高考物理大题专题训练专用(带答案)
高考物理-万有引力定律-专题练习(一)(含答案与解析)
高考物理专题练习(一)万有引力定律1.(多选)中俄联合火星探测器,2009年10月出发,经过3.5亿公里的漫长飞行,在2010年8月29日抵达了火星。
双方确定对火星及其卫星“火卫一”进行探测。
火卫一在火星赤道正上方运行,与火星中心的距离为9 450 km ,绕火星1周需7 h39 min 。
若其运行轨道可看作圆形轨道,万有引力常量为1122G 6.6710Nm /kg -=⨯,则由以上信息能确定的物理量是( )A .火卫一的质量B .火星的质量C .火卫一的绕行速度D .火卫一的向心加速度2.(多选)经长期观测人们在宇宙中已经发现了“双星系统”。
“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体。
如图,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做匀速圆周运动。
现测得两颗星之间的距离为L ,质量之比为12:3:2=m m ,则可知( )A .1m 、2m 做圆周运动的角速度之比为2:3B .1m 、2m 做圆周运动的线速度之比为3:2C .1m 做圆周运动的半径为2L /5D .1m 、2m 做圆周运动的向心力大小相等3.2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。
10月19日凌晨,神舟十一号飞船与天宫二号自动交会对接成功,对接时的轨道高度是393公里,比神舟十号与天宫一号对接时的轨道高了50公里,这与未来空间站的轨道高度基本相同,为我国载人航天发展战略的第三步——建造空间站做好了准备。
下列说法正确的是( )A .在近圆形轨道上运行时天宫一号的周期比天宫二号的长B .在近圆形轨道上运行时天宫一号的加速度比天宫二号的小C .天宫二号由椭圆形轨道进入近圆形轨道需要减速D .交会对接前神舟十一号的运行轨道要低于天宫二号的运行轨道4.【2017·天津市五区县高三上学期期末考试】2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。
物理高考专题训练题及答案解析(珍藏版):运动的描述-匀变速直线运动(测)
专题01 运动的描述匀变速直线运动专题测试【满分:100分时间:90分钟】一、选择题(本题共包括12小题,每小题5分,共60分)1.(北京101中学2020届模拟)如图所示,物体甲从A点沿直线运动到B,再从B点沿直线运动到C;同时物体乙沿直线直接从A点运动到C。
甲、乙所用的时间相等。
下列说法正确的是()A.甲、乙的位移相同B.甲、乙的路程相同C.甲、乙的平均速度不同D.甲、乙的瞬时速度大小时刻相同2.(黑龙江牡丹江一中2020届模拟)一个做匀加速直线运动的物体,位移与时间的数量关系满足x=4t+13t2,其初速度是()A.4 m/s B.2 m/s C.1 m/s D.13m/s3.(湖南长郡中学2020届模拟)甲、乙两个小铁球从不同高度做自由落体运动,t0时刻同时落地。
下列表示这一过程的位移—时间图象和速度—时间图象中可能正确的是()4.(山东日照一中2020届模拟)一列火车沿平直轨道从静止出发由A地驶向B地,列车先做匀加速运动,加速度大小为a,接着做匀减速运动,加速度大小为2a,到达B地时恰好静止,若A、B两地距离为s,则火车从A地到B地所用时间t为()A.3s4a B.4s3a C.3sa D.3s2a5.(武汉一中2020届调研)通常情况下,人的反应时间和汽车系统的反应时间之和在1.39~1.98 s之间。
若高速公路上两辆汽车行驶的速度均为100 km/h,刹车时的加速度大小相同,前车发现紧急情况立即刹车,后车发现前车开始刹车时,也立刻采取相应措施。
为避免两车追尾,两车行驶的间距至少应为() A.39 m B.55 m C.100 m D.139 m6. (广西桂林、贺州、崇左2020届联考)甲、乙两辆汽车在同一平直公路上行驶,在t=0时刻两车正好相遇,在之后一段时间0~t2内两车的速度—时间图象(v-t图象)如图所示,则在0~t2这段时间内有关两车的运动,下列说法正确的是()A .甲、乙两辆车运动方向相反B .在t 1时刻甲、乙两车再次相遇C .乙车在0~t 2时间内的平均速度小于v 1+v 22D .在t 1~t 2时间内乙车在甲车前方7.(河北衡水中学2020届调研)甲、乙两物体沿同一直线运动,运动过程的位移—时间图象如图所示,下列说法正确的是( )A .0~6 s 内甲物体做匀变速直线运动B .0~6 s 内乙物体的速度逐渐减小C .0~5 s 内两物体的平均速度大小相等D .0~6 s 内存在某时刻两物体的速度大小相等8.(安徽安庆一中2020届模拟)一质点在连续的6 s内做匀加速直线运动,在第一个2 s内位移为12 m,最后一个2 s内位移为36 m,下面说法正确的是()A.