初二数学一次函数测试题

合集下载

初二一次函数练习题及答案

初二一次函数练习题及答案

初二一次函数练习题及答案一.选择题1.判断下列变化过程中,两变量存在函数关系的是A.x,y是变量,y??2xB.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间.;③y?x2?x?1;④y? .下列函数关系式:①y??x;②y?2x?11A. 1个B.2个C.3个D.4个1.其中一次函数的个数是 x3.在直角坐标系中,既是正比例函数y?kx,又是y的值随x值的增大而减小的图像是A B C D4.如图,直线y?kx?b经过A和B两点,那么这个一次函数关系式是2A.y?2x?B.y??x?C.y?3x?D.y?x?135.大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系:44x?24x的图象得到直线y?,就要将直线y?x3322A.向上平移个单位B. 向下平移个单位33C. 向上平移个单位D. 向下平移个单位6.要从y??y?ax?b?x?m7.如图一次函数y1?ax?b和y2?cx?d在同一坐标系内的图象,则?的解?中?y?cx?d?y?nA.m>0,n>0B.m>0,n0 D.m 8.图1是水滴进玻璃容器的示意图,图2是容器中水高度随滴水时间变化的图像.给出下列对应::——:——:——h :——其中正确的是和和和和二.填空题1. 如果函数f?x?15?x,那么f?________2.小明将RMB1000元存入银行,年利率为2%,利息税为20%,那么x年后的本息和y与年数x的函数关系式是 .3.已知一次函数y?x+3,则k4.已知一次函数y?x?1,函数y的值随x值的增大而增大,则m的取值范围是 ..已知一次函数y=2x+4的图像经过点,则m=________。

6.已知直线y?x?6与x轴,y轴围成一个三角形,则这个三角形面积为 .7.若一次函数y=kx+b的图像经过和点,则这个函数的图像不经过象限 . . 根据下图所示的程序计算函数值,若输入的x值为k3,则输出的结果为三.1. 在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似为一次函数关系。

苏科版八年级数学上册试题 第6章 一次函数综合测试卷 (含详解)

苏科版八年级数学上册试题 第6章 一次函数综合测试卷 (含详解)

