC PBD ⊥平面平面(2)由(1)得平面ABCD ⊥平面PBD , 设E 为BD 的中点,连结PE ,因为6PB PD ==,所以PE BD ⊥,2PE =,又平面ABCD ⊥平面PBD ,平面ABCD平面PBD BD =,PE ⊥平面ABCD .如图,以A 为原点分别以AD ,AB 和垂直平面ABCD 的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,则(0,0,0)A ,(0,2,0)B ,(2,4,0)C ,(2,0,0)D ,(1,1,2)P , 假设存在(,,)M a b c 满足要求,设(01)CMCPλλ=≤≤,即CM CP λ=, 所以(2-,4-3,2)λλλM ,易得平面PBD 的一个法向量为(2,2,0)BC =.设(,,)n x y z =为平面ABM 的一个法向量,(0,2,0)AB =, =(2-,4-3,2)λλλAM由00n AB n AM ⎧⋅=⎨⋅=⎩得20(2)(43)20y x y z λλλ=⎧⎨-+-+=⎩,不妨取(2,0,2)n λλ=-.因为平面PBD 与平面ABM 所成的锐二面角为3π22412224(2)λλλ=+-,解得2,23λλ==-,(不合题意舍去). 故存在M 点满足条件,且23CM CP =. 【点睛】本题主要考查空间直线与直线、直线与平面的位置关系及平面与平面所成的角等基础知识,面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做.。
2019年数学高考试题(带答案)

2019年数学高考试题(带答案)一、选择题1.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0) B .(2,0)C .(0,2)D .(0,0)2.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5}3.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称4.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A .53B .35C .37D .575.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .46.函数()ln f x x x =的大致图像为 ( )A .B .C .D .7.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是,若0cAC aPA bPB ++=,则△ABC 的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形.8.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( ) A .14B .12C .22D .29.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时211+不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,2k k +<k+1. 那么当n=k+1时()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<+++++所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立.则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确11.已知复数 ,则复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限12.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .32二、填空题13.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= .14.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42sin a A =,且C 为锐角,则ABC ∆面积的最大值为________. 16.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.17.函数()23s 34f x in x cosx =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 18.在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠=点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==则AE AF ⋅的值为 . 19.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.20.计算:1726cos()sin 43ππ-+=_____. 三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.23.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值. 24.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==,2CA CB CD BD ====. (1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.25.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B 、20005000步,C 、50008000步,D 、800010000步,E 、1000012000步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.26.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
2019年全国卷Ⅰ高考卷(含答案)

2019年普通高等学校招生全国统一考试数学(含解析)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A I A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .a b c <<a c b <<c a b <<b c a <<C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的 一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为,过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年高考数学真题及答案解析(全国卷Ⅰ)

2019年高考数学真题及答案解析(全国卷Ⅰ) 2019年高考数学真题及答案解析一、选择题1. 单选题1) 题目:在直角三角形中,已知一条锐角边的长为4,另一条锐角边的长为3,则斜边的长为:()A. 5B. 6C. 7D. 8解析:根据勾股定理可知,斜边的长为√(4²+3²)=5。
因此,选项A为正确答案。
2) 题目:已知函数y=x²的图象上有两点A(1,2)、B(a,b),则a+b=()。
A. 3B. 4C. 5D. 6解析:由题意得,点A位于函数y=x²上,代入可得2=1²=1,即2=1。
因此,点B(a,b)的坐标为(a,a²)。
代入可得b=a²。
所以a+b=a+a²。
选项D为正确答案。
2. 多选题1) 题目:已知函数f(x)=ax²+bx+c,若三次项系数a=1,函数有两个零点x₁、x₂,则下列说法正确的是(选择全部正确答案):()A. 当x₁+x₂为正数时,函数图象在直角坐标平面上的位置不能确定。
B. 当x₁+x₂为正数时,函数图象在直角坐标平面上的位置位于x轴之上。
C. 当a=b=-1时,函数图象在直角坐标平面上的位置位于x轴之下。
D. 当a=b=-1时,函数图象在直角坐标平面上的位置位于x轴之上。
