火山块状硫化物矿床vms型矿床
火山成因块状硫化物矿床

火山成因块状硫化物矿床研究进展火山成因块状硫化物矿床( Volcanogenic Massive Sulfide Deposit, 简称VMS 矿床) 是产于海相火山岩系中,主要由Fe、Cu、Zn 和Pb硫化物组成并伴有Au、Ag、Co等多种有益元素, 通常由与地层整合的块状矿体和不整合的网脉状矿体(或矿化带) 组成的集合体。
VMS矿床在海底热水成矿系统中占有重要地位,至今仍是现代矿床学及相关学科研究的重要领域。
这类矿床广泛分布于世界各大造山带的不同时代的海相火山岩系中, 是世界Cu、Pb、Zn、Au、Ag 等一系列金属的主要来源之一。
进入70 年代, 由于板块构造理论的兴起, VMS矿床研究达到了一个新的高度, 特别是Frankin等(1981)、Ohmoto 等(1983)和Lydon(1988)对这类矿床的总结,使得人们对火山成因块状硫化物矿床有了较全面的认识。
近几十年来,随着新技术的应用以及对现代海底热水喷口和硫化物堆积体的直接观察,海底块状硫化物矿床特别是火山成因的块状硫化物矿床的研究方面取得了一些重要的进展。
Herzig 等(1995)对海底的现代火山成因矿化, Ohmoto(1996)对古代火山成因矿化(主要是黑矿型矿床) 与现代火山成因矿化的对比研究, 提出了新的成矿成因模式, 极大地丰富和发展了原有的成矿理论。
现代海底热液成矿作用为研究VMS矿床提供了一种新的途径, DSDP/ ODP钻探资料揭示: VMS 矿床虽然可产生于不同环境, 但均与张裂断陷有关。
成矿物质可能来源有2 种: 一种是含矿火山岩系及下伏基底物质的淋滤; 另一种是深部岩浆房挥发份的直接释放。
洋中脊海底热液循环呈双扩散对流模式。
在有沉积物覆盖的洋中脊, 热液循环更多地考虑流体与沉积物相互作用产生的效果。
¼从矿物组合的空间分布来看, 热液硫化物堆积体上部以烟囱体为主, 下部以块状硫化物为主, 深部以网脉状硫化物为主, 这在不同热液活动区似乎具有普遍性。
火山成因矿床

类型 I- 岩 流底 部
u橄榄岩流底部的块状和浸染状磁黄铁矿、镍 黄铁矿矿床:规模较小(矿石量小于500万吨)、 品位较高(Ni含量3.5%左右) u西澳大利岩Kambalda(卡姆巴尔达)Ni-Cu矿床
火山建造具有一定成矿专属性
金刚石矿床产于金伯利岩、钾镁煌斑岩中; 火山岩浆熔离Cu-Ni矿床多产在太古代科马提岩系中; 有色金属、稀有金属、Au-Ag矿床,Au、萤石等脉状矿床
常产于陆相流纹岩建造中; 铁矿常与富碱(钠)和镁的基性岩、偏碱性的中性火山
岩建造有关;如我国宁芜地区玢岩铁矿等; 斑岩铜钼多金属矿床与含钾较高的中一酸性陆相超浅成
科马提岩是一种高温、低粘度喷发岩,可发育枕状熔 岩各种形状,其中叶片鬣刺结构为其主要诊断证据;
硫化物镍矿的主要矿物:磁黄铁矿、镍黄铁矿、黄铁 矿、尖晶石
矿石构造:块状构造、浸染状构造
A
C
B
火山成因硫化镍矿床的类型(据A.J.Naldrett,1976)
A一岩流底部的硫化物堆积体(卡姆巴尔达型);B一补给岩流的纯橄岩通道中 的低品位浸染状矿石(基思山型或杜蒙型);C一纯橄岩体中的高品位矿带(塞 维伦斯型)
拉科铁矿的铁质可能有两种不同来源:一是可能来自 安山岩岩浆或由其分异出来的较基性的母岩浆,二是 可能来自附近出露的古生代岩层中的沉积变质铁矿, 在火山活动时期经再活化形成的。后一种来源越来越 被多数人承认。
(2)火山岩浆熔离矿床:主要是指产于超基 性-基性火山岩及次火山岩中的金属硫化物矿 床。
成矿主要与熔离—贯入作用或熔离—喷溢作用有 关。
台湾大屯火山
块状硫化物矿床的类型-分布和形成环境

块状硫化物矿床的类型-分布和形成环境块状硫化物矿床的类型\分布和形成环境摘要:因块状硫化物(VMS)矿床可形成于太古宙至现代各个地质时期。
现代海底热液成矿作用是赋存于海相火山岩系中的古代VMS 矿床成矿作用的再现。
VMS 矿床可形成于多种构造环境,但均与拉张背景有关。
按照构造环境和容矿岩系将VMS 矿床分为黑矿型、塞浦路斯型、别子型和沙利文型。
VMS 矿床的热液蚀变由下盘蚀变带和上盘蚀变带两个结构单元组成。
本文通过对块状硫化物的成矿背景、成矿物质来源以及成矿流体详细描述的基础上,总结分析了块状硫化物矿床的形成环境、矿床类型及成矿机制。
关键词:形成环境;矿床类型;成矿机制;块状硫化物矿床一、火山因块状硫化物(VMS)矿床概述以及矿床类型(一)、VMS 矿床定义火山成因块状硫化物矿床(V olcanogenic Massive Sulfide Deposits,简称VMS 矿床)是指产于海相火山岩系中,与海相火山-侵入活动有关的,在海底环境下由火山喷气(热液)作用和喷气-沉积作用形成的块状或次块状的硫化物矿床,也称作与火山岩有关的或赋存于火山-沉积岩系中的块状硫化物(VHMS)矿床(“块状”并非结构意义)。
VMS 矿床规模大,品位高,分布广泛,往往成群成带产出,是Zn、Cu、Pb、Ag、Au 等金属的重要来源,此外还富含Co、Sn、Se、Mn、Cd、In、Bi、Te、Ga 和Ge,部分矿床还含有一定量的As、Sb 和Hg。
VMS 矿床形成于富含金属的热液流体的排泄通道和海底喷口处及其附近的海底洼地。
大多数VMS 矿床具有典型的“双层结构”特征,即由下部脉状-网脉状矿带(蚀变岩筒)和上部层控的透镜状矿带组成。
透镜状矿体主要由块状硫化物、石英、次生层状硅酸盐、铁氧化物和蚀变硅酸盐组成。
下部的脉状、网脉状矿体与上部层状矿体呈不整合至半整合接触,其硫化物主要呈网脉状和浸染状。
(二)、构造环境从太古宙至现代各个地质时期的VMS 矿床可以出现在不同的构造环境中,主要为板块边缘环境(离散的和汇聚的)。
火山块状硫化物矿床(VMS型矿床)