质点的加速度大小是3 m/s2B.质点在第2个2 s内的平均速度大小是12 m/sC.质点第2 s末的速度大小是12 m/sD.质点在第1 s内的位移大小是6 m9.(福建莆田一中2020届模拟)运动学中有人认为引入“加速度的变化率”没有必要,然而现在有人指出“加速度的变化率”能引起人的心理效应,车辆的平稳加速(即加速度基本不变)使人感到舒服,否则人会感到不舒服,关于“加速度的变化率”,下列说法正确的是()A.从运动学角度的定义,“加速度的变化率”的单位应是m/s3B.加速度的变化率为0的运动是匀速直线运动C.若加速度与速度同方向,如图所示的a-t图象,表示的是物体的速度在减小D.若加速度与速度同方向,如图所示的a-t图象,已知物体在t=0时速度为5 m/s,则2 s末的速度大小为8 m/s10. (湖北天门市一中2020届模拟)矿井中的升降机以5 m/s的速度竖直向上匀速运行,某时刻一螺钉从升降机底板松脱,经过3 s升降机底板上升至井口,此时松脱的螺钉刚好落到井底,不计空气阻力,取重力加速度g=10 m/s2,下列说法正确的是()A.螺钉松脱后做自由落体运动B.矿井的深度为45 mC.螺钉落到井底时的速度大小为25 m/sD.螺钉随升降机从井底出发到落回井底共用时6 s11.(广东揭阳一中2020届模拟)t=0时一物体从某一行星表面竖直向上抛出(不计空气阻力),其位移随时间变化的s-t图象如图所示,则()A.该行星表面的重力加速度大小为8 m/s2B.该物体上升的时间为5 sC.该物体被抛出时的初速度大小为10 m/sD.该物体落到行星表面时的速度大小为20 m/s12.(湖南益阳一中2020届模拟)甲、乙两辆车初始时相距1000 m,甲车在后,乙车在前,在同一条公路上做匀变速直线运动,它们的速度时间—图象如图所示,则下列说法正确的是()A.两辆车在t=36 s时速度相等B.乙车比甲车早出发8 sC.两辆车不会相撞D.甲车停下时,甲车在乙车前边191 m处二、非选择题(本题共包括4小题,共40分)13.(6分) (河北唐山一中2020届模拟)某同学利用如图甲所示装置进行“研究匀变速直线运动”的实验。
最新【通用版】高考物理考前专题训练《带电粒子在交变电场中的运动》(含答案)
【通用版】高考物理考前突破专题专题一、带电粒子在交变电场中的运动1.A 、B 两金属板平行放置,在t =0时刻将电子从A 板附近由静止释放(电子的重力忽略不计)。
分别在A 、B 两板间加上右边哪种电压时,有可能使电子到不了B 板【答案】B2.将如图交变电压加在平行板电容器A 、B 两极板上,开始B 板电势比A 板电势高,这时有一个原来静止的电子正处在两板的中间,它在电场力作用下开始运动,设A 、B 两极板的距离足够大,下列说法正确的是A .电子一直向着A 板运动B .电子一直向着B 板运动C .电子先向A 运动,然后返回向B 板运动,之后在A 、B 两板间做周期性往复运动D .电子先向B 运动,然后返回向A 板运动,之后在A 、B 两板间做周期性往复运动 【答案】D【解析】根据交变电压的变化规律,不难确定电子所受电场力的变化规律,从而作出电子的加速度a 、速度v 随时间变化的图线,如图所示,从图中可知,电子在第一个T 4内做匀加速运动,第二个T4内做匀减速运动,在这半个周期内,因初始B 板电势高于A 板电势,所以电子向B 板运动,加速度大小为eUmd 。
在第三个T 4内做匀加速运动,第四个T4内做匀减速运动,但在这半个周期内运动方向与前半个周期相反,向A 板运动,加速度大小为eUmd,所以,电子做往复运动,综上分析正确选项应为D 。
7.如图甲所示,真空室中电极K 发出的电子(初速度不计)经过电势差为U 1的加速电场加速后,沿两水平金属板C 、D 间的中心线射入两板间的偏转电场,最后打在荧光屏上。
C 、D 两板间的电势差U CD 随时间变化的图象如图乙所示,设C 、D 间的电场可看作匀强电场,且两板外无电场。
已知电子的质量为m 、电荷量为e (重力不计),C 、D 极板长为l ,板间距离为d ,偏转电压U 2,荧光屏距C 、D 右端的距离为l6,所有电子都能通过偏转电极。
(1)求电子通过偏转电场的时间t 0;(2)若U CD 的周期T =t 0,求荧光屏上电子能够到达的区域的长度; (3)若U CD 的周期T =2t 0,求到达荧光屏上O 点的电子的动能。
高考物理重力跟弹力专题练习(含解析答案及考点部分)(一)
D、弹力是施力物体的形变产生的,故书对桌面的压力是由于书发生形变产生的,故D错误;
故选:B
【分析】二力平衡的条件是:作用在同一物体上;大小相等;方向相反;作用在同一直线上.
6.如图所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m的小球.下列关于杆对球的作用力F的判断中,正确的是()
