2018年浙江省宁波市中考数学试卷-答案
2018年浙江省宁波市中考数学真题试卷(带答案解析)-推荐
宁波市2018年初中学业水平考试数学试题试题卷I一、选择题(每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求 的)1.在-3,-1,0,1这四个数中,最小的数是( )A . -3B. -1C. 0D. 12.2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天, 参观总人数超55万人次.其中55万用科学记数法表示为()A . 0.55 106 B.5.5 105C .5.5 104D.55 1043.下列计算正确的是()A . 6 B6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( 7.如图,在YABCD 中,对角线AC 与BD 相交于点0,E 是边CD 的中点,连结OE .若 ABC 60°,BAC 80°,贝V 1的度数为()33^3326^A . a a 2aB . a a aC 4.有五张背面完全相同的卡片,正面分别写有数字机抽取一张,其正面的数字是偶数的概率为(6233、25a a a D . (a ) a1, 2,3,4, 5,把这些卡片背面朝上洗匀后,从中随) 5. 已知正多边形的一个外角等于40°,那么这个正多边形的边数为(A .主视图 .左视图 C .俯视图 D .主视图和左视图 尘观方向BA. 50°• 40° C . 30o D . 20o8.若一组数据4, 1, 7, 5的平均数为4,则这组数据的中位数为(A. 79.如图,在ABC中,ACB90°, A 30°,AB 4 ,以点B为圆心,BC长为半径画弧,交边AB2.3310.如图, 平行于x轴的直线与函数0,x 0) , y 喧(k2x 0,x 0)的图象分别相交于A,BA在点B的右侧, C为x轴上的一个动点.若ABC的面积为4,则k1 k2的值为()两点,点ax2-8.-4bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次11.如图,二次函数b的图象大致是()12.在矩形ABCD内,将两张边长分别为a和b(a b)的正方形纸片按图1,图2两种方式放置(图1, 图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分为S1,图2中阴影部分的面积为S2.当AD AB 2时,S2 S1的值为()A. 2a B • 2b C . 2a 2b D . 2b试题卷U二、填空题(每小题4分,共24分)13.计算:| 2018 _______ .114.要使分式—有意义,X的取值应满足X 1x 2y 5 2 215.已知x , y满足方程组' ,则x2 4y2的值为 _________________________.x 2y 316.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A , B两点的俯角分别为45°和30o.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为米(结果保留根号)•H A 2?17.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作e P.当e P与正方形ABCD的边相切时,BP的长为__________________________ .ME .若 EMD 90°,则cosB 的值为 _____________________、解答题(本大题有 8小题,共78分)20.在5 3的方格纸中,ABC 的三个顶点都在格点上團1图2(1) 在图1中画出线段BD ,使BD//AC ,其中D 是格点; (2)在图2中画出线段BE ,使BE AC ,其中E 是格点•21.在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t 表示,单位:小时),采用随机抽样的方法进行问卷调查.调查结果按0t2,2 t 3,3 t 4,t 4分为四个等级,并 依次用A ,B ,C ,D 表示•根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图 中给出的信息解答下列问题:算了级人散的期刑總讣曲 甘等翅人致的条羽址计图19.先化简,再求值:2(x 1) x(3 x),其中 x18.如图,在菱形 ABCD 中,AB 2 , B 是锐角,AE BC 于点E ,M 是AB 的中点,连结MD ,(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3 )若该校共有学生1200人,试估计每周课外阅读时间满足 3 t 4的人数•1 322.已知抛物线y x2 bx C经过点(1,0),(0,—)•2 2(1)求该抛物线的函数表达式;1 2(2)将抛物线y — X2 bx C平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数2表达式.23.如图,在ABC中,ACB 90°, AC BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连BE.A t r> B(1)求证:ACD BCE ;(2)当AD BF时,求BEF的度数•24.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88 元.销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?25.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形(1) 已知 ABC 是比例三角形, AB 2 , BC 3,请直接写出所有满足条件的 AC 的长; (2) 如图1,在四边形 ABCD 中,AD//BC ,对角线BD 平分 ABC , BAC ADC . 求证:ABC 是比例三角形;BD(3)如图2,在(2)的条件下,当 ADC 90°时,求一一的值.AC326.如图1,直线l : y —X b 与x 轴交于点A(4,0),与y 轴交于点B ,点C 是线段OA 上一动点 4(2)如图2,连结CE ,当CE EF 时,① 求证:OCE : OEA ;② 求点E 的坐标;(3)当点C 在线段OA 上运动时,求 OE EF 的最大值.(0 AC).以点A 为圆心,5AC 长为半径作e A 交x 轴于另一点D ,交线段AB 于点E ,连结OE并延长交e A 于点F •2018年浙江省宁波市中考数学试卷一、选择题(本大题共12小题,共48分)1.在-匚-1,0,1这四个数中,最小的数是 .A. - .■B. -.C. 0D. 1【答案】A【解析】解:由正数大于零,零大于负数,得:一」::.,最小的数是-:,故选:A根据正数大于零,零大于负数,可得答案.本题考查了有理数比较大小,禾U用正数大于零,零大于负数是解题关键.2.2018中国宁波特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为A. B. 宇C. D. 沐.’丫【答案】B【解析】解:■ ■,.::'-故选:B.科学记数法的表示形式为“ ■.:的形式,其中一• :•一I, n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值::[时,n是正数;当原数的绝对值::-时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为■「的形式,其中:::[■ : -.:i., n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是.A. ''B.C. J J “D. ;护尸一小【答案】A【解析】解:_ ,.-,选项A符合题意;■利于-心,选项B不符合题意;.:;:.严一.J选项C不符合题意;八穿尸-.1-:,选项D不符合题意.故选:A根据同底数幕的除法法则,同底数幕的乘法的运算方法,合并同类项的方法,以及幕的乘方与积的乘方的运算方法,逐项判定即可.此题主要考查了同底数幕的除法法则,同底数幕的乘法的运算方法,合并同类项的方法,以及幕的乘方与积的乘方的运算方法,解答此题的关键是要明确:一底数,因为0不能做除数;.]单独的一个字母,其指数是1,而不是0;[应用同底数幕除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.有五张背面完全相同的卡片,正面分别写有数字1, 2, 3, 4, 5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为A. B. C. D.【答案】C【解析】解:从写有数字1, 2, 3, 4, 5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,正面的数字是偶数的概率为=,故选:C让正面的数字是偶数的情况数除以总情况数5即为所求的概率.此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.已知正多边形的一个外角等于T':,那么这个正多边形的边数为.A. 6B. 7C. 8D. 9【答案】D【解析】解:正多边形的一个外角等于.'?,且外角和为,则这个正多边形的边数是故选:D根据正多边形的外角和以及一个外角的度数,求得边数.本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360 度.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是)A. 主视图B. 左视图C. 俯视图D. 主视图和左视图【答案】C【解析】解:从上边看是一个田字,“田”字是中心对称图形,故选:C根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7.如图,在?ABCD^,对角线AC与BD相交于点O, E是边CD的中点,连结若•,,则—的度数为_A. 九B.C. 二D.2D L【答案】B【解析】解:二-二匚二匚二三「二,对角线AC与BD相交于点Q E是边CD的中点,是的中位线,,--=-.-.I = ~\'-.故选:B.直接利用三角形内角和定理得出二;的度数,再利用三角形中位线定理结合平行线的性质得出答案.此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EQ是的中位线是解题关键.8.若一组数据4, 1 , 7, X , 5的平均数为4,则这组数据的中位数为 .A. 7B. 5C. 4D. 3【答案】C【解析】解:数据4, 1, 7, X , 5的平均数为4,------------------------------- — T 5解得:「二则将数据重新排列为 1、3、4、5、7, 所以这组数据的中位数为 4, 故选:C先根据平均数为4求出x 的值,然后根据中位数的概念求解. 本题考查了中位数的概念:将一组数据按照从小到大.或从大到小 的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是 这组数据的中位数. 9.如图,在一.詰匚中,厂;,二丨:;,-上二=,以点B 为圆心, 为半径画弧,交边 AB 于点D,则二.的长为_ 10.11.A.1評B.-7C.2【答案】 C【解析】解:_ .Ji =匚,―:;,D.J 勺长为:「, 故选:C本题主要考查了弧长公式的运用和直角三角形 30度角的性质,解题时注意弧长公式为:.「.弧长为I ,圆心角度数为n ,圆的半径为 .12. 如图,平行于x 轴的直线与函数二二上:■- j ■- 图象分别相交于 A, B 两点,点A 在点B 的右侧,的面积为4,则二二的值为_A.B. C. D.-8【答案】A 【解析】解: .二 轴,.-,B 两点纵坐标相同.设加卅,二--,则…—_•-' ■ -' -' -,故选:A设加:二一:,根据反比例函数图象上点的坐标特征得出 蚀二「,一 - _,根据三角形的面积公式得到—''._ '・—"■-.—,求出本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,贝U 点的坐标满足函数的解析式 也考查了三角形的面积.答案】D【解析】解:由二次函数的图象可知,当二一-时, ';_;•y-[鸞一 八卜£的图象在第二、三、四象限, 故选:D根据二次函数的图象可以判断 a 、b 、〕的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答. 14. 在矩形ABC 曲,将两张边长分别为 a 和_- -的正方形纸片按图1,图2两种方式放置 图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中13.如图,二次函数的图象开口向下,且经过第三象限的点 横坐标为- ■,则一次函数-.._. 一的图象大致是C.D.阴影部分的面积为「图2中阴影部分的面积为匚当. 时,*. 一,;的值为_15.J D A DA. 2aB. 2bC. 1 -二D. -2 ?【答案】B【解析】解:二一「.:一一…..一—•.....,S2-Si =AB(AD- -(_AB- a) a-Q AB-b) (AD- a)=(AD—(Aff—MB+ 右)+{_o i (a—b—a) = b ■ AD —ab —b - AB + ab —b(HD—AS) = 2b故选:B.利用面积的和差分别表示出一和「然后利用整式的混合运算计算它们的差.本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来,也考查了正方形的性质.二、填空题(本大题共6小题,共24分)15.计算:| 一20131 二________ .【答案】2018【解析】解:一…故答案为:2018.直接利用绝对值的性质得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.16.要使分式占有意义,x的取值应满足________________ .【答案】【解析】解:要使分式一有意义,^ 1二二解得:-=-,故x的取值应满足:工..故答案为:;:直接利用分式有意义则分母不能为零,进而得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.17.已知x, y满足方程组^「2?二3,则详-4)1*啲值为_________________________ .【答案】一三【解析】解:原式一.一..-.=—3x5=-15故答案为:一I二根据平方差公式即可求出答案.本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.19.如图,某高速公路建设中需要测量某条江的宽度AB飞机上的测量人员在C处测得A, B两点的俯角分别为和〉〉若飞机离地面的高度CH为1200米,且点H, A,B在同一水平直线上,则这条江的宽度AB为_______ 米(结吉果保留根号).【答案】- 1 ;【解析】解:由于「:,在- .-.J.沖,,二—米,在.HSCff1200册=---------- 二--------也心tan306—-米.= 120071-1200-:米故答案为:一:-_在-_ 中,利用锐角三角函数,用CH表示出AH BH的长,然后计算出AB的长.本题考查了锐角三角函数的仰角、俯角问题,题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH20.如图,正方形ABC啲边长为8, M是AB的中点,P是BC边上的动点,连结PM以点P为圆心,PM长为半径作-•当一,与正方形ABCD勺边相切时,BP的长为 .21.22.23.24.【解析】解:如图1中,当仁N与直线CD相切时,设二「二匚…-二-.、,宀-匸■{-;—汁,-:,,―.如图2中当.一 •与直线AD 相切时 设切点为K,连接PK 则-.-<,四边形PKD (是矩形. J ■宀二「宀二 E, 在 「中, —•;:-:.综上所述,BP 的长为3或 _.分两种情形分别求解:如图 1中,当一与直线CD 相切时;如图2中当一 :•与直线AD 相切时,设切点为K 连接PK 则 ,四边形PKD (是矩形;本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题, 学会利用参数构建方程解决问题.25.如图,在菱形 ABCDK •専二・,是锐角, 连结 27. 28. 29. 【答案】【解析】解:延长 DM 交CB 的延长线于点H.26. MD 磁若生=知$,则C 阳丑的值为 .牡-「「于点E M 是AB 的中点,AB=BC=AD = 2^ ^fCH,乙仕DM =田AM= EM,"姬=山咖,AD=MB=2,EM丄DH,EH二ED,设BE =戈,AE丄召&朋丄AD,^L AEB= A EAD=90D,、-尸-;: 'J L. ; I 寸暮J 一F,■■ras5= n■ '. ■_亠或舍弃,故答案为一.2延长DM^ CB的延长线于点二首先证明二二T,设三三二•,利用勾股定理构建方程求出x即可解决问题. 本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、计算题(本大题共1小题,共6分)30.已知抛物线- ' 经过点门疋,[31.-求该抛物线的函数表达式;32.将抛物线1—存心斗平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.则抛物线解析式为- - -;抛物线解析式为;.:尸 --一 ,将抛物线向右平移一个单位,向下平移 2个单位,解析式变为—.£【答案】解: 把.,,… 代入抛物线解析式得:-- + Z?十匸=Q3,解得:[b=-l3 ,【解析】_把已知点的坐标代入抛物线解析式求出b 与c 的值即可;指出满足题意的平移方法,并写出平移后的解析式即可.此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法 求二次函数解析式,熟练掌握二次函数性质是解本题的关键.四、解答题(本大题共 7小题,共72分) 33. 先化简,再求值:—_ 一 ,其中工=.【答案】解:原式—••一 一」■ ' -_,当- 时,原式一 '-.Z2 Z【解析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x 的值代入即可.此题主要考查了整式的混合运算 --化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求 整式的值.34. 在:.-:的方格纸中,-V 「「的三个顶点都在格点上.图136. 一在图1中画出线段BD,使―…,其中D 是格点;37.•在图2中画出线段 BE,使S5 -.-:,其中E 是格点.【答案】解:如图所示,线段 BD 即为所求;AA B圏I圍2.一如图所示,线段BE 即为所求.【解析】「将线段AC 沿着AB 方向平移2个单位,即可得到线段 BD .利用的长方形的对角线,即可得到线段本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应 几何图形的性质和基本作图的方法作图.38.在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间.用t 表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,-•,,分为四个等级,并依次用 A, B, C, D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统 计图,由图中给出的信息解答下列问题:3 5.Crz -lH-= =■□!=■■■■=540. 一求本次调查的学生人数;41. •求扇形统计图中等级 B 所在扇形的圆心角度数,并把条形统计图补充完整; 42.•若该校共有学生1200人,试估计每周课外阅读时间满足【答案】解:一由条形图知,'芒喙羔壬F 阿冷;容&A 级的人数为20人, 由扇形图知:A 级人数占总调 查人数的1.0 . 所以:20 + 10%= 20x^ = 200(人即本次调查的学生人数为 200 人; .一由条形图知:C 级的人数为60人 所以C 级所占的百分比为:•,--,B 级所占的百分比为:-一 ..J 一 - _2,B 级的人数为一-「人 D 级的人数为:--. 人B 所在扇形的圆心角为:::.•二.>因为C 级所占的百分比为i ::::, 所以全校每周课外阅读时间满足 的人数为,门人答:全校每周课外阅读时间满足的约有360人.【解析】」由条形图、扇形图中给出的级别 A 的数字,可计算出调查学生人数;先计算出C 在扇形图中的百分比,用I [丄T 在扇形图中的百分比」可计算出B 在扇形图中的百分比,再计算出 B 在扇形的圆心角. .总人数■课外阅读时间满足_-的百分比即得所求.本题考查了扇形图和条形图的相关知识 ,题目难度不大,扇形图中某项的百分比--■.,扇形图中某项圆心角的度数 =:■■::•该项在扇形图中的百分比. 43.如图,在—上三「中,—上二 二:-■,工二三二 D 是AB 边上一点 点D 与A, B 不重合),连结CD 将线段CD 绕点C 按逆时针方向旋转9。
2018年浙江省宁波市中考数学试卷
数法表示为(
)
A.0.55 ×106 B.5.5 × 105
C. 5.5 ×104
D.55×104
3.(4 分)下列计算正确的是(
)
A.a3+a3=2a3 B.a3?a2=a6 C.a6÷ a2=a3
D.(a3)2=a5
???? ( 3)如图 2,在( 2)的条件下,当∠ ADC=9°0时,求 的值.
????
7欢迎。下载
精品文档
3 26.( 14 分)如图 1,直线 l :y=﹣ x+b 与 x 轴交于点 A(4,0),与 y 轴交于点
4 16
B,点 C 是线段 OA上一动点( 0<AC< ).以点 A 为圆心, AC 长为半径作⊙ A 5
( 2)将抛物线
y=﹣
1 x
2+bx+c
平移,使其顶点恰好落在原点,请写出一种平移的
2
方法及平移后的函数表达式.
5欢迎。下载
精品文档
23.( 10 分)如图,在△ ABC中,∠ ACB=90°,AC=BC,D是 AB边上一点(点 D与 A,B 不重合),连结 CD,将线段 CD绕点 C 按逆时针方向旋转 90°得到线段 CE, 连结 DE交 BC于点 F,连接 BE. ( 1)求证:△ ACD≌△ BCE; ( 2)当 AD=BF时,求∠ BEF的度数.