VMS矿床概述一、VMS定义:Franklin et al. (1981) Barrie and lIannington(1999), La.rge et al. (2001b)等认为火山块状硫化物矿床是受层状地层控制的硫化物集合体,成因上与同期火山活动有关,喷流沉淀于海底。
矿体可分为两个部分,一是整合型的块状硫化物透镜体(>60%硫化物含量),而是不整合型脉状矿体,往往在下部层序中出现。
VMS与VHMS、VAMS并不可以完全等同,VMS强调成因上与同期火山活动机制有关系,并不认为矿体一定赋存在火山岩石中,还可以赋存在与火山活动相关的火山或者沉积层序中。
二、区分SEDEX、VMS、条带状磁铁矿、浅成低温热液矿床形态上相似和产出相伴生的矿石类型应该加以区分。
其中SEDEX矿床和条带状铁矿床会经常与VMS矿床相伴生。
其中SEDEX矿床在产出环境上形成于大陆边缘裂谷环境,而VMS 矿床形成于初始裂开岛弧地区;金属矿物成分上前者Pb-Zn ± Ag为主,后者为多金属杂合;最重要的是形成机制的不同,后者为变质的海水携带者金属离子和硫离子,前者为盆地卤水携带者主要的金属离子类型和外来的硫离子(如生物来源的硫和海水中硫酸根的转变)(Lydon, 1995).。
条带状磁铁矿建造也会和VMS矿床相伴生,通常产出在VMS矿床末梢呈大面积分布,由低温热流体中成矿金属卸载形成。
(Gross, 1995).虽然被解释呈大面积的盆地流体作用形成,但是在地球化学微量元素蛛网图上有相似之处。
(Peter and Goodfellow, 2003).在地表火山环境下产出的浅成热液低温贵金属矿床与VMS矿床有着相同的高级泥化带和叶蜡石化现象。
(e.g., Poulsen and Hannington, 1996; SUUtoe et al.,1996; Hannington and Herzig, 2(00).但是VMS矿床成因流体为变质的海水,很少为火山热液。
非洲重要铜成矿带及矿床类型

非洲重要铜成矿带及矿床类型摘要:非洲重要的铜成矿带包括:中非赞比亚-刚果(金)成矿区带,红海两侧成矿区带,及南部非洲成矿区,重要的矿床类型可划分:砂页岩型铜矿、VMS 型铜矿、铁氧化物-铜-金矿(IOCG)型铜矿、岩浆型铜镍(铂族)硫化物矿床、斑岩铜矿。
关键词:铜矿,成矿带,非洲,矿床类型一、非洲构造格局非洲现有构造格局如图1所示,构造单元上划分有克拉通、造山区、褶皱带以及盆地。
克拉通包括:西非克拉通(WestAfricanCraton)、刚果克拉通(CongoCraton)、塔桑尼亚克拉通、卡普瓦尔克拉通(KaapvaalCraton)、东撒克拉通,造山区包括西非活动区和东非造山区。
东撒克拉通,为一古老克拉通,但在新元古代时期发生了活化。
此外西非活动区和东非造山区两大区域,构造活动较为活跃。
图1 非洲大陆构造分区简图1.克拉通和小型地块包括:①西非克拉通(WestAfricanCraton)中的地块包括:Reguibat地盾(Ia)、Man-Lèo地盾(Ib)。
②刚果克拉(CongoCraton)包括:Gabon-Kamerun地盾(IIa)、Bomu-Kibalian 地盾(IIb)、Kasai地盾(IIc)、Angolan(IId)。
③塔桑尼亚克拉通(TanzanianCraton)包括:乌干达克拉通UgandanCraton(III)、塔桑尼亚克拉通北部地体(IVa);南部地体(IVb);Dodoma 区(IVc)。
④卡普瓦尔克拉通(KaapvaalCraton)包括:卡普瓦尔克拉通南部地体(Va);中央地体(Vb));Pietersburg地体(Vc);西部地体(Vd);津巴布韦克拉通(ZimbabweCraton)(VI);Limpopo地块(VII);巴克维普地块(VIII)。
2.活动区包括:①西非活动区:Tuareg地块(TB);Benin-Nigerian地块(BNB)。
Sedex型矿床与VMS型矿床对比研究