第6章《一次函数》综合测试卷一、选择题(本大题共10小题,每小题2分,共20分)1.一次函数y =(a+1)x+a+2的图象过一、二、四象限,则a 的取值是( )A .a <﹣2B .a <﹣1C .﹣2≤a ≤﹣1D .﹣2<a <﹣12.若点,在直线上,则m 与n 的大小关系是( ).A .B .C .D .无法确定3.如图,若一次函数y 1=﹣x ﹣1与y 2=ax ﹣3的图像交于点P(m ,﹣3),则关于的不等式﹣x ﹣1>ax ﹣3的解集是( )A .x <2B .x >﹣3C .x >2D .x <﹣34.一次函数中,当函数值时,自变量x 的取值范围为( )A .B .C .D .5.如图1,在等边中,点D 是边的中点,点P 为边上的一个动点,设,图1中线段的长为y ,若表示y 与x 的函数关系的图象如图2所示,则等边的周长为())A m 3,2B n ⎛⎫ ⎪⎝⎭1y x =+m n >m n <m n =36y x =-+0y <ABC V BC AB AP x =DP ABC VA .4B .C .12D .6.如图,点A ,B ,C 在一次函数y =-2x +b 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积和是( )A .1B .3C .3(b -1)D.7.如图,直线与直线相交于点P ,若不等式的解集是,则的值等于( )A .B .C .3D .8.如图,一次函数与一次函数的图象交于P (1,3),则下列说法正确的个数是( )个(1)方程的解是(2)方程组的解是(3)不等式的解集是(4)不等式的解集是.()223b -1:3m y x =+2:m y kx b =+(3)0kx b x +-+<1x >-b k 1313-3-1y ax b =+24y kx =+3ax b +=1x =4y ax b y kx =+⎧⎨=+⎩31x y =⎧⎨=⎩4ax b kx ++>1x >44kx ax b ++>>01x <<A .1B .2C .3D .49.在地球中纬度地区,从地面到高空大约之间,气温随高度的升高而下降,每升高,气温大约下降;高于但不高于,气温几乎不再变化,某城市地处中纬度地区,该市某日的地面气温为,设该城市距离地面高度为处的气温为,则与的函数图像是( )A .B .C .D .10.如图,在平面直角坐标系中,点是直线与直线的交点,点B 是直线与y 轴的交点,点P 是x 轴上的一个动点,连接PA ,PB ,则的最小值是()11km 1km 6C ︒11km 20km 20C ︒()km 020x x ≤≤C y ︒y x ()3,A a 2y x =y x b =+y x b =+PA PB +A .6B .C .9D .二、填空题(本大题共6小题,每小题2分,共12分)11.已知正比例函,当时,.则比例系数k=__________.12.若是正比例函数,则______.13.若直线是由直线向下平移了3个单位长度得到的,则kb =______.14.直线y =kx +b (k ≠0)平行于直线且经过点,那么这条直线的解析式是______.15.如图,直线y =﹣x+7与两坐标轴分别交于A 、B 两点,点C 的坐标是(1,0),DE 分别是AB 、OA 上的动点,当△CDE 的周长最小时,点E 的坐标是 _____.16.如图,将正方形置于平面直角坐标系中,其中,,边在轴上,直线与正方形的边有两个交点、,当时,的取值范围是__.三、解答题(本大题共10题,共68分)17.(4分)判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.y kx =2x =-10y =()212a y a x b =++-()2021a b -=y kx b =+21y x =--12y x =()0,2ABCD (1,0)A (3,0)D -AD x :L y kx =ABCD O E 35OE <<k18.(4分)在平面直角坐标系中,一次函数的图像经过和.(1)求一次函数解析式.(2)当,求y 的取值范围.19.(6分)小明从A 地出发向B 地行走,同时晓阳从B 地出发向A 地行走,小明、晓阳离A 地的距离y (千米)与已用时间x (分钟)之间的函数关系分别如图中、所示.(1)小明与晓阳出发几分钟时相遇?(2)求晓阳到达A 地的时间.20.(6分)如图,在平面直角坐标系中,点O 为坐标原点,直线y =kx +b 经过A (-6,0),B(1,0)(0,2)23x -<≤1l 2l(0,3)两点,点C 在直线AB 上,C 的纵坐标为4.(1)求k 、b 的值及点C 坐标;(2)若点D 为直线AB 上一动点,且△OBC 与△OAD 的面积相等,试求点D 的坐标.21.(8分)如图,直线与直线相交于点.(1)求a ,b 的值;(2)求△ADC 的面积;(3)根据图象,写出关于x 的不等式的解集.22.(8分)定义:在平面直角坐标系中,对于任意一点如果满足,我们就把点称作“和谐点”.(1)在直线上的“和谐点”为________;:AD y x b =-+1:12BC y x =+()2,B a 1012x b x <-+<+xOy ()P x y ,2||y x =()P x y ,6y =(2)求一次函数的图象上的“和谐点”坐标;(3)已知点,点的坐标分别为,,如果线段上始终存在“和谐点”,直接写出的取值范围是________.23.(6分)某校开展爱心义卖活动,同学们决定将销售获得的利润捐献给福利院.初二某班的同学们准备制作A 、B 两款挂件来进行销售.已知制作3个A 款挂件、5个B 款挂件所需成本为46元,制作5个A 款挂件、10个B 款挂件所需成本为85元.已知A 、B 两款挂件的售价如下表:手工制品A 款挂件B 款挂件售价(元/个)128(1)求制作一个A 款挂件、一个B 款挂件所需的成本分别为多少元?(2)若该班级共有40名学生.计划每位同学制作2个A 款挂件或3个B 款挂件,制作的总成本不超过590元,且制作B 款挂件的数量不少于A 款挂件的2倍.设安排m 人制作A 款挂件,请说明如何安排,使得总利润最大,最大利润是多少?2y x =-+P Q (2)P m ,(,5)Q m PQ m24.(6分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图像解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式;25.(10分)如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点在第二象限内,点、点在轴的负半轴上,,.(1)求点的坐标;(2)如图,将绕点按顺时针方向旋转到的位置,其中交直线于点,分别交直线、于点、,则除外,还有哪几对全等的三角形,请直接写出答案;(不再另外添加辅助线)(3)在(2)的基础上,将绕点按顺时针方向继续旋转,当的函数表达式.26.(10分)在平面直角坐标系中,对于点,给出如下定义:当点满足时,称点是点的等和点,已知点.(1)在中,点的等和点有__________;(2)点在直线上,若点的等和点也是点的等和点,求点的坐标;(3)已知点和线段,点C 也在 x 轴上且满足,线段上总存在线段上每个点的等和点.若的最小值为5,直接写出的值.A B C x 30CAO ∠=︒4OA =C ACB △C 30°A CB ''V A C 'OA E A B ''OA CA F G A B C AOC ''≌△△A CB ''V C COE V CE xOy 11(,)P x y 22(,)Q x y 1212x x y y +=+Q P ()3,0P ()()()1230,31,421,,Q Q Q --,P A 5y x =-+P A A (,0)B b MN 1BC =MN PC MN b答案一、选择题1.D【解析】解:∵一次函数y=(a+1)x+a+2的图象过一、二、四象限,∴a+1<0,a+2>0解得-2<a <-1.故选:D .2.B【解析】∵一次函数中,∴随的增大而增大∴故选:B .3.A【解析】解:由题意,将点代入一次函数得:,解得,不等式表示的是一次函数的图像位于一次函数的图像上方,则由函数图像得:,1y x =+10k =>y x 32<m n<(),3P m -11y x =--13m --=-2m =13x ax -->-11y x =--23y ax =-2x <故选:A .4.B【解析】解:∵一次函数y=-3x+6,∴当y=0时,x=2,y 随x 的增大而减小,∴当函数值y <0时,自变量x 的取值范围为x >2,在数轴上表示为: ,故选:B .5.C【解析】解:由图2可得y 最小值∵△ABC 为等边三角形,分析图1可知,当P 点运动到DP ⊥AB 时,DP 长为最小值,∴此时DP ∵DP ⊥AB ,∴,∵△ABC 为等边三角形,∵∠B =60°,AB=BC=AC ,∴,∴BD=2BP ,根据勾股定理可知,,∴,∴或(舍去),,∵D 为BC 的中点,∴BC =4,∴AB=BC=AC=4,∴等边△ABC 的周长为12.故选:C .90DPB ∠=︒906030PDB ∠=︒-︒=︒222BD BP DP =+22212BD BD ⎛⎫=+ ⎪⎝⎭2BD =2BD =-6.B【解析】解:由题意可得A 、C 的坐标分别为(-1,b +2)、(2,b -4),又阴影部分为三个有一直角边都是1,另一直角边的长度和为A 点纵坐标与C 点纵坐标之差的三角形,所以阴影部分的面积为:,故选B .7.B【解析】∵kx+b −(x+3)<0的解集是x>−1∴P 点横坐标是−1,则纵坐标为2则P (−1,2),由图可知直线m 2与y 轴的交点坐标是(0,-1),把P (−1,2)和(0,−1)代入∴ ∴ 故选:B .8.C【解析】解:因为一次函数与一次函数的图象交于P (1,3),所以(1)方程ax+b=3的一个解是x=1,正确;(2)方程组的解是,错误;(3)不等式ax+b>kx 十4的解集是x>1,正确;(4)不等式4>kx 十4>ax+b 的解集是0<x<1,正确.()()112432b b ⎡⎤⨯⨯+--=⎣⎦y kx b =+21k b b -+=⎧⎨=-⎩31k b =-⎧⎨=-⎩13b k =-1y ax b =+24y kx =+4y ax b y kx =+⎧⎨=+⎩31x y =⎧⎨=⎩9.B【解析】解:由题意可知,当高度x=0时,y=20℃;当x=11时,y=20-11×6=-46℃,∴y=-6x+20()当时,y=-46根据一次函数的性质可知,只有B 选项的图像符合题意.故答案为:B .10.D【解析】解:作点A 关于x 轴的对称点,连接,如图所示:则PA+PB 的最小值即为的长,将点A (3,a )代入y=2x ,得a=2×3=6,∴点A 坐标为(3,6),将点A (3,6)代入y=x+b ,得3+b=6,解得b=3,∴点B 坐标为(0,3),根据轴对称的性质,可得点A'坐标为(3,-6)∴∴PA+PB 的最小值为故选:D .二、填空题011x ≤<1120x ≤≤A 'A B 'A B 'A B '==【解析】解:把,代入得:,∴.故答案为:.12.【解析】∵是正比例函数,∴,,,∴,,∴,故答案为:.13.8【解析】解∶ 直线向下平移了3个单位长度得到,∴k=-2,b=-4,∴.故答案为:8.14.【解析】解:根据题意得,将代入得b =2,直线解析式为,故答案为:.15.10【解析】解:如图,点C 关于OA 的对称点(-1,0),点C 关于直线AB 的对称点,∵直线AB 的解析式为y=-x+7,∴直线C 的解析式为y=x-1,由,得 2x =-10y =y kx =102k =-5k =-5-1-()212a y a x b =++-10a +≠21a =20b -=1a =2b =()2021121-=-1-21y x =--24y x =--(2)(4)8kb =-⨯-=122y x =+12k =()0,212y x b =+∴122y x =+122y x =+C 'C ''C ''71y x y x =-+⎧⎨=-⎩43x y =⎧⎨=⎩∴F (4,3),∵F 是C 中点,∴可得(7,6).连接与AO 交于点E ,与AB 交于点D ,此时△DEC 周长最小,△DEC 的周长=DE+EC+CD=E +ED+D ==10.故答案为10.16.且【解析】解:如图,设BC 与y 轴交于点M ,,,,∴E 点不在AD 边上,;①如果,那么点E 在AB 边或线段BM 上,当点E 在AB 边且时,由勾股定理得,,,,C ''C ''C 'C ''C 'C ''C 'C ''k >0k <43k ≠-13OA =< 3OD =3OE >0k ∴≠0k >3OE =222918AE OE OA =-=-=AE ∴=(1E ∴当直线经过点,时,,,当点E 在线段BM 上时,,②如果,那么点E 在CD 边或线段CM 上,当点E 在CD 边且时,E 与D 重合;当时,由勾股定理得,,,,此时E 与C 重合,当直线经过点时,.当点E 在线段CM 上时,,且,符合题意;综上,当时,的取值范围是且,故答案为:且.三、解答题17.解:设过A ,B 两点的直线的表达式为y =kx +b .由题意可知,解得 ∴过A ,B 两点的直线的表达式为y =x -2.∵当x =4时,y =4—2=2.∴点C (4,2)在直线y =x -2上.∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.18.(1)解:设一次函数解析式为∵一次函数的图像经过和y kx =(1k =22216117OB AB OA =+=+= 5OB ∴=<5OE OB <=<k ∴>0k <3OE =5OE =22225916DE OE OD =-=-=4DE ∴=(3,4)E ∴-y kx =()3,4-43k =-5OE OC <=0k ∴<43k ≠-35OE <<k k >0k <43k ≠-k >0k <43k ≠-1320k b b =+⎧⎨-=+⎩12k b =⎧⎨=-⎩(0)y kx b k =+≠(1,0)(0,2)解得:∴一次函数解析式为;(2)解:由(1)得:,一次函数的图像y 随x 的增大而减小,当时,,当时,,当时,.19.(1)解:设的解析式为:.∵函数的图象过,,即,,当时,,∴小明与晓阳出发12分钟时相遇.(2)解:∵晓阳的速度为(千米/分钟),∴晓阳到达A 地的时间为分钟.20.(1)解:(1)依题意得: 解得 ∴∵点C 在直线AB 上,C 的纵坐标为402k b b +=⎧∴⎨=⎩22k b =-⎧⎨=⎩22y x =-+20k =-<∴2x =-()2226y =-⨯-+=3x =2324y =-⨯+=-∴23x -<≤46y -≤<2l 11y k x =()30,41430k ∴=1215k =1215y x ∴=1 1.6y =12x =4 1.60.212-=4200.2==603k b b -+=⎧⎨=⎩123k b ⎧=⎪⎨⎪=⎩1,32k b ==点C 坐标为(2,4)(2)∵B (0,3),C 的纵坐标为4∴∴设点D 点坐标为,又点A (-6,0)∴ 解得 当时当时∴点D 坐标为(-4,1)或(-8,-1)21.(1)解∶∵直线经过点,∴,∴点B 的坐标为,∵直线经过点,∴,∴;(2)解:∵,∴直线AD 的解析式为,令,则,令,则,∴A (0,4),D (4,0),∴OA=OD=4,直线与x 轴交于点C ,令,则,∴C (-2,0),∴OC=2,∴CD=6,13422x x +==13232OBC S ∆=⨯⨯=3OAD S ∆=(),D D x y 162D OA y ⨯⨯=1D y =±1=D y 4D x =-1D y =-8D x =-112y x =+()2,B a 12122a =⨯+=22(,)y x b =-+()2,2B 22b =-+4b =4b =4y x =-+0x =4y =0y =4x = 112y x =+0y =2x -=∴;(3)解:点B 的坐标为,点D 的坐标为,∴根据图象可得:关于x 的不等式的解集为.22.(1)解:由题意得:,解得:x =3或x =-3,在直线上的“和谐点”为:(3,6)和(-3,6);(2)由“和谐点”的定义可知或,联立,解得:,联立,解得:,所以一次函数的图象上的“和谐点”坐标为(,)和(-2,4);(3)如图为的函数图象的简图,PQ y 轴,①当m >0时,令,解得:,令,解得:,由图可知,如果线段上始终存在“和谐点”,的取值范围是;②当m <0时,令,解得:,令,解得:,由图可知,如果线段上始终存在“和谐点”,的取值范围是,综上,当或时,线段上始终存在“和谐点”.11641222ACD S CD OA =⋅=⨯⨯=V 22(,)40(,)1012x b x <-+<+24x <<26x =6y =2y x =2y x =-22y x y x =-+⎧⎨=⎩2343x y ⎧=⎪⎪⎨⎪=⎪⎩22y x y x =-+⎧⎨=-⎩24x y =-⎧⎨=⎩2y x =-+23432y x =∥22y x ==1x =25y x ==52x =PQ m 512m ≤≤22y x =-=1x =-25y x =-=52x =-PQ m 512m -≤≤-512m ≤≤512m -≤≤-PQ23.(1)由题意可设制作一个A 款挂件、一个B 款挂件所需的成本分别为x 、y 元,则,解得将①得6x+10y=92,再将①②得x=7,再将x=7回代②得y=5,解得,答:制作一个A 款挂件、一个B 款挂件所需的成本分别7元、5元;(2)由题意得设(40)人制作B 款挂件,总利润为w 元,则w=(12),∴w 随m 的增大而增大,∵制作的总成本不超过590元,且制作B 款挂件的数量不少于A 款挂件的2倍,∴,解得10∵m 为正整数,∴当m=17时,w 取得最大值,此时w=377,(40)=23,答:当安排17人制作A 款挂件,23人制作B 款挂件时,总利润最大,最大利润为377元.24.(1)根据图像信息:货车的速度(千米/时).∵轿车到达乙地的时间为货车出发后4.5小时,354651085x y x y +=⎧⎨+=⎩①②2⨯-75x y =⎧⎨=⎩m -7-2(85)3(40)360m m m ⨯+-⨯-=+7253(40)5903(40)22m m m m ⨯+⨯-≤⎧⎨-≥⨯⎩1177m ≤≤m -300605v ==货∴轿车到达乙地时,货车行驶的路程为:(千米).此时,货车距乙地的路程为:(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD 段函数解析式为()().∵,在其图像上,∴,解得.∴CD 段函数解析式:;25.(1)解:在中,,,所以,则;(2)解:或或(3)解:如图1,过点作于点.∵∴.∵在Rt △AOC 中,,IOC=2,∠ACO=90°,∴∴点A(-2,,设直线OA 的解析是为,则,∴,∴直线OA 的解析式为,令,解得x=,∴点的坐标为. 4.560270⨯=30027030-=y kx b =+0k≠ 2.5 4.5x ≤≤(2.5,80)C (4.5,300)D 2.5804.5300k b k b +=⎧⎨+=⎩110195k b =⎧⎨=-⎩(1101952.5 4.)5y x x =-≤≤Rt AOC V 4OA =30CAO ∠=︒122CO OA ==()2,0C -A EF AGF '≌△△B GC CEO '≌△△A GC AEC'≌△△E 1E M OC ⊥M 1112COE S CO E M =⋅=△1E M =4OA =AC ===y mx =()2m =⨯-m =y ==14-1E 14⎛- ⎝设直线的函数表达式为,,解得.∴.同理,如图2所示,点的坐标为.设直线的函数表达式为,则,解得 .∴综上所得或.26.(1)Q 1(0,3),则0+3=3+0,∴Q 1(0,3)是点P 的等和点;Q 2(1,4),则1+3=4+0,∴Q 2(1,4)是点P 的等和点;Q 3(-2,-1),则-2+3≠-1+0,∴Q 3(-2,-1)不是点P 的等和点;故答案为:Q 1,Q 2;(2)设点P (3,0)的等和点为(m ,n ),∴3+m=n ,有m-n=-3,1CE 11y k x b =+11112014k b k b -+=⎧⎪⎨-+=⎪⎩11k b ⎧=⎪⎪⎨⎪=⎪⎩y x =+2E 1,4⎛ ⎝2CE 22y k x b =+22222014k b k b -+=⎧⎪⎨+=⎪⎩22k b ⎧=⎪⎪⎨⎪=⎪⎩y x =y x =+y =∵A 在直线y=-x+5上,∴设A (t ,-t+5),则A 点的等和点为(m ,n ),∴t+m=-t+5+n ,由m-n=-2t+5,∴-3=-2t+5,解得t=4,∴A (4,1);(3)∵P (3,0),∴P 点的等和点在直线l :y=x+3上,∵B (b ,0),BC=1,且C 在x 轴上,∴C (b-1,0)或(b+1,0)∴C 点的等和点在直线l 1:y=x+b-1或y=x+b+1上,设直线l 1与y 轴交于C',直线l 与y 轴交于P',则C'(0,b-1)或(0,b+1),P'(0,3),①当点C 在点B 的左边时,如图1,直线CC'与直线l 交于N ,当M 与C'重合时,MN 最小为5,∵△MNP'是等腰直角三角形,∴∴,∴如图2,同理得∴3+(1-b )∴②当点C 在点B 的右边时,如图3,同理得:∴,∴如图4,同理得:,∴,∴综上,b 的值是2−或4−或.。

八年级数学《一次函数》经典练习题含答案

八年级数学《一次函数》经典练习题含答案

八年级数学《一次函数》经典练习题一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x 的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题(1)1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y 有如下的对应关系:x(℃)…-10 0 10 20 30 …y(℉)…14 32 50 68 86 …(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).三、1.(1)因为与成正比例,所以(k是不等于0的常数),即.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.。