解析:根据二次函数的零点性质可知,当函数有两个零点x₁、x₂时,x₁+x₂的值为二次项系数的相反数,即a的相反数。
所以可得a+b=-1。
结合选项C和选项D可知,当a=b=-1时,函数图象在直角坐标平面上的位置的y坐标小于0,即位于x轴之下。
因此,选项C为正确答案。
二、填空题1. 题目:一个方程y=2x的图象和另一个方程y=ax²的图象相切,那么a的值为()。
解析:根据题目所给条件可知,两个方程的解相等。
所以可得2x=ax²。
由此可以推导出a=2。
因此,a的值为2。
2. 题目:已知点A(-2,1)和点B(4,-3),则点A关于点B的对称点坐标为( , )。
2019年普通高等学校招生全国统一考数学试题及答案

2019年普通高等学校招生全国统一考试数学1.甲、解方程.075522=---x x (限定在实数范围内)(限定在实数范围内) 解:移项得75522-=-x x 两边平方得,75522-=-x x 整理得.2,21,0252212===+-x x x x 得乙、有5组蓝球队,每组6队,首先每组中各队进行单循环赛(每两队赛一次),然后各组冠军再进行单循环赛,然后各组冠军再进行单循环赛,问先后比赛多少场?问先后比赛多少场?问先后比赛多少场?. . 解:共需比赛解:共需比赛8552526=+C C (场)(场)丙、求证等比数列各项的对数组成等差数列(等比数列各项均为正数)正数). .解:设等比数列的首项为)0(>a a ,公比为)0(>q q ,即,即,,,2aq aq a分别取此等比数列各项的对数,即分别取此等比数列各项的对数,即,lg 2lg ,lg lg ,lg q a q a a ++ 这就形成首项是,lg a 公差是q lg 的等差数列的等差数列 丁、求使等式2cos 2sin 12xx =-成立的x 值的范围(值的范围(x x 是00~7200的角)角). .解:要使等式2cos 2sin 12xx =-成立,必须,02cos ³x由此可得角2x在第一象限或第四象限在第一象限或第四象限而已知条件中限定x 为00~7200的角,的角,由此可得°££°°££°36022709020xx或.7205401800°££°°££°\x x 或戊、如图,用钢球测量机体上一小孔的直径,所用钢球的中心是O ,直径是12mm,12mm,钢球放在小孔上测得钢钢球放在小孔上测得钢球上端与机件平面的距离CD 是9mm 9mm,求,求这小孔的直径AB 的长 解:联结OA 则OA=OC=6OA=OC=6((mm) OD=CD-OC=9-6=3(mm OD=CD-OC=9-6=3(mm))又)(3393622mm OD AO AD =-=-=).(362mm AD AB =×=\己、四棱锥P-ABCD 的底面是一个正方形,的底面是一个正方形,PA PA 与底面垂直,已知PA=3cm PA=3cm,,P 到BC 的距离是5cm 5cm,求,求PC 的长 解:∵ABCD 是正方形,是正方形, 而且PA PA⊥平面⊥平面ABCD ABCD,, ∴PB PB⊥⊥BC BC(三垂线定理)(三垂线定理)(三垂线定理) 在直角△在直角△PAB PAB 中)(4352222cm PA PB AB =-=-=在直角△在直角△PBC PBC 中).(41452222cm BC PB PC =+=+=2.有一直圆柱高是20cm 20cm,底面半径是,底面半径是5cm,5cm,它的一个内接长方体它的一个内接长方体的体积是80cm 3,求这长方体底面的长与宽,求这长方体底面的长与宽. .COA BDPA DB C解:设长方体底面的长是xcm xcm,宽是,宽是ycm.ycm.根据题意可得方程组,根据题意可得方程组,根据题意可得方程组,).(52),(5410040)52(8002022222cm y cm x y x xy y x xy ==îíìîíì=+=´=+=解得即 3.从一船上看到在它的南.从一船上看到在它的南30300东的海面上有一灯塔,船以东的海面上有一灯塔,船以303030里里/小时的速度向东南方向航行,半小时后,看到这个灯塔在船的正西,问这时船与灯塔的距离(精确到问这时船与灯塔的距离(精确到0.10.10.1里)里) 解:由题意,船位于点解:由题意,船位于点O O ,看到灯塔A ,半小时后船沿,半小时后船沿OB OB OB方向行至方向行至方向行至B B ,由于由于A A 在B 的正西,所以延长的正西,所以延长BA BA BA交交OC 于C , 且必有且必有BC BC BC⊥⊥OC ∵∠∵∠OBC=OBC=OBC=∠∠BOC=450, ∴OC=BC=OB OC=BC=OB··sin450=15=15××22CA=OC CA=OC··tg300=15=15××22×23=265(里)(里)∴AB=CB-CA=5.4)33(2252652215»-=-(里)(里)故这时船与灯塔的距离约为故这时船与灯塔的距离约为4.54.54.5里里O 东450 300 CA B南。
2019年高考数学试题及答案

2019年高考数学试题及答案一、选择题(本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. -1B. 1C. 3D. 5答案:B2. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B。
A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B3. 已知等差数列的首项a1 = 3,公差d = 2,求第5项a5的值。
A. 13B. 15C. 17D. 19答案:A4. 已知圆的方程为(x-2)^2 + (y-3)^2 = 9,求圆心坐标。
A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)答案:A5. 已知函数f(x) = x^2 - 4x + 3,求f(x)的对称轴。
A. x = 1B. x = 2C. x = -2D. x = 4答案:B6. 已知直线l:y = 2x + 1与直线m:y = -x + 3的交点坐标。
A. (1, 3)B. (2, 5)C. (3, 5)D. (4, 7)答案:A7. 已知三角形ABC的三个内角A、B、C满足A + B + C = 180°,且A = 2B,C = 3B,求B的度数。
A. 30°B. 45°C. 60°D. 90°答案:C8. 已知函数y = √(x^2 - 4x + 4)的值域。
A. [0, +∞)B. (0, +∞)C. [1, +∞)D. (1, +∞)答案:C二、填空题(本题共4小题,每小题5分,共20分。
请将答案填写在横线上。
)9. 已知函数f(x) = sin(x) + cos(x),请计算f(π/4)的值。
答案:√210. 已知向量a = (3, -4),b = (-2, 6),求向量a与向量b的点积。
答案:011. 已知抛物线方程y^2 = 4x,求抛物线的焦点坐标。
2019年数学高考试题(带答案)

A. 1 4
B. 1 2
C. 2 2
D. 2
11.在 ABC 中, A 为锐角, lg b lg(1) lg sin A lg 2 ,则 ABC 为( ) c
A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形
12.已知 ABC 为等边三角形, AB 2 ,设 P , Q 满足 AP AB ,
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式: K2
n(ad bc)2
,其中 n=a+b+c+d)
(a b)(c d)(a c)(b d)
22.如图,四棱锥 P ABCD 的底面 ABCD 是平行四边形,连接 BD ,其中 DA DP , BA BP .
EF 2 ,现有如下四个结论: 2
①AC BE ; ②EF / / 平面 ABCD; ③ 三棱锥 A BEF 的体积为定值; ④ 异面直线 AE, BF 所成的角为定值,
其中正确结论的序号是______.
15.已知椭圆 x2 y2 1的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方,若线段 PF 的中 95
AQ 1 AC R ,若 BQ CP 3 ,则 ( )
2
A. 1 2
二、填空题
B. 1 2 2
C. 1 10 2
D. 3 2 2 2
13. i 是虚数单位,若复数 1 2ia i 是纯虚数,则实数 a 的值为
.