4 2 VM S型矿床 ( 1) 向下循环: ∀ 接近海底的较浅部, 海水下渗与
( 2) 向上循环: ∋ 卤水中 H2 和 C 含量增加, C + 2H 或 2C + 3H2 % CH4 或 C2H6, 产生强烈还原富含碳 氢化物的高盐度流体, 金属元素从更多的硅酸盐矿物 中析出进入卤水。
( 3) 在海底喷出系统中, (( 近海底 ) 压力释放引 起的沸腾, 蒸汽爆发角砾岩化; 浅部循环富硫含盐海水 与深部循环还原卤水发生混合及反应; 在裂隙中沉淀 F eS、F eS2、CuF eS2、SiO2; 气液对喷口系统震裂多孔岩石
细碎屑岩 ( 页岩、粉砂 岩 ) 和碳酸盐 岩等; 其 实各 类正常沉积岩中均可为该类矿床的容矿围岩
矿床平均矿石 铅锌矿床平均矿石量 为 6 000 万 t, Pb+ Zn 平均 量和平均品位 品位为 11 9% [ 7]
4 成矿模式对比
4 1 Sedex型矿床 S ed ex型 矿床 流体 是 在 一 个 热液 对 流 循 环 系 统 中
运移的。热液对流循环系统在其演化的不同阶段对不 同成矿元素的萃取能力不同, 因而各阶段的成矿流体 形成不同特点 和类型的矿化。如果上覆水 体深度较 大, 在喷口处形成较大静水压力, 且含矿热液不会发生 沸腾, 会一直喷溢海底发生热水沉积 ( 图 1)。含矿热 水溶液排泄至海底后, 由于其密度较大, 就以密度流形 式从喷出中心沿地表流动, 并且可在较长时间内保持
vms型矿床

海底火山成因的块状硫化物矿床的成矿作用
块状硫化物矿床广义上包括火山喷流或火山成因块状硫化物矿床(volcanogenic massive sul-fide deposit,简称VMS型矿床)和沉积喷流矿床(sedimentary-exhalation,即SEDEX矿床)[1]。
狭义上仅指VMS型矿床,是一种重要的有色金属矿床类型,其经济价值仅次于斑岩铜矿[2]。
VMS 型矿床与深海玄武岩-流纹岩建造紧密相关,可以分为三个建造亚段:弱分异作用、完全分异作用和双峰式分异作用亚段。
事实证明这类矿床的成矿作用贯穿整个地质历史时期,产生在与拉张作用有关的构造环境下,从太古代的地盾到现代的洋脊都有产出。
来自幔源的块状硫化物成矿带主要生成于如下地质构造动力学区域:①岛弧区;②洋脊区;③断陷盆地;④古板块边缘的断裂带。
12第十二章 火山块状硫化物矿床(VHMS)

• 火山块状硫化物矿床 (VMSVolcanogenic Massive Sulfide or VHMS Volcanic Hosted Massive Sulfide)赋存在 火山岩中,但其成矿物质不一定是来源 于火山岩。此类矿床也是一类热液矿 床,其特征在许多方面与Sedex型矿床有 相似之处,但也有不同之处。二者常常 有过渡关系。
Dj ua lT ra ns fo rm
Ne w
Ire la nd
ODP ODPLeg Leg 193 193site site
Bis Sou t ma rck h Pla te 4ºS
148ºE 150ºE
Tr We an iti sf n or m 152ºE
New Britain
100 km Neovolcanic zones Fault Scarps
资源地质学(Resourses Geology)
资源地质学(Resourses Geology)
型矿床的主要类型 Ⅲ. VHMS VHMS型矿床的主要类型
1. 海相 VHMS 矿床
�黑矿型(Kuroko-type VHMS deposits) �黄矿型 (Yellow-type VHMS deposit ) � 塞普鲁斯型 (Cyprus-type VHMS deposits ) � 别子型(Beizi -type VHMS deposits) Beizi-type
Ⅱ. 成矿地质背景
资源地质学(Resourses Geology)
• 弧后盆地 Back arc basin • 大洋中脊 Mid ocean ridge
•Sediment-starved mid-ocean ridges •Sedimented mid-ocean ridges
(12)--矿床学课程期末考试5(答案题解)

吉林大学地球科学学院2008-2009 学年第一学期试卷课程名称: 矿床学 A (A 卷)考试时间: 150 分钟 考试方式: 闭卷、笔试一、回答下列概念(本题共25分,每小题 5分,选择5题回答)1.盐类矿床的沙洲成矿说和沙漠成矿说“沙洲说”是关于海相盐类矿床的形成作用的经典理论,认为成盐盆地原系一个海湾,海湾的出口处有沙洲的形成,它把海湾与大洋在很大程度上加以隔开。
由于蒸发作用很强,海湾中水面低于大洋海面,大洋的水通过很狭窄的海峡经常地或周期性地流入海湾以供给盐分,由于气候干旱而蒸发强烈,以促使海湾水的盐分不断增高,最后成为卤水,卤水继续蒸发,盐类矿物依次沉淀,就形成了海相盐类矿床。
“沙漠说”是关于湖相盐类矿床的形成作用的经典理论,认为分布于沙漠地区的闭流盆地接受了来自地表水和地下水带入的各种盐类物质,湖中的含盐量随着蒸发作用的进行而不断增高,原先的淡水湖逐渐发展成为咸水湖。
湖水因干旱而继续浓缩,至盐类矿物沉淀,就进入了所谓自析盐湖阶段,最后盐类矿物填满盐湖,就成为干盐湖。
2.边界品位与最低工业品位边界品位是指在当前经济技术条件下用来划分矿体与非矿体界限的最低品位,是在圈定矿体时对单个矿样中有用组分所规定的最低品位数值。
最低工业品位是指在当前经济技术条件下能供开采和利用矿段或矿体的最低平均品位。
3.同生矿床、后生矿床与同--后共生型矿床同生矿床(syngenetic ore deposits )是指矿体与围岩在同一地质作用过程中同时或近于同时形成的矿床。
后生矿床(epigenetic ore deposits )是指矿体与围岩分别在不同的地质作用过程中形成的,且矿体的形成明显晚于围岩的矿床.同-后共生矿床(syn-epigenetic ore deposits )是指在同一成矿作用过程中既经历了后生成矿作用,又经历了同生成矿作用而形成的矿床。
4.伟晶岩体的分带边缘带:伟晶岩边部与围岩接触带,由细粒结构的石英和长石组成;外侧带:由文象结构及粗粒结构的长石、石英和云母组成,有时可出现绿柱石;中间带:呈粗粒结构和伟晶结构,除长石、石英、云母外,出现大量的稀有、放射性、稀土元素矿物,且交代作用发育,是伟晶岩矿床产出的主要部位;内核:由石英块体或石英和锂辉石块体组成;5.MVT型铅锌矿床密西西比河谷型铅、锌矿床(Mississippi valley type Pb-Zn deposits,简称MVT),该类矿床是主要产于一定层位碳酸盐地层中的低温热液矿床,以美国中部密西西比河流域发育的层状铅、锌矿床为代表,因而得名。
铅、锌矿床主要成因类型及典型特征