A.50°B.40° C.30°D.20°
1欢迎。下载
精品文档
8.(4 分)若一组数据 4,1,7,x,5 的平均数为 4,则这组数据的中位数为 ( )
A.7 B.5 C.4 D.3
9.(4 分)如图,在△ ABC中,∠ ACB=90°,∠ A=30°,AB=4,以点 B 为圆心, BC
浙江省宁波市2018年中考数学真题试题(含解析)
浙江省宁波市2018年中考数学真题试题一、选择题(本大题共12小题,共48分)1.在,,0,1这四个数中,最小的数是A. B. C. 0 D. 1【答案】A【解析】解:由正数大于零,零大于负数,得,最小的数是,故选:A.根据正数大于零,零大于负数,可得答案.本题考查了有理数比较大小,利用正数大于零,零大于负数是解题关键.2.2018中国宁波特色文化产业博览会于4月16日在宁波国际会展中心闭幕本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为A. B. C. D.【答案】B【解析】解:,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是A. B. C. D.【答案】A【解析】解:,选项A符合题意;,选项B不符合题意;,选项C不符合题意;,选项D不符合题意.故选:A.根据同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答此题的关键是要明确:底数,因为0不能做除数;单独的一个字母,其指数是1,而不是0;应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为A. B. C. D.【答案】C【解析】解:从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,正面的数字是偶数的概率为,故选:C.让正面的数字是偶数的情况数除以总情况数5即为所求的概率.此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.已知正多边形的一个外角等于,那么这个正多边形的边数为A. 6B. 7C. 8D. 9【答案】D【解析】解:正多边形的一个外角等于,且外角和为,则这个正多边形的边数是:.故选:D.根据正多边形的外角和以及一个外角的度数,求得边数.本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是A. 主视图B. 左视图C. 俯视图D. 主视图和左视图【答案】C【解析】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为A. B. C. D.【答案】B【解析】解:,,,对角线AC与BD相交于点O,E是边CD的中点,是的中位线,,.故选:B.直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.8.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为A. 7B. 5C. 4D. 3【答案】C【解析】解:数据4,1,7,x,5的平均数为4,,解得:,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.先根据平均数为4求出x的值,然后根据中位数的概念求解.本题考查了中位数的概念:将一组数据按照从小到大或从大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.如图,在中,,,,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为A. B. C. D.【答案】C【解析】解:,,,,的长为,故选:C.先根据,,,得圆心角和半径的长,再根据弧长公式可得到弧CD的长.本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:弧长为l,圆心角度数为n,圆的半径为.10.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A. 8B.C. 4D.【答案】A【解析】解:轴,,B两点纵坐标相同.设,,则,.,.故选:A.设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,求出.本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式也考查了三角形的面积.11.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是A.B.C.D.【答案】D【解析】解:由二次函数的图象可知,,,当时,,的图象在第二、三、四象限,故选:D.根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.12.在矩形ABCD内,将两张边长分别为a和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A. 2aB. 2bC.D.【答案】B【解析】解:,,.故选:B.利用面积的和差分别表示出和,然后利用整式的混合运算计算它们的差.本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来也考查了正方形的性质.二、填空题(本大题共6小题,共24分)13.计算:______.【答案】2018【解析】解:.故答案为:2018.直接利用绝对值的性质得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.14.要使分式有意义,x的取值应满足______.【答案】【解析】解:要使分式有意义,则:.解得:,故x的取值应满足:.故答案为:.直接利用分式有意义则分母不能为零,进而得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.15.已知x,y满足方程组,则的值为______.【答案】【解析】解:原式故答案为:根据平方差公式即可求出答案.本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.16.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为和若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为______米结果保留根号.【答案】【解析】解:由于,,在中,米,在,米.米故答案为:在和中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.本题考查了锐角三角函数的仰角、俯角问题题目难度不大,解决本题的关键是用含CH 的式子表示出AH和BH.17.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作当与正方形ABCD的边相切时,BP的长为______.【答案】3或【解析】解:如图1中,当与直线CD相切时,设.在中,,,,,.如图2中当与直线AD相切时设切点为K,连接PK,则,四边形PKDC是矩形.,,,在中,.综上所述,BP的长为3或.分两种情形分别求解:如图1中,当与直线CD相切时;如图2中当与直线AD 相切时设切点为K,连接PK,则,四边形PKDC是矩形;本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.18.如图,在菱形ABCD中,,是锐角,于点E,M是AB的中点,连结MD,若,则的值为______.【答案】【解析】解:延长DM交CB的延长线于点H.四边形ABCD是菱形,,,,,,≌,,,,设,,,,,或舍弃,,故答案为.延长DM交CB的延长线于点首先证明,设,利用勾股定理构建方程求出x即可解决问题.本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、计算题(本大题共1小题,共6分)19.已知抛物线经过点,求该抛物线的函数表达式;将抛物线平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】解:把,代入抛物线解析式得:,解得:,则抛物线解析式为;抛物线解析式为,将抛物线向右平移一个单位,向下平移2个单位,解析式变为.【解析】把已知点的坐标代入抛物线解析式求出b与c的值即可;指出满足题意的平移方法,并写出平移后的解析式即可.此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.四、解答题(本大题共7小题,共72分)20.先化简,再求值:,其中.【答案】解:原式,当时,原式.【解析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x 的值代入即可.此题主要考查了整式的混合运算--化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.21.在的方格纸中,的三个顶点都在格点上.在图1中画出线段BD,使,其中D是格点;在图2中画出线段BE,使,其中E是格点.【答案】解:如图所示,线段BD即为所求;如图所示,线段BE即为所求.【解析】将线段AC沿着AB方向平移2个单位,即可得到线段BD;利用的长方形的对角线,即可得到线段.本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.22.在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,,,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:求本次调查的学生人数;求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;若该校共有学生1200人,试估计每周课外阅读时间满足的人数.【答案】解:由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的所以:人即本次调查的学生人数为200人;由条形图知:C级的人数为60人所以C级所占的百分比为:,B级所占的百分比为:,B级的人数为人D级的人数为:人B所在扇形的圆心角为:.因为C级所占的百分比为,所以全校每周课外阅读时间满足的人数为:人答:全校每周课外阅读时间满足的约有360人.【解析】由条形图、扇形图中给出的级别A的数字,可计算出调查学生人数;先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角.总人数课外阅读时间满足的百分比即得所求.本题考查了扇形图和条形图的相关知识题目难度不大扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比.23.如图,在中,,,D是AB边上一点点D与A,B不重合,连结CD,将线段CD绕点C按逆时针方向旋转得到线段CE,连结DE交BC于点F,连接BE.求证:≌;当时,求的度数.【答案】解:由题意可知:,,,,,,在与中,≌,,,由可知:,,,【解析】由题意可知:,,由于,所以,,所以,从而可证明≌由≌可知:,,从而可求出的度数.本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.24.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】解:设甲种商品的每件进价为x元,则乙种商品的每件进价为元.根据题意,得,,解得.经检验,是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲乙两种商品的销售量为.设甲种商品按原销售单价销售a件,则,解得.答:甲种商品按原销售单价至少销售20件.【解析】设甲种商品的每件进价为x元,乙种商品的每件进价为y元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.本题考查了分式方程的应用,一元一次不等式的应用本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润售价进价.25.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.已知是比例三角形,,,请直接写出所有满足条件的AC的长;如图1,在四边形ABCD中,,对角线BD平分,求证:是比例三角形.如图2,在的条件下,当时,求的值.【答案】解:是比例三角形,且、,当时,得:,解得:;当时,得:,解得:;当时,得:,解得:负值舍去;所以当或或时,是比例三角形;,,又,∽,,即,,,平分,,,,,是比例三角形;如图,过点A作于点H,,,,,,,又,∽,,即,,又,,.【解析】根据比例三角形的定义分、、三种情况分别代入计算可得;先证∽得,再由知即可得;作,由知,再证∽得,即,结合知,据此可得答案.本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.26.如图1,直线l:与x轴交于点,与y轴交于点B,点C是线段OA上一动点以点A为圆心,AC长为半径作交x轴于另一点D,交线段AB于点E,连结OE并延长交于点F.求直线l的函数表达式和的值;如图2,连结CE,当时,求证:∽;求点E的坐标;当点C在线段OA上运动时,求的最大值.【答案】解:直线l:与x轴交于点,,,直线l的函数表达式,,,,在中,;如图2,连接DF,,,,,,四边形CEFD是的圆内接四边形,,,,∽,过点于M,由知,,设,则,,,,,,由知,∽,,,,,,舍或,,,,如图,设的半径为r,过点O作于G,,,,,,,,,,连接FH,是直径,,,,∽,,,时,最大值为.【解析】利用待定系数法求出b即可得出直线l表达式,即可求出OA,OB,即可得出结论;先判断出,进而得出,即可得出结论;设出,,进而得出点E坐标,即可得出OE的平方,再根据的相似得出比例式得出OE的平方,建立方程即可得出结论;利用面积法求出OG,进而得出AG,HE,再构造相似三角形,即可得出结论.此题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正确作出辅助线是解本题的关键.21。
【2018中考数学真题】浙江宁波市试题及解析【2018数学中考真题解析系列】
浙江省宁波市2018年中考数学真题试题一、选择题(本大题共12小题,共48分)1.在,,0,1这四个数中,最小的数是A. B. C. 0 D. 1【答案】A【解析】解:由正数大于零,零大于负数,得,最小的数是,故选:A.根据正数大于零,零大于负数,可得答案.本题考查了有理数比较大小,利用正数大于零,零大于负数是解题关键.2.2018中国宁波特色文化产业博览会于4月16日在宁波国际会展中心闭幕本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为A. B. C. D.【答案】B【解析】解:,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是A. B. C.D.【答案】A【解析】解:,选项A符合题意;,选项B不符合题意;,选项C不符合题意;,选项D不符合题意.故选:A.根据同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答此题的关键是要明确:底数,因为0不能做除数;单独的一个字母,其指数是1,而不是0;应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为A. B. C. D.【答案】C【解析】解:从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,正面的数字是偶数的概率为,故选:C.让正面的数字是偶数的情况数除以总情况数5即为所求的概率.此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.已知正多边形的一个外角等于,那么这个正多边形的边数为A. 6B. 7C. 8D. 9【答案】D【解析】解:正多边形的一个外角等于,且外角和为,则这个正多边形的边数是:.故选:D.根据正多边形的外角和以及一个外角的度数,求得边数.本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是A. 主视图B. 左视图C. 俯视图D. 主视图和左视图【答案】C【解析】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为A. B. C. D.【答案】B【解析】解:,,,对角线AC与BD相交于点O,E是边CD的中点,是的中位线,,.故选:B.直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.8.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为A. 7B. 5C. 4D. 3【答案】C【解析】解:数据4,1,7,x,5的平均数为4,,解得:,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.先根据平均数为4求出x的值,然后根据中位数的概念求解.本题考查了中位数的概念:将一组数据按照从小到大或从大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.如图,在中,,,,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为A. B. C. D.【答案】C【解析】解:,,,,的长为,故选:C.先根据,,,得圆心角和半径的长,再根据弧长公式可得到弧CD的长.本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:弧长为l,圆心角度数为n,圆的半径为.10.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A. 8B.C. 4D.【答案】A【解析】解:轴,,B两点纵坐标相同.设,,则,.,.故选:A.设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,求出.本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式也考查了三角形的面积.11.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是A.B.C.D.【答案】D【解析】解:由二次函数的图象可知,,,当时,,的图象在第二、三、四象限,故选:D.根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.12.在矩形ABCD内,将两张边长分别为a和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A. 2aB. 2bC.D.【答案】B【解析】解:,,.故选:B.利用面积的和差分别表示出和,然后利用整式的混合运算计算它们的差.本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来也考查了正方形的性质.二、填空题(本大题共6小题,共24分)13.计算:______.【答案】2018【解析】解:.故答案为:2018.直接利用绝对值的性质得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.14.要使分式有意义,x的取值应满足______.【答案】【解析】解:要使分式有意义,则:.解得:,故x的取值应满足:.故答案为:.直接利用分式有意义则分母不能为零,进而得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.15.已知x,y满足方程组,则的值为______.【答案】【解析】解:原式故答案为:根据平方差公式即可求出答案.本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.16.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为和若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为______米结果保留根号.【答案】【解析】解:由于,,在中,米,在,米.米故答案为:在和中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.本题考查了锐角三角函数的仰角、俯角问题题目难度不大,解决本题的关键是用含CH 的式子表示出AH和BH.17.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作当与正方形ABCD的边相切时,BP的长为______.【答案】3或【解析】解:如图1中,当与直线CD相切时,设.在中,,,,,.如图2中当与直线AD相切时设切点为K,连接PK,则,四边形PKDC是矩形.,,,在中,.综上所述,BP的长为3或.分两种情形分别求解:如图1中,当与直线CD相切时;如图2中当与直线AD 相切时设切点为K,连接PK,则,四边形PKDC是矩形;本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.18.如图,在菱形ABCD中,,是锐角,于点E,M是AB的中点,连结MD,若,则的值为______.【答案】【解析】解:延长DM交CB的延长线于点H.四边形ABCD是菱形,,,,,,≌,,,,设,,,,,或舍弃,,故答案为.延长DM交CB的延长线于点首先证明,设,利用勾股定理构建方程求出x即可解决问题.本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、计算题(本大题共1小题,共6分)19.已知抛物线经过点,求该抛物线的函数表达式;将抛物线平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】解:把,代入抛物线解析式得:,解得:,则抛物线解析式为;抛物线解析式为,将抛物线向右平移一个单位,向下平移2个单位,解析式变为.【解析】把已知点的坐标代入抛物线解析式求出b与c的值即可;指出满足题意的平移方法,并写出平移后的解析式即可.此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.四、解答题(本大题共7小题,共72分)20.先化简,再求值:,其中.【答案】解:原式,当时,原式.【解析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x 的值代入即可.此题主要考查了整式的混合运算--化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.21.在的方格纸中,的三个顶点都在格点上.在图1中画出线段BD,使,其中D是格点;在图2中画出线段BE,使,其中E是格点.【答案】解:如图所示,线段BD即为所求;如图所示,线段BE即为所求.【解析】将线段AC沿着AB方向平移2个单位,即可得到线段BD;利用的长方形的对角线,即可得到线段.本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.22.在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,,,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:求本次调查的学生人数;求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;若该校共有学生1200人,试估计每周课外阅读时间满足的人数.【答案】解:由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的所以:人即本次调查的学生人数为200人;由条形图知:C级的人数为60人所以C级所占的百分比为:,B级所占的百分比为:,B级的人数为人D级的人数为:人B所在扇形的圆心角为:.因为C级所占的百分比为,所以全校每周课外阅读时间满足的人数为:人答:全校每周课外阅读时间满足的约有360人.【解析】由条形图、扇形图中给出的级别A的数字,可计算出调查学生人数;先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角.总人数课外阅读时间满足的百分比即得所求.本题考查了扇形图和条形图的相关知识题目难度不大扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比.23.如图,在中,,,D是AB边上一点点D与A,B不重合,连结CD,将线段CD绕点C按逆时针方向旋转得到线段CE,连结DE交BC于点F,连接BE.求证:≌;当时,求的度数.【答案】解:由题意可知:,,,,,,在与中,≌,,,由可知:,,,【解析】由题意可知:,,由于,所以,,所以,从而可证明≌由≌可知:,,从而可求出的度数.本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.24.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】解:设甲种商品的每件进价为x元,则乙种商品的每件进价为元.根据题意,得,,解得.经检验,是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲乙两种商品的销售量为.设甲种商品按原销售单价销售a件,则,解得.答:甲种商品按原销售单价至少销售20件.【解析】设甲种商品的每件进价为x元,乙种商品的每件进价为y元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.本题考查了分式方程的应用,一元一次不等式的应用本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润售价进价.25.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.已知是比例三角形,,,请直接写出所有满足条件的AC的长;如图1,在四边形ABCD中,,对角线BD平分,求证:是比例三角形.如图2,在的条件下,当时,求的值.【答案】解:是比例三角形,且、,当时,得:,解得:;当时,得:,解得:;当时,得:,解得:负值舍去;所以当或或时,是比例三角形;,,又,∽,,即,,,平分,,,,,是比例三角形;如图,过点A作于点H,,,,,,,又,∽,,即,,又,,.【解析】根据比例三角形的定义分、、三种情况分别代入计算可得;先证∽得,再由知即可得;作,由知,再证∽得,即,结合知,据此可得答案.本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.26.如图1,直线l:与x轴交于点,与y轴交于点B,点C是线段OA上一动点以点A为圆心,AC长为半径作交x轴于另一点D,交线段AB于点E,连结OE并延长交于点F.求直线l的函数表达式和的值;如图2,连结CE,当时,求证:∽;求点E的坐标;当点C在线段OA上运动时,求的最大值.【答案】解:直线l:与x轴交于点,,,直线l的函数表达式,,,,在中,;如图2,连接DF,,,,,,四边形CEFD是的圆内接四边形,,,,∽,过点于M,由知,,设,则,,,,,,由知,∽,,,,,,舍或,,,,如图,设的半径为r,过点O作于G,,,,,,,,,,连接FH,是直径,,,,∽,,,时,最大值为.【解析】利用待定系数法求出b即可得出直线l表达式,即可求出OA,OB,即可得出结论;先判断出,进而得出,即可得出结论;设出,,进而得出点E坐标,即可得出OE的平方,再根据的相似得出比例式得出OE的平方,建立方程即可得出结论;利用面积法求出OG,进而得出AG,HE,再构造相似三角形,即可得出结论.此题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正确作出辅助线是解本题的关键.。
2018年浙江省宁波市中考数学试卷包含答案