14.如图,正方体 ABCD A1B1C1D1 的棱长为 1,线段 B1D1 上有两个动点 E, F ,且
2019年数学高考试卷(含答案)

2019年数学高考试卷(含答案)一、选择题1.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ). A . B .C .D .2.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .343.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .144.已知非零向量a b ,满足2a b =,且b a b ⊥(–),则a 与b 的夹角为A .π6B .π3C .2π3D .5π65.函数32()31f x x x =-+的单调减区间为 A .(2,)+∞B .(,2)-∞C .(,0)-∞D .(0,2)6.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =,则c =( )A .23B .2C .2D .17.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .48.已知函数()3sin 2cos 2[0,]2f x x x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2]9.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( ) A .7 B .8C .9D .1010.设集合,,则=( )A .B .C .D .11.设0<a <1,则随机变量X 的分布列是Xa 1 P13 1313则当a 在(0,1)内增大时( ) A .()D X 增大 B .()D X 减小 C .()D X 先增大后减小D .()D X 先减小后增大12.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .14.设25a b m ==,且112a b+=,则m =______. 15.曲线21y x x=+在点(1,2)处的切线方程为______________. 16.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42sin a A =,且C 为锐角,则ABC ∆面积的最大值为________.17.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.18.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.19.若45100a b ==,则122()a b+=_____________.20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==,2CA CB CD BD ====.(1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.22.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.23.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.24.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为)(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.25.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值,因此函数()1,0122,0xx x f x x >⎧=⊕=⎨≤⎩,只有选项A 中的图象符合要求,故选A.2.B解析:B 【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.3.B解析:B 【解析】 【分析】 【详解】由a=14,b=18,a <b , 则b 变为18﹣14=4, 由a >b ,则a 变为14﹣4=10, 由a >b ,则a 变为10﹣4=6, 由a >b ,则a 变为6﹣4=2, 由a <b ,则b 变为4﹣2=2, 由a=b=2, 则输出的a=2. 故选B .4.B解析:B 【解析】 【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角. 【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||122||a bb b a b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.5.D解析:D 【解析】对函数求导,让函数的导函数小于零,解不等式,即可得到原函数的单调减区间. 【详解】32'2()31()363(2)002f x x x f x x x x x x -=-<⇒=+∴=<-<,所以函数的单调减区间为(0,2),故本题选D. 【点睛】本题考查了利用导数求函数的单调减区间问题,正确求出导函数是解题的关键.6.B解析:B 【解析】1sin A ===cos A =,所以22212c c =+-2320,c c -+=求得1c =或 2.c若1c =,则三角形为等腰三角形,030,60A C B ===不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出cos 2A =后,要及时判断出0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.7.C解析:C 【解析】 【分析】 由4παβ+=,得到1tanαβ+=(),利用两角和的正切函数公式化简1tan αβ+=(),即可得到所求式子的值. 【详解】 由由4παβ+=,得到1tanαβ+=(), 所以11tan tan tantan tan αβαβαβ++==-() ,即1tan tan tan tan αβαβ+=-,则1112tan tan tan tan tan tan αβαβαβ++=+++=()() . 故选C . 【点睛】本题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,是一道基础题.8.B解析:B【分析】【详解】试题分析:利用辅助角公式化简函数为=+-,令,则,所以此f x x x m()3sin2cos2时函数即为.令有,根据题意可知在上有两个解,根据在函数图像可知,.考点:辅助角公式;;零点的判断;函数图像.9.D解析:D【解析】=所以从高二年级应抽取9人,从高三年级应抽试题分析:因为210:270:3007:9:10,取10人.考点:本小题主要考查分层抽样的应用.点评:应用分层抽样,关键是搞清楚比例关系,然后按比例抽取即可.10.B解析:B【解析】试题分析:集合,故选B.考点:集合的交集运算.11.D解析:D【解析】【分析】利用方差公式结合二次函数的单调性可得结论;解:1111()013333a E X a +=⨯+⨯+⨯=,222111111()()()(1)333333a a a D X a +++=⨯+-⨯+-⨯ 2222212211[(1)(21)(2)](1)()279926a a a a a a =++-+-=-+=-+ 01a <<,()D X ∴先减小后增大 故选:D . 