铅、锌矿床主要成因类型及典型特征自然界的铅锌矿床主要包括火山块状硫化物(VMS)型、喷流-沉积(Sedex)型、密西西比河谷(MVT)型、矽卡岩型铅锌矿等。
火山块状硫化物型1.赋矿岩石:VMS矿床常产于基性和酸性长英质火山岩所组成的二元火山岩系中,且绝大多数的VMS矿床近矿围岩为酸性火山熔岩和火山碎屑岩,特别是与流纹质岩石伴生的酸性火山碎屑岩, 近矿的酸性火山岩岩石化学成分对块状硫化物矿床类型起着一定制约作用。
2.成矿时代:VMS矿床形成时代范围很广原始型锌-铜矿床主要产出于太古宙;黑矿型矿床主要在中元古代以后产出,矿床形成的最重要时期是显生宙;塞浦路斯型矿床主要分布在中生代,以侏罗纪为主;别子型矿床均在新元古代和古生代产出。
3.构造背景:VMS矿床与板块关系主要有两类,一是与岛弧有关的裂谷带,如黑矿、白银厂矿床等,矿床受次火山侵入体和复活山口所形成的裂隙系统所控制;另一是在扩张板块的大洋中脊地区形成的矿床,如塞浦路斯块状硫化物矿床。
总之,控制VMS矿床的大地构造背景为洋壳(过度壳)、洋中脊、岛弧、弧后盆地。
4.矿化分带:VMS矿床矿物具明显分带性,由下而上,黄铜矿渐变为闪锌矿, 造成Cu/Zn比值分带特征的原因可能是由于先前沉积下来的硫化物与循环对流的热液反应而发生活化。
5.围岩蚀变:VMS型矿床中围岩蚀变普遍,通常下盘蚀变,上盘几乎不蚀变,而且蚀变类型随矿床类型不同而不同,如对于Zn-Pb-Cu型矿床,中心为绢云母化和石英化,边缘为富镁的绿泥石化;而Cu-Zn型矿床的中心为绿泥石化,外边为绢云母化。
喷流-沉积型1.控矿因素:Sedex型矿床主要形成于拉张性构造环境,成矿环境是硅铝壳冒地槽环境。
其构造环境是沉降、张裂和裂谷环境,矿床产于受裂谷控制的克拉通内或其边缘坳陷沉积盆地内,以及拉张的地堑。
Sedex矿床具有明显的时控性,其产出时代相对集中,多在早—中元古代(19~14亿年)和早—中古生代(5.3~3亿年)。
云南鲁春VMS锌铅铜多金属矿床的成矿金属来源

i J sa a g etnc o e iat i l o a oei m s v ld eoii Sn j n g n a dteo —er n i hj n c i zn ,s pc l n gnc as es f edp s agi gr i , n r ba- n i t o y av c i u i tn a eo h e
海 相火 山 岩 系 中 ,与海 相 火 山一 入 活 动 有 关 的 、 侵 在海 底环 境下 由火 山喷 气 ( 液 ) 作 用 和 喷气广 热 沉
谷盆 地双 峰式 火 山岩带 、二叠 纪 江达一 德钦一 维 西
陆缘 弧火 山岩带 。其 演化 历史 经历 了二 叠纪金 沙 江 洋 壳 向西 的俯 冲消 减作 用 ,早 、 中三 叠 世 的 弧一 陆 碰 撞造 山作 用 ,以及 中三叠 世 晚期一 晚 三叠世在 陆 缘 火 山弧及 其边缘 带 中重新 拉 张 、裂 陷形 成鲁 春一
区典型的火山成 因块状硫化物矿床 ,其含矿层位 为双峰式 火山岩 系中的流纹质 火山一 沉积岩 系。通过 研究该矿床 的主成矿元素、双峰 式火山岩和矿石的稀土元素特征 ,对其成矿金属 来源、赋矿 火 山岩及 构造环境进行研 究表 明,鲁春 多金 属矿床属 z — b C n P — u型火山成 因块状硫化物矿床 ,形成于碰撞造 山
w t a f . 0, ih s o d te t p c R n c me t h E . i a me n o 3 wh c h we ia L EE e r h n .T e 8 u 0 1 h 6 h y l i 3—0 4 v r gn s0 2 . 6 a e a i g a 。 8.o v . bi
tni e t g;L h o c s ti n uc un; Yun a nn
块状硫化物矿床

