高考物理带电粒子在复合场中的运动专题训练答案
高考物理带电粒子在复合场中的运动技巧(很有用)及练习题含解析
一、带电粒子在复合场中的运动专项训练1.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东) 【答案】(1)32lm t qU π=(2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mUB L q≥)(4)1122B L B L =【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv =①211v qvB m R = ②由几何知识得12sin L R θ= ③联立①②③,带入数据得012mUB L q=④设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t12R T v π= ⑤ 22t T θπ=⑥ 联立②④⑤⑥式,带入数据得32Lmt qUπ=⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >(或232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.2.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
高考物理带电粒子在复合场中的运动题20套(带答案)含解析
一、带电粒子在复合场中的运动专项训练1.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v 0=vcosφ vsinφ=at d=v 0t设电场强度的大小为E ,由牛顿第二定律得 qE=ma 解得:2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)3.如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由.【来源】带电粒子在电场中运动压轴大题【答案】(1)mgEq=,方向沿y轴正方向;mvBqR=,方向垂直xOy平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x>0;理由见解析【解析】【详解】(1)带电微粒平行于x 轴从C 点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E ,由:mg qE =可得电场强度大小:mg qE =方向沿y 轴正方向;带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a )所示:考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:2v qvB m R=可得磁感应强度大小:mv B qR=根据左手定则可知方向垂直xOy 平面向外;(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为(sin ,cos )R R θθ-,圆周运动轨迹方程为:222(sin )(cos )x R y R R θθ++-=而磁场边界是圆心坐标为(0,R )的圆周,其方程为:22()x y R R +-=解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为0x y =⎧⎨=⎩或:sin {(1cos )x R y R θθ=-=+坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:(2)2m v r R qB'== 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.答:(1)电场强度mg qE = ,方向沿y 轴正方向和磁感应强度mvB qR=,方向垂直xOy 平面向外.(2)这束带电微粒都是通过坐标原点后离开磁场的;(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。
高考物理带电粒子在复合场中的运动专项训练100(附答案)含解析
一、带电粒子在复合场中的运动专项训练1.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I.不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U;(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;(3)实际上加速电压的大小会在U+ΔU范围内微小变化.若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t时间内收集到的离子个数为N,总电荷量Q = ItQ = NqM =" Nm" =(3)由以上分析可得:R =设m/为铀238离子质量,由于电压在U±ΔU之间有微小变化,铀235离子在磁场中最大半径为:R max=铀238离子在磁场中最小半径为:R min=这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max<R min即:<得:<<其中铀235离子的质量m = 235u(u为原子质量单位),铀238离子的质量m,= 238u 则:<解得:<0.63%2.如图所示,在无限长的竖直边界NS和MT间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM平面向外和向内的匀强磁场,磁感应强度大小分别为B和2B,KL为上下磁场的水平分界线,在NS和MT边界上,距KL高h处分别有P、Q两点,NS和MT间距为1.8h ,质量为m,带电荷量为+q的粒子从P点垂直于NS边界射入该区域,在两边界之间做圆周运动,重力加速度为g.(1)求电场强度的大小和方向;(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析)【答案】(1)mgqE=,方向竖直向上(2)min(92)qBhvm-=(3)0.68qBhvm=;0.545qBhvm=;0.52qBhvm=【解析】【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零;(2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度;(3)作出粒子运动轨迹,应用几何知识求出粒子的速度.【详解】(1)粒子在磁场中做匀速圆周运动,电场力与重力合力为零,即mg=qE,解得:mgqE=,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2vqvB mr=,解得,粒子轨道半径:vrqBπ=,min1vrqBπ=,2112r r=,由几何知识得:(r1+r2)sinφ=r2,r1+r1cosφ=h,解得:min 962)qBhvm=;(3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2, 粒子第一次通过KL 时距离K 点为x , 由题意可知:3nx =1.8h (n =1、2、3…)3(962)2h x -≥()2211x r h r =-- 解得:120.361)2hr n =+(,n <3.5, 即:n =1时, 0.68qBhv m=, n =2时,0.545qBhv m =, n =3时,0.52qBhv m=; 答:(1)电场强度的大小为mg qE =,电场方向竖直向上;(2)要使粒子不从NS 边界飞出,粒子入射速度的最小值为min 962)qBhv m=. (3)若粒子经过Q 点从MT 边界飞出,粒子入射速度的所有可能值为:0.68qBhv m=、或0.545qBh v m =、或0.52qBhv m=. 【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.3.如图为一种质谱仪工作原理示意图.在以O为圆心,OH为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH轴的C和D分别是离子发射点和收集点.CM垂直磁场左边界于M,且OM=d.现有一正离子束以小发散角(纸面内)从C射出,这些离子在CM方向上的分速度均为v0.若该离子束中比荷为qm的离子都能汇聚到D,试求:(1)磁感应强度的大小和方向(提示:可考虑沿CM方向运动的离子为研究对象);(2)离子沿与CM成θ角的直线CN进入磁场,其轨道半径和在磁场中的运动时间;(3)线段CM的长度.【来源】电粒子在磁场中的运动【答案】(1)0mvBqd=,磁场方向垂直纸面向外;(2)cosdRθ'=,()2t dvθα+=;(3)cosCM d tα=。
带电粒子在复合场中的运动大题专题(详细解答)
专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
高考复习(物理)专项练习:带电粒子在复合场中的运动【含答案及解析】
专题分层突破练9带电粒子在复合场中的运动A组1.(2021湖南邵阳高三一模)如图所示,有一混合正离子束从静止通过同一加速电场后,进入相互正交的匀强电场和匀强磁场区域Ⅰ。
如果这束正离子束在区域Ⅰ中不偏转,不计离子的重力,则说明这些正离子在区域Ⅰ中运动时一定相同的物理量是()A.动能B.质量C.电荷D.比荷2.(多选)(2021辽宁高三一模)劳伦斯和利文斯设计的回旋加速器如图所示,真空中的两个D形金属盒间留有平行的狭缝,粒子通过狭缝的时间可忽略。
匀强磁场与盒面垂直,加速器接在交流电源上,A处粒子源产生的质子可在盒间被正常加速。
下列说法正确的是()A.虽然逐渐被加速,质子每运动半周的时间不变B.只增大交流电压,质子在盒中运行总时间变短C.只增大磁感应强度,仍可能使质子被正常加速D.只增大交流电压,质子可获得更大的出口速度3.(2021四川成都高三二模)如图所示,在第一、第四象限的y≤0.8 m区域内存在沿y轴正方向的匀强电场,电场强度大小E=4×103 N/C;在第一象限的0.8 m<y≤1.0 m区域内存在垂直于坐标平面向外的匀强磁场。
一个质量m=1×10-10 kg、电荷量q=1×10-6 C的带正电粒子,以v0=6×103 m/s的速率从坐标原点O沿x轴正方向进入电场。
不计粒子的重力。
(1)求粒子第一次离开电场时的速度。
(2)为使粒子能再次进入电场,求磁感应强度B的最小值。