A. B. C. D.
11.把一个月牙状的薄板悬挂起来,静止时如图所示.则薄板的重心可能是图中的()
A. A点 B. B点 C. C点 D. D点
12.如图所示,一根弹性杆的一端固定在倾角为30°的斜面上,杆的另一端固定一个重力为2N的小球,小球处于静止状态,则弹性杆对小球的弹力()
A.大小为2 N,方向平行于斜面向上 B.大小为2 N,方向垂直于斜面向上
A.力F1就是杯子的重力 B.力F1和力F2是一对平衡力
C.力F1和力F2是一对作用力和反作用力D.力F1的大小大于力F2的大小
【答案】C
【考点】重力,弹力
【解析】【分析】重力的施力物体是地球,所以F1不是重力,故A错;力F1和力F2是等大,反向,共线,作用于两个物体,是一对作用力和反作用力,故C对,B、D错
2.如图所示,球A在斜面上,被竖直挡板挡住而处于静止状态,关于球A所受的弹力,以下说法正确的是()
A.球A仅受一个弹力作用,弹力的方向垂直斜面向上
B.球A受两个弹力作用,一个水平向左,一个垂直斜面向下
C.球A受两个弹力作用,一个水平向右,一个垂直斜面向上
D.球A受三个弹力作用,一个水平向右,一个垂直斜面向上,一个竖直向下
高考物理试题大题及答案
高考物理试题大题及答案一、选择题(每题4分,共40分)1. 下列关于光的折射现象描述正确的是:A. 光从空气斜射入水中时,折射角大于入射角B. 光从水中斜射入空气中时,折射角小于入射角C. 光从空气垂直射入水中时,折射角等于入射角D. 光从水中垂直射入空气中时,折射角等于入射角答案:C2. 根据牛顿第二定律,下列说法正确的是:A. 力是改变物体运动状态的原因B. 力是维持物体运动状态的原因C. 物体的质量越大,加速度越小D. 物体的质量越大,加速度越大答案:A3. 在电磁感应现象中,下列说法错误的是:A. 闭合电路的一部分导体切割磁感线会产生感应电流B. 磁场的变化可以产生感应电流C. 感应电流的方向与磁场方向有关D. 感应电流的方向与导体运动方向无关答案:D4. 根据热力学第一定律,下列说法正确的是:A. 能量守恒定律B. 能量可以创造C. 能量可以消失D. 能量可以从低温物体自发地传递到高温物体答案:A5. 根据相对论,下列说法错误的是:A. 光速在任何惯性参考系中都是相同的B. 质量可以转化为能量C. 物体的质量随速度的增加而增加D. 物体的长度随速度的增加而增加答案:D6. 根据原子核物理,下列说法正确的是:A. 原子核由质子和中子组成B. 原子核由电子和质子组成C. 原子核由电子和中子组成D. 原子核由质子和电子组成答案:A7. 根据量子力学,下列说法错误的是:A. 电子在原子中以概率云的形式存在B. 电子在原子中以确定的轨道存在C. 量子力学是描述微观粒子行为的理论D. 量子力学中,粒子的位置和动量不能同时精确测量答案:B8. 在电场中,下列说法正确的是:A. 电场强度的方向与正电荷所受电场力的方向相同B. 电场强度的方向与负电荷所受电场力的方向相同C. 电场强度的方向与负电荷所受电场力的方向相反D. 电场强度的方向与正电荷所受电场力的方向相反答案:A9. 根据电磁波理论,下列说法错误的是:A. 电磁波可以在真空中传播B. 电磁波的传播速度等于光速C. 电磁波的传播需要介质D. 电磁波是由变化的电场和磁场相互作用产生的答案:C10. 在力学中,下列说法正确的是:A. 物体的惯性只与物体的质量有关B. 物体的惯性与物体的形状有关C. 物体的惯性与物体的运动状态有关D. 物体的惯性与物体所受的力有关答案:A二、填空题(每题4分,共20分)1. 根据欧姆定律,电阻R等于电压U与电流I的比值,即R =_______。
物理高考专题训练题及答案解析(珍藏版):相互作用(测)
专题测试【满分:100分时间:90分钟】一、选择题(本题共包括15小题,每小题4分,共60分)1.(河北衡水中学2019届高三调研)如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为()A.3:4B.4:3C.1:2 D.2:12.(辽宁省沈阳市东北育才学校2019届高三模拟)如图所示,倾角为θ的斜面体c置于水平地面上,物块b置于斜面上,通过跨过光滑定滑轮的细绳与小盒a连接,连接b的一段细绳与斜面平行,连接a的一段细绳竖直,a连接在竖直固定在地面的弹簧上。
现向盒内缓慢加入适量砂粒,a、b、c始终处于静止状态。
下列判断正确的是()A.c对b的摩擦力可能减小B.地面对c的支持力可能增大C.地面对c的摩擦力可能不变D.弹簧的弹力可能增大3.(天津市新华中学2019届高三高考模拟)滑轮P被一根斜短线系于天花板上的O点细线、小滑轮的重力和细线与滑轮间的摩擦力均可忽略,整个装置处于静止状态。
若悬挂小滑轮的斜线OP的张力是203N,g取10m/s2,连接滑轮的两根绳子之间的夹角为60︒,则下列说法中正确的是A.重物A的质量为2kgB.绳子对B物体的拉力为103NC.桌面对B物体的摩擦力为10ND.OP与竖直方向的夹角为60︒4.(江苏省苏州市2019届高三第一次模拟)如图所示,倾角θ=37°的上表面光滑的斜面体放在水平地面上.一个可以看成质点的小球用细线拉住与斜面一起保持静止状态,细线与斜面间的夹角也为37°.若将拉力换为大小不变、方向水平向左的推力,斜面体仍然保持静止状态.sin37°=0.6,cos37°=0.8.则下列说法正确的是()A.小球将向上加速运动B.小球对斜面的压力变大C.地面受到的压力不变D.地面受到的摩擦力不变5.(湖北省武汉实验中学2019届高三模拟)如图所示,两个小球a、b质量均为m,用细线相连并悬挂于O点,现用一轻质弹簧给小球a施加一个拉力F,使整个装置处于静止状态,且Oa与竖直方向夹角为θ︒,已知弹簧的劲度系数为k,则弹簧形变量最小值是( )=45A.2mgB.2mgC.42mgD.2mgk6.(湖北省黄冈中学2019届高三模拟)哥伦比亚大学的工程师研究出一种可以用于人形机器人的合成肌肉,可模仿人体肌肉做出推、拉、弯曲和扭曲等动作。