第一章块状硫化物矿床1.块状硫化物矿床定义;泛指不同成因的含矿热水在喷溢出海底的过程中,在喷流口以下的热液通道中通过充填、交代作用,在喷流口以下的海底则通过与冷海水之间的相互作用,是海水中所携带的物质组分分别在热液通道和海底沉积下来而富集成矿的过程。
2.现代热水喷流成矿作用及其发生背景;现代海底热液成矿作用是岩石圈与大洋(水圈)在洋脊扩张中心、岛弧、弧后扩张中心及板内火山活动中心发生热和化学交换作用的产物。
热水体系类型:(1)红海及美国Salton海得热卤水;(2)样底热水喷流系统。
3.举例说明热卤水成矿作用;红海热卤水成矿:红海热水系统是一个与裂谷作用有关的、受岩浆热驱动的热水对流体系,高密度热卤水覆盖在尚未固结的含金属软泥上,通过同生作用使硫化物堆积而成矿。
4.现代洋底喷流热液的主要特征及性质;(1)构造背景及类型:大洋扩张中心的洋中脊,中等-快速扩张的弧后盆地以及海山上。
热水喷流的类型主要有两种。
一是高温的几种喷流形式。
二是低温的渗流作用。
(2)热水流体的化学性质:ph值和酸碱性:喷流流体都是酸性的。
(3)物理性质:温度:形成硫化物的热液喷流口的温度在2-350℃之间变化;流量:总流量的测定具有较大的不确定性;盐度:正常海水的盐度35‰,喷流流体的盐度从比海水低40%到高70%之间变化。
(4)密度:现代和古老的喷流流体的密度要比周围海底海水的密度要小。
5. 简述现代海底热液成矿作用;概念:现代海底热液成矿作用是岩石圈与大洋(水圈)在洋脊扩张中心、岛弧、弧后扩张中心及板内火山活动中心发生热和化学交换作用的产物(Rona,et al,1993)。
全球现代海底硫化物矿床或矿化现象调查结果表明,现代海底热液成矿作用与海底扩张作用密切相关,但硫化物成矿至少有以下3个方面的控制因素:①源自海水和岩浆流体的成矿热水流体;②高位岩浆房加热成矿流体对流循环的岩浆热源;③可使成矿流体(热水)进行循环的断裂裂隙系统。
块状硫化物矿床的类型

块状硫化物矿床的类型、分布和形成环境来源:http:///s/blog_549217ec0100bljn.html李文渊,《地球科学与环境学报》,29(4),2007:332-344块状硫化物矿床广义上包括火山喷流或火山成因块状硫化物矿床(volcanogenic massive sulfide deposit ,简称VMS 矿床)和沉积喷流矿床(Sedex矿床);狭义上仅指火山成因块状硫化物矿床。
火山成因块状硫化物矿床,也有称火山岩为主岩的块状硫化物矿床(volcanic-hosted massive sulfide deposit,简称VHMS矿床),以往称之为黄铁矿型矿床。
这类矿床产于海相火山岩系中,主要由铁、铜、铅、锌等硫化物组成,并常伴有金、银、钴等多种有益元素,多表现为块状矿体和网脉状矿体。
块状硫化物矿床铜的工业意义仅次于斑岩型铜矿,其广泛分布于世界各主要造山带的不同时代的海相火山岩系中。
块状硫化物矿床中的铜矿与斑岩型铜矿、砂页岩型铜矿,加上岩浆铜镍硫化物矿床,是世界四大支柱型铜矿类型。
在中国,块状硫化物矿床中铜的重要性按储量排在岩浆型铜镍硫化物矿床、斑岩型铜矿床、夕卡岩型铜和多金属矿床、热液脉型铜矿床之后,居第五位,但在西北地区仅次于岩浆型铜镍硫化物矿床。
1 块状硫化物矿床的类型划分块状硫化物矿床可按构造环境(围岩岩性)和矿石组分来划分。
按构造环境划分:塞浦路斯(Cyprus)型、黑矿(Kuroko)型、别子(Besshi)型和诺兰达(Noranada)型矿床类型,分别代表了不同的构造环境和地质背景。
塞浦路斯型矿床形成于增生板块边缘(洋中脊),以中生代大洋中脊拉斑玄武岩为含矿围岩,主要为铜矿石组分;黑矿型矿床形成于汇聚板块的边缘,与年轻的火山弧或弧后盆地与硅铝质地壳深熔作用形成的钙碱性、碱性长英质岩浆有关,主要为铅、锌、铜矿石组分;别子型矿床则形成于新元古代或显生宙弧前海槽或海沟的火山沉积岩系中,围岩为沉积岩,主要为铜、锌矿石组分;诺兰达型矿床是一种古老的矿床,形成于汇聚板块的边缘,产于太古宙—古元古宙俯冲岛弧的拉斑系列到钙碱性系列的玄武安山岩到流纹岩中,以锌、铜矿石组分为特征。
火山块状硫化物矿床VMS型矿床

VMS矿床概述一、VMS定义:Franklin et al、 (1981) Barrie and lIannington(1999), La、rge et al、 (2001b)等认为火山块状硫化物矿床就是受层状地层控制的硫化物集合体,成因上与同期火山活动有关,喷流沉淀于海底。
矿体可分为两个部分,一就是整合型的块状硫化物透镜体(>60%硫化物含量),而就是不整合型脉状矿体,往往在下部层序中出现。
VMS与VHMS、VAMS并不可以完全等同,VMS强调成因上与同期火山活动机制有关系,并不认为矿体一定赋存在火山岩石中,还可以赋存在与火山活动相关的火山或者沉积层序中。
二、区分SEDEX、VMS、条带状磁铁矿、浅成低温热液矿床形态上相似与产出相伴生的矿石类型应该加以区分。
其中SEDEX矿床与条带状铁矿床会经常与VMS矿床相伴生。
其中SEDEX矿床在产出环境上形成于大陆边缘裂谷环境,而VMS矿床形成于初始裂开岛弧地区;金属矿物成分上前者Pb-Zn ± Ag为主,后者为多金属杂合;最重要的就是形成机制的不同,后者为变质的海水携带者金属离子与硫离子,前者为盆地卤水携带者主要的金属离子类型与外来的硫离子(如生物来源的硫与海水中硫酸根的转变)(Lydon, 1995)、。
条带状磁铁矿建造也会与VMS矿床相伴生,通常产出在VMS矿床末梢呈大面积分布,由低温热流体中成矿金属卸载形成。
(Gross, 1995)、虽然被解释呈大面积的盆地流体作用形成,但就是在地球化学微量元素蛛网图上有相似之处。
(Peter and Goodfellow, 2003)、在地表火山环境下产出的浅成热液低温贵金属矿床与VMS矿床有着相同的高级泥化带与叶蜡石化现象。
(e、g、, Poulsen and Hannington, 1996; SUUtoe et al、,1996; Hannington and Herzig, 2(00)、但就是VMS矿床成因流体为变质的海水,很少为火山热液。
火山块状硫化物矿床(VMS型矿床)