4.(2021河南高三二模)如图所示,在平面直角坐标系xOy内有一直角三角形,其顶点坐标分别为d),(d,0),三角形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B,x轴下方有沿(0,0),(0,√33着y轴负方向的匀强电场,电场强度大小为E。
一质量为m、电荷量为-q的粒子从y轴上的某点M 由静止释放,粒子第一次进入磁场后恰好不能从直角三角形的斜边射出,不计粒子重力。
(1)求M点到O点的距离。
高中物理带电粒子在复合场中的运动题20套(带答案)含解析
一、带电粒子在复合场中的运动专项训练1.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。
一不带电的绝缘小球甲,以速度v 0沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞。
已知甲、乙两球的质量均为m =1.0×10-2kg ,乙所带电荷量q =2.0×10-5C ,g 取10m/s 2。
(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙球在B 点被碰后的瞬时速度大小;(2)在满足1的条件下,求甲的速度v 0;(3)甲仍以中的速度v 0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B 点的距离范围。
【来源】四川省资阳市高中(2018届)2015级高三课改实验班12月月考理综物理试题 【答案】(1)5m/s ;(2)5m/s ;(3)32m 3m 2x '≤<。
【解析】 【分析】 【详解】(1)对球乙从B 运动到D 的过程运用动能定理可得22112222D B mg R qE R mv mv --=- 乙恰能通过轨道的最高点D ,根据牛顿第二定律可得2Dv mg qE mR+=联立并代入题给数据可得B v =5m/s(2)设向右为正方向,对两球发生弹性碰撞的过程运用动量守恒定律可得00B mv mv mv '=+ 根据机械能守恒可得22200111222B mv mv mv '=+联立解得0v '=,05v =m/s (3)设甲的质量为M ,碰撞后甲、乙的速度分别为M v 、m v ,根据动量守恒和机械能守恒定律有0M m Mv Mv mv =+2220111222M m Mv Mv mv =+ 联立得2m Mv v M m=+ 分析可知:当M =m 时,v m 取最小值v 0;当M ≫m 时,v m 取最大值2v 0 可得B 球被撞后的速度范围为002m v v v <<设乙球过D 点的速度为Dv ',由动能定理得联立以上两个方程可得/s</s Dv '> 设乙在水平轨道上的落点到B 点的距离为x ',则有2122D x v t R gt ''==, 所以可得首次落点到B 点的距离范围2x '≤<2.如图所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h ,质量为m ,带电荷量为+q 的粒子从P 点垂直于NS 边界射入该区域,在两边界之间做圆周运动,重力加速度为g .(1)求电场强度的大小和方向;(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析)【答案】(1)mgqE=,方向竖直向上(2)min(962)qBhvm-=(3)0.68qBhvm=;0.545qBhvm=;0.52qBhvm=【解析】【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零;(2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度;(3)作出粒子运动轨迹,应用几何知识求出粒子的速度.【详解】(1)粒子在磁场中做匀速圆周运动,电场力与重力合力为零,即mg=qE,解得:mgqE=,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2vqvB mr=,解得,粒子轨道半径:vrqBπ=,min1vrqBπ=,2112r r=,由几何知识得:(r1+r2)sinφ=r2,r1+r1cosφ=h,解得:min 962)qBhvm=(﹣;(3)粒子运动轨迹如图所示,设粒子入射速度为v,粒子在上、下区域的轨道半径分别为r1、r2,粒子第一次通过KL时距离K点为x,由题意可知:3nx=1.8h(n=1、2、3…),,解得:,n<3.5,即:n=1时,,n=2时,,n=3时,;答:(1)电场强度的大小为,电场方向竖直向上;(2)要使粒子不从NS边界飞出,粒子入射速度的最小值为.(3)若粒子经过Q点从MT边界飞出,粒子入射速度的所有可能值为:、或、或.【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.3.如图1所示,宽度为的竖直狭长区域内(边界为),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为,表示电场方向竖直向上。
最新高考物理带电粒子在复合场中的运动题20套(带答案)
一、带电粒子在复合场中的运动专项训练1.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求(1)M、N两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.【来源】带电粒子在电场、磁场中的运动【答案】1)U MN=(2)r=(3)t=【解析】【分析】【详解】(1)设粒子过N点时的速度为v,有:解得:粒子从M点运动到N点的过程,有:解得:(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为r,有:解得:(3)由几何关系得:设粒子在电场中运动的时间为t1,有:粒子在磁场中做匀速圆周运动的周期:设粒子在磁场中运动的时间为t2,有:2.如图所示,在无限长的竖直边界NS和MT间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM平面向外和向内的匀强磁场,磁感应强度大小分别为B和2B,KL为上下磁场的水平分界线,在NS和MT边界上,距KL高h处分别有P、Q两点,NS和MT间距为1.8h ,质量为m,带电荷量为+q的粒子从P点垂直于NS边界射入该区域,在两边界之间做圆周运动,重力加速度为g.(1)求电场强度的大小和方向;(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析)【答案】(1)mgqE=,方向竖直向上(2)min(962)qBhv-=(3)0.68qBhvm=;0.545qBhvm=;0.52qBhvm=【解析】【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零;(2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度;(3)作出粒子运动轨迹,应用几何知识求出粒子的速度.【详解】(1)粒子在磁场中做匀速圆周运动,电场力与重力合力为零,即mg=qE,解得:mgqE=,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2vqvB mr=,解得,粒子轨道半径:vrqBπ=,min1vrqBπ=,2112r r=,由几何知识得:(r1+r2)sinφ=r2,r1+r1cosφ=h,解得:min 962)qBhvm=;(3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2, 粒子第一次通过KL 时距离K 点为x , 由题意可知:3nx =1.8h (n =1、2、3…)3(962)2h x -≥()2211x r h r =-- 解得:120.361)2hr n =+(,n <3.5, 即:n =1时, 0.68qBhv m=, n =2时,0.545qBhv m =, n =3时,0.52qBhv m=; 答:(1)电场强度的大小为mg qE =,电场方向竖直向上;(2)要使粒子不从NS 边界飞出,粒子入射速度的最小值为min 962)qBhv m=. (3)若粒子经过Q 点从MT 边界飞出,粒子入射速度的所有可能值为:0.68qBhv m=、或0.545qBh v m =、或0.52qBhv m=. 【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.3.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC 边足够长)中存在垂直于纸面的匀强磁场,A 处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA 边且垂直于磁场的方向射入磁场,运动到GA 边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m 1和m 2(m 1>m 2),电荷量均为q .加速电场的电势差为U ,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.(1)求质量为m 1的离子进入磁场时的速率v 1;(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s ;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA 边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA 边长为定值L ,狭缝宽度为d ,狭缝右边缘在A 处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场.为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度.【来源】2011年普通高等学校招生全国统一考试物理卷(北京)【答案】(112qU m 21228Um m qB (3)d m 12122m m m m --L【解析】(1)动能定理 Uq =12m 1v 12 得:v 1=12qUm …① (2)由牛顿第二定律和轨道半径有:qvB =2mv R,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):R 1=122mU qB ,R 2=222 m U qB …② 两种离子在GA 上落点的间距s =2(R 1−R 2)=1228()Um m qB- …③ (3)质量为m 1的离子,在GA 边上的落点都在其入射点左侧2R 1处,由于狭缝的宽度为d ,因此落点区域的宽度也是d (如图二中的粗线所示).同理,质量为m 2的离子在GA 边上落点区域的宽度也是d (如图二中的细线所示).为保证两种离子能完全分离,两个区域应无交叠,条件为2(R 1-R 2)>d…④ 利用②式,代入④式得:2R 1(1−21m m >d R 1的最大值满足:2R 1m =L-d 得:(L −d )(1−21m m >d 求得最大值:d m 12122m m m m --L4.如图为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D 分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM =d .现有一正离子束以小发散角(纸面内)从C 射出,这些离子在CM 方向上的分速度均为v 0.若该离子束中比荷为qm的离子都能汇聚到D ,试求:(1)磁感应强度的大小和方向(提示:可考虑沿CM 方向运动的离子为研究对象); (2)离子沿与CM 成θ角的直线CN 进入磁场,其轨道半径和在磁场中的运动时间; (3)线段CM 的长度.【来源】电粒子在磁场中的运动 【答案】(1)0mvB qd =,磁场方向垂直纸面向外;(2)cos dR θ'=,()02t d v θα+=;(3)cos CM d t α=。