动能定理的应用- 高考物理压轴大题专题训练
精做05 动能定理的应用1.(2019·北京卷)雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关。
雨滴间无相互作用且雨滴质量不变,重力加速度为g 。
(1)质量为m 的雨滴由静止开始,下落高度h 时速度为u ,求这一过程中克服空气阻力所做的功W 。
(2)将雨滴看作半径为r 的球体,设其竖直落向地面的过程中所受空气阻力f =kr 2v 2,其中v 是雨滴的速度,k 是比例系数。
a .设雨滴的密度为ρ,推导雨滴下落趋近的最大速度v m 与半径r 的关系式;b .示意图中画出了半径为r 1、r 2(r 1>r 2)的雨滴在空气中无初速下落的v –t 图线,其中_________对应半径为r 1的雨滴(选填①、②);若不计空气阻力,请在图中画出雨滴无初速下落的v –t 图线。
(3)由于大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。
将雨滴简化为垂直于运动方向面积为S 的圆盘,证明:圆盘以速度v 下落时受到的空气阻力f ∝v 2(提示:设单位体积内空气分子数为n ,空气分子质量为m 0)。
【答案】(1)212mgh mu - (2)a .m 4π3gv r k ρ=b .见解析 (3)见解析 【解析】(1)根据动能定理212mgh W mu -=可得212W mgh mu =-(2)a .根据牛顿第二定律mg f ma -= 得22kr v a g m=- 当加速度为零时,雨滴趋近于最大速度v m 雨滴质量34π3m r ρ=由a =0,可得,雨滴最大速度m 4π3gv r kρ=b .①如答图2(3)根据题设条件:大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。
以下只考虑雨滴下落的定向运动。
简化的圆盘模型如答图3。
设空气分子与圆盘碰撞前后相对速度大小不变。
在∆t 时间内,与圆盘碰撞的空气分子质量为0m Sv tnm ∆=∆以F 表示圆盘对气体分子的作用力,根据动量定理, 有F t m v ∆∝∆⨯ 得20F nm Sv ∝由牛顿第三定律,可知圆盘所受空气阻力 2f v ∝采用不同的碰撞模型,也可得到相同结论。
高考必考50道经典物理题(含答案)
高考必考50道经典物理题(含答案)1. 题目:一个物体从2m/s加速度减小为1m/s,时间为3秒。
求这段时间内物体的位移。
答案:根据物体加速度的定义,加速度等于位移差除以时间差。
所以,位移差等于加速度乘以时间差。
因此,位移差为(2m/s - 1m/s) * 3s = 3m。
2. 题目:一个小车以10m/s的速度匀速行驶了5秒,求小车的位移。
答案:位移等于速度乘以时间。
所以,位移为10m/s * 5s =50m。
3. 题目:一个物体以5m/s的速度自由落体,落地时速度为15m/s。
求物体在空中的时间。
答案:根据自由落体运动的公式,下落的时间只与加速度有关,与初始速度无关。
加速度为重力加速度,约等于9.8m/s^2。
所以,物体在空中的时间可以通过速度变化来计算,即(15m/s - 5m/s) /9.8m/s^2 = 1.02s。
4. 题目:一个物体以10m/s的速度竖直上抛,经过2秒达到最高点。
求物体的加速度。
答案:由于在最高点的速度为0,根据竖直上抛运动的公式,可以求得加速度。
根据公式 v = u - gt,其中v为最终速度,u为初始速度,g为加速度,t为时间,可以得到0 = 10m/s - 2s * g。
解这个方程,可以得到加速度g = 5m/s^2。
5. 题目:一个物体以10m/s的速度投出,经过3秒落地。
求物体的最大高度。
答案:根据竖直上抛运动的公式 h = u * t - 0.5 * g * t^2,其中h 为最大高度,u为初始速度,t为时间,g为加速度。
代入已知条件,可以得到最大高度 h = 10m/s * 3s - 0.5 * 9.8m/s^2 * (3s)^2 = 45.1m。
6. 题目:一个物体水平抛出,初速度为10m/s,以30°角度抛出。
求物体的落点距离起点的水平距离。
答案:将初始速度分解为水平方向和竖直方向的分速度。
水平方向的速度为u_cosθ,竖直方向的速度为u_sinθ,其中u为初始速度,θ为抛出角度。
高考理综物理解答题专项集中训练50题含答案解析
高考理综物理解答题专项集中训练50题含答案学校:___________姓名:___________班级:___________考号:___________ 一、解答题1.“天舟一号”货运飞船于2017年4月20日在海南文昌航天发射中心成功发射升空,完成了与天宫二号空间实验室交会对接.已知地球质量为M ,半径为R ,万有引力常量为G .(1)求质量为m 的飞船在距地面高度为h 的圆轨道运行时的向心力和向心加速度大小. (2)若飞船停泊于赤道上,考虑地球的自转因素,自转周期为T 0,求飞船内质量为m 0的小物体所受重力大小G 0.(3)发射同一卫星到地球同步轨道时,航天发射场一般选取低纬度还是高纬度发射基地更为合理?原因是什么?【答案】(1)2()GM a R h =+(2)2002204Mm G G m R R T π=-船(3) 借助接近赤道的低纬度发射基地更为合理,原因是低纬度地区相对于地心可以有较大线速度,有较大的初动能 【解析】 【详解】(1)根据万有引力定律和牛顿第二定律有 =F 向 2(+)MmGma R h =解得 ()2+GMa R h =(2)根据万有引力定律及向心力公式,有2=MmF G R引及2204π=F m R T 向=+F F G 引向船解得2002204()GMm G m R R T π=-船 (3)借助接近赤道的低纬度发射基地更为合理,原因是低纬度地区相对于地心可以有较大线速度,有较大的初动能.2.如图甲所示,校园中的“喷泉”从水面以相同倾斜角度和速度大小喷射而出,水滴下落击打水面形成层层涟漪甚为美观.