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析1.某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是()A.B.C.D.【答案】C.【解析】∵某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间,∴休息时油量不在发生变化.从而可排除A,B选项.又∵再次出发油量继续减小,到B地后发现油箱中还剩油4升,∴只有C符合要求.故选C.【考点】函数的图象.2.已知一次函数y=2x+1,则它的图象与坐标轴围成的三角形面积是.【答案】.【解析】求得函数与坐标轴的交点,然后根据三角形的面积公式即可求得三角形的面积:∵一次函数的关系式是y=2x+1,∴当x=0时,y=1;当y=0时,x=.∴它的图象与坐标轴围成的三角形面积是:.【考点】一次函数图象上点的坐标特征.3.在平面直角坐标系中,点,,,…和,,,…分别在直线和轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(),那么点的纵坐标是_ _____.【答案】.【解析】利用待定系数法求一次函数解析式求出直线的解析式,再求出直线与x轴、y轴的交点坐标,求出直线与x轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到各点的纵坐标的规律.试题解析:如图:∵A1(1,1),A2(,)在直线y=kx+b上,∴,解得.∴直线解析式为,如图,设直线与x轴、y轴的交点坐标分别为N、M,当x=0时,y=,当y=0时,,解得x=-4,∴点M、N的坐标分别为M(0,),N(-4,0),∴tan∠MNO=,作A1C1⊥x轴与点C1,A2C2⊥x轴与点C2,A3C3⊥x轴与点C3,∵A1(1,1),A2(,),∴OB2=OB1+B1B2=2×1+2×=2+3=5,tan∠MNO=,∵△B2A3B3是等腰直角三角形,∴A3C3=B2C3,∴A3C3=,同理可求,第四个等腰直角三角形A4C4=,依此类推,点An的纵坐标是.【考点】一次函数综合题.4.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第____象限.【答案】四.【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案是四.【考点】一次函数图象与系数的关系.5.已知一次函数y=kx+b的图象经过点A(0,-1),B(1,0),求这个一次函数的表达式.【答案】y=x-1.【解析】设出函数解析式为y=kx+b,再将点A(0,-1)和B(1,0)代入可得出方程组,解出即可得出k和b的值,即得出了函数解析式.试题解析:设一次函数解析式为y=kx+b,∵一次函数y=kx+b经过点A(0,-1)和B(1,0),∴,解得:,∴这个一次函数的解析式为y=x-1.考点: 待定系数法求一次函数解析式.6.某市推出电脑上网包月制,每月收取费用用y(元)与上网时间x(小时)的函数关系式如图所示,其中AB是线段,且BC是射线.(1)写出y与x之间的函数关系式及自变量的取值范围.(2)若小王6月份上网25小时,他应付多少元的上网费用?7月份上网50小时又应付多少元呢?(3)若小王8月份上网费用为100元,则他在该月份的上网时间是多少?【答案】(1);(2)40,80;(3)60.【解析】(1)分两段表示函数关系式;(2)取x=25,50分别代入相应的关系式计算求解;(3)求y=100时x的值.试题解析:(1)线段AB对应的解析式为;设射线BC对应的解析式为.∵B(30,40),C(40,60),∴,解之得:,∴,∴与之间的函数关系式为;(2)当x=25时,y=40;当x=50时,y=2×50﹣20=80,故上网25小时,他应付40元的上网费用;上网50小时应付80元上网费;(3)当y=100时,2x﹣20=100.解得 x=60,故若小王8月份上网费用为100元,则他在该月份的上网时间是60小时.【考点】一次函数的应用.7.如图,已知函数和的图像交于点P(-2,-5),则根据图像可得不等式的解集是.【答案】x>-2.【解析】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y=3x+b和y=ax-3的图象交于点P(-2,-5),求不等式3x+b>ax-3的解集,就是看函数在什么范围内y=3x+b的图象对应的点在函数y=ax-3的图象上面.从图象得到,当x=-2时,y=3x+b的图象对应的点在函数y=ax-3的图象上面,所以不等式3x+b>ax-3的解集为x>-2.故答案是:x>-2.【考点】一次函数与一元一次不等式.8.华盛印染厂生产某种产品,每件产品出厂价为30元,成本价为20元(不含污水处理部分费用).在生产过程中,平均每生产1件产品就有0.5立方米污水排出,所以为了净化环境,工厂设计了两种对污水进行处理的方案并准备实施.方案一:工厂污水先净化处理后再排出,每处理1立方米污水所用的原料费用为2元,并且每月排污设备损耗等其它各项开支为27000元.方案二:将污水排放到污水处理厂统一处理,每处理1立方米污水需付8元排污费.(1)若实施方案一,为了确保印染厂有利润,则每月的产量应该满足怎样的条件?(2)你认为该工厂应如何选择污水处理方案?【答案】(1)每月的产量大于3000件;(2)每月的产量小于9000件时选择方案二利润较高;同理,每月的产量大于9000件时选择方案一利润较高;每月的产量9000件时,两种方案利润相同。

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析1.儿童受伤,小红爸爸的公司急需用车,但又不准备买车,公司准备和一个个体车主或一家出租车公司签订月租车合同,设汽车每月行驶x千米,个体车主收费为y1元,出租车公司收费y2元,观察图象可知,当x_________时,选用个体车主较合算.【答案】>1800.【解析】根据图象可以得到当x>1800千米时,y1<y2,则选用个体车较合算.故答案是>1800.【考点】一次函数的应用.2.与直线y=2x+1关于x轴对称的直线是()A.y="-2x+1"B.y=-2x-1C.D.【答案】B.【解析】∵直线y=f(x)关于x对称的直线方程为y=-f(x),∴直线y=2x+1关于x对称的直线方程为:-y=2x+1,即y=-2x-1.故选B.【考点】一次函数图象与几何变换.3.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是()A.0B.1C.2D.3【答案】B.【解析】∵当x=-1时,y=-5×(-1)+1=-6≠5,∴此点不在一次函数的图象上,故①错误;∵k=-5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=-5×1+1=-4,又k=-5<0,∴y随x的增大而减小,∴当x>1时,y<-4,则y<0,故③正确,④错误.综上所述,正确的只有:③ 故选B .【考点】一次函数的性质.4. A 城有肥料300吨,B 城有肥料200吨,现要把这些肥料全部运往甲,乙两乡,从A 城往甲,乙两乡运肥料的费用分别为每吨20元和25元;从B 城往甲,乙两乡运肥料的费用分别为每吨25元和15元.现甲乡需要肥料260吨,乙乡需要肥料240吨.设从A 城运往甲乡的肥料为x 吨. (1)请你填空完成下表中的每一空:(3)怎样调运化肥,可使总运费最少?最少运费是多少?【答案】(1)填空见下表;(2)y==-15x+13100;(3) A 城运往甲乡的化肥为260吨,A 城运往乙乡的化肥为40吨,B 城运往甲乡的化肥为20吨,B 城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【解析】(1)根据A 城运往甲乡的化肥为x 吨,则可得A 城运往乙乡的化肥为(300-x )吨,B 城运往甲乡的化肥为(260-x )吨,B 城运往乙乡的化肥为[240-(300-x )]吨; (2)根据(1)中所求以及每吨运费从而可得出y 与x 大的函数关系; (2)x 可取60至260之间的任何数,利用函数增减性求出即可. 试题解析:(1)填表如下:(2)根据题意得出:y=20x+25(300-x )+25(260-x )+15[240-(300-x )]=-15x+13100; (3)因为y=-15x+13100,y 随x 的增大而减小,根据题意可得:,解得:60≤x≤260,所以当x=260时,y最小,此时y=9200元.此时的方案为:A城运往甲乡的化肥为260吨,A城运往乙乡的化肥为40吨,B城运往甲乡的化肥为20吨,B城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【考点】1.一次函数的应用;2.一元一次不等式组的应用.5.两个全等的直角三角形重叠放在直线上,如图14-1,AB=6cm,BC=8cm,∠ABC=90°,将Rt△ABC在直线上向左平移,使点C从F点向E点移动,如图14-2所示.(1)求证:四边形ABED是矩形;请说明怎样移动Rt△ABC,使得四边形ABED是正方形?(2)求证:四边形ACFD是平行四边形;说明如何移动Rt△ABC,使得四边形ACFD为菱形?(3)若Rt△ABC向左移动的速度是1cm/s,设移动时间为t秒,四边形ABFD的面积为Scm.求s随t变化的函数关系式.【答案】(1)证明见解析;(2)证明见解析;(3)S=3t2+24.【解析】(1)四边形ACFD为Rt△ABC平移形成的,推出AD∥BE,AB∥DE,∠ABE=90°,根据矩形的判定得出即可;根据正方形的判定得出即可;(2)根据平移得出AD∥CF,AC∥DF,根据平行四边形的判定得出即可;根据菱形的判定得出即可;(3)根据平行四边形的性质得出AD=CF,求出BF,根据梯形的面积公式求出即可.试题解析:(1)证明:∵Rt△ABC从Rt△DEF位置平移得出图2,∴AD∥BE,AB∥DE,∠ABE=90°,∴四边形ABED是矩形;当Rt△ABC向左平移6cm时,四边形ABED是正方形;(2)证明:∵四边形ACFD为Rt△ABC平移形成的,∴AD∥CF,AC∥DF,∴四边形ACFD为平行四边形,在Rt△ABC中,由勾股定理得:AC==10cm,即当Rt△ABC向左平移10cm时,四边形ACFD为菱形;(3)解:分为以上图形中的三种情况,∵由(2)知:四边形ACFD为平行四边形,∴AD=CF=1s×tcm/s=tcm,∴BF=(8+t)cm,∵四边形ABFD的面积为Scm2,∴三种情况的四边形ABFD的面积S=(AD+BF)×AB=•(t+8+t)•6,S=3t2+24,即三种情况S随t变化的函数关系式都是S=3t2+24.【考点】几何变换综合题.6.甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,按原路原速返回,追上小明后(米)与行走的时间为x(分两人一起步行到乙地.如图,线段OA表示小明与甲地的距离为y1(米)与行走的时间为x(分钟)钟)之间的函数关系;折线BCDEA表示小亮与甲地的距离为y2之间的函数关系.请根据图像解答下列问题:(1)小明步行的速度是米/分钟,小亮骑自行车的速度米/分钟;(2)图中点F坐标是(,)、点E坐标是(,);(3)求y1、y2与x之间的函数关系式;(4)请直接写出小亮从乙地出发再回到乙地过程中,经过几分钟与小明相距300米?【答案】(1)50,200;(2)8,400;32,1600;(3)y1=50x,y2=﹣200x+2000;(4)经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【解析】(1)根据图象可知小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)(3)分别设小明、小亮与甲地的距离为y1(米)、y2(米)与x(分钟)之间的函数关系式为y1=k1x,y2=k2x+b,由待定系数法根据图象就可以求出解析式;再进一步求得交点的坐标,得出点F、E的坐标即可;(4)分追击问题与相遇的过程中小亮与小明相距300米探讨得出答案即可.试题解析:(1)小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)设小明与甲地的距离为y1(米)与x(分钟)之间的函数关系式为y1=k1x,代入点(40,2000)得:2000=40k1,解得k1=50,所以y1=50x,设小亮与甲地的距离为y2(米)与x(分钟)之间的函数关系式为y2=k2x+b,则代入点(0,2000)和(10,0)得,所以yBC=﹣200x+2000,由图可知24分钟时两人的距离为:S=24×50=1200,小亮从甲地追上小明的时间为24×50÷(200﹣50)=8分钟,也就是32分钟时为0,则y1=50x=1600,则点E坐标为(32,1600);由题意得,解得,所以图中点F坐标是(8,400);(3)由(2)可知y1=50x,yBC=﹣200x+2000(0≤x≤10),设S与x之间的函数关系式为:S=kx+b,由题意,,解得:,∴S=﹣150x+4800,即yED=﹣150x+4800(24≤x≤32);(4)当0≤x≤10时,(2000﹣300)÷(50+200)=6.8(分钟)当8≤x≤10,300÷(50+200)+8=9.2(分钟)当24≤x≤32,则50x﹣(﹣150x+4800)=300,解得x=25.5(分钟)答:小亮从乙地出发再回到乙地过程中,经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【考点】一次函数的应用.7.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是()A.x<1B.x>1C.x<2D.x>2【答案】B【解析】先把点(1,2)代入y=ax﹣1,求出a的值,然后解不等式ax﹣1>2即可.【考点】一次函数与一元一次不等式.8.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多【答案】B.【解析】结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.【考点】函数的图象.9.一次函数的大致图象是()【答案】A.【解析】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b <0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.本题中因为a的取值不明确,故应分两种情况讨论,找出符合任一条件的选项即可.当a>0时,直线经过一,三,四象限,选项A正确;当a<0时,直线经过一,二,四象限,A、B、C、D均不符合此条件.故选A.【考点】一次函数的图象性质.10.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。