高中物理带电粒子在复合场中的运动题20套(带答案)
一、带电粒子在复合场中的运动专项训练1.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v c ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=- 解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at =从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m+=+ 【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.2.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。
高考物理《带电粒子在叠加场中的运动》真题练习含答案
高考物理《带电粒子在叠加场中的运动》真题练习含答案1.(多选)如图所示,空间存在着垂直向里的匀强磁场B 和竖直向上的匀强电场E ,两个质量不同电量均为q 的带电小球a 和b 从同一位置先后以相同的速度v 从场区左边水平进入磁场,其中a 小球刚好做匀速圆周运动,b 小球刚好沿直线向右运动.不计两小球之间库仑力的影响,重力加速度为g ,则( )A .a 小球一定带正电,b 小球可能带负电B .a 小球的质量等于qEgC .b 小球的质量等于qE -q v BgD .a 小球圆周运动的半径为EVBg答案:BD解析:a 小球刚好做匀速圆周运动,重力和电场力平衡,洛伦兹力提供向心力,所以Eq =m a g ,电场力方向竖直向上,则a 小球一定带正电,b 小球刚好沿直线向右运动,如果b 小球带负电,电场力洛伦兹力均向下,重力也向下,不能平衡,无法做直线运动,所以b 小球带正电,q v B +Eq =m b g ,A 错误;根据A 选项分析可知,a 小球的质量等于m a =qEg ,B 正确;根据A 选项分析可知,b 小球的质量等于m b =qE +q v Bg,C 错误;a 小球圆周运动的半径为Bq v =m a v 2r ,解得r =m a v Bq =E vBq,D 正确.2.(多选)如图所示,在竖直平面内的虚线下方分布着互相垂直的匀强电场和匀强磁场,电场的电场强度大小为10 N/C ,方向水平向左;磁场的磁感应强度大小为2 T ,方向垂直纸面向里.现将一质量为0.2 kg 、电荷量为+0.5 C 的小球,从该区域上方的某点A 以某一初速度水平抛出,小球进入虚线下方后恰好做直线运动.已知重力加速度为g =10 m/s 2.下列说法正确的是( )A.小球平抛的初速度大小为5 m/sB.小球平抛的初速度大小为2 m/sC.A点距该区域上边界的高度为1.25 mD.A点距该区域上边界的高度为2.5 m答案:BC解析:小球受竖直向下的重力与水平向左的电场力作用,小球进入电磁场区域做直线运动,小球受力如图所示小球做直线运动,则由平衡条件得q v B cos θ=mg,小球的速度v cos θ=v0,代入数据解得v0=2 m/s,A错误,B正确;小球从A点抛出到进入复合场过程,由动能定理得mgh=12m v2-12m v2,根据在复合场中的受力情况可知(mg)2+(qE)2=(q v B)2,解得h=E22gB2,代入数据解得h=1.25 m,C正确,D错误.3.如图所示,一带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨迹半径为R.已知电场的电场强度大小为E,方向竖直向下;磁场的磁感应强度大小为B,方向垂直于纸面向里.不计空气阻力,重力加速度为g,则下列说法中正确的是() A.液滴带正电B.液滴的比荷qm=g EC.液滴的速度大小v=gRBED.液滴沿逆时针方向运动答案:B解析:带电液滴刚好做匀速圆周运动,应满足mg=qE,电场力向上,与场强方向相反,液滴带负电,可得比荷为qm=gE,A错误,B正确;由左手定则可判断,只有液滴沿顺时针方向运动,受到的洛伦兹力才指向圆心,D错误;由向心力公式可得q v B=m v2R,联立可得液滴的速度大小为v=gBRE,C错误.4.(多选)空间内存在电场强度大小E=100 V/m、方向水平向左的匀强电场和磁感应强度大小B1=100 T、方向垂直纸面向里的匀强磁场(图中均未画出).一质量m=0.1 kg、带电荷量q=+0.01 C的小球从O点由静止释放,小球在竖直面内的运动轨迹如图中实线所示,轨迹上的A点离OB最远且与OB的距离为l,重力加速度g取10 m/s2.下列说法正确的是()A.在运动过程中,小球的机械能守恒B.小球经过A点时的速度最大C.小球经过B点时的速度为0D.l=25m答案:BCD解析:由于电场力做功,故小球的机械能不守恒,A项错误;重力和电场力的合力大小为(qE)2+(mg)2=2N,方向与竖直方向的夹角为45°斜向左下方,小球由O点到A点,重力和电场力的合力做的功最多,在A点时的动能最大,速度最大,B项正确;小球做周期性运动,在B点时的速度为0,C项正确;对小球由O点到A点的过程,由动能定理得2mgl=12m v2,沿OB方向建立x轴,垂直OB方向建立y轴,在x方向上由动量定理得q v y B1Δt=mΔv,累积求和,则有qB1l=m v,解得l=25m,D项正确.5.(多选)如图所示,平面直角坐标系的第二象限内(称为区域Ⅰ)存在水平向左的匀强电场和垂直纸面向里的匀强磁场B1,一质量为m、带电荷量为+q的小球从A点以速度v0沿直线AO运动,AO与x轴负方向成37°角.在y轴与MN之间的区域Ⅱ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN上的C点,MN与PQ之间区域Ⅲ内存在宽度为d的竖直向上匀强电场和垂直纸面向里的匀强磁场B2,小球在区域Ⅲ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C点的速度大小为2v0,重力加速度为g,sin 37°=0.6,cos 37°=0.8,则下列结论正确的是()A .区域Ⅲ内匀强电场的场强大小E 3=mgqB .区域Ⅲ内匀强磁场的磁感应强度大小B 2=m v 0qdC.小球从A 到O 的过程中做匀速直线运动,从O 到C 的过程中做匀加速直线运动 D .区域Ⅱ内匀强电场的最小场强大小为E 2=4mg5q ,方向与x 轴正方向成53°角向上答案:ACD解析:小球在区域Ⅲ内做匀速圆周运动,有mg =qE 3,解得E 3=mgq ,A 项正确;因为小球恰好不从右边界穿出,小球运动轨迹如图所示,由几何关系得d =r +r sin 37°=85 r ,由洛伦兹力提供向心力得B 2q ×2v 0=m (2v 0)2r,解得B 2=16m v 05qd ,B 项错误;带电小球在第二象限内受重力、电场力和洛伦兹力做直线运动,三力满足如图所示关系所以小球从A 到O 的过程只能做匀速直线运动.区域Ⅱ中从O 到C 的过程,小球做直线运动电场强度最小,受力如图所示(电场力方向与速度方向垂直)所以小球做匀加速直线运动,由图知cos 37°=qE 2mg ,解得E 2=4mg5q ,方向与x 轴正方向成53°角向上,C 、D 两项正确.6.如图所示,一质量为m 、电荷量为q 的带正电小球(视为质点)套在长度为L 、倾角为θ的固定绝缘光滑直杆OP 上,P 端下方存在正交的匀强电场和匀强磁场,电场方向沿PO 方向,磁场方向垂直纸面水平向里.现将小球从O 端由静止释放,小球滑离直杆后沿直线运动,到达Q 点时立即撤去磁场,最终小球垂直打到水平地面上,重力加速度大小为g ,不计空气阻力.求:(1)电场的电场强度大小E 以及磁场的磁感应强度大小B ; (2)Q 点距离地面的高度h .答案:(1)mg sin θq ,mg cos θq 2gL sin θ(2)(sin θ+1sin θ)L 解析:(1)小球滑离直杆后进入叠加场,在叠加场内的受力情况如图所示,小球做匀速直线运动,根据几何关系有sin θ=Eqmg ,cos θ=q v B mg小球在直杆上时有L =v 22g sin θ解得E =mg sin θq ,B =mg cos θq 2gL sin θ(2)根据题意可知,当磁场撤去后,小球受重力和电场力作用,且合力的方向与速度方向垂直,小球做类平抛运动,水平方向有Eq cos θ=ma xv x =v cos θ-a x t竖直方向有mg -Eq sin θ=ma y h =v sin θ·t +12a y t 2当小球落到地面时,v x =0, 即v x =v cos θ-a x t =0 解得t =m vEqh =(sin θ+1sin θ)L7.[2024·湖北省鄂东南教育教学改革联盟联考]如图所示,在竖直平面内的直角坐标系xOy 中,y 轴竖直,第一象限内有竖直向上的匀强电场E 1、垂直于xOy 平面向里的匀强磁场B 1=4 T ;第二象限内有平行于xOy 平面且方向可以调节的匀强电场E 2;第三、四象限内有垂直于纸面向外的匀强磁场B 2=1063 T .x 、y 轴上有A 、B 两点,OA =(2+3 ) m ,OB=1 m .