2018年浙江省宁波市中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.12.(4分)2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为()A.0.55×106B.5.5×105C.5.5×104D.55×1043.(4分)下列计算正确的是()A.a3+a3=2a3B.a3•a2=a6 C.a6÷a2=a3D.(a3)2=a54.(4分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.5.(4分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6 B.7 C.8 D.96.(4分)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°8.(4分)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.39.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A.πB.πC.πD.π10.(4分)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC 的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣411.(4分)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P 的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.12.(4分)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b二、填空题(每小题4分,共24分)13.(4分)计算:|﹣2018|=.14.(4分)要使分式有意义,x的取值应满足.15.(4分)已知x,y满足方程组,则x2﹣4y2的值为.16.(4分)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为米(结果保留根号).17.(4分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为.18.(4分)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.20.(8分)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.21.(8分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.22.(10分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.23.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B 不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.24.(10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?25.(12分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.26.(14分)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C 是线段OA上一动点(0<AC<).以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.2018年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.【解答】解:由正数大于零,零大于负数,得﹣3<﹣1<0<1,最小的数是﹣3,故选:A.2.【解答】解:550000=5.5×105,故选:B.3.【解答】解:∵a3+a3=2a3,∴选项A符合题意;∵a3•a2=a5,∴选项B不符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a3)2=a6,∴选项D不符合题意.故选:A.4.【解答】解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.5.【解答】解:正多边形的一个外角等于40°,且外角和为360°,则这个正多边形的边数是:360°÷40°=9.故选:D.6.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.7.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°﹣60°﹣80°=40°,∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故选:B.8.【解答】解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.9.【解答】解:∵∠ACB=90°,AB=4,∠A=30°,∴∠B=60°,BC=2∴的长为=,故选:C.10.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∵S△ABC∴k1﹣k2=8.故选:A.11.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.12.【解答】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD﹣a),S2=AB(AD﹣a)+(a﹣b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD﹣a)=(AD ﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b(AD﹣AB)=2b.故选:B.二、填空题(每小题4分,共24分)13.【解答】解:|﹣2018|=2018.故答案为:2018.14.【解答】解:要使分式有意义,则:x﹣1≠0.解得:x≠1,故x的取值应满足:x≠1.故答案为:x≠1.15.【解答】解:原式=(x+2y)(x﹣2y)=﹣3×5=﹣15故答案为:﹣1516.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)17.【解答】解:如图1中,当⊙P与直线CD相切时,设PC=PM=m.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,PB==4.综上所述,BP的长为3或4.18.【解答】解:延长DM交CB的延长线于点H.∵四边形ABCD是菱形,∴AB=BC=AD=2,AD∥CH,∴∠ADM=∠H,∵AM=BM,∠AMD=∠HMB,∴△ADM≌△BHM,∴AD=HB=2,∵EM⊥DH,∴EH=ED,设BE=x,∵AE⊥BC,∴AE⊥AD,∴∠AEB=∠EAD=90°∵AE2=AB2﹣BE2=DE2﹣AD2,∴22﹣x2=(2+x)2﹣22,∴x=﹣1或﹣﹣1(舍弃),∴cosB==,故答案为.三、解答题(本大题有8小题,共78分)19.【解答】解:原式=x2﹣2x+1+3x﹣x2=x+1,当x=﹣时,原式=﹣+1=.20.【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.21.【解答】解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:×100%=30%,B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t<4的约有360人.22.【解答】解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.23.【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°24.【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得,=,解得x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得a≥20.答:甲种商品按原销售单价至少销售20件.25.【解答】解:(1)∵△ABC是比例三角形,且AB=2、AC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.26.【解答】解:∵直线l:y=﹣x+b与x轴交于点A(4,0),∴﹣×4+b=0,∴b=3,∴直线l的函数表达式y=﹣x+3,∴B(0,3),∴OA=4,OB=3,在Rt△AOB中,tan∠BAO==;(2)①如图2,连接DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA,②过点E⊥OA于M,由①知,tan∠OAB=,设EM=3m,则AM=4m,∴OM=4﹣4m,AE=5m,∴E(4﹣4m,3m),AC=5m,∴OC=4﹣5m,由①知,△COE∽△EOA,∴,∴OE2=OA•OC=4(4﹣5m)=16﹣20m,∵E(4﹣4m,3m),∴(4﹣4m)2+9m2=25m2﹣32m+16,∴25m2﹣32m+16=16﹣20m,∴m=0(舍)或m=,∴4﹣4m=,3m=,∴(,),(3)如图,设⊙O的半径为r,过点O作OG⊥AB于G,∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∴AB×OG=OA×OB,∴OG=,∴AG==×=,∴EG=AG﹣AE=﹣r,连接FH,∵EH是⊙O直径,∴EH=2r,∠EFH=90°=∠EGO,∵∠OEG=∠HEF,∴△OEG∽△HEF,∴,∴OE•EF=HE•EG=2r(﹣r)=﹣2(r﹣)2+,∴r=时,OE•EF最大值为.。
2018年浙江省宁波市中考数学真题试卷(带答案解析)-优选.doc
宁波市2018年初中学业水平考试数学试题试题卷Ⅰ一、选择题(每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在-3,-1,0,1这四个数中,最小的数是( )A .-3B .-1C .0D .12.2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次.其中55万用科学记数法表示为( )A .60.5510⨯B .55.510⨯C .45.510⨯D .45510⨯ 3.下列计算正确的是( )A .3332a a a +=B .326a a a ⋅=C .623a a a ÷= D .325()a a =4.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为( ) A .45 B .35 C .25 D .155.已知正多边形的一个外角等于40o,那么这个正多边形的边数为( ) A .6 B .7 C .8 D .96.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A .主视图B .左视图C .俯视图D .主视图和左视图7.如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,E 是边CD 的中点,连结OE .若60ABC ∠=o,80BAC ∠=o ,则1∠的度数为( )A .50oB .40oC .30oD .20o8.若一组数据4,1,7,x ,5的平均数为4,则这组数据的中位数为( ) A .7 B .5 C .4 D .39.如图,在ABC ∆中,90ACB ∠=o,30A ∠=o,4AB =,以点B 为圆心,BC 长为半径画弧,交边AB于点D ,则»CD的长为( )A .16π B .13π C .23π D .233π 10.如图,平行于x 轴的直线与函数11(0,0)k y k x x =>>,22(0,0)ky k x x=>>的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点.若ABC ∆的面积为4,则12k k -的值为( )A .8B .-8C .4D .-411.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P .若点P 的横坐标为-1,则一次函数()y a b x b =-+的图象大致是( )A .B .C .D .12.在矩形ABCD 内,将两张边长分别为a 和()b a b >的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分为1S ,图2中阴影部分的面积为2S .当2AD AB -=时,21S S -的值为( )A .2aB .2bC .22a b -D .2b -试题卷Ⅱ二、填空题(每小题4分,共24分)13.计算:2018-= . 14.要使分式11x -有意义,x 的取值应满足 . 15.已知x ,y 满足方程组2523x y x y -=⎧⎨+=-⎩,则224x y -的值为 .16.如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45o和30o.若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为 米(结果保留根号).17.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作P e .当P e 与正方形ABCD 的边相切时,BP 的长为 .18.如图,在菱形ABCD 中,2AB =,B ∠是锐角,AE BC ⊥于点E ,M 是AB 的中点,连结MD ,ME .若90EMD ∠=o ,则cos B 的值为 .三、解答题(本大题有8小题,共78分)19.先化简,再求值:2(1)(3)x x x -+-,其中12x =-. 20.在53⨯的方格纸中,ABC ∆的三个顶点都在格点上.(1)在图1中画出线段BD ,使//BD AC ,其中D 是格点; (2)在图2中画出线段BE ,使BE AC ⊥,其中E 是格点.21.在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t 表示,单位:小时),采用随机抽样的方法进行问卷调查.调查结果按02t ≤<,23t ≤<,34t ≤<,4t ≥分为四个等级,并依次用A ,B ,C ,D 表示.根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B 所在扇形的圆心角度数,并把条形统计图补充完整; (3)若该校共有学生1200人,试估计每周课外阅读时间满足34t ≤<的人数. 22.已知抛物线212y x bx c =-++经过点(1,0),3(0,)2. (1)求该抛物线的函数表达式; (2)将抛物线212y x bx c =-++平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.23.如图,在ABC ∆中,90ACB ∠=o,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90o得到线段CE ,连结DE 交BC 于点F ,连BE .(1)求证:ACD BCE ∆≅∆;(2)当AD BF =时,求BEF ∠的度数.24.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同. (1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元.销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?25.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知ABC ∆是比例三角形,2AB =,3BC =,请直接写出所有满足条件的AC 的长; (2)如图1,在四边形ABCD 中,//AD BC ,对角线BD 平分ABC ∠,BAC ADC ∠=∠. 求证:ABC ∆是比例三角形;(3)如图2,在(2)的条件下,当90ADC ∠=o时,求BDAC的值. 26.如图1,直线l :34y x b =-+与x 轴交于点(4,0)A ,与y 轴交于点B ,点C 是线段OA 上一动点(1605AC <<).以点A 为圆心,AC 长为半径作A e 交x 轴于另一点D ,交线段AB 于点E ,连结OE 并延长交A e 于点F .(1)求直线l 的函数表达式和tan BAO ∠的值; (2)如图2,连结CE ,当CE EF =时, ①求证:OCE OEA ∆∆:; ②求点E 的坐标;(3)当点C 在线段OA 上运动时,求OE EF ⋅的最大值.2018年浙江省宁波市中考数学试卷一、选择题(本大题共12小题,共48分) 1. 在,,0,1这四个数中,最小的数是A. B. C. 0 D. 1【答案】A【解析】解:由正数大于零,零大于负数,得,最小的数是,故选:A.根据正数大于零,零大于负数,可得答案.本题考查了有理数比较大小,利用正数大于零,零大于负数是解题关键.2.2018中国宁波特色文化产业博览会于4月16日在宁波国际会展中心闭幕本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为A. B. C. D.【答案】B【解析】解:,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是A. B. C. D.【答案】A【解析】解:,选项A符合题意;,选项B不符合题意;,选项C不符合题意;,选项D不符合题意.故选:A.根据同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答此题的关键是要明确:底数,因为0不能做除数;单独的一个字母,其指数是1,而不是0;应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为A. B. C. D.【答案】C【解析】解:从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,正面的数字是偶数的概率为,故选:C.让正面的数字是偶数的情况数除以总情况数5即为所求的概率.此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.已知正多边形的一个外角等于,那么这个正多边形的边数为A. 6B. 7C. 8D. 9【答案】D【解析】解:正多边形的一个外角等于,且外角和为,则这个正多边形的边数是:.故选:D.根据正多边形的外角和以及一个外角的度数,求得边数.本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是A. 主视图B. 左视图C. 俯视图D. 主视图和左视图【答案】C【解析】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为A. B. C. D.【答案】B【解析】解:,,,对角线AC与BD相交于点O,E是边CD的中点,是的中位线,,.故选:B.直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.8.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为A. 7B. 5C. 4D. 3【答案】C【解析】解:数据4,1,7,x,5的平均数为4,,解得:,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.先根据平均数为4求出x的值,然后根据中位数的概念求解.本题考查了中位数的概念:将一组数据按照从小到大或从大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.如图,在中,,,,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为10.11.A. B. C. D.【答案】C【解析】解:,,,,的长为,故选:C.先根据,,,得圆心角和半径的长,再根据弧长公式可得到弧CD的长.本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:弧长为l,圆心角度数为n,圆的半径为.12.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A. 8B.C. 4D.【答案】A【解析】解:轴,,B两点纵坐标相同.设,,则,.,.故选:A.设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,求出.本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式也考查了三角形的面积.13.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是A.B.C.D.【答案】D【解析】解:由二次函数的图象可知,,,当时,,的图象在第二、三、四象限,故选:D.根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.14.在矩形ABCD内,将两张边长分别为a和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为15.A. 2aB. 2bC.D.【答案】B【解析】解:,,.故选:B.利用面积的和差分别表示出和,然后利用整式的混合运算计算它们的差.本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来也考查了正方形的性质.二、填空题(本大题共6小题,共24分)16.计算:______.【答案】2018【解析】解:.故答案为:2018.直接利用绝对值的性质得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.17.要使分式有意义,x的取值应满足______.【答案】【解析】解:要使分式有意义,则:.解得:,故x的取值应满足:.故答案为:.直接利用分式有意义则分母不能为零,进而得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.18.已知x,y满足方程组,则的值为______.【答案】【解析】解:原式故答案为:根据平方差公式即可求出答案.本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.19.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为和若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为______米结果保留根号.【答案】【解析】解:由于,,在中,米,在,米.米故答案为:在和中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.本题考查了锐角三角函数的仰角、俯角问题题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH.20.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作当与正方形ABCD的边相切时,BP的长为______.21.22.23.24.【答案】3或【解析】解:如图1中,当与直线CD相切时,设.在中,,,,,.如图2中当与直线AD相切时设切点为K,连接PK,则,四边形PKDC是矩形.,,,在中,.综上所述,BP的长为3或.分两种情形分别求解:如图1中,当与直线CD相切时;如图2中当与直线AD相切时设切点为K,连接PK,则,四边形PKDC是矩形;本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.25.如图,在菱形ABCD中,,是锐角,于点E,M是AB的中点,连结26.MD,若,则的值为______.27.28.29.【答案】【解析】解:延长DM交CB的延长线于点H.四边形ABCD是菱形,,,,,,≌,,,,设,,,,,或舍弃,,故答案为.延长DM交CB的延长线于点首先证明,设,利用勾股定理构建方程求出x即可解决问题.本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、计算题(本大题共1小题,共6分)30.已知抛物线经过点,31.求该抛物线的函数表达式;32.将抛物线平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】解:把,代入抛物线解析式得:,解得:,则抛物线解析式为;抛物线解析式为,将抛物线向右平移一个单位,向下平移2个单位,解析式变为.【解析】把已知点的坐标代入抛物线解析式求出b与c的值即可;指出满足题意的平移方法,并写出平移后的解析式即可.此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.四、解答题(本大题共7小题,共72分)33.先化简,再求值:,其中.【答案】解:原式,当时,原式.【解析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x的值代入即可.此题主要考查了整式的混合运算--化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.34.在的方格纸中,的三个顶点都在格点上.35.36.在图1中画出线段BD,使,其中D是格点;37.在图2中画出线段BE,使,其中E是格点.【答案】解:如图所示,线段BD即为所求;如图所示,线段BE即为所求.【解析】将线段AC沿着AB方向平移2个单位,即可得到线段BD;利用的长方形的对角线,即可得到线段.本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.38.在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,,,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:39.40.求本次调查的学生人数;41.求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;42.若该校共有学生1200人,试估计每周课外阅读时间满足的人数.【答案】解:由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的所以:人即本次调查的学生人数为200人;由条形图知:C级的人数为60人所以C级所占的百分比为:,B级所占的百分比为:,B级的人数为人D级的人数为:人B所在扇形的圆心角为:.因为C级所占的百分比为,所以全校每周课外阅读时间满足的人数为:人答:全校每周课外阅读时间满足的约有360人.【解析】由条形图、扇形图中给出的级别A的数字,可计算出调查学生人数;先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角.总人数课外阅读时间满足的百分比即得所求.本题考查了扇形图和条形图的相关知识题目难度不大扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比.43.如图,在中,,,D是AB边上一点点D与A,B不重合,连结CD,将线段CD绕点C按逆时针方向旋转得到线段CE,连结DE交BC于点F,连接BE.44.求证:≌;45.当时,求的度数.【答案】解:由题意可知:,,,,,,在与中,≌,,,由可知:,,,【解析】由题意可知:,,由于,所以,,所以,从而可证明≌由≌可知:,,从而可求出的度数.本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.46.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.47.求甲、乙两种商品的每件进价;48.该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】解:设甲种商品的每件进价为x元,则乙种商品的每件进价为元.根据题意,得,,解得.经检验,是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲乙两种商品的销售量为.设甲种商品按原销售单价销售a件,则,解得.答:甲种商品按原销售单价至少销售20件.【解析】设甲种商品的每件进价为x元,乙种商品的每件进价为y元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.本题考查了分式方程的应用,一元一次不等式的应用本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润售价进价.49.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.50.51.已知是比例三角形,,,请直接写出所有满足条件的AC的长;52.如图1,在四边形ABCD中,,对角线BD平分,求证:是比例三角形.53.如图2,在的条件下,当时,求的值.【答案】解:是比例三角形,且、,当时,得:,解得:;当时,得:,解得:;当时,得:,解得:负值舍去;所以当或或时,是比例三角形;,,又,∽,,即,,,平分,,,,,是比例三角形;如图,过点A作于点H,,,,,,,又,∽,,即,,又,,.【解析】根据比例三角形的定义分、、三种情况分别代入计算可得;先证∽得,再由知即可得;作,由知,再证∽得,即,结合知,据此可得答案.本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.54.如图1,直线l:与x轴交于点,与y轴交于点B,点C是线段OA上一动点以点A为圆心,AC长为半径作交x轴于另一点D,交线段AB于点E,连结OE并延长交于点F.55.56.求直线l的函数表达式和的值;57.如图2,连结CE,当时,58.求证:∽;59.求点E的坐标;60.当点C在线段OA上运动时,求的最大值.【答案】解:直线l:与x轴交于点,,,直线l的函数表达式,,,,在中,;如图2,连接DF,,,,,,四边形CEFD是的圆内接四边形,,,,∽,过点于M,由知,,设,则,,,,,,由知,∽,,,,,,舍或,,,,如图,设的半径为r,过点O作于G,,,,,,,,,,连接FH,是直径,,,,∽,,,时,最大值为.【解析】利用待定系数法求出b即可得出直线l表达式,即可求出OA,OB,即可得出结论;先判断出,进而得出,即可得出结论;设出,,进而得出点E坐标,即可得出OE 的平方,再根据的相似得出比例式得出OE的平方,建立方程即可得出结论;利用面积法求出OG,进而得出AG,HE,再构造相似三角形,即可得出结论.此题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正确作出辅助线是解本题的关键.21。