初二数学一次函数的练习题

初二数学一次函数的练习题

初二数学一次函数的练习题一、填空题1. 已知一次函数的方程为y = 2x + 1,求该函数的自变量增加3时,函数值的增量为______。

2. 若一次函数的图像过点(3, 5),斜率为4,则该函数的解析式为_________。

3. 若直线y = 3x - 2与一次函数y = kx + 1平行,则k的值为______。

4. 已知线段的中点坐标为(2, 3),一端点坐标为(4, 7),求该线段的另一端点坐标为______。

5. 若一次函数的图像经过点(1, 3)和点(4, 9),则该函数的解析式为_________。

二、选择题1. 一条直线与x轴的交点是(2, 0),与y轴的交点是(0, 4),则该直线的解析式为:A. y = -2x + 4B. y = 2x + 4C. y = -4x + 2D. y = 4x + 22. 一次函数的斜率为2,经过点(3, 5),则该函数的解析式为:A. y = 5x + 3B. y = 2x - 3C. y = 2x + 3D. y = 3x + 23. 若函数y = mx + n与x轴交于点(1, 0),则m和n的关系为:A. n = 1 - mB. m = 1 - nC. n = -1 - mD. m = -1 - n4. 若一次函数过点(2, 3)和点(4, 7),则斜率为:A. 2B. 3C. 4D. 55. 一次函数的图像经过点(1, 3)和点(2, 5),则斜率为:A. 2B. 3C. 4D. 5三、计算题1. 将一次函数y = 3x - 2的自变量增加5,所得函数值的增量是多少?2. 已知一次函数的解析式为y = kx + 3,当自变量为2时,函数值为7。

求k的值。

3. 若一次函数的解析式为y = 2x - 1,求该函数与y轴的交点坐标。

4. 一次函数的图像过点(1, 4)和点(3, 8),求该函数的解析式。

5. 若直线2x - y = 3与一次函数平行,且该直线过点(4, 6),求该一次函数的解析式。

初二数学一次函数练习题(附答案)

初二数学一次函数练习题(附答案)

初二数学一次函数练习题(附答案)选择题1.已知一次函数,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。

那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) > (B) < (C) = (D)以上均有可能4.若函数( 为常数)的图象如图所示,那么当时,的取值围是A、B、C、D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB 最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为.下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m≠0)和反比例函数y= (n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网打出时间t(分钟)与打出费s(元)的函数关系如图3,当打出150分钟时,这两种方式费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y 轴交于正半轴,则|a―1|+ =。

八年级(初二)数学(一次函数)试卷试题附答案解析

八年级(初二)数学(一次函数)试卷试题附答案解析

一、单选题(共10题;共分)1.下列各曲线中,不表示y是x的函数的是()A. B. C. D.2.函数的图象一定经过点()A. (3,5)B. (-2,3)C. (2,7)D. (4,10)3.y=kx+(k-3)的图象不可能是()A. B. C. D.4.已知一次函数y=kx+b的图象如图,则k、b的符号是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A. 1<x<2B. x>2C. x>0D. 0<x<16.一次函数y=mx+n与正比例函数y=mnx(m、n常数,且m≠0),在同一坐标系中的大致图象是()A. B. C. D.7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y与浆洗一遍的时间x之间关系的图象大致为()A. B.C. D.8.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()A. B. C. D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.x上,若A1(1,10.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y= √330),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A. 22n√3B. 22n−1√3C. 22n−2√3D. 22n−3√3二、填空题(共10题;共分)11.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________ .12.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.13.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 ________象限.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为 ________.15.如图,在坐标系中,一次函数y=−2x+1与一次函数y=x+k的图像交于点A(−2,5),则关于x的不等式x+k>−2x+1的解集是________.16.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=−x+b也随之移动,设移动时间为t秒.若l与线段BM有公共点,则t的取值范围为________.17.如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是________.18.如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(4√3,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为________19.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 ________s能把小水杯注满.20.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 ________三、解答题(共2题;共22分)21.已知:一次函数的图象与直线y=﹣2x+1平行,且过点(3,2),求此一次函数的解析式.22.我县为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y(元)与所用的水量x(吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y与x之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨。

初二数学试卷一次函数

初二数学试卷一次函数

一、选择题(每题3分,共30分)1. 下列关于一次函数的说法正确的是()A. 一次函数的图像是一条直线B. 一次函数的图像是一条曲线C. 一次函数的图像是一条折线D. 一次函数的图像是一条抛物线2. 已知一次函数y=kx+b的图像经过点(2,3),且斜率k=2,则函数的解析式为()A. y=2x+3B. y=3x+2C. y=4x+1D. y=5x+23. 若一次函数y=kx+b的图像与x轴、y轴分别相交于点A、B,则AB的长度的平方为()A. k^2+b^2B. k^2-b^2C. k^2+2b^2D. k^2+4b^24. 一次函数y=kx+b的图像经过点(1,-2)和(-1,4),则函数的解析式为()A. y=x-3B. y=2x-1C. y=3x+2D. y=4x-35. 若一次函数y=kx+b的图像与x轴、y轴分别相交于点A、B,且AB的长度为5,则斜率k的取值范围为()A. k>0B. k<0C. k>1或k<-1D. k<1或k>-16. 一次函数y=kx+b的图像经过点(2,-3)和(-2,1),则函数的解析式为()A. y=-x-1B. y=x+1C. y=-2x-1D. y=2x+17. 一次函数y=kx+b的图像经过点(0,3),且与y轴的交点坐标为(0,b),则b的值为()A. 0B. 3C. -3D. 68. 一次函数y=kx+b的图像经过点(1,-1)和(-1,3),则函数的解析式为()A. y=-2x+2B. y=2x-2C. y=-2x-2D. y=2x+29. 若一次函数y=kx+b的图像与x轴、y轴分别相交于点A、B,且AB的长度的平方为36,则斜率k的取值范围为()A. k>0B. k<0C. k>6或k<-6D. k<6或k>-610. 一次函数y=kx+b的图像经过点(0,1),且与y轴的交点坐标为(0,b),则b的值为()A. 0B. 1C. -1D. 2二、填空题(每题3分,共30分)11. 一次函数y=kx+b的图像与x轴的交点坐标为(a,0),则斜率k的值为______。

(完整版)初二数学一次函数经典试题含答案

(完整版)初二数学一次函数经典试题含答案

初二数学一次函数超经典试题含答案一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量 x 的取值范围是x>2的是()A • y= J 2 xB • y= 1C • y=j 4 x 2D . y= J x 2 - J x 2 .x 22.下面哪个点在函数 y=l x+1的图象上()2B . (-2 , 1)C . (2, 0)D . (-2 , 0) 耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在 课堂上,李老师请学生画出他行进的路程 y?(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是() A . y=-2x+3 B . y=-3x+2 C . y=3x-2 D . y^ x-3二、你能填得又快又对吗?(每小题 3分,共30分)11. 已知自变量为 x 的函数y=mx+2-m 是正比例函数,贝U m=, ?该函数的解析式为12. 若点(1, 3)在正比例函数 y=kx 的图象上,则此函数的解析式为A . (2, 1)3.下列函数中, y 是x 的正比例函数的是(A . y=2x-1B . y=—C . y=2x 2D . y=-2x+13 4.一次函数y=-5x+3的图象经过的象限是() A . 一、二、三B .二、三、四C . 一、二、四D .一、三、四6.若一次函数y= (3-k ) x-k 的图象经过第二、三、四象限,则A . k>3B . 0<k < 3C . 0 < k<3D . 0<k<3k 的取值范围是( 7.已知一次函数的图象与直线 y=-x+1平行,且过点(8, 2),那么此一次函数的解析式为A . y=-x-2B . y=-x-6C . y=-x+10D 8.汽车开始行驶时,油箱内有油 40升,如果每小时耗油.y=-x-15升,则油箱内余油量 y (升)与13. 已知一次函数y=kx+b的图象经过点A(1,3 )和B-1 ,-1 ),则此函数的解析式为 .14. 若解方程x+2=3x-2得x=2,则当x 时直线y=x+?2?上的点在直线y=3x-2上相应点的上方.15. 已知一次函数y=-x+a与y=x+b的图象相交于点(m, 8),贝U a+b=.16. 若一次函数y=kx+b交于y?轴的负半轴,?且y?的值随x?的增大而减少,?则k 0,b 0.(填" >”、"<”或“=”)x y 3 0 —17. 已知直线y=x-3与2xy=2x+2的交点为(-5 ,-8 ),则万程组的解是.18. 已知一次函数y=-3x+1的图象经过点(a, 1)和点(-2 , b),贝U a=, b=.19. 如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为.20. 如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为△ AOC勺面积为.三、认真解答,一定要细心哟!(共60分)21. (14分)根据下列条件,确定函数关系式:(1) y与x成正比,且当x=9时,y=16;(2) y=kx+b的图象经过点(3, 2)和点(-2 , 1).23. (12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元, 问他一共带了多少千克土豆?24. (10分)如图所示的折线ABC斐示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象(1)写出y与t?之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25. (12分)已知雅美服装厂现有A种布料70米,B种布料52米,?现计划用这两种布料生产MN两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.?1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.?9米, 可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y (元)与x (套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:第一份3 . B4 . C5 . D6 . A7 . C8 . B9 . C 10 . A11. 2; y=2x 12 . y=3x 13 . y=2x+1 14 . <2 15 . 1616. <; < 17 . X5 18 . 0; 7 19 . ± 6 20 . y=x+2; 4 y 821.① y=^x;② y=lx+〔22 . y=x-2 ; y=8; x=149 5 523. ①5元;②0.5元;③45千克24. ①当0<t < 3 时,y=2.4 ;当t>3 时,y=t-0.6 .②2.4元;6.4元25. ① y=50x+45 ( 80-x ) =5x+3600...•两种型号的时装共用A种布料[1.1x+0.?6 (80-x )]米,共用B种布料[0.4x+0.9 (80-x)]米,解之得40V x< 44,而x为整数,••• x=40, 41, 42, 43, 44,y 与x 的函数关系式是y=5x+3600 (x=40 , 41, 42, 43, 44);②y随x的增大而增大,. .当x=44 时,y 最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案一、选择题1.已知函数y = 2x + 3,若x = 4,则y =a) 8b) 11c) 7d) 9答案:b) 112.若函数y = kx + 5,当x = 3时,y = 17,则k的值为:a) 3b) 4c) 5d) 6答案:d) 63.已知函数y = -3x + 2,若x = -2,则y =a) 4b) 8c) -2d) -8答案:a) 44.若函数y = 4x - 5,当x = -1时,y =a) -4b) 9c) -9d) 11答案:c) -9二、填空题1.函数y = 2x + 3表示一条直线,其斜率为____,截距为____。