现有一质量m =4×10-3 kg ,电荷量q =10-3 C 的带正电小球,从A 点以速度v 0垂直x 轴进入第一象限,做匀速圆周运动且从B 点离开第一象限.小球进入第二象限后沿直线运动到C 点,然后由C 点进入第三象限.已知重力加速度为g =10 m/s 2,不计空气阻力.求:(1)第一象限内电场的电场强度E 1与小球初速度v 0的大小;(2)第二象限内电场强度E 2的最小值和E 2取最小值时小球运动到C 点的速度v C ; (3)在第(2)问的情况下,小球在离开第三象限前的最大速度v m . 答案:(1)40 N/C 2 m/s (2)20 N/C 26 m/s (3)46 m/s ,方向水平向左解析:(1)小球由A 点进入第一象限后,所受电场力与重力平衡 E 1q =mg 解得E 1=40 N/C 由几何关系得r +r 2-OB 2 =OA解得r =2 m小球做匀速圆周运动,洛伦兹力提供向心力,则有q v 0B 1=m v 20r解得v 0=2 m/s(2)由几何关系得:BC 与竖直方向夹角为θ=30°小球由B 到C 做直线运动,则电场力与重力的合力与v B 均沿BC 方向,当电场力与BC 垂直时,电场力有最小值qE 2min =mg sin θ解得E 2min =20 N/C 对小球有mg cos θ=ma 根据几何关系x BC =OB cos θ =233 m 根据速度位移关系式v 2C -v 20 =2ax BC代入数据得a =53 m/s 2 v C =26 m/s(3)小球进入第三象限后,在重力、洛伦兹力作用下做变加速曲线运动,把初速度v C 分解为v 1和v 2,其中v 1满足Bq v 1=mg解得v 1=mgB 2q =26 m/s方向水平向左 则v 2=26 m/s方向与x 轴正方向夹角为60°小球的实际运动可以分解为运动一:速度为v1=26m/s,水平向左,合力为B2q v1-mg=0的匀速直线运动.运动二:速度为v2=26m/s,顺时针旋转,合力为F洛=B2q v2的匀速圆周运动.当v1和v2的方向相同时合运动的速度最大,最大速度v m=v1+v2=46m/s 方向水平向左.。
(物理) 高考物理带电粒子在复合场中的运动试题(有答案和解析)及解析
一、带电粒子在复合场中的运动专项训练1.如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l 的相同平行金属板构成,极板长度为l 、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m 、电荷量为+q 的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A 点水平射入待测区域. 不考虑粒子受到的重力.(1)求粒子射出平移器时的速度大小v1;(2)当加速电压变为4U0 时,欲使粒子仍从A 点射入待测区域,求此时的偏转电压U; (3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x 轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.请推测该区域中电场强度和磁感应强度的大小及可能的方向. 【来源】2012年普通高等学校招生全国统一考试理综物理(江苏卷) 【答案】(1)012qU v m=1U?4U = (3)E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°,若B 沿-x 轴方向,E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°. 【解析】(1)设粒子射出加速器的速度为0v 动能定理20012qU mv =由题意得10v v =,即012qU v m=(2)在第一个偏转电场中,设粒子的运动时间为t 加速度的大小1qU a md=在离开时,竖直分速度yv at =竖直位移2112y at =水平位移1l v t = 粒子在两偏转电场间做匀速直线运动,经历时间也为t 竖直位移2y y v t =由题意知,粒子竖直总位移12y?2y y =+ 解得210U l y U d=则当加速电压为04U 时,1U?4U =(3)(a)由沿x 轴方向射入时的受力情况可知:B 平行于x 轴. 且FE q= (b)由沿y +-轴方向射入时的受力情况可知:E 与Oxy 平面平行.222F f (5F)+=,则f?2F =且1f?qv B =解得02F mB BqU =(c)设电场方向与x 轴方向夹角为.若B 沿x 轴方向,由沿z 轴方向射入时的受力情况得222sin )(cos )(7)f F F F αα++=( 解得=30°,或=150°即E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°. 同理,若B 沿-x 轴方向E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°.2.在场强为B 的水平匀强磁场中,一质量为m 、带正电q 的小球在O 静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到z 轴距离的2倍,重力加速度为g .求:(1)小球运动到任意位置P (x ,y)的速率v ; (2)小球在运动过程中第一次下降的最大距离y m ; (3)当在上述磁场中加一竖直向上场强为E (mgE q>)的匀强电场时,小球从O 静止释放后获得的最大速率m v 。
高考物理带电粒子在复合场中的运动专项训练及答案含解析
一、带电粒子在复合场中的运动专项训练1.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。
一不带电的绝缘小球甲,以速度v 0沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞。
已知甲、乙两球的质量均为m =1.0×10-2kg ,乙所带电荷量q =2.0×10-5C ,g 取10m/s 2。
(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙球在B 点被碰后的瞬时速度大小;(2)在满足1的条件下,求甲的速度v 0;(3)甲仍以中的速度v 0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B 点的距离范围。
【来源】四川省资阳市高中(2018届)2015级高三课改实验班12月月考理综物理试题 【答案】(1)5m/s ;(2)5m/s ;(3)32m 3m 2x '≤<。
【解析】 【分析】 【详解】(1)对球乙从B 运动到D 的过程运用动能定理可得22112222D B mg R qE R mv mv --=-g g 乙恰能通过轨道的最高点D ,根据牛顿第二定律可得2Dv mg qE mR+=联立并代入题给数据可得B v =5m/s(2)设向右为正方向,对两球发生弹性碰撞的过程运用动量守恒定律可得00B mv mv mv '=+ 根据机械能守恒可得22200111222B mv mv mv '=+联立解得0v '=,05v =m/s (3)设甲的质量为M ,碰撞后甲、乙的速度分别为M v 、m v ,根据动量守恒和机械能守恒定律有0M m Mv Mv mv =+2220111222M m Mv Mv mv =+ 联立得2m Mv v M m=+ 分析可知:当M =m 时,v m 取最小值v 0;当M ≫m 时,v m 取最大值2v 0 可得B 球被撞后的速度范围为002m v v v <<设乙球过D 点的速度为Dv ',由动能定理得 22112222D m mg R qE R mv mv --='-g g 联立以上两个方程可得/s</s Dv '> 设乙在水平轨道上的落点到B 点的距离为x ',则有2122D x v t R gt ''==, 所以可得首次落点到B 点的距离范围2x '≤<2.如图所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h ,质量为m ,带电荷量为+q 的粒子从P 点垂直于NS 边界射入该区域,在两边界之间做圆周运动,重力加速度为g .(1)求电场强度的大小和方向;(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析)【答案】(1)mgqE=,方向竖直向上(2)min(962)qBhvm-=(3)0.68qBhvm=;0.545qBhvm=;0.52qBhvm=【解析】【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零;(2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度;(3)作出粒子运动轨迹,应用几何知识求出粒子的速度.【详解】(1)粒子在磁场中做匀速圆周运动,电场力与重力合力为零,即mg=qE,解得:mgqE=,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS 的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2v qvB m r=,解得,粒子轨道半径:v r qBπ=, min1v r qBπ=,2112r r =, 由几何知识得:(r 1+r 2)sin φ=r 2,r 1+r 1cos φ=h ,解得:min 962)qBhv m=(﹣; (3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2, 粒子第一次通过KL 时距离K 点为x , 由题意可知:3nx =1.8h (n =1、2、3…)3(92)22h x -≥,()2211x r h r =-- 解得:120.361)2hr n =+(,n <3.5, 即:n =1时, 0.68qBhv m=, n =2时,0.545qBhv m=,n=3时,0.52qBhvm=;答:(1)电场强度的大小为mgqE=,电场方向竖直向上;(2)要使粒子不从NS边界飞出,粒子入射速度的最小值为min962)qBhvm=(﹣.(3)若粒子经过Q点从MT边界飞出,粒子入射速度的所有可能值为:0.68qBhvm=、或0.545qBhvm=、或0.52qBhvm=.【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.3.