2018年浙江省(宁波、衢州)中考数学试题(共2套 附答案)
方式放置(图 1,图 2 中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的
部分用阴影表示,设图 1 中阴影部分的面积为 S1,图 2 中阴影部分的面积为 S2.当 AD﹣AB=2
时,S2﹣S1 的值为( )
A.2a B.2b C.2a﹣2b D.﹣2b
二、填空题(每小题 4 分,共 24 分)
博览会为期四天,参观总人数超 55 万人次,其中 55 万用科学记数法表示为( )
A.0.55×106 B.5.5×105 C.5.5×104 D.55×104
3.(4 分)下列计算正确的是( )
A.a3+a3=2a3 B.a3•a2=a6 C.a6÷a2=a3 D.(a3)2=a5
4.(4 分)有五张背面完全相同的卡片,正面分别写有数字 1,2,3,4,5,把这些卡片背面朝
二、填空题(每小题 4 分,共 24 分) 13. 【解答】解:|﹣2018|=2018. 故答案为:2018.
14. 【解答】解:要使分式
有意义,则:x﹣1≠0.
解得:x≠1,故 x 的取值应满足:x≠1. 故答案为:x≠1.
15. 【解答】解:原式=(x+2y)(x﹣2y) =﹣3×5 =﹣15 故答案为:﹣15
13.(4 分)计算:|﹣2018|=
.
14.(4 分)要使分式 有意义,x 的取值应满足
.
15.(4 分)已知 x,y 满足方程组
,则 x2﹣4y2 的值为
.
16.(4 分)如图,某高速公路建设中需要测量某条江的宽度 AB,飞机上的测量人员在 C 处测得
A,B 两点的俯角分别为 45°和 30°.若飞机离地面的高度 CH 为 1200 米,且点 H,A,B 在同一
完整版浙江省宁波市中考数学试卷及答案解析
2018 年浙江省宁波市中考数学试卷一、选择题(每题 4 分,共 48 分,在每题给出的四个选项中,只有一项符合题目要求)1.(4 分)在﹣ 3,﹣ 1,0,1 这四个数中,最小的数是()A.﹣ 3 B.﹣ 1 C.0D.12.(4 分) 2018 中国(宁波)特点文化家产展览会于 4 月 16 日在宁波国际会展中心谢幕.本次展览会为期四天,观光总人数超 55 万人次,此中 55 万用科学记数法表示为()A.×106B.×105C.×104 D.55×1043.(4 分)以下计算正确的选项是()3+a33. 3 2 6 . 6÷a2 3.(3) 2 5A.a =2a B a ?a =a C a=a D a=a4.(4 分)有五张反面完好同样的卡片,正面分别写有数字1,2,3,4,5,把这些卡片反面向上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.5.( 4 分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6B.7C.8D.96.(4 分)如图是由 6 个大小同样的立方体构成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.(4 分)如图,在 ?ABCD中,对角线 AC与 BD 订交于点 O,E 是边 CD 的中点,连结 OE.若∠ ABC=60°,∠ BAC=80°,则∠ 1 的度数为()第 1页(共 28页)A.50°B.40°C.30°D.20°8.( 4 分)若一组数据 4,1,7,x,5 的均匀数为 4,则这组数据的中位数为()A.7B.5C.4D.39.(4 分)如图,在△ ABC中,∠ ACB=90°,∠ A=30°,AB=4,以点 B 为圆心, BC长为半径画弧,交边AB 于点 D,则的长为()A.π B.π C.π D.π10.( 4 分)如图,平行于x 轴的直线与函数 y=(k1>0,x>0),y=(k2>0,x>0)的图象分别订交于A,B 两点,点 A 在点 B 的右边, C 为 x 轴上的一个动点,若△ ABC的面积为 4,则 k1﹣2的值为()kA.8B.﹣ 8 C.4D.﹣ 411.(4 分)如图,二次函数 y=ax2+bx 的图象张口向下,且经过第三象限的点P.若点 P 的横坐标为﹣ 1,则一次函数 y=(a﹣b)x+b 的图象大概是()A.B.C.D.12.( 4 分)在矩形 ABCD内,将两张边长分别为a 和 b( a> b)的正方形纸片按图 1,图 2 两种方式搁置(图 1,图 2 中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用暗影表示,设图 1 中暗影部分的面积为S1,图 2 中暗影部分的面积为S2.当 AD﹣AB=2时, S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣ 2b二、填空题(每题 4 分,共 24 分)13.( 4分)计算: | ﹣2018| =.14.( 4分)要使分式存心义, x 的取值应知足.15.( 4分)已知 x,y 知足方程组,则 x2﹣4y2的值为.16.( 4 分)如图,某高速公路建设中需要丈量某条江的宽度AB,飞机上的丈量人员在 C 处测得 A,B 两点的俯角分别为45°和 30°.若飞机离地面的高度CH为1200 米,且点 H,A,B 在同一水平直线上,则这条江的宽度 AB 为米(结果保存根号).17.( 4 分)如图,正方形 ABCD的边长为 8,M 是 AB 的中点, P 是 BC边上的动点,连结 PM,以点 P 为圆心, PM 长为半径作⊙ P.当⊙ P 与正方形 ABCD的边相切时, BP的长为.18.( 4 分)如图,在菱形ABCD中, AB=2,∠ B 是锐角, AE⊥BC 于点 E,M 是AB 的中点,连结MD, ME.若∠ EMD=90°,则 cosB 的值为.三、解答题(本大题有8 小题,共 78 分)19.( 6 分)先化简,再求值:(x﹣1)2+x(3﹣x),此中 x=﹣.20.( 8 分)在 5×3 的方格纸中,△ ABC的三个极点都在格点上.(1)在图 1 中画出线段 BD,使 BD∥ AC,此中 D 是格点;(2)在图 2 中画出线段 BE,使 BE⊥AC,此中 E 是格点.21.( 8 分)在第 23 个世界念书日前夜,我市某中学为认识本校学生的每周课外阅读时间(用 t 表示,单位:小时),采纳随机抽样的方法进行问卷检查,检查结果按0≤ t<2,2≤t <3,3≤ t <4,t≥4 分为四个等级,并挨次用 A,B,C,D表示,依据检查结果统计的数据,绘制成了如下图的两幅不完好的统计图,由图中给出的信息解答以下问题:(1)求本次检查的学生人数;(2)求扇形统计图中等级 B 所在扇形的圆心角度数,并把条形统计图增补完好;(3)若该校共有学生 1200 人,试预计每周课外阅读时间知足 3≤t< 4 的人数.22.( 10 分)已知抛物线y=﹣x2+bx+c 经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线 y=﹣ x2+bx+c 平移,使其极点恰巧落在原点,请写出一种平移的方法及平移后的函数表达式.23.( 10 分)如图,在△ ABC中,∠ ACB=90°,AC=BC, D 是 AB 边上一点(点 D与A,B 不重合),连结 CD,将线段 CD绕点 C 按逆时针方向旋转 90°获得线段CE,连结 DE 交 BC于点 F,连结 BE.( 1)求证:△ ACD≌△ BCE;( 2)当 AD=BF时,求∠ BEF的度数.24.( 10 分)某商场购进甲、乙两种商品,甲种商品共用了2000 元,乙种商品共用了 2400 元.已知乙种商品每件进价比甲种商品每件进价多8 元,且购进的甲、乙两种商品件数同样.( 1)求甲、乙两种商品的每件进价;( 2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60 元,第 5页(共 28页)甲种商品销售必定数目后,将节余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品所有售完后共赢利许多于2460 元,问甲种商品按原销售单价起码销售多少件?25.( 12 分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比率三角形.( 1)已知△ ABC 是比率三角形, AB=2, BC=3,请直接写出所有知足条件的 AC 的长;(2)如图 1,在四边形 ABCD中,AD∥BC,对角线 BD 均分∠ ABC,∠BAC=∠ADC.求证:△ ABC是比率三角形.( 3)如图 2,在( 2)的条件下,当∠ ADC=90°时,求的值.26.( 14 分)如图 1,直线 l:y=﹣x+b 与 x 轴交于点 A(4,0),与 y 轴交于点B,点 C 是线段 OA 上一动点( 0< AC<).以点A为圆心,AC长为半径作⊙ A 交 x 轴于另一点 D,交线段 AB 于点 E,连结 OE并延伸交⊙ A 于点 F.(1)求直线 l 的函数表达式和 tan ∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△ OCE∽△ OEA;②求点 E的坐标;(3)当点 C 在线段 OA 上运动时,求 OE?EF的最大值.2018 年浙江省宁波市中考数学试卷参照答案与试题分析一、选择题(每题 4 分,共 48 分,在每题给出的四个选项中,只有一项符合题目要求)1.(4 分)在﹣ 3,﹣ 1,0,1 这四个数中,最小的数是()A.﹣ 3 B.﹣ 1 C.0D.1【剖析】依据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣3<﹣ 1<0<1,最小的数是﹣ 3,应选: A.【评论】本题考察了有理数比较大小,利用正数大于零,零大于负数是解题重点.2.(4 分) 2018 中国(宁波)特点文化家产展览会于 4 月 16 日在宁波国际会展中心谢幕.本次展览会为期四天,观光总人数超 55 万人次,此中 55 万用科学记数法表示为()A.×106B.×105C.×104 D.55×104【剖析】科学记数法的表示形式为a× 10n的形式,此中 1≤| a| < 10,n 为整数.确定n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.【解答】解:× 105,应选: B.【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤| a| <10,n 为整数,表示时重点要正确确立 a 的值以及 n 的值.3.(4 分)以下计算正确的选项是()3+a33. 3 2 6 . 6÷a2 3.(3) 2 5A.a =2a B a ?a =a C a=a D a=a【剖析】依据同底数幂的除法法例,同底数幂的乘法的运算方法,归并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判断即可.【解答】解:∵a3+a3=2a3,∴选项 A 切合题意;∵a3?a2=a5,∴选项 B 不切合题意;∵a6÷a2=a4,∴选项 C 不切合题意;∵( a3)2=a6,∴选项 D 不切合题意.应选: A.【评论】本题主要考察了同底数幂的除法法例,同底数幂的乘法的运算方法,归并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答本题的重点是要明确:①底数 a≠0,因为 0 不可以做除数;②独自的一个字母,其指数是 1,而不是0;③应用同底数幂除法的法例时,底数 a 但是单项式,也能够是多项式,但必须明确底数是什么,指数是什么.4.(4 分)有五张反面完好同样的卡片,正面分别写有数字1,2,3,4,5,把这些卡片反面向上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.【剖析】让正面的数字是偶数的状况数除以总状况数 5 即为所求的概率.【解答】解:∵从写有数字1,2,3,4,5 这 5 张纸牌中抽取一张,此中正面数字是偶数的有 2、4 这 2 种结果,∴正面的数字是偶数的概率为,应选: C.【评论】本题主要考察了概率公式的应用,明确概率的意义是解答的重点,用到的知识点为:概率等于所讨状况数与总状况数之比.5.( 4 分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6B.7C.8D.9【剖析】依据正多边形的外角和以及一个外角的度数,求得边数.【解答】解:正多边形的一个外角等于 40°,且外角和为360°,则这个正多边形的边数是: 360°÷ 40°=9.应选: D.【评论】本题主要考察了多边形的外角和定理,解决问题的重点是掌握多边形的外角和等于 360 度.6.(4 分)如图是由 6 个大小同样的立方体构成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【剖析】依据从上面看获得的图形是俯视图,可得答案.【解答】解:从上面看是一个田字,“田”字是中心对称图形,应选: C.【评论】本题考察了简单组合体的三视图,从上面看获得的图形是俯视图,又利用了中心对称图形.7.(4 分)如图,在 ?ABCD中,对角线 AC与 BD 订交于点 O,E 是边 CD 的中点,连结 OE.若∠ ABC=60°,∠ BAC=80°,则∠ 1 的度数为()A.50°B.40°C.30°D.20°【剖析】直接利用三角形内角和定理得出∠ BCA的度数,再利用三角形中位线定理联合平行线的性质得出答案.【解答】解:∵∠ ABC=60°,∠ BAC=80°,∴∠ BCA=180°﹣ 60°﹣80°=40°,∵对角线 AC与 BD 订交于点 O,E 是边 CD 的中点,∴EO是△ DBC的中位线,∴EO∥BC,∴∠ 1=∠ ACB=40°.应选: B.【评论】本题主要考察了三角形内角和定理、三角形中位线定理等知识,得出EO是△ DBC的中位线是解题重点.8.( 4 分)若一组数据 4,1,7,x,5 的均匀数为 4,则这组数据的中位数为()A.7B.5C.4D.3【剖析】先依据均匀数为 4 求出 x 的值,而后依据中位数的观点求解.【解答】解:∵数据 4,1,7,x,5 的均匀数为 4,∴=4,解得: x=3,则将数据从头摆列为1、3、4、5、7,因此这组数据的中位数为4,应选: C.【评论】本题考察了中位数的观点:将一组数据依据从小到大(或从大到小)的次序摆列,假如数据的个数是奇数,则处于中间地点的数就是这组数据的中位数;假如这组数据的个数是偶数,则中间两个数据的均匀数就是这组数据的中位数.9.(4 分)如图,在△ ABC中,∠ ACB=90°,∠ A=30°,AB=4,以点 B 为圆心, BC长为半径画弧,交边AB 于点 D,则的长为()A.π B.π C.π D.π【剖析】先依据 ACB=90°,AB=4,∠ A=30°,得圆心角和半径的长,再依据弧长公式可获得弧 CD的长.【解答】解:∵∠ ACB=90°, AB=4,∠ A=30°,∴∠ B=60°,BC=2∴的长为=,应选: C.【评论】本题主要考察了弧长公式的运用和直角三角形30 度角的性质,解题时注意弧长公式为: l=(弧长为l,圆心角度数为n,圆的半径为R).10.( 4 分)如图,平行于x 轴的直线与函数 y=(k1>0,x>0),y=(k2>0,x>0)的图象分别订交于A,B 两点,点 A 在点 B 的右边, C 为 x 轴上的一个动点,若△ ABC的面积为 4,则 k1﹣2的值为()kA.8B.﹣ 8 C.4D.﹣ 4【剖析】设A(a,h),B(b,h),依据反比率函数图象上点的坐标特点得出ah=k1,bh=k2.依据三角形的面积公式获得 S△ABC= AB?y A= (a﹣b)h= ( ah﹣bh)=(k1﹣k2)=4,求出 k1﹣k2=8.【解答】解:∵ AB∥x 轴,∴ A, B 两点纵坐标同样.设 A(a,h), B( b, h),则 ah=k1,bh=k2.∵ S△ABC= AB?y A= (a﹣b)h= (ah﹣ bh)= (k1﹣ k2)=4,∴k1﹣k2=8.应选: A.【评论】本题考察了反比率函数图象上点的坐标特点,点在函数的图象上,则点的坐标知足函数的分析式.也考察了三角形的面积.11.(4 分)如图,二次函数 y=ax2+bx 的图象张口向下,且经过第三象限的点P.若点 P 的横坐标为﹣ 1,则一次函数 y=(a﹣b)x+b 的图象大概是()A.B.C.D.【剖析】依据二次函数的图象能够判断a、b、a﹣b 的正负状况,从而能够获得一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1 时, y=a﹣b<0,∴y=(a﹣b)x+b 的图象在第二、三、四象限,应选: D.【评论】本题考察二次函数的性质、一次函数的性质,解答本题的重点是明确题意,利用函数的思想解答.12.( 4 分)在矩形 ABCD内,将两张边长分别为a 和 b( a> b)的正方形纸片按图 1,图 2 两种方式搁置(图 1,图 2 中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用暗影表示,设图 1 中暗影部分的面积为S1,图 2 中暗影部分的面积为S2.当 AD﹣AB=2时, S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣ 2b【剖析】利用面积的和差分别表示出S1和 S2,而后利用整式的混淆运算计算它们的差.【解答】解: S1=(AB﹣ a)?a+(CD﹣ b)(AD﹣a)=(AB﹣ a)?a+( AB﹣b)(AD ﹣ a),S2=AB( AD﹣ a) +( a﹣ b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣ a)﹣( AB﹣a)?a﹣( AB﹣ b)(AD﹣a)=(AD﹣a)( AB﹣ AB+b) +( AB﹣a)(a﹣b﹣ a)=b?AD﹣ ab﹣b?AB+ab=b( AD﹣AB)=2b.应选: B.【评论】本题考察了整式的混淆运算:整体”思想在整式运算中较为常有,合时采纳整体思想可使问题简单化,而且快速地解决有关问题,此时应注意被看做整体的代数式往常要用括号括起来.也考察了正方形的性质.二、填空题(每题 4 分,共 24 分)13.( 4 分)计算: | ﹣2018| = 2018.【剖析】直接利用绝对值的性质得出答案.【解答】解: | ﹣2018| =2018.故答案为: 2018.【评论】本题主要考察了绝对值,正确掌握绝对值的定义是解题重点.14.( 4 分)要使分式存心义,x的取值应知足x≠1.【剖析】直接利用分式存心义则分母不可以为零,从而得出答案.【解答】解:要使分式存心义,则:x﹣1≠0.解得: x≠1,故 x 的取值应知足: x≠ 1.故答案为: x≠ 1.【评论】本题主要考察了分式存心义的条件,正确掌握分式的定义是解题重点.15.( 4 分)已知 x,y 知足方程组,则x2﹣4y2的值为﹣8.【剖析】依据平方差公式即可求出答案.【解答】解:原式 =( x+2y)(x﹣2y)=﹣3×5=﹣15故答案为:﹣ 15【评论】本题考察因式分解,解题的重点是娴熟运用平方差公式,本题属于基础题型.16.( 4 分)如图,某高速公路建设中需要丈量某条江的宽度 AB,飞机上的丈量人员在 C 处测得 A,B 两点的俯角分别为 45°和 30°.若飞机离地面的高度 CH为1200 米,且点 H,A,B 在同一水平直线上,则这条江的宽度 AB 为1200(﹣1)米(结果保存根号).【剖析】在 Rt△ ACH和 Rt△HCB中,利用锐角三角函数,用 CH 表示出 AH、BH 的长,而后计算出AB 的长.【解答】解:因为 CD∥HB,∴∠ CAH=∠ACD=45°,∠ B=∠BCD=30°在 Rt△ACH中,∵∴∠ CAH=45°∴ AH=CH=1200米,在 Rt△HCB,∵ tan∠B=∴ HB====1200 (米).∴AB=HB﹣ HA=1200 ﹣ 1200=1200(﹣1)米故答案为: 1200(﹣1)【评论】本题考察了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的重点是用含 CH的式子表示出 AH 和 BH.17.( 4 分)如图,正方形ABCD的边长为 8,M 是 AB 的中点, P 是 BC边上的动点,连结 PM,以点 P 为圆心, PM 长为半径作⊙ P.当⊙ P 与正方形 ABCD的边相切时, BP的长为 3 或 4.【剖析】分两种情况分别求解:如图 1 中,当⊙ P 与直线 CD 相切时;如图 2 中当⊙ P 与直线 AD 相切时.设切点为 K,连结 PK,则 PK⊥ AD,四边形 PKDC是矩形;【解答】解:如图 1 中,当⊙ P 与直线 CD相切时,设 PC=PM=m.在Rt△PBM 中,∵ PM2=BM2+PB2,∴ x2=42+(8﹣x)2,∴ x=5,∴PC=5, BP=BC﹣PC=8﹣5=3.如图 2 中当⊙ P 与直线 AD 相切时.设切点为K,连结 PK,则 PK⊥AD,四边形PKDC是矩形.∴ PM=PK=CD=2BM,∴ BM=4,PM=8,在 Rt△PBM 中, PB==4.综上所述, BP的长为 3 或 4.【评论】本题考察切线的性质、正方形的性质、勾股定理等知识,解题的重点是学会用分类议论的思想思虑问题,学会利用参数建立方程解决问题.18.( 4 分)如图,在菱形 ABCD中, AB=2,∠ B 是锐角, AE⊥BC 于点 E,M 是 AB 的中点,连结MD, ME.若∠ EMD=90°,则 cosB 的值为.【剖析】延伸 DM 交 CB的延伸线于点 H.第一证明 DE=EH,设 BE=x,利用勾股定理建立方程求出 x 即可解决问题.【解答】解:延伸 DM 交 CB的延伸线于点 H.∵四边形 ABCD是菱形,∴AB=BC=AD=2,AD∥CH,∴∠ ADM=∠ H,∵AM=BM,∠ AMD=∠HMB,∴△ ADM≌△ BHM,∴ AD=HB=2,∵EM⊥ DH,∴EH=ED,设BE=x,∵ AE⊥BC,∴ AE ⊥AD ,∴∠ AEB=∠EAD=90°∵ AE 2=AB 2﹣BE 2=DE 2﹣AD 2,∴ 22﹣x 2=(2+x )2﹣22,∴ x= ﹣ 1 或﹣∴ cosB= =故答案为 . 【评论】本题考察菱形的性质、勾股定理、线段的垂直均分线的性质、全等三角形的判断和性质等知识, 解题的重点是学会增添常用协助线, 结构全等三角形解决问题,属于中考常考题型.三、解答题(本大题有 8 小题,共 78 分)19.( 6 分)先化简,再求值:(x ﹣1)2+x (3﹣x ),此中 x=﹣ .【剖析】第一计算完好平方,再计算单项式乘以多项式,再归并同类项,化简后再把 x 的值代入即可.【解答】 解:原式 =x 2﹣ 2x+1+3x ﹣x 2=x+1,当 x=﹣ 时,原式 =﹣ +1= .【评论】本题主要考察了整式的混淆运算﹣﹣化简求值, 重点是先按运算次序把整式化简,再把对应字母的值代入求整式的值.20.( 8 分)在 5×3 的方格纸中,△ ABC 的三个极点都在格点上.( 1)在图 1 中画出线段 BD ,使 BD ∥ AC ,此中 D 是格点;( 2)在图 2 中画出线段 BE ,使 BE ⊥AC ,此中 E 是格点.﹣1(舍弃), ,【剖析】(1)将线段 AC 沿着 AB 方向平移 2 个单位,即可获得线段BD;(2)利用 2×3 的长方形的对角线,即可获得线段BE⊥AC.【解答】解:(1)如下图,线段 BD 即为所求;( 2)如下图,线段BE即为所求.【评论】本题主要考察了作图以及平行四边形的性质,第一要理解题意,弄清问题中对所作图形的要求,联合对应几何图形的性质和基本作图的方法作图.21.( 8 分)在第 23 个世界念书日前夜,我市某中学为认识本校学生的每周课外阅读时间(用 t 表示,单位:小时),采纳随机抽样的方法进行问卷检查,检查结果按0≤ t<2,2≤t <3,3≤ t <4,t≥4 分为四个等级,并挨次用 A,B,C,D表示,依据检查结果统计的数据,绘制成了如下图的两幅不完好的统计图,由图中给出的信息解答以下问题:(1)求本次检查的学生人数;(2)求扇形统计图中等级 B 所在扇形的圆心角度数,并把条形统计图增补完好;(3)若该校共有学生1200 人,试预计每周课外阅读时间知足3≤t< 4 的人数.【剖析】(1)由条形图、扇形图中给出的级别A 的数字,可计算出检查学生人数;(2)先计算出 C 在扇形图中的百分比,用 1﹣ [ (A+D+C)在扇形图中的百分比 ]第19页(共 28页)(3)总人数×课外阅读时间知足 3≤ t <4 的百分比即得所求.【解答】解:(1)由条形图知, A 级的人数为 20 人,由扇形图知: A 级人数占总检查人数的 10%因此: 20÷10%=20×=200(人)即本次检查的学生人数为200 人;( 2)由条形图知: C 级的人数为 60 人因此 C 级所占的百分比为:× 100%=30%,B 级所占的百分比为: 1﹣10%﹣ 30%﹣45%=15%,B 级的人数为 200× 15%=30(人)D 级的人数为: 200× 45%=90(人)B 所在扇形的圆心角为: 360°×15%=54°.( 3)因为 C 级所占的百分比为30%,因此全校每周课外阅读时间知足3≤t< 4 的人数为: 1200×30%=360(人)答:全校每周课外阅读时间知足3≤t< 4 的约有 360 人.【评论】本题考察了扇形图和条形图的有关知识.题目难度不大.扇形图中某项的百分比 = ×100%,扇形图中某项圆心角的度数 =360°×该项在扇形图中的百分比.22.( 10 分)已知抛物线y=﹣x2+bx+c 经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线 y=﹣ x2+bx+c 平移,使其极点恰巧落在原点,请写出一种平移的第20页(共 28页)方法及平移后的函数表达式.【剖析】(1)把已知点的坐标代入抛物线分析式求出 b 与 c 的值即可;( 2)指出知足题意的平移方法,并写出平移后的分析式即可.【解答】解:(1)把( 1,0),( 0,)代入抛物线分析式得:,解得:,则抛物线分析式为y=﹣x2﹣x+;( 2)抛物线分析式为y=﹣x2﹣x+ =﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移 2 个单位,分析式变为y=﹣x2.【评论】本题考察了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特点,以及待定系数法求二次函数分析式,娴熟掌握二次函数性质是解本题的重点.23.( 10 分)如图,在△ ABC中,∠ ACB=90°,AC=BC, D 是 AB 边上一点(点 D与A,B 不重合),连结 CD,将线段 CD绕点 C 按逆时针方向旋转 90°获得线段CE,连结 DE 交 BC于点 F,连结 BE.( 1)求证:△ ACD≌△ BCE;( 2)当 AD=BF时,求∠ BEF的度数.【剖析】(1)由题意可知: CD=CE,∠ DCE=90°,因为∠ ACB=90°,因此∠ ACD=∠ACB﹣∠ DCB,∠ BCE=∠DCE﹣∠ DCB,因此∠ ACD=∠BCE,从而可证明△ ACD≌△ BCE(SAS)(2)由△ ACD≌△ BCE(SAS)可知:∠ A=∠ CBE=45°,BE=BF,从而可求出∠ BEF的度数.【解答】解:(1)由题意可知: CD=CE,∠ DCE=90°,∵∠ ACB=90°,∴∠ ACD=∠ACB﹣∠ DCB,∠BCE=∠DCE﹣∠DCB,∴∠ ACD=∠BCE,在△ ACD与△ BCE中,∴△ ACD≌△ BCE(SAS)(2)∵∠ ACB=90°,AC=BC,∴∠ A=45°,由( 1)可知:∠A=∠CBE=45°,∵ AD=BF,∴ BE=BF,∴∠°【评论】本题考察全等三角形的判断与性质,解题的重点是娴熟运用旋转的性质以及全等三角形的判断与性质,本题属于中等题型.24.( 10 分)某商场购进甲、乙两种商品,甲种商品共用了2000 元,乙种商品共用了 2400 元.已知乙种商品每件进价比甲种商品每件进价多8 元,且购进的甲、乙两种商品件数同样.