V M S矿床概述一、VMS定义:Franklin et al. (1981) Barrie and lIannington(1999), La.rge et al. (2001b)等认为火山块状硫化物矿床是受层状地层控制的硫化物集合体,成因上与同期火山活动有关,喷流沉淀于海底。
矿体可分为两个部分,一是整合型的块状硫化物透镜体(>60%硫化物含量),而是不整合型脉状矿体,往往在下部层序中出现。
VMS与VHMS、VAMS并不可以完全等同,VMS强调成因上与同期火山活动机制有关系,并不认为矿体一定赋存在火山岩石中,还可以赋存在与火山活动相关的火山VMS2(00).VMS谓的VMS矿体中金属含量的多少是由反应带中流体的温度,PH值,上升过程中的冷却速率,海底液体的混合数目所决定的。
通过与玄武岩反应形成的流体最高温度为350-400度,通常与CU-Zn矿床伴生,Pb矿少量出现。
如果是与沉积岩和长英质火山碎屑岩反应形成的流体产出Pb+Zn+Cu矿石,通常有较高的(Zn+Pb)/Cu的值。
Au的矿化可以出现在任意一种环境中,主要是受温度,Ph值,As,区域提炼再分配,岩浆成分的加入,沸腾和沉淀机制。
海底的成矿作用使得VMS可以形成大规模类型的矿床。
四、分类:VMS的分类方法有很多种,不同学者从不同角度提出了不同的划分方案,以往的划分依据主要可概括为:容矿岩石、矿石组成或成矿元素组合、大地构造背景等。
如可以基于矿物成分划分为Cu-Pb-Zn三角图划分法,富Au矿床。
也可以基于地质环境划分或者是围岩组成划分。
但是分类方法优劣并存,例如Cu-Pb-Zn三角图划分法很容易使用,但是却没有描述矿床的产出环境和可预测的储量。
按着地质环境划分比按照成分组成划分比较客观,同时对找矿也具有一定的指示意义。
这里我们通过岩石地层学方法基于在矿形成同时产出的火山岩和沉积岩岩层单元为依据进行划分,在Barrie and Hannington (1999)的基础上经行扩展。
常见矿床类型总结