水滴的运动为一般的抛体运动,它的受力情况与平抛运动相同,在水平方向不受力,在竖直方向只受重力,我们可以仿照研究平抛运动的方法来研究一般的抛体运动.图甲中所示喷泉水滴的运动轨迹如图乙中所示,上升的最大高度为h ,水滴下落在水面的位置距喷水口的距离为d .已知喷出口的水流量Q (流量Q 定义为单位时间内喷出水的体积),水的密度为ρ,重力加速度为g .(1)求上述喷泉中水从喷水口喷出时的速度大小v .(2)如图乙所示,若该“喷泉”是采用水泵将水先从距水面下深度为H 处由静止提升至水面,然后再喷射出去.已知:H=h ,d=2h ,水泵提升水的效率为η,求水泵抽水的平均功率P .【答案】(1)v (2)94Qgh P ρη=【解析】 【详解】(1)由运动的合成与分解及平抛运动规律可知: 竖直方向 21=2h gt 水平方向 2x dv t =解得 x v =水从喷口喷出时竖直方向 y v =所以水从喷口喷出时的速度大小为 v =(2)在Δt 时间内,喷射出水的质量Δm=ρQ Δt 对Δt 时间内喷出的水,在最高点的动能2K 1=2x E mv :∆由功能关系,ηP Δt=Δm (H +h )g +212x mv ∆解得P =94Qghρη3.如图,从阴极K 发射的热电子,重力和初速度均不计,通过加速电场后,沿图示虚线垂直射入匀强磁场区,磁场区域足够长,宽度为L =2.5 cm .已知加速电压为U =182 V ,磁感应强度B =9.1×10–4 T ,电子的电荷量191.610C e -=⨯,电子质量319.110kg m -=⨯.求:(1)电子在磁场中运动的速度大小v 和半径R . (2)电子在磁场中运动的时间t (结果保留π).(3)若加速电压大小可以改变,其他条件不变,为使电子在磁场中的运动时间最长,加速电压U 应满足什么条件?【答案】(1)6810m/s ⨯ 0.05 m (2)7π10s 96-⨯ (3)45.5V U ≤ 【解析】 【详解】(1)加速电场有动能定理得:2102eU mv =-解得6810m/s v ==⨯ 电子在磁场做圆周运动,有牛顿第二定律2mv evB R= 解得0.05m mvR qB== (2)磁场中运动的周期72ππ10s 8R T v -==⨯ 由几何关系1sin 2L R θ== 则30θ=︒,71π10s 1296t T -==⨯ (3)电子在磁场中的运动时间最长时,圆心角为180°如图所示当运动轨迹与磁场右界相切时, 2.5cm R L == 依题意 2.5cm R ≤由mvR eB=和v =解得222eR B U m=所以45.5V U ≤故本题答案是:(1)6810m/s ⨯ 0.05 m (2)7π10s 96-⨯ (3)45.5V U ≤ 4.如图所示,一束光从空气沿与玻璃球水平直径成i=60°角的方向射入玻璃球.已知光在空气中的传播速度为c,玻璃球的直径为d,折射率不考虑光从玻璃球内射到玻璃球外时发生折射后的的反射.求:①在玻璃球内的折射光线与该玻璃球水平直径的夹角r ①光在玻璃球中的传播时间t 【答案】(1) 030 (2) 32d c【解析】 【详解】(1)根据折射定律可知:sin sin in r=解得r=300 (2)由几何关系可知,折射光在玻璃中通过的路程2cos 2ds r =⨯ 光在玻璃中的速度:c v n= 由t=s/v 解得32d t c=5.如图所示,长为h 的水银柱将上端封闭的玻璃管内气体分隔成上、下两部分,A 处管内、外水银面相平,上部分气体的长度为H 现将玻璃管缓慢竖直向上提升一定高度(管下端未离开水银面),稳定时管中水银面比管外水银面高H ∆.已知水银的密度为ρ,重力加速度为g ,大气压强为0p ,该过程中气体的温度保持不变.求:(1)玻璃管向上提升前,上部分气体的压强p ; (2)玻璃管向上提升后,上部分气体的长度H '.【答案】(1) 0P P gh ρ=- (2) 00()()P gh HP g h h ρρ--+∆【解析】 【详解】(1)玻璃管向上提升前,A 处管内、外水银面相平,封闭气体压强等于大气压强 对水银柱根据平衡得:pS +ρghS =p 0S 解得:p =p 0-ρgh(2)玻璃管缓慢向上提升一定高度后,玻璃管上部分气体的压强变为:p ′=p 0-ρg (h +△h ) 由玻意耳定律可知:pSH =p ′SH ′ 其中S 为玻璃管的横截面积 解得()()00:p gh HH p g h h ρρ-=-+∆'6.如图所示,水平地面OP 长度为L =0.8,圆弧轨道半径为R =0.4m ,直线PN 左侧空间分布有水平向右的匀强电场,电场强度E =1.0×104N /C ,右侧空间分布有垂直纸面向里的匀强磁场,磁感应强度B =500T .现将一质量为m =0.05kg ,带电量为+q =+1.0×10-4C 的小球从0点静止释放,g 取10m /s 2,不计摩擦力和空气阻力.求: (1)小球第一次到达P 点时的速度大小; (2)小球经过N 点时对轨道的压力;(3)小球从N 点飞出后,落回地面时距离P 点的长度.【答案】(1)/s (2)1.3N ,方向竖直向上 (3)0 【解析】 【分析】(1)只有电场力做功,根据动能定理求解P 点的速度;(2)根据动能定理求解到达N 点速度,然后根据向心力公式求解即可;(3)将运动根据受力情况进行分解,然后根据水平方向和竖直方向进行求解即可. 【详解】(1)从O 到P 只有电场力做功,根据动能定理可以得到:2102p EqL mv =-代入数据可以得到:/p v s =;(2)从O 到N 根据动能定理可以得到:21202N EqL mg R mv -⋅=- 代入数据可以得到:4/N v m s =在N 点根据牛顿第二定律可以得到:2NN N v mg qv B F m R++= 代入数据可以得到: 1.3N F N =根据牛顿第三定律可知,小球在N 点轨道的压力大小为1.3N ,方向竖直向上; (3)从N 点飞出后,竖直方向只受重力作用,即2122R gt =,则0.4t s = 水平方向只受电场力做用,加速度为220/Eqa m s m== 则水平方向速度减到零,所需时间为10.2Nv t s a==,然后水平方向反向加速,再加速0.2s 正好到达P 点,即落回地面时距离P 点的长度为零. 【点睛】本题考查带电粒子在电场和磁场中的运动,注意动能定理的应用,以及运动的合成分解的应用问题.7.如图所示,内壁光滑的气缸水平放置,厚度不计的活塞与气缸底部之间封闭了一定质量的理想气体,气体初始温度为T 1=300 K ,此时活塞与气缸底部之间的距离为d 1=24 cm ,在活塞的左侧d 2=6 cm 处有固定的卡环,大气压强p 0=1.0×105 Pa 。