( 1)求甲、乙两种商品的每件进价;( 2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60 元,乙种商品的销售单价为88 元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售必定数目后,将节余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品所有售完后共赢利许多于2460 元,问甲种商品按原销售单价起码销售多少件?【剖析】(1)设甲种商品的每件进价为 x 元,乙种商品的每件进价为 y 元.依据“某商场购进甲、乙两种商品,甲种商品共用了 2000 元,乙种商品共用了 2400元.购进的甲、乙两种商品件数同样”列出方程;(2)设甲种商品按原销售单价销售 a 件,则由“两种商品所有售完后共赢利许多于 2460 元”列出不等式.【解答】解:(1)设甲种商品的每件进价为x 元,则乙种商品的每件进价为(x+8)元.依据题意,得,=,解得 x=40.经查验, x=40是原方程的解.答:甲种商品的每件进价为40 元,乙种商品的每件进价为48 元;( 2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售 a 件,则(60﹣40)a+( 60×﹣40)(50﹣a)+(88﹣ 48)× 50≥2460,解得 a≥20.答:甲种商品按原销售单价起码销售 20 件.【评论】本题考察了分式方程的应用,一元一次不等式的应用.本题属于商品销售中的收益问题,关于此类问题,隐含着一个等量关系:收益=售价﹣进价.25.( 12 分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比率三角形.( 1)已知△ ABC 是比率三角形, AB=2, BC=3,请直接写出所有知足条件的 AC的长;(2)如图 1,在四边形 ABCD中,AD∥BC,对角线 BD 均分∠ ABC,∠BAC=∠ADC.求证:△ ABC是比率三角形.( 3)如图 2,在( 2)的条件下,当∠ ADC=90°时,求的值.【剖析】(1)依据比率三角形的定义分 AB2=BC?AC、BC2=AB?AC、AC2=AB?BC 三种状况分别代入计算可得;(2)先证△ ABC∽△ DCA得 CA2=BC?AD,再由∠ ADB=∠CBD=∠ABD 知 AB=AD即可得;(3)作 AH⊥BD,由 AB=AD知 BH= BD,再证△ ABH∽△ DBC得 AB?BC=BH?DB,2222,据此可得答案.即 AB?BC= BD ,联合 AB?BC=AC知BD =AC【解答】解:(1)∵△ ABC是比率三角形,且AB=2、AC=3,①当 AB2时,得:,解得:AC=;=BC?AC4=3AC②当 BC2时,得:,解得:AC=;=AB?AC9=2AC③当 AC2时,得:,解得:AC=(负值舍去);=AB?BC AC=6因此当 AC= 或或时,△ ABC是比率三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ ABC∽△ DCA,∴ = ,即 CA2=BC?AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD均分∠ABC,∴∠ ABD=∠CBD,∴∠ ADB=∠ABD,∴AB=AD,∴CA2=BC?AB,∴△ ABC是比率三角形;( 3)如图,过点 A 作 AH⊥BD 于点 H,∵AB=AD,∴ BH= BD,∵AD∥BC,∠ ADC=90°,∴∠ BCD=90°,∴∠ BHA=∠BCD=90°,又∵∠ ABH=∠DBC,∴△ ABH∽△ DBC,∴= ,即 AB?BC=BH?DB,∴AB?BC= BD2,又∵ AB?BC=AC2,∴BD2=AC2,∴= .【评论】本题主要考察相像三角形的综合问题,解题的重点是理解比率三角形的定义,并娴熟掌握相像三角形的判断与性质.26.( 14 分)如图 1,直线 l:y=﹣x+b 与 x 轴交于点 A(4,0),与 y 轴交于点B,点 C 是线段 OA 上一动点( 0< AC<).以点 A 为圆心, AC长为半径作⊙ A 交 x 轴于另一点 D,交线段 AB 于点 E,连结 OE并延伸交⊙ A 于点 F.( 1)求直线 l 的函数表达式和tan ∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△ OCE∽△ OEA;②求点 E的坐标;(3)当点 C 在线段 OA 上运动时,求 OE?EF的最大值.【剖析】(1)利用待定系数法求出 b 即可得出直线 l 表达式,即可求出 OA,OB,即可得出结论;(2)①先判断出∠ CDF=2∠CDE,从而得出∠ OAE=∠ODF,即可得出结论;②设出 EM=3m,AM=4m,从而得出点 E 坐标,即可得出 OE 的平方,再依据①的相像得出比率式得出 OE的平方,成立方程即可得出结论;(3)利用面积法求出 OG,从而得出 AG,HE,再结构相像三角形,即可得出结论.【解答】解:∵直线 l:y=﹣ x+b 与 x 轴交于点 A(4,0),∴﹣×4+b=0,∴b=3,∴直线 l 的函数表达式 y=﹣x+3,∴B( 0, 3),∴OA=4,OB=3,在Rt△AOB中, tan∠ BAO= = ;(2)①如图 2,连结 DF,∵ CE=EF,∴∠ CDE=∠FDE,∴∠ CDF=2∠ CDE,∵∠ OAE=2∠CDE,∴∠ OAE=∠ODF,∵四边形CEFD是⊙O 的圆内接四边形,∴∠ OEC=∠ODF,∴∠ OEC=∠OAE,∵∠ COE=∠EOA,∴△ COE∽△ EOA,②过点 E⊥ OA于 M ,由①知, tan∠ OAB= ,设EM=3m,则AM=4m,∴ OM=4﹣4m,AE=5m,∴ E( 4﹣ 4m, 3m),AC=5m,∴OC=4﹣5m,由①知,△ COE∽△ EOA,∴,∴2OE =OA?OC=4( 4﹣ 5m) =16﹣20m,∵E( 4﹣ 4m, 3m),∴( 4﹣4m)2+9m2=25m2﹣32m+16,∴25m2﹣ 32m+16=16﹣20m,∴m=0(舍)或 m= ,∴4﹣ 4m= ,3m= ,∴(,),(3)如图,设⊙ O 的半径为 r,过点 O 作 OG⊥AB 于 G,∵ A( 4, 0),B(0,3),∴ OA=4,OB=3,∴ AB=5,∴ AB×OG= OA× OB,∴OG= ,∴ AG==×=,∴EG=AG﹣ AE= ﹣ r,连结 FH,∵ EH是⊙ O 直径,∴EH=2r,∠ EFH=90°=∠EGO,∵∠ OEG=∠HEF,∴△ OEG∽△ HEF,∴,∴ OE?EF=HE?EG=2r(﹣r)=﹣2(r﹣)2+,∴r= 时, OE?EF最大值为.【评论】本题是圆的综合题,主要考察了待定系数法,相像三角形的判断和性质,锐角三角函数,勾股定理,正确作出协助线是解本题的重点.。
2018浙江宁波市中考数学试题和答案与解析
WORD 格式编辑整理2018 年浙江省宁波市中考数学试卷一、选择题(每小题 4 分,共 48 分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4 分)在﹣ 3,﹣ 1,0,1 这四个数中,最小的数是()A.﹣ 3 B.﹣1 C.0D.12.(4 分) 2018 中国(宁波)特色文化产业博览会于 4 月 16 日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超 55 万人次,其中 55 万用科学记数法表示为()A.0.55×106B.5.5×105C.5.5×104 D.55×1043.(4 分)下列计算正确的是()3+a33.326.6÷a2 3.(3)2 5A.a =2a B a ?a =a C a=a D a=a4.(4 分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.5.( 4 分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6B.7C.8D.96.(4 分)如图是由 6 个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.(4 分)如图,在 ?ABCD中,对角线 AC与 BD 相交于点 O,E 是边 CD 的中点,连结 OE.若∠ ABC=60°,∠ BAC=80°,则∠ 1 的度数为()专业知识分享A.50°B.40°C.30°D.20°8.( 4 分)若一组数据 4,1,7,x,5 的平均数为 4,则这组数据的中位数为()A.7B.5C.4D.39.(4 分)如图,在△ ABC中,∠ ACB=90°,∠ A=30°,AB=4,以点 B 为圆心, BC长为半径画弧,交边AB 于点 D,则的长为()A.πB.πC.πD.π10.( 4 分)如图,平行于x 轴的直线与函数 y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B 两点,点 A 在点 B 的右侧, C 为 x 轴上的一个动点,若△ ABC的面积为 4,则 k1﹣k2的值为()A.8B.﹣8 C.4D.﹣ 411.(4 分)如图,二次函数 y=ax2+bx 的图象开口向下,且经过第三象限的点P.若点 P 的横坐标为﹣ 1,则一次函数 y=(a﹣b)x+b 的图象大致是()A .B .C .D .12.( 4 分)在矩形 ABCD 内,将两张边长分别为 a 和 b ( a > b )的正方形纸片按图 1,图 2 两种方式放置(图 1,图 2 中两张正方形纸片均有部分重叠) ,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1 中阴影部分的面积为 S 1,图 2 中阴影部分的面积为 S 2.当 AD ﹣AB=2时, S 2﹣S 1 的值为()A .2aB .2bC .2a ﹣2bD .﹣ 2b二、填空题(每小题 4 分,共 24 分) 13.( 4 分)计算: | ﹣2018| = .14.( 4 分)要使分式有意义, x 的取值应满足.15.( 4 分)已知 x ,y 满足方程组,则 x 2﹣4y 2的值为.16.( 4 分)如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在 C 处测得 A ,B 两点的俯角分别为45°和 30°.若飞机离地面的高度 CH 为1200 米,且点 H ,A ,B 在同一水平直线上, 则这条江的宽度 AB 为米(结果保留根号).17.( 4 分)如图,正方形 ABCD的边长为 8,M 是 AB 的中点, P 是 BC边上的动点,连结 PM,以点 P 为圆心, PM 长为半径作⊙ P.当⊙ P 与正方形 ABCD的边相切时, BP的长为.18.( 4 分)如图,在菱形ABCD中, AB=2,∠ B 是锐角, AE⊥BC 于点 E,M 是AB 的中点,连结MD, ME.若∠ EMD=90°,则 cosB 的值为.三、解答题(本大题有8 小题,共 78 分)219.( 6 分)先化简,再求值:(x﹣1) +x(3﹣x),其中 x=﹣.(1)在图 1 中画出线段 BD,使 BD∥ AC,其中 D 是格点;(2)在图 2 中画出线段 BE,使 BE⊥AC,其中 E 是格点.21.( 8 分)在第 23 个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用 t 表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤ t<2,2≤t <3,3≤ t <4,t≥4 分为四个等级,并依次用 A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:( 1)求本次调查的学生人数;( 2)求扇形统计图中等级 B 所在扇形的圆心角度数, 并把条形统计图补充完整;( 3)若该校共有学生 1200 人,试估计每周课外阅读时间满足 3≤t < 4 的人数.22.( 10 分)已知抛物线 y=﹣ x 2+bx+c 经过点( 1,0),(0,).( 1)求该抛物线的函数表达式;( 2)将抛物线 y=﹣ x 2+bx+c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.23.( 10 分)如图,在△ ABC 中,∠ ACB=90°,AC=BC , D 是 AB 边上一点(点 D与 A ,B 不重合),连结 CD ,将线段 CD 绕点 C 按逆时针方向旋转 90°得到线段 CE ,连结 DE 交 BC 于点 F ,连接 BE .( 1)求证:△ ACD ≌△ BCE ;( 2)当 AD=BF 时,求∠ BEF 的度数.24.( 10 分)某商场购进甲、乙两种商品,甲种商品共用了2000 元,乙种商品共用了 2400 元.已知乙种商品每件进价比甲种商品每件进价多8 元,且购进的甲、乙两种商品件数相同.( 1)求甲、乙两种商品的每件进价;( 2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60 元,专业知识分享甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460 元,问甲种商品按原销售单价至少销售多少件?25.( 12 分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.( 1)已知△ ABC 是比例三角形, AB=2, BC=3,请直接写出所有满足条件的 AC 的长;(2)如图 1,在四边形 ABCD中,AD∥BC,对角线 BD 平分∠ ABC,∠BAC=∠ADC.求证:△ ABC是比例三角形.( 3)如图 2,在( 2)的条件下,当∠ ADC=90°时,求的值.26.( 14 分)如图 1,直线 l:y=﹣x+b 与 x 轴交于点 A(4,0),与 y 轴交于点B,点 C 是线段 OA 上一动点( 0< AC<).以点 A 为圆心, AC长为半径作⊙ A 交 x 轴于另一点 D,交线段 AB 于点 E,连结 OE并延长交⊙ A 于点 F.(1)求直线 l 的函数表达式和 tan ∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△ OCE∽△ OEA;②求点 E的坐标;(3)当点 C 在线段 OA 上运动时,求 OE?EF的最大值.2018 年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题 4 分,共 48 分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4 分)在﹣ 3,﹣ 1,0,1 这四个数中,最小的数是()A .﹣ 3B .﹣1C .0D .1【分析】 根据正数大于零,零大于负数,可得答案.【解答】 解:由正数大于零,零大于负数,得﹣ 3<﹣ 1<0<1,最小的数是﹣ 3,故选: A .【点评】本题考查了有理数比较大小, 利用正数大于零,零大于负数是解题关键.2.(4 分) 2018 中国(宁波)特色文化产业博览会于 4 月 16 日在宁波国际会展中心闭幕.本次博览会为期四天, 参观总人数超 55 万人次,其中 55 万用科学记数法表示为()A .0.55×106B .5.5×105C .5.5×104D .55×104【分析】科学记数法的表示形式为a × 10n的形式,其中 1≤| a| < 10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.【解答】 解: 550000=5.5× 105,故选: B .【点评】 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中 1≤| a| <10,n 为整数,表示时关键要正确确定a 的值以及 n 的值.3.(4 分)下列计算正确的是()WORD 格式编辑整理3+a 33. 326.6÷a 2 3.( 3)2 5 A .a =2aB a ?a =a Ca=aD a =a【分析】根据同底数幂的除法法则, 同底数幂的乘法的运算方法, 合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】 解:∵ a 3+a 3=2a 3,∴选项 A 符合题意;∵ a 3?a 2=a 5,∴选项 B 不符合题意;∵ a 6÷a 2=a 4,∴选项 C 不符合题意;∵( a 3)2=a 6,∴选项 D 不符合题意.故选: A .【点评】此题主要考查了同底数幂的除法法则, 同底数幂的乘法的运算方法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 解答此题的关键是要明确:①底数 a ≠0,因为 0 不能做除数;②单独的一个字母,其指数是 1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.(4 分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A .B .C .D .【分析】 让正面的数字是偶数的情况数除以总情况数5 即为所求的概率.【解答】解:∵从写有数字 1,2,3,4,5 这 5 张纸牌中抽取一张,其中正面数字是偶数的有 2、4 这 2 种结果,∴正面的数字是偶数的概率为,故选: C.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.( 4 分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6B.7C.8D.9【分析】根据正多边形的外角和以及一个外角的度数,求得边数.【解答】解:正多边形的一个外角等于 40°,且外角和为360°,则这个正多边形的边数是: 360°÷ 40°=9.故选: D.【点评】本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于 360 度.6.(4 分)如图是由 6 个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选: C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7.(4 分)如图,在 ?ABCD中,对角线 AC与 BD 相交于点 O,E 是边 CD 的中点,连结 OE.若∠ ABC=60°,∠ BAC=80°,则∠ 1 的度数为()A.50°B.40°C.30°D.20°【分析】直接利用三角形内角和定理得出∠ BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.【解答】解:∵∠ ABC=60°,∠ BAC=80°,∴∠ BCA=180°﹣ 60°﹣80°=40°,∵对角线 AC与 BD 相交于点 O,E 是边 CD 的中点,∴EO是△ DBC的中位线,∴EO∥BC,∴∠ 1=∠ ACB=40°.故选: B.【点评】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是△ DBC的中位线是解题关键.8.( 4 分)若一组数据 4,1,7,x,5 的平均数为 4,则这组数据的中位数为()A.7B.5C.4D.3【分析】先根据平均数为 4 求出 x 的值,然后根据中位数的概念求解.【解答】解:∵数据 4,1,7,x,5 的平均数为 4,∴=4,解得: x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选: C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.(4 分)如图,在△ ABC中,∠ ACB=90°,∠ A=30°,AB=4,以点 B 为圆心, BC长为半径画弧,交边AB 于点 D,则的长为()A.πB.πC.πD.π【分析】先根据 ACB=90°,AB=4,∠ A=30°,得圆心角和半径的长,再根据弧长公式可得到弧 CD的长.【解答】解:∵∠ ACB=90°, AB=4,∠ A=30°,∴∠ B=60°,BC=2∴的长为=,故选: C.【点评】本题主要考查了弧长公式的运用和直角三角形30 度角的性质,解题时注意弧长公式为: l=(弧长为l,圆心角度数为n,圆的半径为R).10.( 4 分)如图,平行于x 轴的直线与函数 y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B 两点,点 A 在点 B 的右侧, C 为 x 轴上的一个动点,若△ ABC的面积为 4,则 k1﹣k2的值为()A.8B.﹣8 C.4D.﹣ 4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到 S△ABC= AB?y A= (a﹣b)h= ( ah﹣bh)=(k1﹣k2)=4,求出 k1﹣k2=8.【解答】解:∵ AB∥x 轴,∴ A, B 两点纵坐标相同.设 A(a,h), B( b, h),则 ah=k1,bh=k2.∵ S△ABC= AB?y A= (a﹣b)h= (ah﹣ bh)= (k1﹣ k2)=4,∴k1﹣k2=8.故选: A.【点评】本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式.也考查了三角形的面积.11.(4 分)如图,二次函数 y=ax2+bx 的图象开口向下,且经过第三象限的点P.若点 P 的横坐标为﹣ 1,则一次函数 y=(a﹣b)x+b 的图象大致是()A.B.C.D.【分析】根据二次函数的图象可以判断a、b、a﹣b 的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1 时, y=a﹣b<0,∴y=(a﹣b)x+b 的图象在第二、三、四象限,故选: D.【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.12.( 4 分)在矩形 ABCD内,将两张边长分别为a 和 b( a> b)的正方形纸片按图 1,图 2 两种方式放置(图 1,图 2 中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图 1 中阴影部分的面积为S1,图 2 中阴影部分的面积为S2.当 AD﹣AB=2时, S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣ 2b【分析】利用面积的和差分别表示出S1和 S2,然后利用整式的混合运算计算它们的差.【解答】解: S1=(AB﹣ a)?a+(CD﹣ b)(AD﹣a)=(AB﹣ a)?a+( AB﹣b)(AD ﹣ a),S2=AB( AD﹣ a) +( a﹣ b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣ a)﹣( AB﹣a)?a﹣( AB﹣ b)(AD﹣a)=(AD﹣a)( AB﹣ AB+b) +( AB﹣a)(a﹣b﹣ a)=b?AD﹣ ab﹣b?AB+ab=b( AD﹣AB)=2b.故选: B.【点评】本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.二、填空题(每小题 4 分,共 24 分)13.( 4 分)计算: | ﹣2018| = 2018.【分析】直接利用绝对值的性质得出答案.【解答】解: | ﹣2018| =2018.故答案为: 2018.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.14.( 4 分)要使分式有意义,x的取值应满足x≠1.【分析】直接利用分式有意义则分母不能为零,进而得出答案.【解答】解:要使分式有意义,则:x﹣1≠0.解得: x≠1,故 x 的取值应满足: x≠ 1.故答案为: x≠ 1.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.15.( 4 分)已知 x,y 满足方程组,则x2﹣4y2的值为﹣8.【分析】根据平方差公式即可求出答案.【解答】解:原式 =( x+2y)(x﹣2y)=﹣3×5=﹣15故答案为:﹣ 15【点评】本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.16.( 4 分)如图,某高速公路建设中需要测量某条江的宽度 AB,飞机上的测量人员在 C 处测得 A,B 两点的俯角分别为 45°和 30°.若飞机离地面的高度 CH为1200 米,且点 H,A,B 在同一水平直线上,则这条江的宽度 AB 为1200(﹣1)米(结果保留根号).【分析】在 Rt△ ACH和 Rt△HCB中,利用锐角三角函数,用 CH 表示出 AH、BH 的长,然后计算出AB 的长.【解答】解:由于 CD∥HB,∴∠ CAH=∠ACD=45°,∠ B=∠BCD=30°在 Rt△ACH中,∵∴∠ CAH=45°∴ AH=CH=1200米,在 Rt△HCB,∵ tan∠B=∴HB====1200 (米).∴AB=HB﹣ HA=1200 ﹣ 1200=1200(﹣1)米故答案为: 1200(﹣1)【点评】本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含 CH的式子表示出 AH 和 BH.17.( 4 分)如图,正方形ABCD的边长为 8,M 是 AB 的中点, P 是 BC边上的动点,连结 PM,以点 P 为圆心, PM 长为半径作⊙ P.当⊙ P 与正方形 ABCD的边相切时, BP的长为 3 或 4.【分析】分两种情形分别求解:如图 1 中,当⊙ P 与直线 CD 相切时;如图 2 中当⊙ P 与直线 AD 相切时.设切点为 K,连接 PK,则 PK⊥ AD,四边形 PKDC是矩形;【解答】解:如图 1 中,当⊙ P 与直线 CD相切时,设 PC=PM=m.在Rt△PBM 中,∵ PM2=BM2+PB2,∴ x2=42+(8﹣x)2,∴ x=5,∴PC=5, BP=BC﹣PC=8﹣5=3.如图 2 中当⊙ P 与直线 AD 相切时.设切点为K,连接 PK,则 PK⊥AD,四边形PKDC是矩形.∴ PM=PK=CD=2BM,∴ BM=4,PM=8,在 Rt△PBM 中, PB==4.综上所述, BP的长为 3 或 4.【点评】本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.18.( 4 分)如图,在菱形 ABCD中, AB=2,∠ B 是锐角, AE⊥BC 于点 E,M 是 AB 的中点,连结MD, ME.若∠ EMD=90°,则 cosB 的值为.【分析】延长 DM 交 CB的延长线于点 H.首先证明 DE=EH,设 BE=x,利用勾股定理构建方程求出 x 即可解决问题.【解答】解:延长 DM 交 CB的延长线于点 H.∵四边形 ABCD是菱形,∴AB=BC=AD=2,AD∥CH,∴∠ ADM=∠ H,∵AM=BM,∠ AMD=∠HMB,∴△ ADM≌△ BHM,∴AD=HB=2,∵ EM⊥ DH,∴EH=ED,设BE=x,∵ AE⊥BC,WORD 格式 编辑整理∴ AE ⊥AD ,∴∠ AEB=∠EAD=90°∵ AE 2=AB 2﹣BE 2=DE 2﹣AD 2,∴ 22﹣x 2=(2+x )2﹣22,∴ x= ﹣ 1 或﹣ ∴ cosB= = 故答案为.【点评】本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识, 解题的关键是学会添加常用辅助线, 构造全等三角形解决问题,属于中考常考题型.三、解答题(本大题有 8 小题,共 78 分)19.( 6 分)先化简,再求值:(x ﹣1)2+x (3﹣x ),其中 x=﹣ .【分析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把 x 的值代入即可.【解答】 解:原式 =x 2﹣ 2x+1+3x ﹣x 2=x+1,【点评】此题主要考查了整式的混合运算﹣﹣化简求值, 关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.20.( 8 分)在 5×3 的方格纸中,△ ABC 的三个顶点都在格点上.( 1)在图 1 中画出线段 BD ,使 BD ∥ AC ,其中 D 是格点;( 2)在图 2 中画出线段 BE ,使 BE ⊥AC ,其中 E 是格点.﹣1(舍弃),,WORD 格式编辑整理【分析】(1)将线段 AC 沿着 AB 方向平移 2 个单位,即可得到线段BD;(2)利用 2×3 的长方形的对角线,即可得到线段BE⊥AC.【解答】解:(1)如图所示,线段 BD 即为所求;( 2)如图所示,线段BE即为所求.【点评】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.21.( 8 分)在第 23 个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用 t 表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤ t<2,2≤t <3,3≤ t <4,t≥4 分为四个等级,并依次用 A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级 B 所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200 人,试估计每周课外阅读时间满足3≤t< 4 的人数.