【点睛】本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,属于中档题.12.B解析:B 【解析】得到的偶函数解析式为sin 2sin 284y x x ππϕϕ⎡⎤⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,显然.4πϕ= 【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦选择合适的ϕ值通过诱导公式把sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦转化为余弦函数是考查的最终目的. 二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】 【分析】 【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力 10【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,m m m m a b+=+==∴=【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.15.【解析】设则所以所以曲线在点处的切线方程为即点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出斜率其求法为:设是曲线上的一点则以为切点的切线方程是若曲线在点处的切线平行于轴(即 解析:1y x =+【解析】设()y f x =,则21()2f x x x '=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.16.【解析】【分析】由利用正弦定理求得再由余弦定理可得利用基本不等式可得从而利用三角形面积公式可得结果【详解】因为又所以又为锐角可得因为所以当且仅当时等号成立即即当时面积的最大值为故答案为【点睛】本题主解析:4+【解析】 【分析】由4c =,a A =,利用正弦定理求得4C π=.,再由余弦定理可得2216a b =+,利用基本不等式可得(82ab ≤=+,从而利用三角形面积公式可得结果. 【详解】因为4c =,又42sin sin c a C A==, 所以2sin 2C =,又C 为锐角,可得4C π=.因为()2222162cos 222a b ab C a b ab ab =+-=+-≥-, 所以()1682222ab ≤=+-, 当且仅当()822a b ==+时等号成立, 即12sin 44224ABC S ab C ab ∆==≤+, 即当()822a b ==+时,ABC ∆面积的最大值为442+. 故答案为442+. 【点睛】本题主要考查余弦定理、正弦定理以及基本不等式的应用,属于简单题. 对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o 等特殊角的三角函数值,以便在解题中直接应用.17.【解析】【详解】因为所以①因为所以②①②得即解得故本题正确答案为解析:12- 【解析】 【详解】 因为,所以,①因为,所以,②①②得,即, 解得, 故本题正确答案为18.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】 【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1.【详解】 由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫⎪⎝⎭, 可得1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即α=lo 2313g ,β=lo 1323g . 所以αβ=lo 2313g ·lo 1312233·21333lglg g lg lg ==1. 【点睛】本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.19.【解析】【分析】根据所给的指数式化为对数式根据对数的换地公式写出倒数的值再根据对数式的性质得到结果【详解】则故答案为【点睛】本题是一道有关代数式求值的问题解答本题的关键是熟练应用对数的运算性质属于基 解析:2【解析】 【分析】根据所给的指数式,化为对数式,根据对数的换地公式写出倒数的值,再根据对数式的性质,得到结果. 【详解】45100a b ==,4log 100a ∴=,5log 100b =,10010010012log 42log 5log 1001a b∴+=+==, 则1222a b ⎛⎫+=⎪⎝⎭故答案为2 【点睛】本题是一道有关代数式求值的问题,解答本题的关键是熟练应用对数的运算性质,属于基础题.20.【解析】【分析】由题意可得又由可得联立得又由为焦点的抛物线:经过点化简得根据离心率可得即可求解【详解】由题意双曲线的渐近线方程为焦点为可得①又可得即为②由联立①②可得由为焦点的抛物线:经过点可得且即解析:2+【解析】 【分析】 由题意可得00by x a=,又由12MF MF ⊥,可得22200y x c +=,联立得0x a =,0y b =,又由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,化简得224ac 0c a --=,根据离心率ce a=,可得2410e e --=,即可求解. 【详解】由题意,双曲线的渐近线方程为by x a=±,焦点为()1,0F c -,()2,0F c , 可得00by x a=,① 又12MF MF ⊥,可得00001y yx c x c⋅=-+-, 即为22200y x c +=,②由222a b c +=,联立①②可得0x a =,0y b =,由F 为焦点的抛物线2C :22(0)y px p =>经过点M , 可得22b pa =,且2pc =,即有2224b ac c a ==-,即224ac 0c a --=由ce a =,可得2410e e --=,解得2e =+【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c 的值,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).三、解答题21.(1)见解析(2(3【解析】 【分析】(1)连接OC ,由BO =DO ,AB =AD ,知AO ⊥BD ,由BO =DO ,BC =CD ,知CO ⊥BD .在△AOC 中,由题设知AO 1CO ==,AC =2,故AO 2+CO 2=AC 2,由此能够证明AO ⊥平面BCD ;(2)取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点,知ME ∥AB ,OE ∥DC ,故直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角.在△OME中,11EM AB OE DC 122====,由此能求出异面直线AB 与CD 所成角大小的余弦;(3)设点E 到平面ACD 的距离为h .在△ACD中,CA CD 2AD ===,ACD1S2==,由AO =1,知2CDE1S 22==,由此能求出点E 到平面ACD 的距离. 【详解】(1)证明:连接OC ,∵BO =DO ,AB =AD ,∴AO ⊥BD , ∵BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC中,由题设知1AO CO ==,AC =2, ∴AO 2+CO 2=AC 2,∴∠AOC =90°,即AO ⊥OC . ∵AO ⊥BD ,BD ∩OC =O , ∴AO ⊥平面BCD .