2024年人教版高考物理试题与参考答案
2024年人教版物理高考仿真试题(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、一个物体从静止开始做匀加速直线运动,前2秒内通过的位移是4米,那么这个物体的加速度是:A、1 m/s²B、2 m/s²C、4 m/s²D、8 m/s²2、一个质量为(m)的物体在水平面上受到一个恒力(F)的作用,开始做匀加速直线运动。
已知物体在5秒内通过的距离是25米,物体受到的摩擦力是物体重力的0.2倍。
那么物体的质量(m)是:A、5 kgB、10 kgC、20 kgD、50 kg3、关于物体的动量,下列说法正确的是()A.物体的动量越大,质量一定也越大B.物体的动量越大,速度一定也越大C.物体的动量变化越大,受到的力一定越大D.同一物体的动量变化越大,它的速度变化一定越大4、关于核反应方程 92235U+01n→54139Xe+3895Sr+301n,以下说法正确的是()A.该反应是α衰变B.方程中 3895Sr的质量数比中子数多57C.反应过程中电荷数守恒、质量数守恒D.通过人工控制链式反应的速度,可将核能转化为电能5、一个质点沿直线运动,其位移随时间变化的关系为(x(t)=4t2−3t+2),式中(x)的单位为米(m),(t)的单位为秒(s)。
则在(t=2s)时刻,该质点的速度是多少?A. 8 m/sB. 5 m/sC. 13 m/sD. 11 m/s6、两个点电荷分别带有电量(q1=+3μC)和(q2=−3μC),它们相距 1 米。
若要使第三个点电荷(q3)在这两者之间保持静止不动,则(q3)应带有什么样的电性和大小?(设(k=9×109N⋅m2/C2))A.(+9μC)B.(−9μC)C.(+3μC)D.(q3)可以是任何值,只要它处于(q1)和(q2)连线上的某一点即可。
7、在下列关于力的说法中,正确的是()A、物体受到的力越大,物体的加速度一定越大B、物体的加速度越大,物体受到的力一定越大C、物体的速度变化越快,物体受到的力一定越大D、物体的加速度越大,物体的速度变化量一定越大二、多项选择题(本大题有3小题,每小题6分,共18分)1、某物体做匀变速直线运动,其位移与时间的关系为x = 2t + t^2(m)(t 以s 为单位),则当物体的速度为8m/s 时,物体发生的位移是( )A. 8mB. 10mC. 16mD. 18m2、某学习小组对一辆在平直公路上做直线运动的小车进行观察研究.他们记录了小车在某段时间内通过的路程与所用的时间,并根据记录的数据绘制出路程与时间的关系图象.根据图象可以判断( )A.0~5s内,小车的平均速度是1m/sB.2s∼5s内,小车做匀速直线运动C.0∼7s内,小车的平均速度是1.5m/sD.5∼7s内,小车做匀速直线运动3、一个物体从静止开始沿斜面下滑,假设没有摩擦力的影响。
2025届高考物理复习:经典好题专项(“传送带”模型问题)练习(附答案)
2025届高考物理复习:经典好题专项(“传送带”模型问题)练习1. (2023ꞏ广东省深圳中学阶段测试)如图所示,一水平的浅色长传送带上放置一质量为m 的煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a 开始运行,当其速度达到v 后,便以此速度做匀速运行。
传送带速度达到v 时,煤块未与其共速,经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动,关于上述过程,以下判断正确的是(重力加速度为g )( )A .μ与a 之间一定满足关系μ>a gB .煤块从开始运动到相对于传送带静止经历的位移为v 2μgC .煤块从开始运动到相对于传送带静止经历的时间为v μgD .黑色痕迹的长度为v 22μg2. 如图所示,一绷紧的水平传送带以恒定的速率v =10 m/s 运行,某时刻将一滑块轻轻地放在传送带的左端,已知传送带与滑块间的动摩擦因数为0.2,传送带的水平部分A 、B 间的距离足够长,将滑块刚放上去2 s 时突然停电,传送带立即做加速度大小a =4 m/s 2的匀减速运动至停止(重力加速度取g =10 m/s 2)。
则滑块运动的位移为( )A .8 mB .13.5 mC .18 mD .23 m3. 如图所示,物块放在一与水平面夹角为θ的传送带上,且始终与传送带相对静止。
关于物块受到的静摩擦力F f ,下列说法正确的是( )A .当传送带加速向上运动时,F f 的方向一定沿传送带向上B .当传送带加速向上运动时,F f 的方向一定沿传送带向下C .当传送带加速向下运动时,F f 的方向一定沿传送带向下D .当传送带加速向下运动时,F f 的方向一定沿传送带向上4.(多选)为保障市民安全出行,有关部门规定:对乘坐轨道交通的乘客所携带的物品实施安全检查。
如图甲所示为乘客在进入地铁站乘车前,将携带的物品放到水平传送带上通过检测仪接受检查时的情景。
匀变速直线运动的计算 高考物理压轴大题专题训练
训练01 匀变速直线运动的计算1.(2019·新课标全国Ⅱ卷)一质量为m =2000 kg 的汽车以某一速度在平直公路上匀速行驶。
行驶过程中,司机突然发现前方100 m 处有一警示牌。
立即刹车。
刹车过程中,汽车所受阻力大小随时间变化可简化为图(a )中的图线。