【分析】(1)由条形图、扇形图中给出的级别A 的数字,可计算出调查学生人数;(2)先计算出 C 在扇形图中的百分比,用 1﹣ [ (A+D+C)在扇形图中的百分比 ]专业知识分享WORD 格式编辑整理( 3)总人数×课外阅读时间满足 3≤ t <4 的百分比即得所求.【解答】 解:(1)由条形图知, A 级的人数为 20 人,由扇形图知: A 级人数占总调查人数的 10%所以: 20÷10%=20×=200(人)即本次调查的学生人数为 200 人;( 2)由条形图知: C 级的人数为 60 人所以 C 级所占的百分比为:× 100%=30%,B 级所占的百分比为: 1﹣10%﹣ 30%﹣45%=15%,B 级的人数为 200× 15%=30(人)D 级的人数为: 200× 45%=90(人)B 所在扇形的圆心角为: 360°×15%=54°.( 3)因为 C 级所占的百分比为 30%,所以全校每周课外阅读时间满足3≤t < 4 的人数为: 1200×30%=360(人)答:全校每周课外阅读时间满足3≤t < 4 的约有 360 人.【点评】本题考查了扇形图和条形图的相关知识.题目难度不大. 扇形图中某项的百分比 = ×100%,扇形图中某项圆心角的度数 =360°×该项在扇形图中的百分比.22.( 10 分)已知抛物线 y=﹣ x 2+bx+c 经过点( 1,0),(0,).( 1)求该抛物线的函数表达式;( 2)将抛物线 y=﹣ x 2+bx+c 平移,使其顶点恰好落在原点,请写出一种平移的专业知识分享方法及平移后的函数表达式.【分析】(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可;( 2)指出满足题意的平移方法,并写出平移后的解析式即可.【解答】 解:(1)把( 1,0),( 0, )代入抛物线解析式得: ,解得:,则抛物线解析式为 y=﹣ x 2﹣x+ ;( 2)抛物线解析式为 y=﹣ x 2﹣x+ =﹣ ( x+1)2+2,将抛物线向右平移一个单位,向下平移2 个单位,解析式变为 y=﹣ x 2.【点评】此题考查了二次函数图象与几何变换, 二次函数的性质, 二次函数图象上点的坐标特征, 以及待定系数法求二次函数解析式, 熟练掌握二次函数性质是解本题的关键.23.( 10 分)如图,在△ ABC 中,∠ ACB=90°,AC=BC , D 是 AB 边上一点(点 D与 A ,B 不重合),连结 CD ,将线段 CD 绕点 C 按逆时针方向旋转 90°得到线段CE ,连结 DE 交 BC 于点 F ,连接 BE . ( 1)求证:△ ACD ≌△ BCE ;( 2)当 AD=BF 时,求∠ BEF 的度数.【分析】(1)由题意可知: CD=CE ,∠ DCE=90°,由于∠ ACB=90°,所以∠ ACD=∠ ACB ﹣∠ DCB ,∠ BCE=∠DCE ﹣∠ DCB ,所以∠ ACD=∠BCE ,从而可证明△ ACD≌△ BCE (SAS )( 2)由△ ACD ≌△ BCE (SAS )可知:∠ A=∠ CBE=45°,BE=BF ,从而可求出∠ BEF的度数.【解答】解:(1)由题意可知: CD=CE,∠ DCE=90°,∵∠ ACB=90°,∴∠ ACD=∠ACB﹣∠ DCB,∠BCE=∠DCE﹣∠DCB,∴∠ ACD=∠BCE,在△ ACD与△ BCE中,∴△ ACD≌△ BCE(SAS)(2)∵∠ ACB=90°,AC=BC,∴∠ A=45°,由( 1)可知:∠A=∠CBE=45°,∵ AD=BF,∴ BE=BF,∴∠ BEF=67.5°【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.24.( 10 分)某商场购进甲、乙两种商品,甲种商品共用了2000 元,乙种商品共用了 2400 元.已知乙种商品每件进价比甲种商品每件进价多8 元,且购进的甲、乙两种商品件数相同.( 1)求甲、乙两种商品的每件进价;( 2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60 元,乙种商品的销售单价为88 元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460 元,问甲种商品按原销售单价至少销售多少件?【分析】(1)设甲种商品的每件进价为 x 元,乙种商品的每件进价为 y 元.根据“某商场购进甲、乙两种商品,甲种商品共用了 2000 元,乙种商品共用了 2400元.购进的甲、乙两种商品件数相同”列出方程;(2)设甲种商品按原销售单价销售 a 件,则由“两种商品全部售完后共获利不少于 2460 元”列出不等式.【解答】解:(1)设甲种商品的每件进价为x 元,则乙种商品的每件进价为(x+8)元.根据题意,得,=,解得 x=40.经检验, x=40是原方程的解.答:甲种商品的每件进价为40 元,乙种商品的每件进价为48 元;( 2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售 a 件,则(60﹣40)a+( 60×0.7﹣40)(50﹣a)+(88﹣ 48)× 50≥2460,解得 a≥20.答:甲种商品按原销售单价至少销售 20 件.【点评】本题考查了分式方程的应用,一元一次不等式的应用.本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润=售价﹣进价.25.( 12 分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.( 1)已知△ ABC 是比例三角形, AB=2, BC=3,请直接写出所有满足条件的 AC的长;(2)如图 1,在四边形 ABCD中,AD∥BC,对角线 BD 平分∠ ABC,∠BAC=∠ADC.求证:△ ABC是比例三角形.( 3)如图 2,在( 2)的条件下,当∠ ADC=90°时,求的值.【分析】(1)根据比例三角形的定义分 AB 2=BC?AC 、BC 2=AB?AC 、AC 2=AB?BC 三种情况分别代入计算可得;( 2)先证△ ABC ∽△ DCA 得 CA 2=BC?AD ,再由∠ ADB=∠CBD=∠ABD 知 AB=AD 即可得;( 3)作 AH ⊥BD ,由 AB=AD 知 BH= BD ,再证△ ABH ∽△ DBC 得 AB?BC=BH?DB ,2 2 2 2,据此可得答案.即 AB?BC= BD ,结合 AB?BC=AC 知 BD =AC 【解答】 解:(1)∵△ ABC 是比例三角形,且 AB=2、AC=3,①当 AB 2时,得: ,解得:AC= ; =BC?AC 4=3AC ②当 BC 2时,得: ,解得:AC= ; =AB?AC 9=2AC ③当 AC 2时,得: ,解得: AC= (负值舍去);=AB?BC AC=6 所以当 AC= 或或时,△ ABC 是比例三角形;( 2)∵ AD ∥ BC , ∴∠ ACB=∠CAD ,又∵∠ BAC=∠ADC , ∴△ ABC ∽△ DCA ,∴ = ,即 CA 2=BC?AD ,∵ AD ∥BC , ∴∠ADB=∠CBD ,∵ BD 平分∠ ABC , ∴∠ ABD=∠CBD , ∴∠ ADB=∠ABD , ∴ AB=AD ,∴ CA 2=BC?AB ,∴△ ABC 是比例三角形;( 3)如图,过点 A 作 AH ⊥BD 于点 H ,∵ AB=AD ,∴ BH= BD ,∵ AD ∥BC ,∠ ADC=90°, ∴∠ BCD=90°,∴∠ BHA=∠BCD=90°,又∵∠ ABH=∠DBC ,∴△ ABH ∽△ DBC ,∴ = ,即 AB?BC=BH?DB ,∴ AB?BC= BD 2,2又∵ AB?BC=AC ,∴ BD 2=AC 2,∴= .【点评】本题主要考查相似三角形的综合问题, 解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.26.( 14 分)如图 1,直线 l :y=﹣x+b 与 x 轴交于点 A (4,0),与 y 轴交于点B ,点C 是线段 OA 上一动点( 0< AC < ).以点 A 为圆心, AC 长为半径作⊙ A 交 x 轴于另一点D ,交线段 AB 于点E ,连结 OE 并延长交⊙ A 于点F .( 1)求直线 l 的函数表达式和 tan ∠BAO 的值;(2)如图2,连结CE,当CE=EF时,①求证:△ OCE∽△ OEA;②求点 E的坐标;(3)当点 C 在线段 OA 上运动时,求 OE?EF的最大值.【分析】(1)利用待定系数法求出 b 即可得出直线 l 表达式,即可求出 OA,OB,即可得出结论;(2)①先判断出∠ CDF=2∠CDE,进而得出∠ OAE=∠ODF,即可得出结论;②设出 EM=3m,AM=4m,进而得出点 E 坐标,即可得出 OE 的平方,再根据①的相似得出比例式得出 OE的平方,建立方程即可得出结论;(3)利用面积法求出 OG,进而得出 AG,HE,再构造相似三角形,即可得出结论.【解答】解:∵直线 l:y=﹣ x+b 与 x 轴交于点 A(4,0),∴﹣×4+b=0,∴b=3,∴直线 l 的函数表达式 y=﹣x+3,∴B(0,3),∴OA=4,OB=3,在Rt△AOB中, tan∠ BAO= = ;(2)①如图 2,连接 DF,∵ CE=EF,∴∠ CDE=∠FDE,∴∠ CDF=2∠ CDE,∵∠ OAE=2∠CDE,∴∠ OAE=∠ODF,∵四边形CEFD是⊙O 的圆内接四边形,∴∠ OEC=∠ODF,∴∠ OEC=∠OAE,∵∠ COE=∠EOA,WORD 格式编辑整理∴△ COE∽△ EOA,②过点 E⊥OA于 M,由①知, tan∠ OAB= ,设EM=3m,则AM=4m,∴ OM=4﹣4m,AE=5m,∴ E( 4﹣ 4m, 3m),AC=5m,∴OC=4﹣5m,由①知,△ COE∽△ EOA,∴,2∴ OE =OA?OC=4( 4﹣ 5m) =16﹣20m,∵ E( 4﹣ 4m, 3m),∴( 4﹣4m)2+9m2=25m2﹣32m+16,∴25m 2﹣ 32m+16=16﹣20m,∴m=0(舍)或 m= ,∴4﹣ 4m= ,3m= ,∴(,),(3)如图,设⊙ O 的半径为 r,过点 O 作 OG⊥AB 于 G,∵A(4,0),B(0,3),∴ OA=4,OB=3,∴ AB=5,∴ AB×OG= OA× OB,∴OG= ,∴AG==×=,∴EG=AG﹣ AE= ﹣ r,连接 FH,∵ EH是⊙ O 直径,专业知识分享WORD 格式编辑整理∴EH=2r,∠ EFH=90°=∠EGO,∵∠ OEG=∠HEF,∴△ OEG∽△ HEF,∴,∴ OE?EF=HE?EG=2r(﹣r)=﹣2(r﹣)2+,∴r= 时, OE?EF最大值为.【点评】此题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正确作出辅助线是解本题的关键.工程部维修工的岗位职责1、严格遵守公司员工守则和各项规章制度,服从领班安排,除完成日常维修任务外,有计划地承担其它工作任务; 2 、努力学习技术,熟练掌握现有电气设备的原理及实际操作与维修; 3、积极协调配电工的工作,出现事故时无条件地迅速返回机房,听从领班的指挥; 4、招待执行所管辖设备的检修计划,按时按质按量地完成,并填好记录表格;5 、严格执行设备管理制度,做好日夜班的交接班工作;6 、交班时发生故障,上一班必须协同下一班排队故障后才能下班,配电设备发生事故时不得离岗;7 、请假、补休需在一天前报告领班,并由领班安排合适的替班人.专业知识分享。
浙江省宁波市2018年中考数学试题(带解析)-精编.docx
2018年浙江省宁波市中考数学试卷一、选择题(本大题共12小题,共48分)1.在−3,−1,0,1这四个数中,最小的数是()A. −3B. −1C. 0D. 1【答案】A【解析】解:由正数大于零,零大于负数,得−3<−1<0<1,最小的数是−3,故选:A.根据正数大于零,零大于负数,可得答案.本题考查了有理数比较大小,利用正数大于零,零大于负数是解题关键.2.2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为()A. 0.55×106B. 5.5×105C. 5.5×104D. 55×104【答案】B【解析】解:550000=5.5×105,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A. a3+a3=2a3B. a3⋅a2=a6C. a6÷a2=a3D. (a3)2=a5【答案】A【解析】解:∵a3+a3=2a3,∴选项A符合题意;∵a3⋅a2=a5,∴选项B不符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a3)2=a6,∴选项D不符合题意.故选:A.根据同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A. 45B. 35C. 25D. 15【答案】C【解析】解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为25,故选:C.让正面的数字是偶数的情况数除以总情况数5即为所求的概率.此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.已知正多边形的一个外角等于40∘,那么这个正多边形的边数为()A. 6B. 7C. 8D. 9【答案】D【解析】解:正多边形的一个外角等于40∘,且外角和为360∘,则这个正多边形的边数是:360∘÷40∘=9.故选:D.根据正多边形的外角和以及一个外角的度数,求得边数.本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A. 主视图B. 左视图C. 俯视图D. 主视图和左视图【答案】C【解析】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60∘,∠BAC=80∘,则∠1的度数为()A. 50∘B. 40∘C. 30∘D.20∘【答案】B【解析】解:∵∠ABC=60∘,∠BAC=80∘,∴∠BCA=180∘−60∘−80∘=40∘,∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线,∴EO//BC,∴∠1=∠ACB=40∘.故选:B.直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是△DBC的中位线是解题关键.8. 若一组数据4,1,7,x ,5的平均数为4,则这组数据的中位数为( )A. 7B. 5C. 4D. 3【答案】C【解析】解:∵数据4,1,7,x ,5的平均数为4, ∴4+1+7+x+55=4, 解得:x =3, 则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C .先根据平均数为4求出x 的值,然后根据中位数的概念求解.本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9. 如图,在△ABC 中,∠ACB =90∘,∠A =30∘,AB =4,以点B 为圆心,BC 长为半径画弧,交边AB 于点D ,则CD ⌢的长为( )A. 16πB. 13πC. 23πD. 2√33π 【答案】C【解析】解:∵∠ACB =90∘,AB =4,∠A =30∘,∴∠B =60∘,BC =2 ∴CD ⌢的长为60π×2180=2π3,故选:C .先根据ACB =90∘,AB =4,∠A =30∘,得圆心角和半径的长,再根据弧长公式可得到弧CD 的长.本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:l =nπR 180(弧长为l ,圆心角度数为n ,圆的半径为R).10. 如图,平行于x 轴的直线与函数y =k 1x (k 1>0,x >0),y =k2x (k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为4,则k 1−k 2的值为( )A. 8B. −8C. 4D. −4【答案】A 【解析】解:∵AB//x 轴,∴A ,B 两点纵坐标相同.设A(a,ℎ),B(b,ℎ),则aℎ=k 1,bℎ=k 2.∵S △ABC =12AB ⋅y A =12(a −b)ℎ=12(aℎ−bℎ)=12(k 1−k 2)=4,∴k 1−k 2=8.故选:A .设A(a,ℎ),B(b,ℎ),根据反比例函数图象上点的坐标特征得出aℎ=k 1,bℎ=k 2.根据三角形的面积公式得到S △ABC =12AB ⋅y A =12(a −b)ℎ=12(aℎ−bℎ)=12(k 1−k 2)=4,求出k 1−k 2=8.本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式.也考查了三角形的面积.11.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为−1,则一次函数y=(a−b)x+b的图象大致是()A.B.C.D.【答案】D【解析】解:由二次函数的图象可知,a<0,b<0,当x=−1时,y=a−b<0,∴y=(a−b)x+b的图象在第二、三、四象限,故选:D.根据二次函数的图象可以判断a、b、a−b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.12.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD−AB=2时,S2−S1的值为()A. 2aB. 2bC. 2a−2bD. −2b【答案】B【解析】解:S 1=(AB −a)⋅a +(CD −b)(AD −a)=(AB −a)⋅a +(AB −b)(AD −a),S 2=AB(AD −a)+(a −b)(AB −a),∴S 2−S 1=AB(AD −a)+(a −b)(AB −a)−(AB −a)⋅a −(AB −b)(AD −a)=(AD −a)(AB −AB +b)+(AB −a)(a −b −a)=b ⋅AD −ab −b ⋅AB +ab =b(AD −AB)=2b .故选:B .利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差.本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.二、填空题(本大题共6小题,共24分)13. 计算:|−2018|=______.【答案】2018【解析】解:|−2018|=2018.故答案为:2018.直接利用绝对值的性质得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.14. 要使分式1x−1有意义,x 的取值应满足______.【答案】x ≠1[来源学科网Z,X,X,K]【解析】解:要使分式1x−1有意义,则:x −1≠0.解得:x ≠1,故x 的取值应满足:x ≠1.故答案为:x ≠1.直接利用分式有意义则分母不能为零,进而得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.15. 已知x ,y 满足方程组{x +2y =−3x−2y=5,则x 2−4y 2的值为______.【答案】−8【解析】解:原式=(x +2y)(x −2y) =−3×5 =−15 故答案为:−15根据平方差公式即可求出答案.本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.16. 如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45∘和30∘.若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米(结果保留根号).【答案】1200(√3−1)【解析】解:由于CD//HB ,∴∠CAH =∠ACD =45∘,∠B =∠BCD =30∘在Rt△ACH中,∵∴∠CAH=45∘∴AH=CH=1200米,在Rt△HCB,∵tan∠B=CHHB∴HB=CHtan∠B=1200tan30∘=1200√33=1200√3(米).∴AB=HB−HA=1200√3−1200=1200(√3−1)米故答案为:1200(√3−1)在Rt△A CH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH.17.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为______.【答案】3或4√3【解析】解:如图1中,当⊙P与直线CD相切时,设PC=PM=m.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8−x)2,∴x=5,∴PC=5,BP=BC−PC=8−5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,PB=√82−42=4√3.综上所述,BP的长为3或4√3.分两种情形分别求解:如图1中,当⊙P与直线CD相切时;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形;本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.18.如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90∘,则cosB的值为______.【答案】√3−12【解析】解:延长DM交CB的延长线于点H.∵四边形ABCD是菱形,∴AB=BC=AD=2,AD//CH,∴∠ADM=∠H,∵AM=BM,∠AMD=∠HMB,∴△ADM≌△BHM,∴AD=HB=2,∵EM⊥DH,∴EH=ED,设BE=x,∵AE⊥BC,∴AE⊥AD,∴∠AEB=∠EAD=90∘∵AE2=AB2−BE2=DE2−AD2,∴22−x2=(2+x)2−22,∴x=√3−1或−√3−1(舍弃),∴cosB=BEAB =√3−12,故答案为√3−12. 延长DM 交CB 的延长线于点H.首先证明DE =EH ,设BE =x ,利用勾股定理构建方程求出x 即可解决问题.本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、计算题(本大题共1小题,共6分)19. 已知抛物线y =−12x 2+bx +c 经过点(1,0),(0,32).(1)求该抛物线的函数表达式; (2)将抛物线y =−12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】解:(1)把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32, 解得:{b =−1c =32, 则抛物线解析式为y =−12x 2−x +32;(2)抛物线解析式为y =−12x 2−x +32=−12(x +1)2+2, 将抛物线向右平移一个单位,向下平移2个单位,解析式变为y =−12x 2.【解析】(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.四、解答题(本大题共7小题,共72分)20. 先化简,再求值:(x −1)2+x(3−x),其中x =−12.【答案】解:原式=x 2−2x +1+3x −x 2=x +1, 当x =−12时,原式=−12+1=12. 【解析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x 的值代入即可. 此题主要考查了整式的混合运算--化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.21. 在5×3的方格纸中,△ABC 的三个顶点都在格点上.(1)在图1中画出线段BD ,使BD//AC ,其中D 是格点;(2)在图2中画出线段BE ,使BE ⊥AC ,其中E 是格点.【答案】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.【解析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.22.在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.【答案】解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×10010=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:60200×100%=30%,B级所占的百分比为:1−10%−30%−45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360∘×15%=54∘.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t <4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t <4的约有360人.【解析】(1)由条形图、扇形图中给出的级别A 的数字,可计算出调查学生人数;(2)先计算出C 在扇形图中的百分比,用1−[(A +D +C)在扇形图中的百分比]可计算出B 在扇形图中的百分比,再计算出B 在扇形的圆心角.(3)总人数×课外阅读时间满足3≤t <4的百分比即得所求.本题考查了扇形图和条形图的相关知识.题目难度不大.扇形图中某项的百分比=该项人数总人数×100%,扇形图中某项圆心角的度数=360∘×该项在扇形图中的百分比.23. 如图,在△ABC 中,∠ACB =90∘,AC =BC ,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90∘得到线段CE ,连结DE 交BC 于点F ,连接BE .(1)求证:△ACD≌△BCE ;(2)当AD =BF 时,求∠BEF 的度数.【答案】解:(1)由题意可知:CD =CE ,∠DCE =90∘,∵∠ACB =90∘,∴∠ACD =∠ACB −∠DCB ,∠BCE =∠DCE −∠DCB ,∴∠ACD =∠BCE ,在△ACD 与△BCE 中, {AC =BC ∠ACD =∠BCE CD =CE ∴△ACD≌△BCE(SAS)(2)∵∠ACB =90∘,AC =BC ,∴∠A =45∘,由(1)可知:∠A =∠CBE =45∘,∵AD =BF ,∴BE =BF ,∴∠BEF =67.5∘【解析】(1)由题意可知:CD =CE ,∠DCE =90∘,由于∠ACB =90∘,所以∠ACD =∠ACB −∠DCB ,∠BCE =∠DCE −∠DCB ,所以∠ACD =∠BCE ,从而可证明△ACD≌△BCE(SAS)(2)由△ACD≌△BCE(SAS)可知:∠A =∠CBE =45∘,BE =BF ,从而可求出∠BEF 的度数.本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.24. 某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】解:(1)设甲种商品的每件进价为x 元,则乙种商品的每件进价为(x +8)元.根据题意,得,2000x =2400x+8,解得x =40.经检验,x =40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为200040=50.设甲种商品按原销售单价销售a 件,则(60−40)a +(60×0.7−40)(50−a)+(88−48)×50≥2460,解得a ≥20.答:甲种商品按原销售单价至少销售20件.【解析】(1)设甲种商品的每件进价为x 元,乙种商品的每件进价为y 元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程;(2)设甲种商品按原销售单价销售a 件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.本题考查了分式方程的应用,一元一次不等式的应用.本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润=售价−进价.25. 若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC 是比例三角形,AB =2,BC =3,请直接写出所有满足条件的AC 的长;(2)如图1,在四边形ABCD 中,AD//BC ,对角线BD 平分∠ABC ,∠BAC =∠ADC.求证:△ABC 是比例三角形.(3)如图2,在(2)的条件下,当∠ADC =90∘时,求BD AC 的值. 【答案】解:(1)∵△ABC 是比例三角形,且AB =2、AC =3,①当AB 2=BC ⋅AC 时,得:4=3AC ,解得:AC =43;②当BC 2=AB ⋅AC 时,得:9=2AC ,解得:AC =92;③当AC 2=AB ⋅BC 时,得:AC =6,解得:AC =√6(负值舍去); 所以当AC =43或92或√6时,△ABC 是比例三角形;(2)∵AD//BC ,∴∠ACB =∠CAD ,又∵∠BAC =∠ADC ,∴△ABC∽△DCA , ∴BC CA =CA AD ,即CA 2=BC ⋅AD , ∵AD//BC ,∴∠ADB =∠CBD ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∴∠ADB =∠ABD ,∴AB =AD ,∴CA 2=BC ⋅AB ,∴△ABC 是比例三角形;(3)如图,过点A 作AH ⊥BD 于点H ,∵AB =AD , ∴BH =12BD ,∵AD//BC ,∠ADC =90∘,∴∠BHA=∠BCD=90∘,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴ABDB =BHBC,即AB⋅BC=BH⋅DB,∴AB⋅BC=12BD2,又∵AB⋅BC=AC2,∴12BD2=AC2,∴BDAC=√2.【解析】(1)根据比例三角形的定义分AB2=BC⋅AC、BC2=AB⋅AC、AC2=AB⋅BC三种情况分别代入计算可得;(2)先证△ABC∽△DCA得CA2=BC⋅AD,再由∠ADB=∠CBD=∠ABD知AB=AD即可得;(3)作AH⊥BD,由AB=AD知BH=12BD,再证△ABH∽△DBC得AB⋅BC=BH⋅DB,即AB⋅BC=1 2BD2,结合AB⋅BC=AC2知12BD2=AC2,据此可得答案.本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.26.如图1,直线l:y=−34x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<165).以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE⋅EF的最大值.【答案】解:∵直线l:y=−34x+b与x轴交于点A(4,0),∴−34×4+b=0,∴b=3,∴直线l的函数表达式y=−34x+3,∴B(0,3),∴OA=4,OB=3,在Rt△AOB中,tan∠BAO=OBOA =34;(2)①如图2,连接DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∵∠COE =∠EOA ,∴△COE∽△EOA ,②过点E ⊥OA 于M , 由①知,tan∠OAB =34, 设EM =3m ,则AM =4m , ∴OM =4−4m ,AE =5m ,∴E(4−4m,3m),AC =5m ,∴OC =4−5m ,由①知,△COE∽△EOA ,∴OC OE =OE OA ,∴OE 2=OA ⋅OC =4(4−5m)=16−20m ,∵E(4−4m,3m),∴(4−4m)2+9m 2=25m 2−32m +16,∴25m 2−32m +16=16−20m , ∴m =0(舍)或m =1225,∴4−4m =4825,3m =3625,∴(4825,3625), (3)如图,设⊙O 的半径为r ,过点O 作OG ⊥AB 于G ,∵A(4,0),B(0,3),∴OA =4,OB =3,∴AB =5, ∴12AB ×OG =12OA ×OB , ∴OG =125,∴AG =OG tan∠AOB =125×43=165,∴EG =AG −AE =165−r , 连接FH ,∵EH 是⊙O 直径,∴EH =2r ,∠EFH =90∘=∠EGO ,∵∠OEG =∠HEF ,∴△OEG∽△HEF , ∴OE HE =EG EF , ∴OE ⋅EF =HE ⋅EG =2r(165−r)=−2(r −85)2+12825,∴r =85时,OE ⋅EF 最大值为12825. 【解析】(1)利用待定系数法求出b 即可得出直线l 表达式,即可求出OA ,OB ,即可得出结论;(2)①先判断出∠CDF =2∠CDE ,进而得出∠OAE =∠ODF ,即可得出结论;②设出EM =3m ,AM =4m ,进而得出点E 坐标,即可得出OE 的平方,再根据①的相似得出比例式得出OE 的平方,建立方程即可得出结论;(3)利用面积法求出OG ,进而得出AG ,HE ,再构造相似三角形,即可得出结论.此题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正确作出辅助线是解本题的关键.。