答案:2,32.已知一次函数y = -5x + k,当x = 2时,y = 9,则k的值为____。

答案:193.已知函数y = 3x + 4,若x = -1,则y的值为____。

答案:14.函数y = -2x - 1与y轴交于点(____,0)。

答案:-0.5三、解答题1.已知函数y = 2x + 1,求:(1)当x = 3时,y的值为多少?(2)当y = 5时,求相应的x值。

解:(1)将x = 3代入函数中,得到y = 2*3 + 1 = 7。

所以当x = 3时,y的值为7。

(2)将y = 5代入函数中,得到5 = 2x + 1,解方程得到x = 2。

所以当y = 5时,相应的x值为2。

2.已知函数y = -3x + 5,求:(1)求函数与x轴和y轴的交点坐标。

(2)求函数的斜率和截距。

解:(1)当函数与x轴交点时,y = 0,代入函数得到0 = -3x + 5,解方程得到x = 5/3。

所以与x轴的交点坐标为(5/3, 0)。

当函数与y轴交点时,x = 0,代入函数得到y = 5。

所以与y轴的交点坐标为(0, 5)。

(2)已知函数y = -3x + 5,斜率为-3,截距为5。

四、应用题1.一个移动应用程序每下载一个应用,需支付固定的5元服务费和每个应用的2元费用。

初二数学之一次函数单元测试卷

初二数学之一次函数单元测试卷

第19章一次函数单元测试卷一、单项选择题(本题共10小题,每小题3分,共30分。

)1.函数中自变量x的取值范围是()A.x>2 B.x<2 C.x≠0 D.x=22.下列函数中,是一次函数的是()A.①②B.①③C.①④D.②③3.已知一次函数y=kx+b(k≠0),若k•b<0,则该函数的图象可能是()A.B.C.D.4.已知将直线y=x-1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是( )A.经过第一、二、四象限 B.与x轴交于(1,0)C.与y轴交于(0,1) D.y随x的增大而减小5.小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10分钟后,用15分钟返回家里.图中表示小红爷爷离家的时间与外出的距离之间的关系是()A B C D6.一支签字笔单价为1.5元,小美同学拿了100元钱去购买了x(0<x≤66)支该型号的签字笔,则剩余的钱数y与x之间的关系式是()A.y=1.5x B.y=100﹣1.5x C.y=1.5x﹣100 D.y=1.5x+1007.已知点A(﹣4,y1),B(2,y2)都在直线上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较8.在平面直角坐标系中,一次函数132y x=+,当2x<时,对于x的每一个值,正比例函数()0y mx m=≠的值都小于一次函数132y x=+的值,则m的取值范围为()A.2m≤B.2m<C.122m<<D.122m≤≤9.一次函数与在同一平面直角坐标系中的图像如图所示.根据图像有下列五个结论:①;②;③方程的解是;④不等式的解集是;⑤不等式的解集是.其中正确的结论个数是()A.1 B.2 C.3 D.410.地铁给人们带来了快捷、便利的生活,同时也是疏导交通、解决拥堵的最佳方式.现有甲、乙两个工程队分别同时开挖两条600米长的隧道,所挖隧道长度y(米)与挖掘时间x(天)之间的函数关系如图所示,现有下列说法:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前2天完成任务;④当x=2或6时,甲、乙两队所挖隧道长度都相差100米.其中正确的有()A.1个B.2个C.3个D.4个①②③④二、填空题(本题共6小题,每小题3分,共18分.)11.已知y =3x 正比例函数的图象经过点(m ,6),则m 的值为 .12.直线y =kx +b (k ≠0)与x 轴的交点坐标为A (﹣2,0),则关于x 的方程kx +b=0的解是 .13.一次函数y =112x -+图像与坐标轴围成的三角形的面积是 . 14.如图,已知一次函数y =kx +b ,则kx +b <0的解集是 . 第14题图15.如图,点P 从长方形ABCD 的顶点D 出发,沿D →C →B →A 路线以每秒1cm 的速度运动,运动时间x 和△DAP 的面积y 之间构成的函数的图象如图2所示,则长方形ABCD 的面积为 .第14题图 第16题图16.如图,在平面直角坐标系中,一次函数的图象分别交x ,y 轴于点B ,C ,将直线BC 绕点B 按逆时针方向旋转45°,交x 轴于点A ,则直线AB 的函数表达式 .三、解答题(本题共6小题,共52分.)17.如图,一次函数y kx b =+的图像与过点()14A ,和()22B --, (1)求函数解析式;(2)其图像与x 轴,y 轴分别交于点C ,点D ,求线段CD 的长18.设一次函数y 1=(k -1)x+5-2k , y 2=(k+1)x+1-2k .(1)若函数y 1的图象与y 轴交于点(0,-3),求函数y 1的表达式.(2)若函数y 2图象经过第一,二,三象限,求k 的取值范围.(3)当x>m 时,y 1<y 2,求m 的取值范围.19.如图,正比例函数3y x =-的图象与一次函数y kx b =+的图象交于点(,3)P m ,一次函数的图象经过点(1,1)B ,与y 轴的交点为D ,与x 轴的交点为C .(1)求一次函数y kx b =+的表达式;(2)求COP 的面积;(3)不解关于,x y 的方程组300y x y kx b +=⎧⎨--=⎩,直接写出方程组的解. 20.已知一次函数26y x =+,请解答下列问题:(1)按下列步骤在所给的平面直角坐标系中作一次函数26y x =+的图象.①列表:表中=a ,b = ;②描点连线:将上表中两对数值中的x 的值作为一个点的横坐标,对应的y 的值作为这个点的纵坐标,在坐标系中描出这两点,连线作出函数的图象;(2)观察图象,直接写出:①方程260x +=的解;②不等式0266x ≤+<的解集.21.如图,某农业合作社为农户销售草莓,经过测算,草莓销售的销售额1y (元)和销售量x (千克)的关系如射线1l 所示,成本2y (元)和销售量x (千克)的关系如射线2l 所示.(1)当销售量为 千克时,销售额和成本相等;(2)每千克草莓的销售价格是 元;(3)如果销售利润为2000元,那么销售量为多少?22.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m³时,水费按每立方米1.1元收费,超过6m³时,超过部分每立方米按1.6元收费,设每户每月用水量为Xm³,应缴水费x 4- 1- 26y x =+ a b为y 元.(1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?23.学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的23,学校可用于购买这批篮球和足球的资金最多为10 500元.请问有几种购买方案?(3)若购买篮球x 个,学校购买这批篮球和足球的总费用为y (元),在(2)的条件下,求哪种方案能使y 最小,并求出y 的最小值.24.如图,在平面直角坐标系xOy 中,直线l 1:y =2x +1与y 轴交于点A ,直线l 2与y 轴,x 轴交于点B ,点C ,l 1与l ,交于点D (1,m ),连接OD ,已知OC 的长为4.(1)求点D 的坐标及直线l 2的解析式;(2)求△AOD 的面积;(3)若直线l 2上有一点P 使得△ADP 的面积等于△ADO 的面积,直接写出点P 的坐标.1.阅读:将一个量,用两种方法分别计算一次,由结果相同构造等式解决问题,这种思维方法称为“算两次”原理.在学习第十七章勾股定理时,我们就是利用“算两次”原理,用不同的方式表示同一图形的面积,探究出了勾股定理.(1)【问题探究】小明尝试用“算两次”原理解决下面的问题:如图1,在中,,求斜边边上的高的值.小明用两种方法表示出的面积:①;②.图1由勾股定理,得斜边的长度为5,由此可以算出.(2)【学以致用】如图2,在矩形中,,点是边上任意一点,过点作,垂足分别为.则可以运用“算两次”原理,用不同的方式表示的面积,求出的值为.图2(3)【拓展延伸】如图3,已知直线与直线相交于点,且这两条直线分别与轴交于点.在线段上有一点,且点到直线的距离为4,请利用以上所学的知识求出点的坐标.图3。

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案《一次函数》练习题及参考答案第1题. 某工厂加工一批产品,为了提前完成任务,规定每个工人完成150个以内,按每个产品3元付报酬,超过150个,超过部分每个产品付酬增加0.2元;超过250个,超过部分出按上述规定外,每个产品付酬增加0.3元,求一个工人:①完成150个以内产品得到的报酬y(元)与产品数x(个之间的函数关系式;②完成150个以上,但不超过250个产品得到的报酬y(元)与产品数量x(个)的函数关系式;③完成250个以上产品得到的报酬y(元)与产品数量x(个)的函数关系式.答案:① (0② (150③ (x250)第2题. 商品的销售量也受销售价格的影响,比如,某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y(件)与衬衣价格x(元)销售之间的函数关系式为_________.答案:第3题. 写出下列函数关系式,并指出自变量的取值范围:油箱中有油60升,每小时耗油2升,求耗油量M与时间t(小时)的关系.答案: (0t30)第4题. 写出下列函数关系式,并指出自变量的取值范围:轮子每分钟转60圈,求轮子旋转的转数N与时间t(分)的关系答案: (t0)第5题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第6题. 等腰三角形的周长为20cm,腰长为y (cm),底边长为x(cm),则y 与x的函数关系式为______.答案:第7题. 若函数y=(m-3)xm-1+x+3是一次函数,且x0,则m的值为______.答案:2或1第8题. 一次函数y=kx+b中,k、b都是,且k ,自变量x的取值范围是,当k ,b 时,它是正比例函数.答案:常数,0,全体实数,0,=0第9题. 观察图形上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y(根)与小正方形的个数n的关系为 .答案:. y=3n+1(n为1、2、3、4、…….)第10题. △ABC中,一边长为x cm,这边上的高为4cm,面积为y cm2,那么y与x之间的函数关系式为 .答案:y=2x第11题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1km加收1元,则路程x2km时,车费y(元)与x之间的函数关系为____.答案:第12题. 拖拉机开始工作时,油箱中有油36L,如果每小时耗油4L,那么油箱中剩余油量y(L),与工作时间x(h)之间的函数关系式是____,自变量x的取值范围是____.答案:第13题. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必交税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累计进行计算:全月应纳税所得额税率不超过500元的部分 5%超过500元至2000元的部分 10%超过2000元至5000元的部分 15%…………某合资企业一工人工资在1400元-2000元之间变化,求他应交税金y(元)与其工资x(元)之间的函数关系.答案:第14题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1 km加收1元,则路程x2 km时,车费y(元)与路程x(km)之间的函数关系为______.答案:第15题. 将长为30cm,宽为10cm的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为3cm,则5张白纸粘合后的长度是多少?设x张白纸粘合后的总长度为y(cm),y与x之间的函数关系式是什么?答案:138cm,y=30x-3(x-1)=27x+3.第16题. 已知y+a与x-b成正比例(其中a、b都是常数),试说明:y是x 的一次函数答案:设y+a=k(x-b)(x0)y=kx-(a+bk)第17题. 已知y+a与x-b成正比例(其中a、b都是常数)(1)试说明y是x的一次函数;(2)如果x=-1时,y=-15;x=7时,y=1,求这个一次函数的解析式.答案:(1)因为y+a与x-b成正比例,所以y+a=k(x-b)(k0),即y=kx-(bk+a)因为k不等于0,a、b为常数,所以y是x的一次函数;(2)代入解得k=2,bk+a=13, 所以y=2x-13.第18题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第19题. 汽车由天津开往相距120km的北京,若它的平均速度为60km/h,则汽车距北京的路程S(km)与行驶时间t(h)之间的函数关系式是______.答案:S=120-60t第20题. 两港相距640千米,轮船以15千米/时的速度航行,t小时后剩下的距离y与t的函数关系式为________.答案:第21题. 某种国库卷的年利率为9.18%,则存满三年的本息和y与本金x 之间的函数关系式为 .答案:y=x+39.18%x(x0)第22题. 一个长为120m,宽为100m的矩形场地要扩建成一个正方形场地,设长增加x米,宽增加y米,则y与x的函数关系式是,自变量的取值范围是,且y是x的函数.答案:y=x+20,x0,一次第23题. 点 (填:“在”或“不在”)直线上答案:在。