如图所示,在xOy坐标平面的第一象限内有一沿y轴负方向的匀强电场,在第四象限内有一垂直于平面向里的匀强磁场,现有一质量为m、电量为+q的粒子(重力不计)从坐标原点O 射入磁场,其入射方向与x的正方向成 45°角.当粒子运动到电场中坐标为(3L,L)的P点处时速度大小为 v0,方向与 x轴正方向相同.求:(1)粒子从 O点射入磁场时的速度v;(2)匀强电场的场强 E0和匀强磁场的磁感应强度B0.(3)粒子从 O点运动到 P点所用的时间.【来源】海南省海口市海南中学2018-2019学年高三第十次月考物理试题【答案】(12v;(2)02mvLq;(3)(8)4Lvπ+【解析】【详解】解:(1)若粒子第一次在电场中到达最高点P,则其运动轨迹如图所示,粒子在O点时的速度大小为v,OQ段为圆周,QP段为抛物线,根据对称性可知,粒子在Q点时的速度大小也为v ,方向与x 轴正方向成45︒角,可得:045v vcos =︒ 解得:02v v =(2)在粒子从Q 运动到P 的过程中,由动能定理得:2201122qEL mv mv -=- 解得:202mv E qL=又在匀强电场由Q 到P 的过程中,水平方向的位移为:01x v t = 竖直方向的位移为:012v y t L == 可得:2QP x L =,OQ L =由2cos 45OQ R =︒,故粒子在OQ 段圆周运动的半径:22R L = 及mv R qB = 解得:02mvB qL=(3)在Q 点时,0045y v v tan v =︒=设粒子从由Q 到P 所用时间为1t ,在竖直方向上有:10022L L t v v ==粒子从O 点运动到Q 所用的时间为:204Lt v π=则粒子从O 点运动到P 点所用的时间为:t 总120002(8)44L L L t t v v v ππ+=+=+=4.如图所示,MN 为绝缘板,CD 为板上两个小孔,AO 为CD 的中垂线,在MN 的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m 电荷量为q 的粒子(不计重力)以某一速度从A 点平行于MN 的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O 点),已知图中虚线圆弧的半径为R ,其所在处场强大小为E ,若离子恰好沿图中虚线做圆周运动后从小孔C 垂直于MN 进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN 板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D 进入MN 上方的一个三角形匀强磁场,从A 点射出磁场,则三角形磁场区域最小面积为多少?MN 上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A 点出发后,第一次回到A 点所经过的总时间为多少?【来源】2014届福建省厦门双十中学高三热身考试物理试卷(带解析) 【答案】(1)EqRm;(2)212R ;11n +;(3)2πmR Eq 。
高考物理带电粒子在复合场中的运动题20套(带答案)含解析
一、带电粒子在复合场中的运动专项训练1.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v c ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=- 解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at =从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m+=+ 【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.2.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。
高考物理带电粒子在复合场中的运动专项训练及答案含解析
一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h表示)。
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。
高考物理带电粒子在复合场中的运动试题(有答案和解析)
一、带电粒子在复合场中的运动专项训练1.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。
一不带电的绝缘小球甲,以速度v 0沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞。
已知甲、乙两球的质量均为m =1.0×10-2kg ,乙所带电荷量q =2.0×10-5C ,g 取10m/s 2。
(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙球在B 点被碰后的瞬时速度大小;(2)在满足1的条件下,求甲的速度v 0;(3)甲仍以中的速度v 0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B 点的距离范围。
【来源】四川省资阳市高中(2018届)2015级高三课改实验班12月月考理综物理试题 【答案】(1)5m/s ;(2)5m/s ;(3)32m 3m 2x '≤<。
【解析】 【分析】 【详解】(1)对球乙从B 运动到D 的过程运用动能定理可得22112222D B mg R qE R mv mv --=- 乙恰能通过轨道的最高点D ,根据牛顿第二定律可得2Dv mg qE mR+=联立并代入题给数据可得B v =5m/s(2)设向右为正方向,对两球发生弹性碰撞的过程运用动量守恒定律可得00B mv mv mv '=+ 根据机械能守恒可得22200111222B mv mv mv '=+联立解得0v '=,05v =m/s (3)设甲的质量为M ,碰撞后甲、乙的速度分别为M v 、m v ,根据动量守恒和机械能守恒定律有0M m Mv Mv mv =+2220111222M m Mv Mv mv =+ 联立得2m Mv v M m=+ 分析可知:当M =m 时,v m 取最小值v 0;当M ≫m 时,v m 取最大值2v 0 可得B 球被撞后的速度范围为002m v v v <<设乙球过D 点的速度为Dv ',由动能定理得 22112222D m mg R qE R mv mv --='- 联立以上两个方程可得/s</s Dv '> 设乙在水平轨道上的落点到B 点的距离为x ',则有2122D x v t R gt ''==, 所以可得首次落点到B 点的距离范围2x '≤<2.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m 、电荷量为q 的铀235离子,从容器A 下方的小孔S 1不断飘入加速电场,其初速度可视为零,然后经过小孔S 2垂直于磁场方向进入磁感应强度为B 的匀强磁场中,做半径为R 的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I .不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U;(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;(3)实际上加速电压的大小会在U+ΔU范围内微小变化.若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t时间内收集到的离子个数为N,总电荷量Q = ItQ = NqM =" Nm" =(3)由以上分析可得:R =设m/为铀238离子质量,由于电压在U±ΔU之间有微小变化,铀235离子在磁场中最大半径为:R max=铀238离子在磁场中最小半径为:R min=这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max<R min即:<得:<<其中铀235离子的质量m = 235u (u 为原子质量单位),铀238离子的质量m ,= 238u则:<解得:<0.63%3.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【来源】带电粒子在磁场中的运动 【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨4.如图所示,x 轴正方向水平向右,y 轴正方向竖直向上.在xOy 平面内有与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x 轴正方向发射出一束具有相同质量m 、电荷量q (q >0)和初速度v 的带电微粒.发射时,这束带电微粒分布在0<y <2R 的区间内.已知重力加速度大小为g . (1)从A 点射出的带电微粒平行于x 轴从C 点进入有磁场区域,并从坐标原点O 沿y 轴负方向离开,求电场强度和磁感应强度的大小与方向. (2)请指出这束带电微粒与x 轴相交的区域,并说明理由.(3)若这束带电微粒初速度变为2v ,那么它们与x 轴相交的区域又在哪里?并说明理由.【来源】带电粒子在电场中运动 压轴大题 【答案】(1) mgE q =,方向沿y 轴正方向;mv B qR=,方向垂直xOy 平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x >0;理由见解析 【解析】【详解】(1)带电微粒平行于x 轴从C 点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E ,由:mg qE =可得电场强度大小:mg qE =方向沿y 轴正方向;带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a )所示:考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:2v qvB m R=可得磁感应强度大小:mv B qR=根据左手定则可知方向垂直xOy 平面向外;(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为(sin ,cos )R R θθ-,圆周运动轨迹方程为:222(sin )(cos )x R y R R θθ++-=而磁场边界是圆心坐标为(0,R )的圆周,其方程为:22()x y R R +-=解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为0x y =⎧⎨=⎩或:sin {(1cos )x R y R θθ=-=+坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:(2)2m v r R qB'== 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.答:(1)电场强度mg qE = ,方向沿y 轴正方向和磁感应强度mvB qR=,方向垂直xOy 平面向外.(2)这束带电微粒都是通过坐标原点后离开磁场的;(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。