产于钙质、炭质沉积岩中的,金呈次显微—超显微的浸染状赋存于含金黄铁矿中的一类金矿床,因20世纪60年代初最早发现于美国内达华州卡林地区而得名. 典型矿例:美国:Carlin,Getchell,Gold Quarry等;中国:东北寨、桥桥上、马脑壳、阳山、板其、牙他等。
(小区域中的大资源)矿床特征:21.陆缘地壳减薄拉张区.2.矿床常呈群呈带出现,构成巨大的矿集区.3.含矿主岩为各种不纯的(泥质、粉砂质、炭质)碳酸盐岩、细碎屑岩(钙质、炭质粉砂岩、页岩)和硅质岩。
4。
成矿受构造控制明显,尤其是高角度正断层与有利岩性层位交切部位是成矿的有利场所.5。
常发育不同的围岩蚀变,蚀变带较宽,但蚀变较弱,矿体与围岩渐变过渡。
6。
矿体多呈似层状、透镜状和脉状,形态产状受高角度断层及其旁侧褶皱构造控制。
7。
中低温热液矿物组合:矿石矿物主要为黄铁矿、含砷黄铁矿、毒砂,次为辉锑矿、雄黄、雌黄、辰砂、白铁矿、磁黄铁矿等;脉石矿物为石英、玉髓、方解石、铁白云石、绢云母、重晶石、钠长石。
矿石构造以浸染状、细脉状、网脉状、角砾状构造为主。
金以次显微—超显微形式出现(含砷硫化物中—不可见次显微金,中晚期硫化物与石英等脉石矿物中—显微金和明金).8。
矿石中金品位一般低而分散,矿石储量一般在100万-1亿吨,品位1-15g/t.金储量一般为几吨至几十吨,个别达100t以上。
9。
成矿流体具中低温、低盐度特征,含较高的CO2和一定量的H2S。
成矿深度一般在1-3Km。
成因:1。
含矿流体的来源:水主要来自下渗的大气降水,部分来自沉积物成岩压实过程中释放出的同生水;金属组分和硫主要来自沉积地层。
2。
含矿流体的迁移:含矿热液主要在重力(密度差)和构造应力等驱动下发生对流循环,并沿高角度断层向上运移,到达浅部后沿孔隙度和渗透率高的有利岩性层位渗透交代—充填成矿;金主要以硫氢化物络合物的形式搬运.3。
矿质沉淀机制:成矿流体由于温度降低、流体成分改变以及与近地表含氧酸性溶液的混合而使金络合物分解,导致金沉淀富集.MVT型铅锌矿(碳酸盐岩层中的脉状铅锌矿床/密西西比河谷型铅锌矿)产于碳酸盐岩中的受地层层位控制,并具有显著的后生特征的,已铅锌为主要矿产的一类矿床。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火山块状硫化物矿床v m s型矿床标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]VMS矿床概述一、VMS定义:Franklin et al. (1981) Barrie and lIannington(1999), et al. (2001b)等认为火山块状硫化物矿床是受层状地层控制的硫化物集合体,成因上与同期火山活动有关,喷流沉淀于海底。
矿体可分为两个部分,一是整合型的块状硫化物透镜体(>60%硫化物含量),而是不整合型脉状矿体,往往在下部层序中出现。
VMS与VHMS、VAMS并不可以完全等同,VMS强调成因上与同期火山活动机制有关系,并不认为矿体一定赋存在火山岩石中,还可以赋存在与火山活动相关的火山或者沉积层序中。
二、区分SEDEX、VMS、条带状磁铁矿、浅成低温热液矿床形态上相似和产出相伴生的矿石类型应该加以区分。
其中SEDEX矿床和条带状铁矿床会经常与VMS矿床相伴生。
其中SEDEX矿床在产出环境上形成于大陆边缘裂谷环境,而VMS矿床形成于初始裂开岛弧地区;金属矿物成分上前者Pb-Zn ± Ag为主,后者为多金属杂合;最重要的是形成机制的不同,后者为变质的海水携带者金属离子和硫离子,前者为盆地卤水携带者主要的金属离子类型和外来的硫离子(如生物来源的硫和海水中硫酸根的转变)(Lydon, 1995).。
条带状磁铁矿建造也会和VMS矿床相伴生,通常产出在VMS矿床末梢呈大面积分布,由低温热流体中成矿金属卸载形成。
(Gross, 1995).虽然被解释呈大面积的盆地流体作用形成,但是在地球化学微量元素蛛网图上有相似之处。
(Peter and Goodfellow, 2003).在地表火山环境下产出的浅成热液低温贵金属矿床与VMS矿床有着相同的高级泥化带和叶蜡石化现象。
., Poulsen and Hannington, 1996; SUUtoe et al.,1996;Hannington and Herzig, 2(00).但是VMS矿床成因流体为变质的海水,很少为火山热液。
而浅成低温热夜贵金属矿床的流体多为火山热液或者多种流体的混合。
三、形成环境、机制VMS主要产出于碰撞环境中的拉裂扩张部位(洋-洋,洋-陆碰撞),随着开裂,沉陷,热的软流圈地幔物质挤入地壳基底而导致地壳变薄,从而形成双峰地幔来源的铁镁质火山作用和地壳来源的长英质火山机制。
裂开带中的火山活动就证明了浅部和中部地壳同成因的侵入活动。
造成毗邻火山岩层和沉积岩层中包含的海水的加热和变质。
扩张岛弧环境可以由初始岛弧玄武岩和高硅流纹岩由英云闪长岩和奥长花岗岩岩墙和岩床侵入体辨别。
形成机制:热传递水岩反应导致金属离子的淋滤同时在VMS矿体下部的半整合蚀变带中形成了热液对流体系。
这种长时间的循环体系会把深部的矿物质通过深部渗透性断裂带到海底卸载形成所谓的VMS矿床。
在有些地区也发现了金属矿物质直接来自次火山岩浆的现象。
矿体中金属含量的多少是由反应带中流体的温度,PH值,上升过程中的冷却速率,海底液体的混合数目所决定的。
通过与玄武岩反应形成的流体最高温度为350-400度,通常与CU-Zn矿床伴生,Pb矿少量出现。
如果是与沉积岩和长英质火山碎屑岩反应形成的流体产出Pb+Zn+Cu矿石,通常有较高的(Zn+Pb)/Cu的值。
Au的矿化可以出现在任意一种环境中,主要是受温度,Ph值,As,区域提炼再分配,岩浆成分的加入,沸腾和沉淀机制。
海底的成矿作用使得VMS可以形成大规模类型的矿床。
四、分类:VMS的分类方法有很多种,不同学者从不同角度提出了不同的划分方案,以往的划分依据主要可概括为:容矿岩石、矿石组成或成矿元素组合、大地构造背景等。
如可以基于矿物成分划分为Cu-Pb-Zn三角图划分法,富Au矿床。
也可以基于地质环境划分或者是围岩组成划分。
但是分类方法优劣并存,例如Cu-Pb-Zn三角图划分法很容易使用,但是却没有描述矿床的产出环境和可预测的储量。
按着地质环境划分比按照成分组成划分比较客观,同时对找矿也具有一定的指示意义。