八年级(初二)数学(一次函数)试题附答案解析

八年级(初二)数学(一次函数)试题附答案解析

一、单选题(共7题;共14分)1.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B−E−D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是().A. 监测点AB. 监测点BC. 监测点CD. 监测点D2.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A. y=2x﹣2B. y=2x+1C. y=2xD. y=2x+23.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为( )A. (√5)7B. 2(√5)7C. 2(√5)8D. (√5)94.如图所示,一次函数y=kx+b(k、b为常数,且k ≠0)与正比例函数y=ax(a为常数,且a ≠0)相交于点P,则不等式kx+b>ax的解集是()A. x>1B. x<1C. x>2D. x<25.如图,直线y=x+2与y轴相交于点A0,过点A0作x轴的平行线交直线y=0.5x+1于点B1,过点B1作y轴的平行线交直线y=x+2于点A1,再过点A1作x轴的平行线交直线y=0.5x+1于点B2,过点B2作y轴的平行线交直线y=x+2于点A2,…,依此类推,得到直线y=x+2上的点A1,A2,A3,…,与直线y=0.5x+1上的点B1,B2,B3,…,则A7B8的长为()A. 64B. 128C. 256D. 5126.同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A. x≤﹣2B. x≥﹣2C. x<﹣2D. x>﹣27.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A. M处B. N处C. P处D. Q处二、填空题(共6题;共6分)8.已知a、b为有理数,m、n分别表示5−√7的整数部分和小数部分,且amn+bn2=1,则2a+ b=________.9.设m、x、y均为正整数,且√m−√28=√x−√y,则(x+y+m)²=________.10.菱形0BCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为________.11.如图,在平面直角坐标系中,一次函数y=x+3 √2的图象与x轴交于点A,与y轴交于点B,点P在线12.已知一次函数的图象过点且不经过第一象限,设,则m的取值范值是________;13.如图,点A的坐标为(-2,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标是________.三、计算题(共1题;共5分)14.计算:(1)√2+1√8+(√3−1)0(2)(−12)−1−3√13+(1−√2)0+√12四、解答题(共2题;共20分)15.楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)16.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4 √5,OCOA =12(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.五、综合题(共6题;共88分)17.已知四边形OABC是边长为4的正方形,分别以OA,OC所在的直线为x轴、y轴,建立如图1所示的平面直角坐标系,直线l经过A,C两点.(1)写出点A,点C坐标并求直线l的函数表达式;(2)若P是直线l上的一点,当△OPA的面积是5时,请求出点P的坐标;(3)如图2,点D(3,﹣1),E是直线l上的一个动点,求出使|BE﹣DE|取得最大值时点E的坐标和最大值(不需要证明).18.如下图所示,直线y=-1x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q2以每秒1个单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)求出点C的坐标;(2)若△OQC是等腰直角三角形,则t的值为________;(3)综上所述,若△OCQ是等腰直角三角形,则t的值为2或4. (3)若CQ平分△OAC的面积,求直线CQ 对应的函数表达式.19.如图,直线l:y=kx+6与x轴、y轴分别交于点B、C两点,点B的坐标是(-8,0),点A的坐标为(-6,0).(1)求k的值.(2)若点P是直线l在第二象限内一个动点,当点P运动到什么位置时,△PAC的面积为3?并求出此时直线AP的解析式.(3)在x轴上是否存在一点M,使得△BCM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.20.如图1,在平面直角坐标系中,直线l:y=34x+32与x轴交于点A,且经过点B(2,m),点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E,再沿线段EA以每秒√2个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.21.已知:如图,直线l1:y1=−x+n与y轴交于A(0,6),直线l2:y2=kx+1分别与x轴交于点B(−2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)直接写出直线l1、l2的函数表达式;(2)求ΔABD的面积;(3)在x轴上存在点P,能使ΔABP为等腰三角形,求出所有满足条件的点P的坐标.22.如图,己知函数y= 4x + 4的图象与坐标轴的交点分别为点A、B,点C与点B关于x轴对称,动点P、3Q分别在线段BC、AB上(点P不与点B、C重合).且∠APQ=∠ABO(1)点A的坐标为________,AC的长为________;(2)判断∠BPQ与∠CAP的大小关系,并说明理由;(3)当△APQ为等腰三角形时,求点P的坐标.六、综合题(共1题;共11分)x+4的图像与x轴和y轴分别相交于A、B两点.动23.如图,在平面直角坐标系中,一次函数y=−23点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A 关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=1秒时,点Q的坐标是________;3(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.答案解析部分一、单选题1. C2. B3. B4. D5.【答案】 C6.【答案】 A7.【答案】 D二、填空题8.【答案】2.5 9.【答案】 256 10.【答案】( 2√3−3,2−√3 ) 11.【答案】59≤m ≤1 12.【答案】 3+3√2 13.【答案】 (−1,−1)三、计算题14.【答案】 (1) 原式=√2−1−2√2+1=−√2(2)原式=−2−√3+1+2√3=√3−1四、解答题15.【答案】 解:(1)由题意,得当0<x≤5时y=30.当5<x≤30时,y=30﹣0.1(x ﹣5)=﹣0.1x+30.5.∴y=;(2)当0<x≤5时,(32﹣30)×5=10<25,不符合题意,当5<x≤30时,[32﹣(﹣0.1x+30.5)]x=25,解得:x 1=﹣25(舍去),x 2=10.答:该月需售出10辆汽车.16.【答案】 (1)解:∵ OC OA =12 ,∴ 可设OC=x ,则OA=2x ,在Rt △AOC 中,由勾股定理可得OC 2+OA 2=AC 2 ,∴x 2+(2x )2=(4 √5 )2 , 解得x=4或x=-4(不合题意,舍去),∴OC=4,OA=8,∴A (8,0),C (0,4),设直线AC 解析式为y=kx+b ,∴ {8k +b =0b =4, 解得: {k =−12 ,∴直线AC 解析式为y= −12 x+4(2)解:由折叠的性质可知AE=CE ,设AE=CE=y ,则OE=8-y ,在Rt △OCE 中,由勾股定理可得OE 2+OC 2=CE 2 ,∴(8-y )2+42=y 2 , 解得y=5,∴AE=CE=5,∵∠AEF=∠CEF ,∠CFE=∠AEF ,∴∠CFE=∠CEF ,∴CE=CF=5,∴S △CEF = 12 CF•OC= 12 ×5×4=10,即重叠部分的面积为10;(3)解:由(2)可知OE=3,CF=5,∴E (3,0),F (5,4),设直线EF 的解析式为y=k′x+b′,∴ {3k ′+b ′=05k ′+b ′=4 , 解得: {k ′=2b ′=−6, ∴直线EF 的解析式为y=2x-6五、综合题17.【答案】 (1)解:∵四边形OABC 是边长为4的正方形,∴A (4,0)和C (0,4);设直线l 的函数表达式y=kx+b (k≠0),经过A (4,0)和C (0,4)得 {0=4k +b b =4, 解之得 {k =−1b =4, ∴直线l 的函数表达式y=﹣x+4(2)解:设△OPA 底边OA 上的高为h ,由题意等 12 ×4×h=5,∴h= 52, ∴|﹣x+4|= 52 ,解得x= 32 或132 ∴P 1( 32 , 52 )、P 2(132, −52 )(3)解:∵O 与B 关于直线l 对称,∴连接OD 并延长交直线l 于点E ,则点E 为所求,此时|BE ﹣DE|=|OE ﹣DE|=OD ,OD 即为最大值,如图2.∴﹣1=3k 1 , ∴k 1= −13∴直线OD 为 y =−13x ,解方程组: {y =−x +4y =−13x,得 {x =6y =−2 , ∴点E 的坐标为(6,﹣2). 又D 点的坐标为(3,﹣1) 由勾股地理可得OD= √10 .18.【答案】 (1)解:由 {y =−12x +3y =x解得: {x =2y =2 ,∴点C 的坐标为(2,2)(2)4 3)解:令- x +3=0,得x =6, ∴A(6,0). ∴点Q 的坐标为(3,0)时,CQ 平分△OCA 的面积. 设直线CQ 的函数表达式为y =kx +b. 把C(2,2),Q(3,0)代入y=kx+b 得: {3k +b =02k +b =2,解得k =-2,b =6, ∴当直线CQ 平分△OCA 的面积时,其对应的函数表达式为y =-2x +6. 19.【答案】 (1)解:直线l :y=kx+6过点B (-8,0), 0=-8k+6,K= 34(2)解:当x=0时,y= 34 x+6=6,∴点C 的坐标为(0,6) 如图,设点P 的坐标为(x , 34 x+6),∴S △PAC =S △BOC +S △BAP +S △AOC = 12 ×8×6- 12 ×2( 34 x+6)- 12 ×6×6=- 34 x取S △PAC =3,解得x=4,∴点P 的坐标为(4,3),设此时直线AP 的解析式为y=ax+b (a≠0), 将A (-6,0),P (-4,3)代入y=ax+b , 得 {-6a +b =0−4a +b =3 解得= a =32b =9,∴当点P 的坐标为(-44,3)时,△PAC 的面积为3,此时直线AP 的解析式为y= 32 x+9 (3)解:点M 的坐标为(-18,0)或(- 74 ,0)或(2,0)或(8,0) 20.【答案】 (1)解:将点B (2,m )代入 y =34x +32 得m=3 ∴ B(2,3)C(3,0)设直线BC 解析式为 y =kx +b 得到 {2k +b =33k +b =0 ∴ {k =−3b =9 ∴直线BC 解析式为 y =−3x +9(2)解:如图,过点O 作 OD//AB 交BC 于点D∴S △ABC =S △ABD , k AB =k OD =34 ∴直线OD 的解析式为y= 34x ,∴ 联立方程组{y =34xy =−3x +9解得 {x =125y =95∴D(125,95) (3)解:①如图,当P 点在y 轴负半轴时,作 M 1N ⊥OP 于点N ,∵直线AB 与x 轴相交于点A ,∴点A 坐标为(-2,0),∵∠APO+∠PAO=90°,∠APO+∠PNM 1=90° ∴∠PAO=∠PNM 1 , 又∵AP=PM 1 , ∠POA=∠PNM 1=90° ∴△AOP ≅ △PNM 1 , ∴PN=OA=2, 设OP=NM 1=m ,ON=m-2 ∴ M 1(m ,2−m)代入y =−3x +9 解得 m =72 ∴ M 1(72,−32) ②如图,作 M 2H ⊥OP 于点H可证明△AOP ≅ △PHM 2 ,设HM 2=n ,OH=n-2∴ M 2(n,n −2)代入y =−3x +9 ,解得 n =114,∴M 2(114, 34 ),∴综上所述 M 1(72,−32) 或M 2( 114, 34 ) (4)解:如图,作射线AQ 与x 轴正半轴的夹角为45°,过点B 作x 轴的垂线交射线AQ 于点Q ,作 EK ⊥AQ 于点K ,作 BT ⊥AQ 于点T ,∵∠CAQ=45°BG ⊥x 轴,B (2,3)∴AG=4,∴AQ=4 √2 ,BQ=7,t=BE 1+√2 =BE+EK≥BT ,由面积法可得: 12AQ ⋅BT =12BQ ⋅AG ∴ 12 ×4 √2 ×BT= 12 ×7×4,∴BT= 72√2 因此t 最小值为 72√2 . 21.【答案】 (1)解:∵直线 l 1 : y 1=−x +n 与y 轴交于A (0,6), ∴n =6, ∴直线 l 1 : y 1=x +6 ,∵ y 2=kx +1 分别与x 轴交于点B (−2,0),∴−2k +1=0, ∴k = 12 ,直线 l 2 : y 2=12x +1(2)解:设 l 1 与 x 轴交于点 E ,令 y 1=−x +6=0 ,得 x =6 , ∴点 E 坐标为 (6,0) , BE =8 . 由 {y =−x +6y =12x +1解得 x =103 , y =83 ,∴点 D 的坐标为 (103,83) , ∴ S ΔABD =S ΔABE −S ΔBDE =12×8×6−12×8×83=403.(3)解:在 RtΔAOB 中,由勾股定理可得 AB =√22+62=2√10 ,①当 BP =BA 时,满足条件的点 P 有两个,分别为 P 1(−2−2√10,0) , P 2(−2+2√10,0) ; ②当 AP =AB 时,由等腰三角形的三线合一可得 OP =OB ,于是满足条件的点 P 为 P 3(2,0) ; ③当 AP =AB 时,如图,设 OP =t ,则 AP =BP =t +2 ,在RtΔAOP中,AP2=AO2+OP2,∴(t+2)2=62+t2,解得t=8,∴P4(8,0).综上,满足条件的点P为P1(−2−2√10,0),P2(−2+2√10,0),P3(2,0),P4(8,0).22.【答案】(1)(3,0);5(2)解:∠BPQ=∠CAP.理由如下:∵点C与点B关于x轴对称,∴AB=AC,∴∠1=∠2,∵∠APQ=∠1,∴∠2=∠APQ,∵∠BPA=∠2+∠3,即∠BPQ+∠APQ=∠2+∠3,∴∠BPQ=∠3;(3)解:当PA=PQ,如图1,则∠PQA=∠PAQ,∵∠PQA=∠1+∠BPQ=∠APQ+∠BPQ=∠BPA,∴BP=BA=5,∴OP=BP﹣OB=1,∴P(0,﹣1);当AQ=AP,则∠AQP=∠APQ,而∠AQP=∠BPA,所以此情况不存在;当QA=QP,如图2,则∠APQ=∠PAQ,而∠1=∠APQ,∴∠1=∠PAQ,∴PA=PB,设P(0,t),则PB=4﹣t,∴PA=4﹣t,在Rt△OPA中,∵OP2+O A2=PA2,∴t2+32=(4﹣t)2,解得t= 78,∴P(0,78),综上所述,满足条件的P点坐标为(0,﹣1),(0,78).六、综合题23.【答案】(1)(4,0)(2)解:当点Q与原点O重合时,即OA=6, ∴AP= 12AO=3=3t, ∴t=1,①当0<t≤1时(如图1),∵一次函数与y轴交于B点,令x=0,∴y=4,∴B(0,4),即OB=4由(1)知OA=6,在Rt△AOB中,∴tan∠OAB= OBOA= 46= 23,∵AP=3t,∴OP=OA-PA=6-3t,∴P(6-3t,0),又∵点A关于点P的对称点为点Q,∴AP=PQ=3t,∴OQ=OA-AP-PQ=6-3t-3t=6-6t,∴Q(6-6t,0),∵四边形PQMN是正方形,∴PN=PQ=3t,MN∥AO,在Rt△APD中,∴tan∠PAD= PDPA= PD3t= 23,∴PD=2t,∴DN=PN-PD=3t-2t=t,∵MN∥AO,∴∠PAD=∠DCN,在Rt△DCN中,∴tan∠DCN= DNCN= tCN= 23,∴CN= 32t,∴S=S正方形PQMN-S△CDN,=(PQ)2- 12·DN·CN,=(3t)2- 12·t·32t,= 334t2,②当1<t≤ 43时(如图2),由①可知:DN=t,CN= 32t,OP=6-3t,PN=3t,∴S=S矩形POEN-S△CDN,=PO·PN-12·DN·CN,=(6-3t)×3t- 12·t·32t,=18t- 394t2,③当43<t≤2时(如图3),由①可知:PD=2t,OP=6-3t,OB=4,∴S=S四边形POBD,= 12·(PD+OB)·OP,= 12×(2t+4)×(6-3t),=-3t2+12t,综上所述:S={334t2,0≤t<1−394t2+18t,1≤t≤43−3t2+12,43<t≤2(3)解:解:如图4,由(2)中①可知:P(6-3t,0),Q(6-6t,0),PN=PQ=3t,A(6,0),∴M(6-6t,3t),N(6-3t,3t),∵T是正方形PQMN对角线的交点,∴T(6- 92t,32t),设直线AT解析式为:y=kx+b,∴{6k+b=0(6−92t)k+b=32t,解得:{k=−13b=2,∴AT解析式为:y=- 13x+2,∴点T是直线y=- 13x+2上一段线段上的点(-3≤x<6),同理可得直线AN解析式为:y=-x+6, ∴点N是直线y=-x+6上一段线段上的点(0≤x≤6),∴G(0,6),∴OG=6,∵OA=6,在Rt△AOG中,∴AG=6 √2,又∵T是正方形PQMN对角线的交点,∴PT=TN,∴OT+PT=OT+TN,∴当O、T、N在同一条直线上,且ON⊥AG时,OT+TN最小,即OT+PT最小, ∵S△AOG= 12·AO·GO= 12·AG·NO,∴NO= AO×GOAG =6√2=3 √2,∴OT+PT=OT+TN=ON=3 √2, 即OT+PT最小值为3 √2.。