高考物理带电粒子在复合场中的运动题20套(带答案)及解析
一、带电粒子在复合场中的运动专项训练1.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。
两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量为+q 的粒子由小孔下方2d处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。
不计粒子的重力。
(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、4mvqD,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析)【答案】(1)2mv qd(2)4mv qD 或43mv qD (3)5.5πD【解析】 【分析】 【详解】(1)粒子在电场中,根据动能定理2122d Eq mv ⋅=,解得2mv E qd =(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为/2E R 由211v qvB m r =,解得4mv B qD = 则当外切时,半径为e R由212v qvB m r =,解得43mv B qD =(2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为0010016819U U U ≤≤;Ⅱ区域的磁感应强度为2012qU mv =,则粒子运动的半径为2v qvB m r=;设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:1112R T v π=;034r L =据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=;2180θ=;60α=粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间分别为t 1、t 2,可得:r U ∝;1056U LU L=设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2) 联立上述各式可得:s=5.5πD2.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v c ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=- 解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at = 从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m+=+【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.3.如图甲所示,正方形导线框abcd用导线与水平放置的平行板电容器相连,线框边长与电容器两极板间的距离均为L.O点为电容器间靠近上极板的一点,与电容器右端的距离为7 2 L π,与水平线MN的距离为等1(1)4Lπ+).线框abcd内和电容器两极板间都存在周期性变化的磁场,导线框内匀强磁场的磁感应强度随时间的变化规律如图乙所示,电容器间匀强磁场的磁感应强度随时间的变化规律如图丙所示,选垂直纸面向里为正方向.现有一带正电微粒在0时刻自O点由静止释放,在时间去12L Lg g内恰好做匀速圆周运动.已知重力加速度为g,求:(1)此带电微粒的比荷qm;(2)自032Lg时微粒距O点的距离;(3)自0时刻起经多长时间微粒经过水平线MN.【来源】山东省德州市2019届高三第二次模拟考试理科综合物理试题【答案】(114gB L(2)Lπ(3)))71120,1,2,320,1,21212L Ln n n ng g⎛⎛+=+=⎝⎝和【解析】【详解】解:(1)电容器两极电势差大小等于线框产生的电动势:24L BU B L gLt∆==∆电容器两极间电场强度:4UE B gLL==12L Lg g内:mg qE=解得比荷:14q g m B L= (2)微粒运动的轨迹如图所示时间102Lg内:mg qE ma += 1v at =,112Lt g=解得:v gL =12L L gg 内:208mv qv B r π•= 可得:2L r π= 又2rT vπ=解得:L T g=32Lg时微粒距O 点的距离:2L x r π==(3) 时间102Lg内,微粒竖直向下的位移:124v L h t ==设粒子转过角度α时与O 点间的竖直距离为:1(1)4L π+ 1(1)4sin L hrπα+-= 解得:6πα=和56πα=每次微粒进入磁场后运动至水平线MN 所需时间:22t T απ= 解得:2112L t g =2512Lt g=自开始至水平线MN 的时间:122t t n T t =+•+,0,1,2,3(,)n =⋯⋯ 即:7(2)12L t n g =+和11(2)12Lt n g=+ ,0,1,2,3(,)n =⋯⋯ 又722L rn π=解得: 3.5n =微粒离开电容器后不再经过水平线MN ,分析得自开始至水平线MN 的时间:7(2)12L t n g =+,(0,1,2,3)n =和11(2)12Lt n g=+ ,0,1,2,3(,)n =⋯⋯4.如图所示,MN 为绝缘板,CD 为板上两个小孔,AO 为CD 的中垂线,在MN 的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m 电荷量为q 的粒子(不计重力)以某一速度从A 点平行于MN 的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O 点),已知图中虚线圆弧的半径为R ,其所在处场强大小为E ,若离子恰好沿图中虚线做圆周运动后从小孔C 垂直于MN 进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN 板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D 进入MN 上方的一个三角形匀强磁场,从A 点射出磁场,则三角形磁场区域最小面积为多少?MN 上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A 点出发后,第一次回到A 点所经过的总时间为多少?【来源】2014届福建省厦门双十中学高三热身考试物理试卷(带解析) 【答案】(1EqRm(2)212R ;11n +;(3)2πmR Eq【解析】 【分析】 【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mv Eq R=解得:EqR vm =(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22RS=在磁场中洛伦兹力提供向心力,则有:2mvBqvR=得:mvRBq=设MN下方的磁感应强度为B1,上方的磁感应强度为B2,如图所示:若只碰撞一次,则有:112R mvRB q==22mvR RB q==故2112BB=若碰撞n次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:124R t v π== 在MN 下方的磁场中运动时间:211122n t R v ππ+=⨯⨯== 在MN 上方的磁场中运动时间:23214R t v π=⨯=总时间:1232t t t t =++=5.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小【来源】2019年天津市滨海新区塘沽一中高三三模理综物理试卷【答案】(1) 222202e B R mc v mh h =+,22202e B R E m = ;(2) 20e B U mπ ;(3)02sin B R n dπ【解析】 【详解】解:(1)正、负电子在回旋加速器中磁场里则有:200mv evB R= 解得正、负电子离开回旋加速器时的速度为:00eB Rv m=正、负电子进入对撞机时分别具有的能量:222200122e B R E mv m==正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=正、负电子对撞湮灭后产生的光子频率:222202e B R mc v mh h=+(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:2012neU mv =解得:2202eB R n mU=正、负电子在磁场中运动的周期为:02mT eB π=正、负电子在磁场中运动的时间为:2022B R nt T Uπ==D 型盒间的电场对电子做功的平均功率:20e B UW E P t t mπ===(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin2dr nπ=解得:2sind r nπ=根据洛伦磁力提供向心力可得:20 0mvev Br=电磁铁内匀强磁场的磁感应强度B大小:02sinB RnBdπ=6.回旋加速器的工作原理如图甲所示,置于真空中的D形金属盒半径为R,两盒间有狭缝(间距d R<<),匀强磁场与盒面垂直,被加速粒子的质量为m,电荷量为q+,加在狭缝间的交变电压如图乙所示,电压值的大小为0U,周期为T,与粒子在磁场中的周期相同.一束该种粒子在0~/2t T=时间内从A处均匀地飘入狭缝,其初速度视为零.