2018浙江省宁波市中考数学的试卷与的答案解析解析
2018年浙江省宁波市中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.12.(4分)2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为()A.0.55×106B.5.5×105C.5.5×104D.55×1043.(4分)下列计算正确的是()A.a3+a3=2a3B.a3•a2=a6 C.a6÷a2=a3D.(a3)2=a54.(4分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.5.(4分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6 B.7 C.8 D.96.(4分)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°8.(4分)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.39.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC 长为半径画弧,交边AB于点D,则的长为()A.πB.πC.πD.π10.(4分)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣411.(4分)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.12.(4分)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b二、填空题(每小题4分,共24分)13.(4分)计算:|﹣2018|=.14.(4分)要使分式有意义,x的取值应满足.15.(4分)已知x,y满足方程组,则x2﹣4y2的值为.16.(4分)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为米(结果保留根号).17.(4分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为.18.(4分)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.20.(8分)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.21.(8分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.22.(10分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.23.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D 与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.24.(10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?25.(12分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC 的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.26.(14分)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC长为半径作⊙A 交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.2018年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.1【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣3<﹣1<0<1,最小的数是﹣3,故选:A.【点评】本题考查了有理数比较大小,利用正数大于零,零大于负数是解题关键.2.(4分)2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为()A.0.55×106B.5.5×105C.5.5×104D.55×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:550000=5.5×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)下列计算正确的是()A.a3+a3=2a3B.a3•a2=a6 C.a6÷a2=a3D.(a3)2=a5【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵a3+a3=2a3,∴选项A符合题意;∵a3•a2=a5,∴选项B不符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a3)2=a6,∴选项D不符合题意.故选:A.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.(4分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.【分析】让正面的数字是偶数的情况数除以总情况数5即为所求的概率.【解答】解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.(4分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6 B.7 C.8 D.9【分析】根据正多边形的外角和以及一个外角的度数,求得边数.【解答】解:正多边形的一个外角等于40°,且外角和为360°,则这个正多边形的边数是:360°÷40°=9.故选:D.【点评】本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.6.(4分)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7.(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°﹣60°﹣80°=40°,∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故选:B.【点评】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是△DBC的中位线是解题关键.8.(4分)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.3【分析】先根据平均数为4求出x的值,然后根据中位数的概念求解.【解答】解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC 长为半径画弧,交边AB于点D,则的长为()A.πB.πC.πD.π【分析】先根据ACB=90°,AB=4,∠A=30°,得圆心角和半径的长,再根据弧长公式可得到弧CD的长.【解答】解:∵∠ACB=90°,AB=4,∠A=30°,∴∠B=60°,BC=2∴的长为=,故选:C.【点评】本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).10.(4分)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∵S△ABC∴k1﹣k2=8.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式.也考查了三角形的面积.11.(4分)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.12.(4分)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【解答】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD ﹣a),S2=AB(AD﹣a)+(a﹣b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b(AD﹣AB)=2b.故选:B.【点评】本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.二、填空题(每小题4分,共24分)13.(4分)计算:|﹣2018|=2018.【分析】直接利用绝对值的性质得出答案.【解答】解:|﹣2018|=2018.故答案为:2018.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.14.(4分)要使分式有意义,x的取值应满足x≠1.【分析】直接利用分式有意义则分母不能为零,进而得出答案.【解答】解:要使分式有意义,则:x﹣1≠0.解得:x≠1,故x的取值应满足:x≠1.故答案为:x≠1.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.15.(4分)已知x,y满足方程组,则x2﹣4y2的值为﹣8.【分析】根据平方差公式即可求出答案.【解答】解:原式=(x+2y)(x﹣2y)=﹣3×5=﹣15故答案为:﹣15【点评】本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.16.(4分)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为1200(﹣1)米(结果保留根号).【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH 的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)【点评】本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH.17.(4分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为3或4.【分析】分两种情形分别求解:如图1中,当⊙P与直线CD相切时;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形;【解答】解:如图1中,当⊙P与直线CD相切时,设PC=PM=m.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,PB==4.综上所述,BP的长为3或4.【点评】本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.18.(4分)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.【分析】延长DM交CB的延长线于点H.首先证明DE=EH,设BE=x,利用勾股定理构建方程求出x即可解决问题.【解答】解:延长DM交CB的延长线于点H.∵四边形ABCD是菱形,∴AB=BC=AD=2,AD∥CH,∴∠ADM=∠H,∵AM=BM,∠AMD=∠HMB,∴△ADM≌△BHM,∴AD=HB=2,∵EM⊥DH,∴EH=ED,设BE=x,∵AE⊥BC,∴AE⊥AD,∴∠AEB=∠EAD=90°∵AE2=AB2﹣BE2=DE2﹣AD2,∴22﹣x2=(2+x)2﹣22,∴x=﹣1或﹣﹣1(舍弃),∴cosB==,故答案为.【点评】本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.【分析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x的值代入即可.【解答】解:原式=x2﹣2x+1+3x﹣x2=x+1,当x=﹣时,原式=﹣+1=.【点评】此题主要考查了整式的混合运算﹣﹣化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.20.(8分)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.【分析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.【点评】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.21.(8分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.【分析】(1)由条形图、扇形图中给出的级别A的数字,可计算出调查学生人数;(2)先计算出C在扇形图中的百分比,用1﹣[(A+D+C)在扇形图中的百分比]可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角.(3)总人数×课外阅读时间满足3≤t<4的百分比即得所求.【解答】解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:×100%=30%,B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t<4的约有360人.【点评】本题考查了扇形图和条形图的相关知识.题目难度不大.扇形图中某项的百分比=×100%,扇形图中某项圆心角的度数=360°×该项在扇形图中的百分比.22.(10分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【分析】(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.【解答】解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.【点评】此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.23.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D 与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.【分析】(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,所以∠ACD=∠BCE,从而可证明△ACD ≌△BCE(SAS)(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,BE=BF,从而可求出∠BEF 的度数.【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.24.(10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为y元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程;(2)设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得,=,解得x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得a≥20.答:甲种商品按原销售单价至少销售20件.【点评】本题考查了分式方程的应用,一元一次不等式的应用.本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润=售价﹣进价.25.(12分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC 的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.【分析】(1)根据比例三角形的定义分AB2=BC•AC、BC2=AB•AC、AC2=AB•BC三种情况分别代入计算可得;(2)先证△ABC∽△DCA得CA2=BC•AD,再由∠ADB=∠CBD=∠ABD知AB=AD即可得;(3)作AH⊥BD,由AB=AD知BH=BD,再证△ABH∽△DBC得AB•BC=BH•DB,即AB•BC=BD2,结合AB•BC=AC2知BD2=AC2,据此可得答案.【解答】解:(1)∵△ABC是比例三角形,且AB=2、AC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.【点评】本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.26.(14分)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC长为半径作⊙A 交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.【分析】(1)利用待定系数法求出b即可得出直线l表达式,即可求出OA,OB,即可得出结论;(2)①先判断出∠CDF=2∠CDE,进而得出∠OAE=∠ODF,即可得出结论;②设出EM=3m,AM=4m,进而得出点E坐标,即可得出OE的平方,再根据①的相似得出比例式得出OE的平方,建立方程即可得出结论;(3)利用面积法求出OG,进而得出AG,HE,再构造相似三角形,即可得出结论.【解答】解:∵直线l:y=﹣x+b与x轴交于点A(4,0),∴﹣×4+b=0,∴b=3,∴直线l的函数表达式y=﹣x+3,∴B(0,3),∴OA=4,OB=3,在Rt△AOB中,tan∠BAO==;(2)①如图2,连接DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA,②过点E⊥OA于M,由①知,tan∠OAB=,设EM=3m,则AM=4m,∴OM=4﹣4m,AE=5m,∴E(4﹣4m,3m),AC=5m,∴OC=4﹣5m,由①知,△COE∽△EOA,∴,∴OE2=OA•OC=4(4﹣5m)=16﹣20m,∵E(4﹣4m,3m),∴(4﹣4m)2+9m2=25m2﹣32m+16,∴25m2﹣32m+16=16﹣20m,∴m=0(舍)或m=,∴4﹣4m=,3m=,∴(,),(3)如图,设⊙O的半径为r,过点O作OG⊥AB于G,∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∴AB×OG=OA×OB,∴OG=,∴AG==×=,∴EG=AG﹣AE=﹣r,连接FH,∵EH是⊙O直径,∴EH=2r,∠EFH=90°=∠EGO,∵∠OEG=∠HEF,∴△OEG∽△HEF,∴,∴OE•EF=HE•EG=2r(﹣r)=﹣2(r﹣)2+,∴r=时,OE•EF最大值为.【点评】此题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正确作出辅助线是解本题的关键.。
2018年浙江省宁波市中考数学试卷真题含答案
2018年浙江省宁波市中考数学试卷真题含答案一、选择题(本大题共12小题,共48分)1.在,,0,1这四个数中,最小的数是A. B. C. 0 D. 1【答案】A【解析】解:由正数大于零,零大于负数,得,最小的数是,故选:A.根据正数大于零,零大于负数,可得答案.本题考查了有理数比较大小,利用正数大于零,零大于负数是解题关键.2.2018中国宁波特色文化产业博览会于4月16日在宁波国际会展中心闭幕本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为A. B. C. D.【答案】B【解析】解:,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列计算正确的是A.B.C.D.【答案】A 【解析】解:,选项A 符合题意;,选项B 不符合题意;,选项C 不符合题意;,选项D 不符合题意. 故选:A .根据同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答此题的关键是要明确:底数,因为0不能做除数;单独的一个字母,其指数是1,而不是0;应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为A. B. C. D.【答案】C【解析】解:从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,正面的数字是偶数的概率为,故选:C.让正面的数字是偶数的情况数除以总情况数5即为所求的概率.此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.已知正多边形的一个外角等于,那么这个正多边形的边数为A. 6B. 7C. 8D. 9【答案】D【解析】解:正多边形的一个外角等于,且外角和为,则这个正多边形的边数是:.故选:D.根据正多边形的外角和以及一个外角的度数,求得边数.本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是A. 主视图B. 左视图C. 俯视图D. 主视图和左视图【答案】C【解析】解:从上边看是一个田字, “田”字是中心对称图形, 故选:C .根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7. 如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,E 是边CD 的中点,连结若,,则的度数为A.B.C.D.【答案】B 【解析】解:,,,对角线AC 与BD 相交于点O ,E 是边CD 的中点,是的中位线,,.故选:B .直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.8.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为A. 7B. 5C. 4D. 3【答案】C【解析】解:数据4,1,7,x,5的平均数为4,,解得:,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.先根据平均数为4求出x的值,然后根据中位数的概念求解.本题考查了中位数的概念:将一组数据按照从小到大或从大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.如图,在中,,,,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为A. B. C. D.【答案】C【解析】解:,,,,的长为,故选:C . 先根据,,,得圆心角和半径的长,再根据弧长公式可得到弧CD 的长.本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:弧长为l ,圆心角度数为n ,圆的半径为.10. 如图,平行于x 轴的直线与函数,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若的面积为4,则的值为A. 8B.C. 4D.【答案】A 【解析】解:轴,,B 两点纵坐标相同. 设,,则,.,.故选:A . 设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,求出.本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式也考查了三角形的面积.11.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是A.B.C.D.【答案】D【解析】解:由二次函数的图象可知,,,当时,,的图象在第二、三、四象限,故选:D.根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.12. 在矩形ABCD 内,将两张边长分别为a 和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A. 2aB. 2bC.D.【答案】B 【解析】解:,,.故选:B .利用面积的和差分别表示出和,然后利用整式的混合运算计算它们的差.本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来也考查了正方形的性质.二、填空题(本大题共6小题,共24分) 13. 计算:______.【答案】2018【解析】解:.故答案为:2018.直接利用绝对值的性质得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.14.要使分式有意义,x的取值应满足______.【答案】【解析】解:要使分式有意义,则:.解得:,故x的取值应满足:.故答案为:.