图(a )中,0~t 1时间段为从司机发现警示牌到采取措施的反应时间(这段时间内汽车所受阻力已忽略,汽车仍保持匀速行驶),t 1=0.8 s ;t 1~t 2时间段为刹车系统的启动时间,t 2=1.3 s ;从t 2时刻开始汽车的刹车系统稳定工作,直至汽车停止,已知从t 2时刻开始,汽车第1 s 内的位移为24 m ,第4 s 内的位移为1 m 。
(1)在图(b )中定性画出从司机发现警示牌到刹车系统稳定工作后汽车运动的v -t 图线; (2)求t 2时刻汽车的速度大小及此后的加速度大小;(3)求刹车前汽车匀速行驶时的速度大小及t 1~t 2时间内汽车克服阻力做的功;从司机发现警示牌到汽车停止,汽车行驶的距离约为多少(以t 1~t 2时间段始末速度的算术平均值替代这段时间内汽车的平均速度)?【答案】(1)见解析 (2)28m/s a ,v 2=28 m/s ⑦ (3)87.5 m【解析】(1)v -t 图像如图所示。
(2)设刹车前汽车匀速行驶时的速度大小为v 1,则t 1时刻的速度也为v 1,t 2时刻的速度为v 2,在t 2时刻后汽车做匀减速运动,设其加速度大小为a ,取Δt =1 s ,设汽车在t 2+(n -1)Δt ~t 2+n Δt 内的位移为s n ,n =1,2,3,…。
若汽车在t 2+3Δt~t 2+4Δt 时间内未停止,设它在t 2+3Δt 时刻的速度为v 3,在t 2+4Δt 时刻的速度为v 4,由运动学公式有2143(Δ)s s a t -=① 2121Δ(Δ)2s v t a t =-②424Δv v a t =-③联立①②③式,代入已知数据解得417m/s 6v =-④ 这说明在t 2+4Δt 时刻前,汽车已经停止。
历年(2019-2023)高考物理真题专项(动量)练习(附答案)
历年(2019-2023)高考物理真题专项(动量)练习 一、单选题A.铝框所用时间相同C.铝框中的电流方向相同3.(2022ꞏ重庆ꞏ高考真题)在测试汽车的安全气囊对驾乘人员头部防护作用的实验中,A.速度的变化量等于曲线与横轴围成的面积C.动能变化正比于曲线与横轴围成的面积④着陆阶段,运动员落地时两腿屈膝,两臂左右平伸。
下列说法正确的是( )A .助滑阶段,运动员深蹲是为了减小与滑道之间的摩擦力B .起跳阶段,运动员猛蹬滑道主要是为了增加向上的速度C .飞行阶段,运动员所采取的姿态是为了增加水平方向速度D .着陆阶段,运动员两腿屈膝是为了减少与地面的作用时间5.(2022ꞏ北京ꞏ高考真题)质量为1m 和2m 的两个物体在光滑水平面上正碰,其位置坐标x 随时间t 变化的图像如图所示。
下列说法正确的是( )A .碰撞前2m 的速率大于1m 的速率B .碰撞后2m 的速率大于1m 的速率C .碰撞后2m 的动量大于1m 的动量D .碰撞后2m 的动能小于1m 的动能 6.(2022ꞏ江苏ꞏ高考真题)上海光源通过电子-光子散射使光子能量增加,光子能量增加后( )A .频率减小B .波长减小C .动量减小D .速度减小 7.(2022ꞏ海南ꞏ高考真题)在冰上接力比赛时,甲推乙的作用力是1F ,乙对甲的作用力是2F ,则这两个力( )A .大小相等,方向相反B .大小相等,方向相同C .1F 的冲量大于2F 的冲量D .1F 的冲量小于2F 的冲量8.(2022ꞏ湖北ꞏ统考高考真题)一质点做曲线运动,在前一段时间内速度大小由v 增大到2v ,在随后的一段时间内速度大小由2v 增大到5v 。
前后两段时间内,合外力对质点做功分别为W 1和W 2,合外力的冲量大小分别为I 1和I 2。
下列关系式一定成立的是( )A . 213W W =,213I I ≤B . 213W W =,21I I ≥C .217W W =,213I I ≤D .217W W =,21I I ≥9.(2022ꞏ湖南ꞏ统考高考真题)1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成。
高考物理经典大题练习及答案
14.(7分)如图14所示,两平行金属导轨间的距离L=0.40 m,金属导轨所在的平面与水平面夹角θ=37°,在导轨所在平面内,分布着磁感应强度B=0.50 T、方向垂直于导轨所在平面的匀强磁场.金属导轨的一端接有电动势E=4.5 V、内阻r=0.50 Ω的直流电源.现把一个质量m=0.040kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接图14触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取10 m/s2.已知sin 37°=0.60,cos 37°=0.80,求:(1)通过导体棒的电流;(2)导体棒受到的安培力大小;(3)导体棒受到的摩擦力15.(7分)如图15所示,边长L=0.20m的正方形导线框ABCD由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0 Ω,金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电阻r=0.20 Ω.导线框放置在匀强磁场中,磁场的磁感应强度B=0.50T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且与导线框的对角线BD垂直放置在导线框上,金属棒的中点始终在BD连线上.若金属棒以v=4.0 m/s的速度向右匀速运动,当金属棒运动至AC的位置时,求(计算结果保留两位有效数字):图15(1)金属棒产生的电动势大小;(2)金属棒MN上通过的电流大小和方向;(3)导线框消耗的电功率.16.(8分)如图16所示,正方形导线框abcd的质量为m、边长为l,导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向里,磁场上、下两个界面水平距离为l已.知cd边刚进入磁场时线框恰好做匀速运动.