粒子在电场中的加速次数与回旋半周的次数相同,假设能够出射的粒子每次经过狭缝均做加速运动;粒子重力不计,不考虑粒子在狭缝中的运动时间,不考虑粒子间的相互作用.求:(1)匀强磁场的磁感应强度B;(2)粒子从飘入狭缝至动能最大所需的总时间0t;(3)实际中粒子的质量会随速度的增加而增大,加速后的质量m与原来质量0m的关系:21mvt=⎛⎫- ⎪⎝⎭1%后估计最多还能再加速多少次(需要简述理由)?②若粒子质量最终增加2%,那么粒子最终速度为光速的多少倍(结果保留一位有效数字)?【来源】【全国百强校】天津市实验中学2019届高三考前热身训练物理试题【答案】(1)2mqrπ(2)22R mqU Tπ(3)100次;0.2【解析】【详解】解:(1) 依据牛顿第二定律,结合洛伦兹力提供向心,则有:2vqvB mR=电压周期T与粒子在磁场中的周期相同:2rTvπ=可得2mTqBπ=,2mBqrπ=(2)粒子运动半径为R时:2Rvrπ=且2km12E mv=解得:22km22mRETπ=粒子被加速n次达到动能kmE,则有:kmE nqU=不考虑粒子在狭缝中的运动时间,又有粒子在电场中的加速次数与回旋半周的相同,得粒子从飘入狭缝至动能最大所需的总时间:222T R mt nqU Tπ=•=(3)粒子在磁场中的周期:2nTqBπ=,质量增加1%,周期增大1%,再加速次数不超过221001%rT⨯=⨯次加速后的质量m与原来质量0m的关系:21()mvc=-,01.02m m=粒子最终速度为:0.2v c=即粒子最终速度为光速的0.2倍7.如图所示,在直角坐标系x0y平面的一、四个象限内各有一个边长为L的正方向区域,二三像限区域内各有一个高L,宽2L的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L,L<y<2L的区域内,有沿y轴正方向的匀强电场.现有一质量为四电荷量为q的带负电粒子从坐标(L,3L/2)处以初速度v沿x轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小B;(3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.【来源】四川省2018届高三春季诊断性测试理综物理试题【答案】(1)2mvEqL=(2)4nmvBqL=n=1、2、3 (3)2Ltvπ=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有:0L v t=,2122Lat=,qE ma=联立解得:2mvEqL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyvvθ==l速度大小02sinvv vθ==设x为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L,0 )点,应满足L=2nx,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R,圆弧对应的圆心角为2π.则有2R,此时满足L=2nx联立可得:22Rn=由牛顿第二定律,洛伦兹力提供向心力,则有:2vqvB mR=得:04nmvBqL=,n=1、2、3....轨迹如图乙设圆弧的半径为R,圆弧对应的圆心角为2π.则有222x R,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==8.如图所示,直线y =x 与y 轴之间有垂直于xOy 平面向外的匀强磁场1B ,直线x =d 与y =x 间有沿y 轴负方向的匀强电场,电场强度41.010V/m E =⨯,另有一半径R =1.0m 的圆形匀强磁场区域,磁感应强度20.20T B =,方向垂直坐标平面向外,该圆与直线x =d 和x 轴均相切,且与x 轴相切于S 点.一带负电的粒子从S 点沿y 轴的正方形以速度0v 进入圆形磁场区域,经过一段时间进入磁场区域1B ,且第一次进入磁场1B 时的速度方向与直线y =x垂直.粒子速度大小50 1.010m/s v =⨯,粒子的比荷为5/ 5.010C/kg q m =⨯,粒子重力不计.求:(1)粒子在匀强磁场2B 中运动的半径r ; (2)坐标d 的值;(3)要使粒子无法运动到x 轴的负半轴,则磁感应强度1B 应满足的条件; (4)在(2)问的基础上,粒子从开始进入圆形磁场至第二次到达直线y =x 上的最长时间( 3.14π=,结果保留两位有效数字).【来源】天津市滨海新区2019届高三毕业班质量监测理科综合能力测试物理试题 【答案】(1)r =1m (2)4m d = (3)10.1B T ≤或10.24B T ≥ (4)56.210t s -≈⨯ 【解析】 【详解】解:(1) 由带电粒子在匀强磁场中运动可得:2020vB qv m r= 解得粒子运动的半径:1r m =(2) 粒子进入匀强电场以后,做类平抛运动,设粒子运动的水平位移为x ,竖直位移为y 水平方向:0x v t = 竖直方向:212y at =Eq a m=tan 45v at︒=联立解得:2x m =,1y m = 由图示几何关系得:d x y R =++ 解得:4d m =(3)若所加磁场的磁感应强度为1B ',粒子恰好垂直打在y 轴上,粒子在磁场运动半径为1r 由如图所示几何关系得:)12r y R =+02v v =由带电粒子在匀强磁场中运动可得:211vB qv m r '=解得:10.1B T '=若所加磁场的磁感应强度为1B '',粒子运动轨迹与轴相切,粒子在磁场中运动半径为2r由如图所示几何关系得:()2222r r y R +=+由带电粒子在匀强磁场中运动可得:212vB qv m r ''=解得1210.2410B T T +''=≈ 综上,磁感应强度应满足的条件为10.1B T ≤或10.24B T ≥(4)设粒子在磁场2B 中运动的时间为1t ,在电场中运动的时间为2t ,在磁场1B 中运动的时间为3t ,则有:1114t T =102RT v π= 20x t v =3212t T =222r T vπ=解得:()551232 1.52210 6.210t t t t s s ππ--=++=-+⨯≈⨯9.如图,空间某个半径为R 的区域内存在磁感应强度为B 的匀强磁场,与它相邻的是一对间距为d ,足够大的平行金属板,板间电压为U 。
高考物理带电粒子在复合场中的运动题20套(带答案)含解析
一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
(物理) 高考物理带电粒子在复合场中的运动试题(有答案和解析)及解析
一、带电粒子在复合场中的运动专项训练1.如图所示,在坐标系Oxy 的第一象限中存在沿y 轴正方向的匀强电场,场强大小为E .在其它象限中存在匀强磁场,磁场方向垂直于纸面向里.A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 的距离为L .一质量为m ,电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域.并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用.试求: (1)粒子经过C 点速度的大小和方向; (2)磁感应强度的大小B .【来源】2007普通高等学校招生全国统一考试(全国卷Ⅱ)理综物理部分 【答案】(1)α=arctan2h l(2)B 2212mhEh l q+【解析】 【分析】 【详解】试题分析:(1)以a 表示粒子在电场作用下的加速度,有qE ma =①加速度沿y 轴负方向.设粒子从A 点进入电场时的初速度为0v ,由A 点运动到C 点经历的时间为t , 则有:212h at =② 0l v t =③由②③式得02a v h= 设粒子从C 点进入磁场时的速度为v ,v 垂直于x 轴的分量12v ah =⑤ 由①④⑤式得:22101v v v +=()2242qE h l mh+⑥设粒子经过C 点时的速度方向与x 轴的夹角为α,则有1vtanvα=⑦由④⑤⑦式得2harctanlα=⑧(2)粒子从C点进入磁场后在磁场中作速率为v的圆周运动.若圆周的半径为R,则有qvB=m2vR⑨设圆心为P,则PC必与过C点的速度垂直,且有PC=PA R=.用β表示PA与y轴的夹角,由几何关系得:Rcos Rcos hβα=+⑩Rsin l Rsinβα=-解得222242h lR h lhl++=由⑥⑨式得:B=2212mhEh l q+2.如图所示,一半径为R的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B、方向竖直向下的匀强磁场.一电荷量为q(q>0)、质量为m的小球P在球面上做水平的匀速圆周运动,圆心为O′.球心O到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B的最小值及小球P 相应的速率.(已知重力加速度为g)【来源】带电粒子在磁场中的运动【答案】min B =v θ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得B ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min B =⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得v θ=⑨3.在场强为B 的水平匀强磁场中,一质量为m 、带正电q 的小球在O 静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到z 轴距离的2倍,重力加速度为g .求:(1)小球运动到任意位置P (x ,y)的速率v ; (2)小球在运动过程中第一次下降的最大距离y m ;(3)当在上述磁场中加一竖直向上场强为E (mgE q>)的匀强电场时,小球从O 静止释放后获得的最大速率m v 。
高考物理带电粒子在复合场中的运动专项训练及答案含解析
一、带电粒子在复合场中的运动专项训练1.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v 0=vcosφ vsinφ=at d=v 0t设电场强度的大小为E ,由牛顿第二定律得 qE=ma 解得:2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)3.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