初二数学一次函数试题

初二数学一次函数试题

初二数学一次函数试题1.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是( )A.x>0B.x<0C.x>1D.x<1【答案】B【解析】不等式kx+b>1,就是一次函数y=kx+b的函数值大于1,这部分图象在(0,1)的上方,此时,x<0.故选B.2. (2014江苏徐州)函数y=2x与y=x+1的图象的交点坐标为________.【答案】(1,2)【解析】解方程组得所以函数y=2x与y=x+1的图象的交点坐标为(1,2).3.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的方程组的解为________.【答案】【解析】把(a,2)代入y=x+1,得a+1=2,所以a=1,所以点P的坐标为(1,2),由题图得方程组的解为4.如图,直线y=kx+b经过A(3,1)和B(6,0)两点,则的解集为________.【答案】3<x<6【解析】将(3,1),(6,0)代入y=kx+b,得解得∴,即解得3<x<6.5.用作图象的方法解方程组【答案】由2x-y=7,得y=2x-7;由3x+y=8,得y=-3x+8.在同一直角坐标系内作出函数y=2x-7的图象l1和y=-3x+8的图象l2,如图所示,由图象知l 1与l2的交点坐标为P(3,-1).经检验,都满足2x-y=7,3x+y=8,故方程组的解为【解析】把方程组转化为两个一次函数,即y=2x-7和y=-3x+8,然后在同一直角坐标系内画出图象,仔细观察图象,找出交点坐标即可求解.6.(2013湖南益阳)已知一次函数y=x-2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】B【解析】由y>0得,x-2>0,x>2.7.(2013湖南娄底)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>2【答案】C【解析】因为直线y=kx+b与x轴的交点坐标为(2,0),所以由函数的图象可知当y>0时,x的取值范围是x<2.故选C.8.某公司向银行贷款300万元,分6个月还清,已知所欠贷款y(万元)与贷款时间x(月)之间的关系如图所示.(1)求:几个月后该公司将还清一半贷款?(2)如果该公司欠银行贷款小于等于50万元时,该公司将无破产危险,那么几个月后,该公司将无破产危险?【答案】(1)3 (2)5【解析】解:(1)由图象知,y是x的一次函数,设y=kx+b(k≠0).由该函数的图象过点(0,300),(6,0),可得解得所以y=-50x+300.令y=150,则150=-50x+300,解得x=3.即3个月后公司将还清一半贷款.(2)令y≤50,则-50x+300≤50,解得x≥5.即5个月后公司将无破产危险.9.问题情境:用同样大小的黑色棋子按如图所示的规律摆放,则第2012个图共有多少枚棋子?建立模型:有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步,在直角坐标系中画出函数图象;第三步,根据函数图象猜想并求出函数关系式;第四步,把另外的某一点代入验证,若成立,则用这个关系式去求解.解决问题:根据以上步骤,请你解答“问题情境”.【答案】见解析【解析】解:以图形的序号为横坐标,棋子的枚数为纵坐标,描点:(1,4)、(2,7)、(3,10)、(4,13),依次连接以上各点,观察发现所有点在一条直线上.设此直线的解析式为y=kx+b,把(1,4)、(2,7)两点的坐标代入,得解得所以y=3x+1.验证:当x=3时,y=3×3+1=10.所以,该解析式符合问题情境.当x=2012时,y=3×2012+1=6037.答:第2012个图有6037枚棋子.10. (2012湖南娄底)对于一次函数y=-2x+4,下列结论错误的是( )A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是(0,4)【答案】D【解析】由一次函数y=-2x+4可知其图象经过第一、二、四象限,可知选项A、选项B正确,通过平移可知选项C也正确,函数的图象与x轴相交时,y的值为0,故选项D错误.故选D.11.(2013绍兴)图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出,壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y图表示壶底到水面的高度,则y与x之间的函数的图象是()A.B.C.D.【答案】C【解析】由题意知,开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以所对应的函数应该是一次函数,可以排除D选项.12.(2013山东菏泽)一条直线y=kx+b,其中k+b=-5,kb=6,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限【答案】D【解析】由解得或当k=-3,b=-2时,直线过第二、三、四象限;当k=-2,b=-3时,直线过第二、三、四象限.综上,直线y=kx+b经过第二、三、四象限,故选D.13.(2013山东临沂)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系,该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)【答案】(1)设y与x之间的函数解析式为y=kx+b,根据题意,得解得∴y与x之间的函数关系式为(10≤x≤70).(2)根据题意,得,解得x1=50,x2=80.∵10≤x≤70,∴x=50.即该机器的生产数量为50台.(3)设销售数量z(台)与售价a(万元/台)之间的函数关系式为z=ma+n,根据题意,得解得∴z=-a+90.当z=25时,a=65.故该厂第一个月销售这种机器的利润为(万元).【解析】(1)利用待定系数法求一次函数解析式.(2)生产数量×每台的成本-总成本.(3)利润=售价-成本.14.如图,正比例函数y=kx的图象经过点A(2,4),AB⊥x轴于点B.(1)求该正比例函数的解析式.(2)将△ABO绕点A逆时针旋转90°得到△ADC,写出点C的坐标,试判断点C是否在直线上,并说明理由.【答案】见解析【解析】解:(1)∵正比例函数y=kx(k≠0)的图象经过点A(2,4),∴4=2k,∴k=2,∴y=2x.(2)∵A(2,4),AB⊥x轴于点B,∴OB=2,AB=4.∵△ABO绕点A逆时针旋转90°得到△ADC,∴DC=OB=2,AD=AB=4,∴C(6,2).∵当x=6时,.∴点C不在直线上.15.对于正比例函数y=(1-k)x,若y随x的增大而减小,则k的值可以是( )A.-1B.3C.0D.-3【答案】B【解析】∵y随x的增大而减小,∴1-k<0,∴k>1.选项中符合条件的数只有3.故选B.16.一个正比例函数的图象过点(2,-3),它的表达式为( )A.B.C.D.【答案】A【解析】设正比例函数的解析式为y=kx(k≠0),将(2,-3)代入,得-3=2k,所以.17. (2010广西玉林、防城港)对于函数y=k2x(k是常数,k≠0)的图象,下列说法不正确的是( ) A.是一条直线B.过点(,k)C.经过一、三象限或二、四象限D.y随着x的增大而增大【答案】C【解析】y=k2x是正比例函数,且系数为正数,故图象是一条经过第一、三象限的直线,y随x 的增大而增大.当时,y=k.18. (2013广东珠海)已知函数y=3x的图象经过点A(-1,y1)、点B(-2,y2),则y 1________y2(填“>”或“<”或“=”).【答案】>【解析】正比例函数y=3x中,y随x的增大而增大,而-1>-2,所以y1>y2.19.下列函数中,哪些是正比例函数?(1);(2);(3)y=8x2+x(1-8x);(4)y=1+8x.【答案】(1),即,其中.∴是正比例函数.(2)∵正比例函数都是常数与自变量积的形式,而是商的形式,∴不是正比例函数.(3)y=8x2+x(1-8x)经过恒等变形转化为y=x,其中k=1.∴y=8x2+x(1-8x)是正比例函数.(4)y=1+8x,即y=8x+1,不符合y=kx(k≠0)的形式.∴y=1+8x不是正比例函数.综上所述,,y=8x2+x(1-8x)是正比例函数.【解析】看每个函数解析式能否通过恒等变形转化为y=kx(k≠0)的形式.20.汽车由A城驶往相距120km的B城,s(km)表示汽车离开A城的距离,t(h)表示汽车行驶的时间,如图.(1)求汽车行驶的速度;(2)当t=1h时,汽车离开A城有多远?(3)当s=100km时,汽车行驶了多长时间?【答案】由图象可知,s与t是正比例函数关系.设s与t之间的函数关系式为s=kt(k≠0),因为直线s=kt(k≠0)经过点(4,120),所以120=4k,所以k=30.所以s与t之间的函数关系式为s=30t(0≤t≤4).(1)汽车行驶的速度为(km/h).(2)当t=1h时,s=30×1=30(km).故当t=1h时,汽车离开A城30km.(3)当s=100km时,30t=100,所以h.h=3小时20分,故当s=100km时,汽车行驶了3小时20分.【解析】由图象可知汽车离开A城的距离s(km)是汽车行驶的时间t(h)的正比例函数,先设出s 与t的函数关系式,然后把t=1和s=100分别代入可求出(2)(3).。

初二数学题一次函数练习题

初二数学题一次函数练习题

初二数学题一次函数练习题解答:一、选择题1. 若一次函数y = kx + 2的图像与x轴平行,则k的值为()A) 1 B) -1 C) 0 D) 2解析:若函数与x轴平行,则函数图像不会与x轴有交点,即函数没有零点。

而一次函数的零点为x = -b/a,将函数y = kx + 2化成一般式y - kx -2 = 0,可知a = -k,b = -2。

代入公式可得x = -(-2)/k = 2/k ≠ 0,所以必须满足2/k ≠ 0,即k ≠ 0。

故选C) 0。

2. 一次函数y = 2x - a与x轴交于点(-3, 0),则a的值为()A) -6 B) 6 C) 4 D) -4解析:已知函数与x轴交于(-3, 0),则代入可得0 = 2*(-3) - a,解方程可得a = -6。

故选A) -6。

3. 已知点P(x, y)在线段AB上,若A(1, -3)、B(5, 3),则函数y = (x-1) / 2是直线AB的()A) 斜率 B) 坐标 C) 系数 D) 省略式解析:已知点P(x, y)在线段AB上,由直线的斜率公式可知斜率k= (yB - yA) / (xB - xA) = (3 - (-3)) / (5 - 1) = 6 / 4 = 3 / 2。