(2)解:取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点, 知ME ∥AB ,OE ∥DC ,∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角. 在△OME中,111222EM AB OE DC ====, ∵OM 是直角△AOC 斜边AC 上的中线,∴112OM AC ==,∴1114cos OEM +-∠==, ∴异面直线AB 与CD所成角大小的余弦为4(3)解:设点E 到平面ACD 的距离为h .E ACD A CDE V V --=,1133ACDCDEh S AO S ∴=...,在△ACD 中,2CA CD AD ===,,∴212724222ACDS⎛⎫=⨯⨯-= ⎪ ⎪⎝⎭, ∵AO =1,21332242CDES =⨯⨯=, ∴31212772CDE ACDAO S h S ⨯⋅===,∴点E 到平面ACD 的距离为217.【点睛】本题考查点、线、面间的距离的计算,考查空间想象力和等价转化能力,解题时要认真审题,仔细解答,注意化立体几何问题为平面几何问题. 22.(1)3,2a c ==;(2)2327【解析】试题分析:(1)由2BA BC ⋅=和1cos 3B =,得ac=6.由余弦定理,得2213a c +=. 解,即可求出a ,c ;(2) 在ABC ∆中,利用同角基本关系得22sin .3B =由正弦定理,得42sin sin 9c C B b ==,又因为a b c =>,所以C 为锐角,因此27cos 1sin 9C C =-=,利用cos()cos cos sin sin B C B C B C -=+,即可求出结果. (1)由2BA BC ⋅=得,,又1cos 3B =,所以ac=6. 由余弦定理,得2222cos a c b ac B +=+. 又b=3,所以2292213a c +=+⨯=.解,得a=2,c=3或a=3,c=2.因为a>c,∴ a=3,c=2.(2)在ABC ∆中,2212sin 1cos 1()33B B =-=-= 由正弦定理,得22242sin sin 339c C B b ==⋅=,又因为a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=.于是cos()cos cos sin sin B C B C B C -=+=1724223393927⋅+⋅=. 考点:1.解三角形;2.三角恒等变换.23.(1)22:1,(1,1]4y C x x +=∈-;:23110l x y ++=;(27【解析】 【分析】(1)利用代入消元法,可求得C 的直角坐标方程;根据极坐标与直角坐标互化原则可得l 的直角坐标方程;(2)利用参数方程表示出C 上点的坐标,根据点到直线距离公式可将所求距离表示为三角函数的形式,从而根据三角函数的范围可求得最值. 【详解】(1)由2211t x t -=+得:210,(1,1]1x t x x -=≥∈-+,又()2222161t y t =+ ()()222116141144111xx y x x x x x -⨯+∴==+-=--⎛⎫+ ⎪+⎝⎭整理可得C 的直角坐标方程为:221,(1,1]4y x x +=∈-又cos x ρθ=,sin y ρθ=l ∴的直角坐标方程为:23110x ++=(2)设C 上点的坐标为:()cos ,2sin θθ则C 上的点到直线l 的距离4sin 112cos 23sin 11677d πθθθ⎛⎫++ ⎪++⎝⎭==当sin 16πθ⎛⎫+=- ⎪⎝⎭时,d 取最小值则min 7d = 【点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.24.(1)22194x y +=;(2)22013x y +=. 【解析】 【分析】 【详解】试题分析:(1)利用题中条件求出c 的值,然后根据离心率求出a 的值,最后根据a 、b 、c 三者的关系求出b 的值,从而确定椭圆C 的标准方程;(2)分两种情况进行计算:第一种是在从点P 所引的两条切线的斜率都存在的前提下,设两条切线的斜率分别为1k 、2k ,并由两条切线的垂直关系得到121k k =-,并设从点()00,P x y 所引的直线方程为()00y k x x y =-+,将此直线的方程与椭圆的方程联立得到关于x 的一元二次方程,利用0∆=得到有关k 的一元二次方程,最后利用121k k =-以及韦达定理得到点P 的轨迹方程;第二种情况是两条切线与坐标轴垂直的情况下求出点P 的坐标,并验证点P 是否在第一种情况下所得到的轨迹上,从而得到点P 的轨迹方程. (1)由题意知5533a a =⇒=,且有2235b -=2b =,因此椭圆C 的标准方程为22194x y +=;(2)①设从点P 所引的直线的方程为()00y y k x x -=-,即()00y kx y kx =+-, 当从点P 所引的椭圆C 的两条切线的斜率都存在时,分别设为1k 、2k ,则121k k =-, 将直线()00y kx y kx =+-的方程代入椭圆C 的方程并化简得()()()222000094189360kx k y kx x y kx ++-+--=,()()()2220000184949360k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦, 化简得()2200940y kx k ---=,即()()2220009240x k kx y y --+-=,则1k 、2k 是关于k 的一元二次方程()()2220009240x k kx y y --+-=的两根,则201220419y k k x -==--,化简得220013x y +=;②当从点P 所引的两条切线均与坐标轴垂直,则P 的坐标为()3,2±±,此时点P 也在圆2213x y +=上.综上所述,点P 的轨迹方程为2213x y +=.考点:本题以椭圆为载体,考查直线与圆锥曲线的位置关系以及动点的轨迹方程,将直线与二次曲线的公共点的个数利用∆的符号来进行转化,计算量较大,从中也涉及了方程思想的灵活应用.25.(1) 通项公式为2n a = 或42n a n =-;(2) 当2n a = 时,不存在满足题意的正整数n ;当42n a n =- 时,存在满足题意的正整数n ,其最小值为41.【解析】 【详解】(1)依题意,2,2,24d d ++成等比数列, 故有()()22224d d +=+, ∴240d d -=,解得4d =或0d =. ∴()21442n a n n =+-⋅=-或2n a =.(2)当2n a = 时,不存在满足题意的正整数n ; 当42n a n =-,∴()224222n n n S n ⎡⎤+-⎣⎦==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去), ∴最小正整数41n =.。
2019年全国统一高考数学试卷(理科)以及答案解析(全国2卷)

2019年全国统一高考数学试卷(理科)以及答案解析(全国2卷)1.设集合A={x|x^2-5x+6>0},B={x|x-1<0},则A∩B=()A。
(-∞,1) B。
(-2,1) C。
(-3,-1) D。
(3,+∞)解析:将x^2-5x+6=0化为(x-2)(x-3)>0,得到x∈(-∞,2)∪(3,+∞),将x-1<0化为x<1,得到B={x|x<1},所以A∩B=(-∞,1)。
2.设z=-3+2i,则在复平面内对应的点位于()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限解析:实部为-3,虚部为2,所以该点位于第二象限。
3.已知|z-3|=2,|z+(3+ti)|=1,则|z|=()A。
-3 B。
-2 C。
2 D。