高考物理带电粒子在复合场中的运动专项训练及答案含解析
一、带电粒子在复合场中的运动专项训练1.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m=12mv2m-12mv2由题知 v m=ky m若E=0时,粒子以初速度v0沿y轴正向入射,有 qv0B=m2vR在最高处有 v0=kR0联立解得22()mE Ev vB B=++考点:带电粒子在符合场中的运动;动能定理.2.如图所示,一半径为R的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B、方向竖直向下的匀强磁场.一电荷量为q(q>0)、质量为m的小球P在球面上做水平的匀速圆周运动,圆心为O′.球心O到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B的最小值及小球P 相应的速率.(已知重力加速度为g)【来源】带电粒子在磁场中的运动【答案】min2cosm gBq Rθ=cosgRvθθ=【解析】【分析】【详解】据题意,小球P在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得B ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min B =⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得v θ=⑨3.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】 【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:200qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④ y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂) 解得:22220074DM CM CD R R h h =-=+-⒃ M 点横坐标为:22000724M x R R R h h =++-⒄4.在场强为B 的水平匀强磁场中,一质量为m 、带正电q 的小球在O 静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到z 轴距离的2倍,重力加速度为g .求:(1)小球运动到任意位置P (x ,y)的速率v ; (2)小球在运动过程中第一次下降的最大距离y m ; (3)当在上述磁场中加一竖直向上场强为E (mgE q>)的匀强电场时,小球从O 静止释放后获得的最大速率m v 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、带电粒子在复合场中的运动专项训练1.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m=12mv2m-12mv2由题知 v m=ky m若E=0时,粒子以初速度v0沿y轴正向入射,有 qv0B=m2vR在最高处有 v0=kR0联立解得22()mE Ev vB B=++考点:带电粒子在符合场中的运动;动能定理.2.如图所示,一半径为R的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B、方向竖直向下的匀强磁场.一电荷量为q(q>0)、质量为m的小球P在球面上做水平的匀速圆周运动,圆心为O′.球心O到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B的最小值及小球P 相应的速率.(已知重力加速度为g)【来源】带电粒子在磁场中的运动【答案】min2cosm gBq Rθ=cosgRvθθ=【解析】【分析】【详解】据题意,小球P在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得B ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min B =⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得v θ=⑨3.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】 【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:200qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④ y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂) 解得:22220074DM CM CD R R h h =-=+- M 点横坐标为:22000724M x R R R h h =+-4.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
0t =时,一带正电、质量为m 的微粒从左边界上的1N 点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的2N 点,Q 为线段12N N 的中点,重力加速度为g ,上述d 、0E 、m 、v 、g 为已知量。
(1)求微粒所带电荷量q 和磁感应强度B 的大小; (2)求电场变化的周期T ;(3)改变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值。
【来源】2010年普通高等学校招生全国统一考试(安徽卷)理综【答案】(1)02E B v=;(2)122d v T t t v g π=+=+;(3)min 1min 2(21)2v T t t g π+=+。
【解析】 【分析】根据物体的运动性质结合物理情景确定物体的受力情况。
再根据受力分析列出相应等式解决问题。
【详解】(1)根据题意,微粒做圆周运动,洛伦兹力完全提供向心力,重力与电场力平衡, 则mg=qE 0 ①∵微粒水平向右做直线运动,∴竖直方向合力为0. 则 mg+qE 0=qvB ② 联立①②得:q=③B=④(2)设微粒从N 1运动到Q 的时间为t 1,作圆周运动的周期为t 2, 则=vt 1⑤qvB=m⑥2πR=vt 2 ⑦联立③④⑤⑥⑦得:t 1=,t 2=⑧ 电场变化的周期T=t 1+t 2=+⑨(3)若微粒能完成题述的运动过程,要求 d≥2R ⑩ 联立③④⑥得:R=,设N 1Q 段直线运动的最短时间t 1min ,由⑤⑩得t 1min =,因t 2不变,T 的最小值 T min =t 1min +t 2=。
答:(1)微粒所带电荷量q 为,磁感应强度B 的大小为。
(2)电场变化的周期T 为+。
(3)T 的最小值为。
【点睛】运动与力是紧密联系的,通过运动情况研究物体受力情况是解决问题的一个重要思路。
5.如图所示,在 xOy 坐标平面的第一象限内有一沿 y 轴负方向的匀强电场,在第四象限内有一垂直于平面向里的匀强磁场,现有一质量为m 、电量为+q 的粒子(重力不计)从坐标原点 O 射入磁场,其入射方向与x 的正方向成 45°角.当粒子运动到电场中坐标为(3L ,L )的 P 点处时速度大小为 v 0,方向与 x 轴正方向相同.求: (1)粒子从 O 点射入磁场时的速度 v ;(2)匀强电场的场强 E 0 和匀强磁场的磁感应强度 B 0. (3)粒子从 O 点运动到 P 点所用的时间.【来源】海南省海口市海南中学2018-2019学年高三第十次月考物理试题【答案】(1)02v ;(2)02mv Lq;(3)0(8)4L v π+【解析】 【详解】解:(1)若粒子第一次在电场中到达最高点P ,则其运动轨迹如图所示,粒子在 O 点时的速度大小为v ,OQ 段为圆周,QP 段为抛物线,根据对称性可知,粒子在Q 点时的速度大小也为v ,方向与x 轴正方向成45︒角,可得:045v vcos =︒ 解得:02v v =(2)在粒子从Q 运动到P 的过程中,由动能定理得:2201122qEL mv mv -=-解得:202mv E qL=又在匀强电场由Q 到P 的过程中,水平方向的位移为:01x v t = 竖直方向的位移为:012v y t L == 可得:2QP x L =,OQ L =由2cos 45OQ R =︒,故粒子在OQ段圆周运动的半径:2R L = 及mv R qB = 解得:02mvB qL=(3)在Q 点时,0045y v v tan v =︒=设粒子从由Q 到P 所用时间为1t ,在竖直方向上有:10022L L t v v ==粒子从O 点运动到Q 所用的时间为:204Lt v π=则粒子从O 点运动到P 点所用的时间为:t 总120002(8)44L L L t t v v v ππ+=+=+=6.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
(1)求0≤x≤L 区域内电场强度E 的大小和电子从M 点进入圆形区域时的速度v M ;(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴,求所加磁场磁感应强度B 的大小和电子在圆形区域内运动的时间t ; (3)若在电子从M 点进入磁场区域时,取t =0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N 点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T 满足的关系表达式。
【来源】【省级联考】吉林省名校2019届高三下学期第一次联合模拟考试物理试题 【答案】(1)2U E L =,M eUv m=v M 的方向与x 轴的夹角为θ,θ=45°;(2)2M mv mv B eR L e ==,3348M R L m t v eUππ==3)T 的表达式为22T n emU =(n =1,2,3,…) 【解析】 【详解】(1)在加速电场中,从P 点到Q 点由动能定理得:2012eU mv = 可得02eUv m=电子从Q 点到M 点,做类平抛运动, x 轴方向做匀速直线运动,02L m t L v eU==y 轴方向做匀加速直线运动,2122L eE t m=⨯ 由以上各式可得:2U E L=电子运动至M 点时:220()M Ee v v t m=+即:M eUv m=设v M 的方向与x 轴的夹角为θ,02cos 2M v v θ== 解得:θ=45°。