这里我们通过岩石地层学方法基于在矿形成同时产出的火山岩和沉积岩岩层单元为依据进行划分,在Barrie and Hannington (1999)的基础上经行扩展。
经典的Franklin(2005)分类方案:Franklin(2005)根据同时期断裂或主侵入体所围限的岩石地层体系对VMS(火山成因块状硫化物矿床)(表)类型进行划分,该体系主要依赖于在给定背景下与矿床同时形成的主要火山岩和沉积岩岩石单元组合。
岩石地层分类方案是建立在以岩石组成为基础的Barrine and Hannington(1999)方案之上,并进行扩展。
该分类方案是基于在一个矿区中整个火山岩-沉积岩的旋回或者组合特征上,这个岩石组合的分布可能从数百平方米到20多平方千米之广。
VMS按照岩石层位学可以分为五类1,双峰式铁镁质环境(bimodal-mafic-settings)(eg:Noranda, Urals)初始俯冲裂开的岛弧上环境,多数为熔岩并含有<25%的长英质火山岩。
2,铁镁质环境(mafic settings)., Cypms, Oman)产出于初始岛弧后地区,主要围岩为蛇绿岩和<10%的沉积岩。
3,泥火山-铁镁质环境(pelitc-mafic settings). , Windy Craggy, Besshi)产出于成熟的弧后环境含有相似的泥质岩和玄武岩组成。
4,双峰式长英质环境(bimodal settings)., Skel1efte. Tasmania)形成于俯冲的大陆边缘未成熟弧后地区,30%-70%的长英质火山岩系列5,长英质环境(siliclastic-felsic settigs):俯冲过程形成的成熟的陆缘弧后地区。
主要是陆源的沉积物和火山碎屑物质。
前三种主要矿产种类是Cu+Zn,后两种可以出现Pb。
然后五中亚类中又可以根据主导是熔岩相,火山碎屑相或者沉积相划分出下面的次类。
前三种双峰式铁镁火山岩,铁镁质火山岩,长英质火山岩,泥质岩-铁镁火山岩与洋内俯冲直接相关,对应的事初生的岛弧裂谷环境(1类型)到一个成熟的弧后裂谷环境(2,3类型)。
在太古代绿岩带中,1类型也包含地幔柱环境,3类型包括海山建造和弧后火山机制。
双峰式长英质火山岩(4类型)和硅质碎屑-长英质类型(5类型)主要行成于洋陆边界和陆缘弧后系统环境。
4类型主要行程与初始的俯冲陆缘岛弧环境,5类型行程与成熟后的陆缘弧后盆地环境。
1,2,4中以火山质岩石为主体相而3,5中主要是沉积相岩石。
随后我们把在洋中脊处产出的VMs矿床归入第2类中,因为他们的岩石学和矿产类型特征相似除了(MORB vs. arc-tholeiite-boninite地球化学上特征的差异。
六、不同类型对应的岩石学、构造环境、蚀变类型表 Franklin(2005)VMS划分类型以及蚀变类型对比七、矿体特征一些观察表明矿体的品级和尺寸有以下特点:1,对于所有的矿体类型,Cu和Au的含量都很相似,硅质碎屑-长英质类型除外,其亏损Cu,镁铁质和泥质岩-镁铁质类型轻微富Cu,大量富集金,贫Zn。
2,两种长英质类型的Pb含量比镁铁质类型的Pb含量要高。
(Franklin et al., 1981);3,长英质为主类型的Ag含量较高,尤其是双峰式的长英质岩石类型。
4,火山岩为主的类型通常规模相似,铁镁质类型的较小。
与沉积物相伴生的两类类型通常矿体尺寸较大,硅质碎屑和长英质类型通常是其他类型的两倍。
表 Franklin(2005)VMS矿体特征对比八、VMS形成年代通过表格,可以得出VMS矿床随着年龄分布的变化特征,我们发现古生代的VMs矿床比其他时代的矿体总量总和还要多。
包括(Bathurst. Iberia. Urals. theMount Read and Lachlan belts and the Rudny Altai)总共存在六个主要VMS形成时期(图10)中新生代缺少VMS矿床不是因为这些时代的岩层不容易被保存下来,而是因为海下岛弧相关序列不常见或者未被发现。
每种类型的矿体的含量在不同时代也有变化,例如双峰式铁镁质类型主要产出于太古代和古元古代中,同样也是产出于中新生代。
镁铁质主要分布于古生代以后更年轻的年代和一小部分产出于晚太古代。
泥质岩-铁镁质矿产主要是在中生代,双峰式长英质类型平均分布但是在前寒武分布较少。
相反,双峰式铁镁质岩总是随着时间见见变少,但是镁铁质和泥质岩-镁铁质类型在前寒武序列总是不存在。
这些差异反映了随时间大地构造环境的变化,地球元素的变化。
前寒武纪中双峰式长英质类型和硅质碎屑-长英质类型的缺乏表明,地球早起洋陆构造环境并不是很流行。
总的来说,各种类型VMs的丰度随时间的变化反映了超级大陆的裂解时间如Rodinia, Pangea, Laurasia, Gondwana等。
九、VMS的成矿模式目前普遍认为VMS是由火山作用所促发的热液系统的产物[2]。
VMS形成的普遍热液模式如下(图):VMS成矿的最主要的6个地质因素包括:a 热源,驱动热对流系统,同时可能提供一些成矿金属;目前绝大多数观点支持次火山侵入岩的热源机制;b高温反应带,演化海水与火山岩和沉积岩的反应导致金属发生淋滤;c同火山期的断裂/裂隙,作为热流体的卸载运移通道;d下盘及上盘蚀变带,由于高温流体-岩石反应而成,包含上升的被加热改造的海水;e 块状硫化物本身,形成于近海洋地壳位置;f 远端产物,反映了热液系统对围岩的改造作用。
图 VMS成矿模式图(Franklin, 2005)金属物质和硫的来源通常有两种来源,一是从底部蚀变带到矿体部位中通过水岩反应提取的物质,变质海水与岩层的反应萃取出岩层中的成矿物质。
二是火山热液中的带来的物质,通过脱挥发分使得带来成矿物质。
地质构造控制:VMS一般多产出在,超级大陆裂解后,形成的大陆再次拼合之前时期。
在洋洋俯冲,洋陆俯冲碰撞的地质环境中,由于俯冲板块后退,热的软流圈上涌,玄武质岩浆底侵于减薄的地壳之下,形成弧后拉张盆地。
一般形成双峰式火山岩,玄武岩根据距离岛弧远近可以有岛弧拉板玄武岩-MORB-碱性玄武岩的演化趋势。
玄武质岩浆的底侵导致上部地壳熔融形成长英质熔浆,进而形成英云闪长岩-奥长花岗岩等次火山岩侵入体。
同时形成大量的断裂构造,这样为海水下渗和热液的循环提供了有利的条件。
总得来说,第一次的次火山侵入到弧后盆地中,岩浆上拱,上覆地层形成了大量断裂。
促进了海水下渗,热液循环对流。
这些循环的热液萃取了周围岩层的成矿物质,如在玄武岩中的成矿金属Cu、Co、Au等,在沉积地层中的Pb、Zn等。