3解析:将|z-3|=2化为|z-3|^2=4,得到(z-3)(z-3*)=4,其中z*为z的共轭复数,将|z+(3+ti)|=1化为|z+(3+ti)|^2=1,得到(z+(3+ti))(z*+(3-ti))=1,将z展开得到z=x+yi,代入两式,化简得到x^2+y^2-6x+4=0和x^2+(y+t)^2=4,联立两式,解得x=1,y=-2-t,代入|z|^2=x^2+y^2,得到|z|=2.4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就。
实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行。
L2点是平衡点,位于地月连线的延长线上。
设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1M2/(M1+M2)(R+r)^2=G(M1+M2)/r^2.设α=GM2/R^2,由于α的值很小,因此在近似计算中α≈3α^3,则r的近似值为()A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学试题附答案一、选择题1.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ) A .0.4 2.3y x =+ B .2 2.4y x =- C .29.5y x =-+ D .0.3 4.4y x =-+2.设ω>0,函数y=sin(ωx+3π)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是 A .23B .43C .32D .33.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组B .9组C .8组D .7组 4.已知复数z 满足()12i z +=,则复数z 的虚部为( ) A .1B .1-C .iD .i -5.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .22y x =±C .3y x =±D .2y x =±6.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( ) A .6 B .8C .26D .427.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5}8.已知平面向量a ,b 是非零向量,|a |=2,a ⊥(a +2b ),则向量b 在向量a 方向上的投影为( ) A .1 B .-1C .2D .-29.下列各组函数是同一函数的是( )①()32f x x =-与()2f x x x =-;()3f x 2x y x 2x 与=-=-②()f x x =与()2g x x =;③()0f x x =与()01g x x=;④()221f x x x =--与()221g t t t =--. A .① ② B .① ③ C .③ ④ D .① ④ 10.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )A .2B .3C .22D .3211.下列函数中,最小正周期为π,且图象关于直线3x π=对称的函数是( )A .2sin 23y x π⎛⎫=+ ⎪⎝⎭B .2sin 26y x π⎛⎫=- ⎪⎝⎭C .2sin 23x y π⎛⎫=+⎪⎝⎭ D .2sin 23y x π⎛⎫=-⎪⎝⎭12.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.曲线21y x x=+在点(1,2)处的切线方程为______________. 14.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 . 15.函数()23s 34f x in x cosx =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 16.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.17.若9()ax x-的展开式中3x 的系数是84-,则a = .18.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 19.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 20.函数y=232x x --的定义域是 .三、解答题21.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由.22.已知A 为圆22:1C x y +=上一点,过点A 作y 轴的垂线交y 轴于点B ,点P 满足2.BP BA =(1)求动点P 的轨迹方程;(2)设Q 为直线:3l x =上一点,O 为坐标原点,且OP OQ ⊥,求POQ ∆面积的最小值.23.如图,矩形ABCD 和菱形ABEF 所在的平面相互垂直,ABE 60∠=︒,G 为BE 的中点.(Ⅰ)求证:AG ⊥平面ADF ;(Ⅱ) 求AB 3=BC 1=,求二面角D CA G --的余弦值. 24.若不等式2520ax x +->的解集是122x x ⎧⎫<<⎨⎬⎩⎭,求不等式22510ax x a -+->的解集.25.已知函数()()2f x x 2a 1x 2alnx(a 0)=-++>.()1求()f x 的单调区间;()2若()f x 0≤在区间[]1,e 上恒成立,求实数a 的取值范围.26.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b b y t =+∈=+为参数求的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:因为与正相关,排除选项C 、D ,又因为线性回归方程恒过样本点的中心,故排除选项B ;故选A .考点:线性回归直线.2.C解析:C 【解析】 函数sin 23y x πω⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后44sin 2sin 23333w y w x wx ππππ⎡⎤⎛⎫⎛⎫=-++=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 所以有43332013222w kk k w w k w ππ=∴=>∴≥∴=≥ 故选C3.B解析:B 【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.4.B解析:B 【解析】设,,z a bi a b R =+∈() ,由()1i 22z z i z +=⇒=--()2a bi i a bi ⇒+=--(),2a bi b a i ⇒+=-+-() ,2a b b a =-⎧⇒⎨=-⎩ 1b ⇒=- ,故选B. 5.A解析:A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以12||F F ==c ⇒=因为2521a x a =-=⇒=,所以b =所以双曲线的渐近线方程为by x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.6.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。
【详解】由基本不等式可得22a b +≥3a b +=,所以22a b +≥=(当且仅当32a b ==等号成立) 故答案为:D 【点睛】本题考查了用基本不等式求指数中的最值,比较基础。