而函数y = (x-1) / 2与直线AB的斜率相等,故选A) 斜率。

二、填空题1. 若函数y = kx + b的图像过点(-2, 1),则k = 3,b = -7。

将b的值代入方程,可得1 = 3*(-2) - 7,计算可得1 = -13,显然不成立,故填入“不成立”。

2. 函数y = -2x + a与y轴交于点(0, -7),则a = -7。

将a的值代入方程,可得-7 = -2*0 + a,计算可得-7 = -7,显然成立,故填入“成立”。

三、解答题1. 若一次函数y = kx + b的图像过点(1, 3)和点(2, 1),求k和b的值。

解析:已知函数过点(1, 3),代入方程可得3 = k*1 + b,即方程1k + b = 3。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案一、选择题1.下列函数中,是一次函数的是()A. y = 3x^2 + 4x - 2B. y = 2x + 5C. y = 5/xD. y = √x答案:B2.已知一次函数y = kx - 3的图象与x轴交于点(-4, 0),则k的值为()A. 4B. 3C. 2D. 1答案:D3.已知函数y = -2x + 5与直线y = x + 3相交于点P,点P的坐标是()A. (2, 3)B. (-2, 1)C. (-2, 5)D. (2, 1)答案:A二、填空题1.若一次函数y = -3x + b过点(4, 11),则b的值为_______。

答案:232.若函数y = kx + 2经过点(3, -1),则k的值为_______。

答案:-33.若直线y = 2x + a与函数y = kx - 3的图象交于点(-2, 1),则a的值为_______。

答案:-5三、计算题1.某商品的售价y与进价x之间的关系可用一次函数模型y = 0.8x + 200表示。

如果进价为600元,那么售价是多少?答案:售价为680元。

解析:将进价x代入函数模型y = 0.8x + 200中,得到售价y = 0.8 * 600 + 200 = 480 + 200 = 680元。

2.一辆汽车以每小时60公里的速度行驶,已经行驶2小时。

如果继续以相同的速度行驶,总共行驶的路程是多少公里?答案:行驶路程为120公里。

解析:车速为60公里/小时,行驶2小时,则行驶的路程为60 * 2 = 120公里。

3.已知函数y = 4x - 5,求使得y = 0的x的值。

答案:x = 5/4。

解析:将y = 0代入函数中,得到0 = 4x - 5,解方程得x = 5/4。

四、应用题小明去超市买牛奶,一瓶牛奶售价为y元,购买x瓶牛奶的总花费C(x)与购买数量x之间的关系可以表示为一次函数C(x)= 5x + 10。

1.如果小明购买3瓶牛奶,他需要支付多少钱?答案:小明需要支付25元。

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析1. 如图,直线y=kx ﹣2与x 轴交于点A (1,0),与y 轴交于点B ,若直线AB 上的点C 在第一象限,且S △BOC =3,求点C 的坐标.【答案】(﹣3,﹣8)【解析】先把A 点坐标代入y=kx ﹣2求出k=2,得到直线解析式为y=2x ﹣2,再确定B 点坐标为(0,﹣2),设C 点坐标为(x ,y )(x <0,y <0),然后根据三角形面积公式得到×2×(﹣x )=3,解得x=﹣3,再求出自变量为﹣3所对应的函数值即可得到C 点坐标. 试题解析:把A (1,0)代入y=kx ﹣2得k ﹣2=0,解得k=2, ∴直线解析式为y=2x ﹣2,把x=0代入y=2x ﹣2得y=﹣2, ∴B 点坐标为(0,﹣2),设C 点坐标为(x ,y )(x <0,y <0), ∵S △BOC =3,∴×2×(﹣x )=3,解得x=﹣3, 把x=﹣3代入y=2x ﹣2得y=﹣8,∴C 点坐标为(﹣3,﹣8).【考点】一次函数图象上点的坐标特征.2. 一次函数y=-2x-4的图象不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】A .【解析】对于一次函数y=﹣2x ﹣4, ∵k=﹣2<0,∴图象经过第二、四象限; 又∵b=﹣4<0,∴一次函数的图象与y 轴的交点在x 轴下方,即函数图象还经过第三象限, ∴一次函数y=﹣2x ﹣4的图象不经过第一象限. 故选A .【考点】一次函数图象与系数的关系.3.已知点A(2a﹣1,3a+1),直线l经过点A,则直线l的解析式是_________.【答案】y=x+.【解析】∵点A的坐标为A(2a﹣1,3a+1),∴x=2a﹣1,y=3a+1,∴a=,a=,所以=,整理得,y=x+.故答案是y=x+.【考点】待定系数法求一次函数解析式.4.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A.B.C.D.【答案】A.【解析】由图象知方程组的解是.故选A.【考点】一次函数图象的应用.5.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港.最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y 1、y2与x的函数关系如图.(1)填空:A、C两港口间的距离为 km,a= ;(2)请分别求出y1、y2与x的函数关系式,并求出交点P的坐标;(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船经过多长时间正好相距10千米?【答案】(1)120,4;(2)y1=,y2=15x(0≤x≤6),点P的坐标为(2,30);(3)甲、乙两船经过小时或小时或小时,正好相距10千米.【解析】(1)从图中可以看出A、B两港是30km,B、C两港是90km,A、C两港口间的距离为30+90=120km,根据路程÷时间求出甲的速度:30÷1=30(km/h),进而求出a的值:a=120÷30=4.(2)利用待定系数法求出y1,y2,联立解方程组,即可求出点P的坐标.(3)先根据一次函数的图象求出乙的速度,再根据甲在乙船前和乙船后,及甲船已经到了而乙船正在行驶,三种情况进行解答即可.试题解析:(1)120,4.(2)当0≤x≤1时,由点(0,30),(1,0)求得y1=﹣30x+30;当1<x≤4时,由点(1,0),(4,90)求得y1=30x﹣30;即y1与x的函数关系式为y1=.由点(6,90)求得,y2=15x(0≤x≤6),即y2与x的函数关系式为y2=15x(0≤x≤6);由图象可知,交点P的横坐标x>1,此时y1=y2,解方程组,得.所以点P的坐标为(2,30);(3)由函数图象可知,乙船的速度为:90÷6=15(km/m).①甲在乙后10km,设行驶时间为xh,则x<2.如果0≤x≤1,那么(﹣30x+30)+15x=10,解得x=,不合题意舍去;如果1≤x<2,那么15x﹣(30x﹣30)=10,解得x=,符合题意;②甲超过乙后,甲在乙前10km,设行驶时间为xh,则x>2.由题意,得30x﹣30﹣15x=10,解得x=,符合题意;③甲船已经到了而乙船正在行驶,则4≤x<6.由题意,得90﹣15x=10,解得x=,符合题意;即甲、乙两船经过小时或小时或小时,正好相距10千米.【考点】1.一次函数的应用;2.直线上点的坐标与方程的关系;3.待定系数法的应用;4.分类思想的应用..6.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第____象限.【答案】四.【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案是四.【考点】一次函数图象与系数的关系.7.甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)、甲、乙两人的速度各是多少?(2)、求甲距A地的路程S与行驶时间t的函数关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

澄迈县第三中学第二月考试卷
初二年级数学试卷
班级 姓名 座号 总分
一、选择题(每小题3分,共39分)
1、圆的周长公式2C R π=中,下列说法错误的是( ). A. C 、π、R 是变量,2是常量 B. C 、R 是变量,2π是常量 C. R 是自变量,C 是R 的函数
D. 当自变量2R =时,函数值4C π= 2的函数的是( )
A .
B .
C .
D .
3、下列函数中,y 是x 的正比例函数的是( )
A .y=2x-1
B .y=3
x
C .y=2x 2
D .y=-2x+1
4、“龟兔赛跑”的故事:领先的兔子看着缓慢爬行的乌龟骄傲起来,睡了一觉,当它醒来时发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到达了终点。

用1S ,2S 分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事相吻合的是( )
5、在平面直角坐标系中,函数1y x =-+的图象经过( ) A .一、二、三象限 B .二、三、四象限 C .一、三、四象限 D .一、二、四象限
6、直线y=x+1与y=–2x –4交点在( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
7、一个正比例函数的图像过点(2,-3),它的表达式为( )
A . 32y x =- B. 23y x = C. 32y x = D. 2
3
y x =-
8、已知b kx y -=图象过二、三、四象限,则b k ,的取值范围是( ) A.0,0>>b k B.0,0<<b k C.0,0><b k D. k<0, b<0
9、点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大
小关系是( )
A .y 1>y 2
B .y 1>y 2 >0
C .y 1<y 2
D .y 1=y 2
10、若直线y =-x +a 和直线y =x +b 的交点坐标为(m ,4),则a +b 的值为( ) A. 4 B. 24 C. 12 D. 8 11、由直线y =x +4与直线y =-x +4和x 轴围成的三角形面积( )
A.32
B.64
C.16
D.8 12、函数
的图象大致位置应是下图中的( )
13、如图,一个蓄水桶,60分钟可将一满桶水放干.其中,水位h (cm )随着放水时间t (分)的变化而变化.h 与t 的函数的大致图像为( ) 二、填空题(每小题4分,共24分)
14、点(2,4)在一次函数2+=kx y 的图象上,则k =_________. 15、若函数2
8(3)m y m x -=-是正比例函数,则常数m 的值是 。

16、函数y=x -1x -2
自变量x 的取值范围是_________.
17、已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,则a 、b 的大小关系是a____b. 18、若直线y=kx+b 平行直线y=3x+2,且过点(2,-1),则k=______ ,b=______ . 19、若一次函数y kx b =+图象如下.
当x>0时,y 的取值范围是_________. 当y>0时.x 的取值范围是_________. 三、解答题
20、(8分)一个函数的图象是经过原点的直线,并且这条直线过第四象限及点(2,-3a )与
(a,-6),求这个函数的解析式。

21、(8分)已知一次函数的图象与y= -2x 的图像平行,且与y 轴交点(0,-3),求此函
数解析式.
22、(8分)画出函数y=2x+6的图象,利用图象:(1)求方程2x+6=0的解;(2)求不等
式2x+6>0的解集;(3)若-1≤y ≤3,求x 的取值范围。

23、(11分)已知A (8,0)及在第一象限的动点P (x,y ),且x+y=10,设△OPA 的面积为
S. 求(1)求S 关于x 的函数解析式(2)求x 的取值范围。

(3)求S=12时P 点的坐标。

24、(12分)某乡 A 、B 两村盛产柑橘,A 村有柑橘 300 吨,B 村有柑橘 200 吨.现将
这些柑橘运到 C 、D 两个冷藏仓库,已知 C 仓库可储存 240 吨,D 仓库可储存 260 吨;从 A 村运往 C 、D 两处的费用分别为每吨 20 元和 25 元,从 B 村运往 C 、D 两处的费用分别为每吨 15 元和 18 元.怎样调运总运费最小?
澄迈县第三中学第二月考初二年级
14、k=1. 15、-3 16、x ≥1
17、a<b
18、k=3,b=-7. 19、y<2,x<-1.
20、解:设这个一次函数的解析式为y=kx.
因为函数y=kx 的图象过(2,-3a )与(a,-6),
所以⎩
⎨⎧-=-=632ak a k
解方程组得⎩⎨
⎧-==32k a 和⎩⎨⎧=-=3
2
k a
又 因为直线过第四象限, 所以k<0, 即k=-3.
这个函数的解析式为y=-3x.
21、解:设这个一次函数的解析式为y=kx+b.
因为函数y=kx+b 的图象与y= -2x 的图像平行,且与y 轴交点(0,-3)
所以⎩⎨⎧=-=3
2b k
这个函数的解析式为y=-2x-3 22.(1)x= -3 (2)x>-3 (3) -27<x<-2
3 23、解:(1)s=
2
1
×8×(10-x)=40-4x. (2)0<x<10
(3)s=12时,点p 的坐标为(7,3)。

24、解:设从 A 村运往 C 仓库的柑橘重量为 x 吨,则由 A 村运往 D 仓库(300-x )吨,由 B 村运往 C 仓库(240-x )吨,由 B 村运往 D 仓库(x -40)吨.

3000
2400
400
x
x
x
x



⎪⎪




⎪⎩

-≥
-≥
-≥
∴40≤x≤240.
设总运费为y 元,y =20x +25×(300 -x) +15×(240 -x) +
18×(x-40),即y=-2x+10 380(40≤x≤240).
由一次函数的性质可知,当x=240 时,y 最小,y 的最小值是2×240+10 380=9 900(元).故从A 村运往C 仓库240 吨,运往D 仓库60 吨,且B 村200
吨全部运往D 仓库时,总运费最小,最小运费是9 900 元.。

相关文档
最新文档