直接利用分式有意义则分母不能为零,进而得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.15.已知x,y满足方程组,则的值为______.【答案】【解析】解:原式故答案为:根据平方差公式即可求出答案.本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.16. 如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为和若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米结果保留根号. 【答案】【解析】解:由于,,在中,米,在,米.米故答案为:在和中,利用锐角三角函数,用CH 表示出AH 、BH 的长,然后计算出AB 的长.本题考查了锐角三角函数的仰角、俯角问题题目难度不大,解决本题的关键是用含CH 的式子表示出AH 和BH .17.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作当与正方形ABCD的边相切时,BP的长为______.【答案】3或【解析】解:如图1中,当与直线CD相切时,设.在中,,,,,.如图2中当与直线AD相切时设切点为K,连接PK,则,四边形PKDC是矩形.,,,在中,.综上所述,BP的长为3或.分两种情形分别求解:如图1中,当与直线CD相切时;如图2中当与直线AD相切时设切点为K,连接PK ,则,四边形PKDC是矩形;本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.中点,连结MD ,若,则的值为______.【答案】【解析】解:延长DM交CB的延长线于点H.四边形ABCD是菱形,,,,,,≌,,,,设,,,,,或舍弃,,故答案为.延长DM交CB的延长线于点首先证明,设,利用勾股定理构建方程求出x即可解决问题.本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、计算题(本大题共1小题,共6分)19.已知抛物线经过点,求该抛物线的函数表达式;将抛物线平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函【答案】解:把,代入抛物线解析式得:,解得:,则抛物线解析式为;抛物线解析式为,将抛物线向右平移一个单位,向下平移2个单位,解析式变为.【解析】把已知点的坐标代入抛物线解析式求出b与c的值即可;指出满足题意的平移方法,并写出平移后的解析式即可.此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.四、解答题(本大题共7小题,共72分)20.先化简,再求值:,其中.【答案】解:原式,当时,原式.【解析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x的值代入即可.此题主要考查了整式的混合运算--化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.21.在的方格纸中,的三个顶点都在格点上.在图1中画出线段BD,使,其中D是格点;在图2中画出线段BE,使,其中E是格点.【答案】解:如图所示,线段BD即为所求;如图所示,线段BE即为所求.【解析】将线段AC沿着AB方向平移2个单位,即可得到线段BD;利用的长方形的对角线,即可得到线段.本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.22.在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,,,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:求本次调查的学生人数;求扇形统计图中等级B 所在扇形的圆心角度数,并把条形统计图补充完整;若该校共有学生1200人,试估计每周课外阅读时间满足的人数.【答案】解:由条形图知,A 级的人数为20人,由扇形图知:A 级人数占总调查人数的所以:人即本次调查的学生人数为200人;由条形图知:C 级的人数为60人 所以C 级所占的百分比为:,B 级所占的百分比为:,B 级的人数为人 D 级的人数为:人B 所在扇形的圆心角为:.因为C 级所占的百分比为,所以全校每周课外阅读时间满足的人数为:人答:全校每周课外阅读时间满足的约有360人.【解析】由条形图、扇形图中给出的级别A的数字,可计算出调查学生人数;先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角.总人数课外阅读时间满足的百分比即得所求.本题考查了扇形图和条形图的相关知识题目难度不大扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比.23.如图,在中,,,D是AB边上一点点D与A,B不重合,连结CD,将线段CD绕点C按逆时针方向旋转得到线段CE,连结DE交BC于点F,连接BE.求证:≌;当时,求的度数.【答案】解:由题意可知:,,,,,,在与中,≌,,,由可知:,,,【解析】由题意可知:,,由于,所以,,所以,从而可证明≌由≌可知:,,从而可求出的度数.本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.24.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】解:设甲种商品的每件进价为x 元,则乙种商品的每件进价为元.根据题意,得,,解得.经检验,是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲乙两种商品的销售量为.设甲种商品按原销售单价销售a件,则,解得.答:甲种商品按原销售单价至少销售20件.【解析】设甲种商品的每件进价为x元,乙种商品的每件进价为y元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.本题考查了分式方程的应用,一元一次不等式的应用本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润售价进价.25.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.已知是比例三角形,,,请直接写出所有满足条件的AC的长;如图1,在四边形ABCD中,,对角线BD平分,求证:是比例三角形.如图2,在的条件下,当时,求的值.【答案】解:是比例三角形,且、,当时,得:,解得:;当时,得:,解得:;当时,得:,解得:负值舍去;所以当或或时,是比例三角形;,,又,∽,,即,,,平分,,,,,是比例三角形;如图,过点A 作于点H,,,,,又,∽,,即,,又,,.【解析】根据比例三角形的定义分、、三种情况分别代入计算可得;先证∽得,再由知即可得;作,由知,再证∽得,即,结合知,据此可得答案.本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.26.如图1,直线l:与x轴交于点,与y轴交于点B,点C是线段OA上一动点以点A为圆心,AC长为半径作交x轴于另一点D,交线段AB于点E,连结OE 并延长交于点F.求直线l的函数表达式和的值;如图2,连结CE,当时,求证:∽;求点E的坐标;当点C在线段OA 上运动时,求的最大值.【答案】解:直线l :与x 轴交于点,,,直线l 的函数表达式,,,,在中,;如图2,连接DF ,,,,,四边形CEFD 是的圆内接四边形,,,∽,过点于M,由知,,设,则,,,,,,由知,∽,,,,,,舍或,,,,如图,设的半径为r,过点O作于G,,,,,,,,,,连接FH,是直径,,,,∽,,,时,最大值为.【解析】利用待定系数法求出b即可得出直线l表达式,即可求出OA,OB,即可得出结论;先判断出,进而得出,即可得出结论;设出,,进而得出点E坐标,即可得出OE的平方,再根据的相似得出比例式得出OE的平方,建立方程即可得出结论;利用面积法求出OG,进而得出AG,HE,再构造相似三角形,即可得出结论.此题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正确作出辅助线是解本题的关键.。
2018浙江宁波中考数学解析
2018年浙江省宁波市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题(每小题4分,共48分.在每个小题给出的四个选项中,只有一项符合题目要求)1.(2018宁波市,1题,4分)在-3,-1,0,1这四个数中,最小的数是.A.-3 B.-1 C.0 D.1【答案】A【解析】在数轴上,右边的数大于左边的数【知识点】实数大小比较2.(2018宁波市,2题,4分)2018中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕本次博览会为期四天,参观总人数超55万人次其中55万用科学记数法表示为.A.0.55x106 B.5.5×105C.5.5×104D.55×104【答案】B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.55万=500000=5.5×105【知识点】科学记数法3.(2018宁波市,3题,4分)下列计算正确的是A.a3+a3=2a3B.a3∙a2=a6C.a6÷a2=a3D.(a3)2=a5【答案】A【解析】B选项a3∙a2=a5同底数幂相乘底数不变指数相加,所以错误C选项a6÷a2=a4同底数幂相除底数不变指数相减,所以错误D选项(a3)2=a6幂的乘方,底数不变指数相乘,所以错误【知识点】幂的乘方同底数幂的乘除、合并同类项.4.(2018宁波市,4题,4分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为A.45B.35C.25D.15【答案】C【解析】根据题意可得:有五张背面完全相同的卡片,从中随机抽取一张,正面分别写有数字1,2,3,4,5,共五种可能,从中随机抽取一张,其正面的数字是偶数的可能为2和4,其正面的数字是偶数的概率=25【知识点】概率5.(2018宁波市,5题,4分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为A.6 B.7 C.8 D.9【答案】D【解析】利用正多边形的每个外角都相等,外角和360°,除以外角的度数,即可求得边数解:360°÷40°=9【知识点】多边形外角和6.(2018宁波市,6题,4分)如图是由6个大小相同的立方体组成的几何体在这个几何体的三视图中是中心对称图形的是A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C【解析】解:该立体图形的主视图、左视图、俯视图如下图所示三视图中是中心对称图形的只有俯视图【知识点】三视图、中心对称7.(2018宁波市,7题,4分)如图,在ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE若∠ABC =60°∠BAC=80°,则∠1的度数为A.50°B.40°C.30°D.20°【答案】B【解析】解:∵∠ABC =60°∠BAC=80°∴∠ACB=40°又∵平行四边形ABCD∴AD∥BC;AO=CO∴∠ACB=∠CAD=40°又∵E是边CD的中点∴OE∥AD∴∠CAD=∠1=40°【知识点】平行四边形的性质、三角形内角和、中位线8.(2018宁波市,8题,4分)若一组数据4,1,7,x,5的平均数为4则这组数据的中位数为A.7 B.5 C.4 D.3【答案】C【解析】解:∵平均数为4,∴4+1+7+x+5=4×5∴x=3数据按照从小到大的顺序重新排序为,1,3,4,5,7∴中位数为4【知识点】平均数、中位数的计算9.(2018宁波市,9题,4分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则CD̂的长为A.16πB.13πC.23πD.2√33π【答案】C【解析】解:∵△ABC中,∠ACB=90°,∠A=30°∴∠B=60°;AD=BD=BC∴l CD=60∙π×2180=23π【知识点】特殊角的三角函数、弧长公式主视图左视图俯视图10.(2018宁波市,10题,4分)如图,平行于x 轴的直线与函数y =k 1x(k 1>0,x>0),y =k 2x(k 2>0,x>0)的图象分别相交于A,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点若△ABC 的面积为4,则k 1-k 2的值为A .8B .-8C .4D .-4【答案】A【解析】解:设点A 的坐标为(x A ,y A ),点B 的坐标为(x B ,y B ),点C 的坐标为(x C ,0) 过点C 作CD ⊥AB 交AB 的延长线与点D ∵AB=x A -x B ;CD=y D -y C =y A -y C= ∴S △ABC =12AB ∙CD =12(x A –x B )(y A -y C )=12(x A –x B )y A=12(x A y A –x B y B )=12(|k 1|−|K 2|)=12(k 1−k 2)即4=12(k 1−k 2)所以:k 1−k 2=8【知识点】反比例函数|k|的几何意义 11.(2018宁波市,11题,4分)如图,二次函数y =ax 2+bx 的图象开口向下,且经过第三象限的点P,若点P 的坐标为-1则一次函数y =(a −b )x +b 的图象大致是A .B .C .D .【答案】D【解析】解:把x=-1带入y =ax 2+bx 的a-b<0 ∵开口向下,∴a<0又∵对称轴位于y 轴左侧 ∴a,b 同号, ∴b<0∴y =(a −b )x +b 图象经过二、三、四象限 ∴答案为D【知识点】二次函数的图象、一次函数的图象(第11题图)12.(2018宁波市,12题,4分)在矩形ABCD 内将两张边长分别为a 和b(a>b)的正方形纸片按图1,图2两种方式放置(图1图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆益的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2当AD-AB=2时S 2-S 1的值为. A .2a B .2b C .2a-2b D .-2b【答案】B 【解析】解:设AB=x,则AD=x+2如图1,延长EI 交DC 与点F∵BE=x-a ;AD=x+2;HG=x+2-a ;HI=a-b∴S 矩形BCFE =(x-a )(x+2);S 矩形HIFG =(x+2-a )(a-b )∴S 1=S 矩形BCFE +S 矩形HIFG =x 2+(2-b)x+ab-2b-a 2同理可得S 2=x 2+(2-b)x+ab-a 2 ∴S 2-S 1=2b【知识点】阴影面积的求法、整式的混合运算 二、填空题:(每小题4分,共24分) 13.(2018宁波市,13题,4分)计算:|-2018|=_________. 【答案】2018【解析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案;关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 【知识点】绝对值14.(2018宁波市,14题,4分)要使分式1x−1有意义,x 的取值应满足____________.【答案】x ≠1【解析】分式成立的条件为分母不为零,即x −1≠0;所以x ≠1 【知识点】分式成立的条件15.(2018宁波市,15题,4分)已知x,y 满足方程组{x −2y =5x +2y =−3,则x 2−4y 2的值为_________.【答案】-15【解析】解:x 2−4y 2=(x −2y )(x +2y )=5×(−3)=−15 【知识点】解二元一次方程或者因式分解 16.(2018宁波市,16题,10分)如图某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C处测得A ,B 两点的俯角分别为45°和30°若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为米(结果保留根号).baE (第12题图)图2 图1 (第16题图)图1【答案】1200√3−1200 【解析】解:∵CD ∥HB∴∠CAH=45°;∠HBC=30° 在Rt △CHA 中, ∴AH=CH=1200 在Rt △CHB 中,∴HB=√3CH =1200√3∴AB=HB-AH=1200√3−1200【知识点】解直角三角形17.(2018宁波市,17题,4分)如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是边上的动点,连结PM,以点P 为圆心,PM 长为半径作⊙P.当⊙P 与正方形ABCD 时,BP 的长为___________ 【答案】3或4√3 【解析】解:(1)当⊙P 与DC 相切时,如图(1)所示,设BP=x ,则PC=8-x; ∵DC 于圆相切,∴PC=PM又∵M 是AB 中点 ∴BM=4 在Rt △BMP 中,根据勾股定理可得 ∵BM 2+BP 2=MP 2 ∴x 2+42=(8-x)2∴解得:x=3 ∴BP=3(2)如图(2)所有当⊙P 与DA 相切时过点P 作PE ⊥AD,交AD 与点E ∵⊙P 与DA 相切与点E∴EP=MP=8在Rt △BMP 中,根据勾股定理可得 ∵BM 2+BP 2=MP 2∴BP=√82−42=4√3 综上所述:BP 的值为3或4√3【知识点】切线的判定、勾股定理18.(2018宁波市,18题,4分)如图,在菱形ABCD 中,AB=2,∠B 是锐角,AE ⊥BC 于点E ,M 是AB 的中点连结MD ,ME,若∠EMD=90°,则cosB 的值为. 【答案】√3−12【解析】解:延长EM ,交DA 的延长线与点G ,连接ED ∵M 是AB 中点,∴AM=BM又∵菱形ABCD ∴GD ∥BC∴∠GAB=∠ABC∴易证△ACD ≌△BCE(SAS)(第17题图)图2图1∴GM=EM ;AG=BE 又∵MD ⊥GE ;GM=EM ∴DG=DE 设BE=x ∴DE=x+2在RT △ABE 中, AE 2=AB 2-BE 2在Rt △ADE 中,AE 2=DE 2-AE 2∴AB 2-BE 2=DE 2-AE 2,即22-x 2=(x+2)2-22解得:x=√3−1 在Rt △ABE 中 cosB=BEAB =√3−12【知识点】勾股定理、锐角时间函数、等腰三角形三、解答题(本大题共8小题,共78分)19.(2018宁波市,19题,6分)先化简,再求值:(x −1)2+x(3−x),其中x =−12.【思路分析】第一项利用完全平方,第二项单项式乘以多项式 【解题过程】解:原式=x 2−2x +1+3x −x 2 =x+1当x =−12时,原式=−12+1=12【知识点】整式的运算 20.(2018宁波市,20题,8分)在5×3的方格纸中,△ABC 的三个顶点都在格点上.(1)在图1中画出线段BD ,使BD ∥AC ,其中D 是格点; (2)在图2中画出线段BE ,使BE ⊥AC ,其中E 使格点.【思路分析】 【解题过程】 解:线段BD 为所求作的线段线段BE 为所求作的线段D(第20题图) 图1图2【知识点】格点、线段的平行及垂直的画法 21.(2018宁波市,21题,8分)在第23个世界读书日前夕我市某中学为了解本校学生的每周课外阅读时间(用t 表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t ≥4分为四个等级,并依次用A,B,C,D 表示.根据调查结果统计的数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B 所在扇形的圆心角度数并把条形统计图补充完整; (3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数. 【思路分析】【解题过程】.解:(1)20+10%=200(人)答:本次调查的学生人数有200人 (2)等级D 的人数为200×45%=90(人);等级B 的人数为200-20-60-90=30(人),等级B 所在扇形的圆心角度数为之30200×360°=54°答:等级B 所在扇形的圆心角度数为54°(3)1200×60200=360(人) 答:估计每周课外阅读时间满足3≤r<4的人数有360人 【知识点】条形统计图、扇形统计图22.(2018宁波市,22题,10分)已知抛物线y =−12x 2+bx +c 经过点(1,0),(0,32).(1)求抛物线的函数解析式;(2)将抛物线y =−12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.(第21题图) 各等级人数的条形统计图各等级人数的扇形统计图【思路分析】【解题过程】解(1)把(1,0)和(0,32)代入y =−12x 2+bx +c ,得{−12+b +c =0c =32解得{b =−1c =32∴抛物线的函数表达式为y =−12x 2−x +32 (2)∵y =−x +32=−−12(x +1)2+2∴顶点坐标为(-1,2)∴将抛物线y =−12x 2−x +32平移,使其顶点恰好落在原点的一种平移方法:先向右平移1个单位长度,再向下平移2个单位长度(答案不唯一) 平移后的函数表达式为y =−12x 2【知识点】待定系数法求二次函数的解析式、二次函数的平移23.(2018宁波市,23题,10分)如图,在△ABC 中,∠ACB=90°,AC=BC,D 是AB 边上一点(点D 与A ,B 不重合,连结CD,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE,连结DE 交BC 于点F 连接BE. (1)求证:△ACD ≌△BCE;(2)当AD=BF 时,求∠BEF 的度数. 【思路分析】 【解题过程】解:(1)∵线段CD 绕点C 按逆时针方向旋转90°得到线段∴∠DCE=90°,CD=CE ,又∵∠ACB=90°,∴∠ACB=∠DCE∴∠ACD=∠BCE在△ACD 和△BCE 中∵{CD =CE ∠ACD =∠BCE AC =BC∴△ACD ≌△BCE(SAS) (2)∵∠ACB=90°,AC=BC,∴∠A=45°∵△ACD ≌△BCE,∴AD=BE,∠CBE=∠A=45° 又:AD=BF∠BEF=∠BFE=180°−45°2=67.5°【知识点】全等三角形的判定、等腰三角形的性质 24.(2018宁波市,24题,10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同. (1)求甲、乙两种商品的每件进价;(2)该商城将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售价为88元.销售过程中发现甲种商品销量不好商场决定:甲种商品销售一定数量后将甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?A【思路分析】【解题过程】解:(1)设甲种商品的每件进价为x 元,则乙种商品的每件进价为(x+8)元,根据题意,得2000x=2400x+8解得x=40经检验,x=40是所列方程的解,且符合题意 ∴x+8=48答:甲种商品的每件进价为40元,乙种商品的每件进价为48元 (2)设甲种商品按原销售单价销售a 件由(1)可得,购进的甲、乙两种商品的件数都为50件根据题意,得(60-40)a+(60×0.7-40)(50-a)+(88-48)×50≥2460 解得a ≥20答:甲种商品按原销售单价至少销售20件【知识点】分式方程应用、不等式的应用 25.(2018宁波市,25题,12分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC 是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC 的长; (2)如图1在四边形ABCD 中,AD ∥BC ,对角线BD 平分∠ABC ,∠BAC=∠ADC.求证:△ABC 是比例三角形;(3)如图2,在(2)的条件下,当∠ADC=90°时,求BDAC的值.【思路分析】【解题过程】解:(1)43或92或√6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 / 13
S2 S1 AB( AD a) (a b)( AB a) ( AB a) a ( AB b)( AD a) ( AD a)( AB AB b) ( AB a)(a b a)
. b AD ab b AB ab b( AD AB) 2b
浙江省宁波市 2018 年初中学业水平考试
数学答案解析
第Ⅰ卷
一、选择题 1.【答案】A 【解析】由正数大于零,零大于负数,得 3 1 0 1, 最小的数是 3 , 【考点】有理数大小比较 2.【答案】B 【解析】 550000 5.5 105 , 故选:B. 【考点】科学记数法——表示较大的数 3.【答案】A 【解析】解: a3 a3 2a3 , 选项 A 符合题意; a3 a2 a5 , 选项 B 不符合题意; a6 a2 a4 , 选项 C 不符合题意; (a3)2 a6 , 选项 D 不符合题意. 故选:A. 【考点】合并同类项,同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法
【考点】解直角三角形的应用——仰角俯角问题 17.【答案】3 或 4 3 【解析】如图 1 中,当 P 与直线 CD 相切时,设 PC PM x .
在 Rt△PBM 中, PM 2 BM 2 PB2 , x2 42 (8 x)2 ,
x 5,
PC 5 , BP BC PC 8 5 3 .
如图 2 中当 P 与直线 AD 相切时.设切点为 K ,连接 PK ,则 PK AD ,
四边形 PKDC 是矩形.
5 / 13
1 2 (k1
k2 )
4
,
k1 k2 8 .
故选:A.
【考点】反比例函数系数 k 的几何意义,反比例函数图象上点的坐标特征
11.【答案】D
【解析】解:由二次函数的图象可知, a 0 ,b 0,
当 x 1 时, y a b 0 ,
y (a b)x b 的图象在第二、三、四象限,
4.【答案】C 【解析】 从写有数字 1,2,3,4,5 这 5 张纸牌中抽取一张, 其中正面数字是偶数的有 2、4 这 2 种结果,
1 / 13
正面的数字是偶数的概率为 2 ,
5
故选:C. 【考点】概率公式
5.【答案】D 【解析】正多边形的一个外角等于 40 ,且外角和为 360 , 则这个正多边形的边数是: 360 40 9 . 故选:D. 【考点】多边形内角与外角 6.【答案】C 【解析】从上边看是一个田字, “田”字是中心对称图形, 故选:C. 【考点】中心对称图形,简单组合体的三视图 7.【答案】B 【解析】 ABC 60 , BAC 80 , BCA 180 60 80 40 , 对角线 AC 与 BD 相交于点 O , E 是边 CD 的中点, EO 是 DBC 的中位线, EO∥BC , 1 ACB 40 . 故选:B. 【考点】三角形中位线定理,平行四边形的性质 8.【答案】C 【解析】 数据 4,1,7, x ,5 的平均数为 4, 417 x 5 4,
3 5 15 故答案为: 15 【考点】二元一次方程组的解
16.【答案】1200( 3 1)
【解析】由于 CD∥HB , CAH ACD 45 , B BCD 30 在 Rt△ACH 中, CAH 45 AH CH 1200 米,
故选:B. 【考点】整式的混合运算
第Ⅰ卷
二、填空题 13.【答案】2018 【解析】 | 2 018 | 2 018 .
故答案为:2 018. 【考点】绝对值 14.【答案】 x 1 . 【解析】要使分式 1 有意义,则: x 1 0 .
x 1 解得: x 1 ,故 x 的取值应满足: x 1 . 故答案为: x 1 . 【考点】分式有意义的条件 15.【答案】 15 【解析】原式 (x 2 y)(x 2 y)
5 解得: x 3 , 则将数据重新排列为 1、3、4、5、7, 所以这组数据的中位数为 4, 故选:C.
2 / 13
【考点】算术平均数,中位数
9.【答案】C 【解析】 ACB 90 , AB 4 , A 30 , B 60 , BC 2
CD 的长为 60 2 2 , 180 3
故选:D. 【考点】一次函数的图象,二次函数的性质 12.【答案】B 【解析】解: S1 ( AB a) a (CD b)( AD a) ( AB a) a ( AB b)( AD a) , S2 AB( AD a) (a b)( AB a) ,
故选:C.
【考点】含 30 度角的直角三角形,弧长的计算
10.【答案】A 【解析】解: AB∥x 轴, A , B 两点纵坐标相同.
设 A(a, h) , B(b, h) ,则 ah k1 , bh k2 .
Hale Waihona Puke SABC1 2
AB
yA
1 (a 2
b)h
1 (ah bh) 2
4 / 13
在 Rt△HCB , tan B CH HB
HB CH 1200 tan B tan 30
1200 1200 3 (米). 3 3
AB HB HA 1200 3 1200 1200( 3 1) 米 故答案为:1200( 3 1)