7.B解析:B 【解析】 【分析】先求出A B ⋃,阴影区域表示的集合为()UA B ⋃,由此能求出结果.【详解】全集{1,U =3,5,7},集合{}1,3A =,{}3,5B =,{1,A B ∴⋃=3,5},∴如图所示阴影区域表示的集合为:(){}7UA B ⋃=.故选B . 【点睛】本题考查集合的求法,考查并集、补集、维恩图等基础知识,考查运算求解能力,考查集合思想,是中等题.8.B解析:B 【解析】 【分析】先根据向量垂直得到a (a +2b ),=0,化简得到a b =﹣2,再根据投影的定义即可求出. 【详解】∵平面向量a ,b 是非零向量,|a |=2,a ⊥(a +2b ), ∴a (a +2b ),=0, 即()2·20a a b += 即a b =﹣2∴向量b 在向量a 方向上的投影为·22a b a -==﹣1, 故选B . 【点睛】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.9.C解析:C 【解析】 【分析】定义域相同,对应关系一致的函数是同一函数,由此逐项判断即可. 【详解】①中()f x =的定义域为(),0∞-,()f x =(),0∞-,但()f x ==-与()f x =②中()f x x =与()g x =R ,但()g x x ==与()f x x =对应关系不一致,所以②不是同一函数; ③中()0f x x =与()01g x x =定义域都是{}|0x x ≠,且()01f x x ==,()11g x x ==对应关系一致,所以③是同一函数;④中()221f x x x =--与()221g t t t =--定义域和对应关系都一致,所以④是同一函数.故选C 【点睛】本题主要考查同一函数的概念,只需定义域和对应关系都一致即可,属于基础题型.10.C解析:C 【解析】 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为d =,所以公共弦长为:l ==. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.11.B解析:B 【解析】 【分析】首先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值,而函数sin()y A x B ωϕ=++在对称轴处取最值,即可求出结果. 【详解】先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D求得函数值为0,,而函数sin()y A x B ωϕ=++在对称轴处取最值. 故选:B . 【点睛】本题考查三角函数的周期性、对称性,难度较易.12.B解析:B 【解析】得到的偶函数解析式为sin 2sin 284y x x ππϕϕ⎡⎤⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,显然.4πϕ= 【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦选择合适的ϕ值通过诱导公式把sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦转化为余弦函数是考查的最终目的. 二、填空题13.【解析】设则所以所以曲线在点处的切线方程为即点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出斜率其求法为:设是曲线上的一点则以为切点的切线方程是若曲线在点处的切线平行于轴(即 解析:1y x =+【解析】设()y f x =,则21()2f x x x'=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.14.【解析】试题分析:依题意有即解得考点:三点共线 解析:12【解析】试题分析:依题意有AB AC k k =,即531522m --=+,解得12m =. 考点:三点共线.15.1【解析】【详解】化简三角函数的解析式可得由可得当时函数取得最大值1解析:1 【解析】 【详解】化简三角函数的解析式, 可得()22311cos cos 44f x x x x x =--=-++=2(cos 12x --+, 由[0,]2x π∈,可得cos [0,1]x ∈,当cos x =时,函数()f x 取得最大值1. 16.【解析】【分析】【详解】试题分析:当时的最大值为令解得所以a 的取值范围是考点:利用导数判断函数的单调性解析:1(,)9-+∞【解析】 【分析】 【详解】试题分析:2211()2224f x x x a x a ⎛⎫=-++=--++ ⎪⎝⎭'.当23x ⎡⎫∈+∞⎪⎢⎣⎭,时,()f x '的最大值为22239f a ⎛⎫=+ ⎪⎝⎭',令2209a +>,解得19a >-,所以a 的取值范围是1,9⎛⎫-+∞ ⎪⎝⎭.考点:利用导数判断函数的单调性.17.1【解析】【分析】先求出二项式的展开式的通项公式令的指数等于求出的值即可求得展开式中的项的系数再根据的系数是列方程求解即可【详解】展开式的的通项为令的展开式中的系数为故答案为1【点睛】本题主要考查二解析:1 【解析】 【分析】先求出二项式9()a x x-的展开式的通项公式,令x 的指数等于4,求出r 的值,即可求得展开式中3x 的项的系数,再根据3x 的系数是84-列方程求解即可. 【详解】9()a x x -展开式的的通项为()992199rr r r r rr a T C x C x a x --+⎛⎫=-=- ⎪⎝⎭, 令9233r r -=⇒=,9()a x x-的展开式中3x 的系数为()339841C a a -=-⇒=,故答案为1. 【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.18.【解析】【分析】【详解】设AB=2作CO ⊥面ABDEOH ⊥AB 则CH ⊥AB ∠CHO 为二面角C−AB−D 的平面角CH=3√OH=CHcos ∠CHO=1结合等边三角形ABC 与正方形ABDE 可知此四棱锥为解析:16【解析】 【分析】 【详解】设AB =2,作CO ⊥面ABDEOH ⊥AB ,则CH ⊥AB ,∠CHO 为二面角C −AB −D 的平面角, CH =3√,OH =CH cos ∠CHO =1,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,3,11(),2212AN EM CH AN AC AB EM AC AE AN EM ====+=-∴⋅=故EM ,AN 112633=⋅,19.-【解析】因为=====4cos2α-1=2(2cos2α-1)+1=2cos2α+1=所以cos2α=又α是第四象限角所以sin2α=-tan2α=-点睛:三角函数求值常用方法:异名三角函数化为同解析:-34【解析】因为3sin sin αα=()2sin sin ααα+ =22sin cos cos sin sin ααααα+ =()22221sin cos cos sin sin ααααα+- =24sin cos sin sin αααα- =4cos 2α-1=2(2cos 2α-1)+1=2cos 2α+1 =135,所以cos 2α=45. 又α是第四象限角,所以sin 2α=-35,tan 2α=-34. 点睛:三角函数求值常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.20.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域解析:[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1-考点:函数定义域 三、解答题21.(1) 通项公式为2n a = 或42n a n =-;(2) 当2n a = 时,不存在满足题意的正整数n ;当42n a n =- 时,存在满足题意的正整数n ,其最小值为41.【解析】【详解】(1)依题意,2,2,24d d ++成等比数列,故有()()22224d d +=+,∴240d d -=,解得4d =或0d =.∴()21442n a n n =+-⋅=-或2n a =.(2)当2n a = 时,不存在满足题意的正整数n ; 当42n a n =-,∴()224222n n n S n ⎡⎤+-⎣⎦==.令2260800n n >+,即2304000n n -->,解得40n >或10n <-(舍去),∴最小正整数41n =.22.(1) 2214x y += (2) 3.2 【解析】【分析】(1)设出A 、P 点坐标,用P 点坐标表示A 点坐标,然后代入圆方程,从而求出P 点的轨迹;(2)设出P 点坐标,根据斜率存在与否进行分类讨论,当斜率不存在时,求出POQ ∆面积的值,当斜率存在时,利用点P 坐标表示POQ ∆的面积,减元后再利用函数单调性求出最值,最后总结出最值.【详解】解:(1) 设(),P x y ,由题意得:()()1,,0,A x y B y ,由2BP BA =,可得点A 是BP 的中点,故102x x +=, 所以12x x =, 又因为点A 在圆上, 所以得2214x y +=, 故动点P 的轨迹方程为2214x y +=. (2)设()11,P x y ,则10y ≠,且221114x y +=, 当10x =时,11y =±,此时()33,0,2POQ Q S ∆=; 当10x ≠时,11,OP y k x =因为OP OQ ⊥, 即11,OQ x k y =- 故1133,x Q y ⎛⎫- ⎪⎝⎭,OP ∴=OQ==,221111322POQx yS OP OQy∆+==⋅①,221114xy+=代入①2111143334322POQyS yy y∆⎛⎫-=⋅=-⎪⎪⎝⎭()101y<≤设()()4301f x x xx=-<≤因为()24f x30x'=--<恒成立,()f x∴在(]0,1上是减函数,当11y=时有最小值,即32POQS∆≥,综上:POQS∆的最小值为3.2【点睛】本题考查了点的轨迹方程、椭圆的性质等知识,求解几何图形的长度、面积等的最值时,常见解法是设出变量,用变量表示出几何图形的长度、面积等,减元后借助函数来研究其最值.23.(Ⅰ)详见解析(Ⅱ)【解析】【分析】(Ⅰ)由矩形ABCD和菱形ABEF所在的平面相互垂直,AD AB⊥,进而证得AD⊥平面ABEF,证得AD AG⊥,再根菱形ABEF的性质,证得AG AF⊥,利用线面垂直的判定定理,即可证得AG⊥平面ADF.(Ⅱ) 由(Ⅰ)可知AD,AF,AG两两垂直,以A为原点,AG为x轴,AF为y轴,AD为z轴,建立空间直角坐标系,分别求得平面ACD和平面ACG一个法向量,利用向量的夹角公式,即可求解.【详解】(Ⅰ)证明:∵矩形ABCD和菱形ABEF所在的平面相互垂直,AD AB⊥,∵矩形ABCD⋂菱形ABEF AB=,∴AD⊥平面ABEF,∵AG⊂平面ABEF,∴AD AG⊥,∵菱形ABEF中,ABE60∠=︒,G为BE的中点,∴AG BE⊥,∴AG AF⊥,∵AD AF A⋂=,∴AG⊥平面ADF.(Ⅱ) 由(Ⅰ)可知AD ,AF ,AG 两两垂直,以A 为原点,AG 为x 轴,AF 为y 轴,AD 为z 轴,建立空间直角坐标系, ∵AB 3=,BC 1=,则AD 1=,3AG 2=, 故()A 000,,,33C 12⎛⎫- ⎪ ⎪⎝⎭,,,()D 001,,,3A 002⎛⎫ ⎪⎝⎭,,, 则33122AC ⎛⎫=- ⎪ ⎪⎝⎭,,,()001AD =,,,3002AG ,,⎛⎫= ⎪⎝⎭, 设平面ACD 的法向量()1111n x y z =,,,则11111133·022·0AC n x y z AD n z ⎧=-+=⎪⎨⎪==⎩, 取13y =,得()1130n ,,=, 设平面ACG 的法向量()2222n x y z =,,,则22222233·10223·02AC n x y z AG n x ⎧=-+=⎪⎪⎨⎪==⎪⎩, 取22y =,得()2023n ,,=, 设二面角D CA G --的平面角为θ,则1212|?|2321cos θ27·n n n n ===⨯, 由图可知θ为钝角,所以二面角D CA G --的余弦值为21-. 【点睛】本题考查了立体几何中的线面垂直的判定与证明和直线与平面所成的角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.24.132x x ⎧⎫-<<⎨⎬⎩⎭ 【解析】【分析】由不等式的解集和方程的关系,可知12,2是方程520ax x +-=的两根,利用韦达定理求出a ,再代入不等式22510ax x a -+->,解一元二次不等式即可.【详解】解:由已知条件可知0a <,且方程520ax x +-=的两根为12,2; 由根与系数的关系得55221a a⎧-=⎪⎪⎨⎪-=⎪⎩解得2a =-. 所以原不等式化为2530x x +-<解得132x -<< 所以不等式解集为132x x ⎧⎫-<<⎨⎬⎩⎭【点睛】本题主要考查一元二次不等式的解法,还考查一元二次不等式解集与一元二次方程的关系以及利用韦达定理求值. 25.(1)见解析; (2)2e 2e a 2e 2-≥-. 【解析】【分析】()1求函数的导数,利用函数单调性和导数之间的关系,即可求()f x 的单调区间;()2若()0f x ≤在区间[]1,e 上恒成立,则只需求出()f x 的最大值即可,求实数a 的取值范围.【详解】()()()21f x x 2a 1x 2alnx(a 0)=-++>.()()()()22x 2a 1x 2a2x 1x a f'x (x 0)x x -++--∴==>, 由得1x a =,2x 1=,当0a 1<<时,在()x 0,a ∈或()x 1,∞∈+时, 在()x a,1∈时,()f x ∴的单调增区间是()0,a 和()1,∞+,单调减区间是()a,1;当a 1=时,在()x 0,∞∈+时,()f x ∴的单调增区间是()0,∞+;当a 1>时,在()x 0,1∈或()x a,∞∈+时,在()x 1,a ∈时.()f x ∴的单调增区间是()0,1和()a,∞+,单调减区间是()1,a .()2由()1可知()f x 在区间[]1,e 上只可能有极小值点,()f x ∴在区间[]1,e 上的最大值在区间的端点处取到,即有()()f 112a 10=-+≤且()()2f e e 2a 1e 2a 0=-++≤, 解得2e 2e a 2e 2-≥-. 即实数a 的取值范围是2e 2e a 2e 2-≥-. 【点睛】本题主要考查函数单调性和导数之间的关系,以及不等式恒成立问题,将不等式恒成立转化为求函数的最值是解决本题的关键.26.(I )(4,),(22,)24ππ(II )1,2a b =-= 【解析】【分析】【详解】(I )圆1C 的直角坐标方程为22(2)4x y +-=,直线2C 的直角坐标方程为40x y +-= 联立得22(2)4{40x y x y +-=+-=得110{4x y ==222{2x y ==所以1C 与2C 交点的极坐标为(4,2,)24ππ (II )由(I )可得,P ,Q 的直角坐标为(0,2),(1,3),故,PQ 的直角坐标方程为20x y -+= 由参数方程可得122b ab y x =-+,所以1,12,1,222b ab a b =-+==-=解得。