重力加速度为g.(1)求cd边刚进入磁场时导线框的速度大小.(2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率.图16 (3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导线框克服安培力所做的功.17.(8分)图17(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO′匀速转动,线圈的匝数n=100、电阻r=10 Ω,线圈的两端经集流环与电阻R连接,电阻R=90 Ω,与R并联的交流电压表为理想电表.在t=0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量φ随时间t按图17(乙)所示正弦规律变化.求:(1)交流发电机产生的电动势最大值;(2)电路中交流电压表的示数.18.(8分)图18为示波管的示意图,竖直偏转电极的极板长l =4.0 cm ,两板间距离d =1.0 cm ,极板右端与荧光屏的距离L =18 cm .由阴极发出的电子经电场加速后,以v =1.6×107 m /s 的速度沿中心线进入竖直偏转电场.若电子由阴极逸出时的初速度、电子所受重力及电子之间的相互作用力均可忽略不计,已知电子的电荷量e =1.6×10—19 C ,质量m =0.91×10-30 kg . 图18(1)求加速电压U 0的大小;(2)要使电子束不打在偏转电极的极板上,求加在竖直偏转电极上的电压应满足的条件;(3)若在竖直偏转电极上加u =40sin 100πt (V )的交变电压,求电子打在荧光屏上产生亮线的长度.19.(9分)如图19所示,在以O 为圆心,半径为R 的圆形区域内,有一个水平方向的匀强磁场,磁场的磁感应强度大小为B ,方向垂直纸面向外.竖直平行正对放置的两金属板A 、K 连在电压可调的电路中.S 1、S 2为A 、K 板上的两个小孔,且S 1、S 2和O 在同一直线上,另有一水平放置的足够大的荧光屏D ,O 点到荧光屏的距离为h .比荷(电荷量与质量之比)为k 的带正电的粒子由S 1进入电场后,通过S 2射向磁场中心,通过磁场后打在荧光屏D上.粒子进入电场的初速度及其所受重力均可忽略不计.(1)请分段描述粒子自S 1到荧光屏D 的运动情况;(2)求粒子垂直打到荧光屏上P 点时速度的大小; 图19(3)移动滑片P ,使粒子打在荧光屏上Q 点,PQ = h (如图19所示),求此时A 、K 两极板间的电压.20.(9分)如图20所示,地面上方竖直界面N 左侧空间存在着水平的、垂直纸面向里的匀强磁场,磁感应强度B =2.0 T .与N 平行的竖直界面M 左侧存在竖直向下的匀强电场,电场强度E 1=100 N/C .在界面M 与N 之间还同时存在着水平向左的匀强电场,电场强度E 2=200 N/C .在紧靠界面M 处有一个固定在水平地面上的竖直绝缘支架,支架上表面光滑,支架上放有质量m 2=1.8×10-4 kg 的带正电的小物体b (可视为质点),电荷量q 2=1.0×10-5 C .一个质量m 1=1.8×10-4 kg ,电荷量q 1=3.0×10-5 C 的带负电小物体(可视为质点)a 以水平速度v 0射入场区,沿直线运动并与小物体b 相碰,a 、b 两个小物体碰后粘合在一起成小物体c ,进入界面M 右侧的场区,并从场区右边界N 射出,落到地面上的Q 点(图中未画出).已知支架顶端距地面的高度h =1.0 m ,M 和N 两个界面的距离L =0.10 m ,g 取10 m/s 2.求:(1)小球a 水平运动的速率;(2)物体c 刚进入M 右侧的场区时的加速度;(3)物体c 落到Q 点时的速率.33r R E +014.(7分)(1)导体棒、金属导轨和直流电源构成闭合电路,根据闭合电路欧姆定律有:I ==1.5A …………………………………………………………………………2分(2)导体棒受到的安培力F 安=B I L =0.30 N …………………………………………………………………………2分(3)导体棒所受重力沿斜面向下的分力F 1=mgsin 37°=0.24 N由于F 1小于安培力,故导体棒受沿斜面向下的摩擦力f (1)分根据共点力平衡条件m g s i n 37°+f =F安 (1)分 解得:f =6.0×10-2 N …………………………………………………………………1分15.(7分)(1)金属棒产生的电动势大小为:E =B 2Lv =0.42V=0.56 V ………………2分(2)金属棒运动到AC 位置时,导线框左、右两侧电阻并联,其并联电阻为: R 并=1.0 Ω,根据闭合电路欧姆定律I = =0.47 A ………………………………2分 根据右手定则,电流方向从N 到M …………………………………………………1分(3)导线框消耗的功率为:P 框=I 2R 并=0.22 W ……………………………………2分16.(8分)(1)设线框cd 边刚进入磁场时的速度为v ,则在cd 边进入磁场过程时产生的感应电动势为E =Blv , 根据闭合电路欧姆定律,通过导线框的感应电流为I= 导线框受到的安培力为F 安=BIl = ......................................................1分 因cd 刚进入磁场时导线框做匀速运动,所以有F 安=mg , (1)分以上各式联立,得:v = (1)分(2)导线框cd 边在磁场中运动时,克服安培力做功的功率为:P 安=F 安v 代入(1)中的结果,整理得:P 安= ……………………………………………1rR E +并R Blv Rv l B 2222lB mgR Rv l B 222r R E +0分导线框消耗的电功率为:P 电=I 2R= R= ……………………………………………………………1分(3)导线框ab 边刚进入磁场时,cd 边即离开磁场,因此导线框继续做匀速运动.导线框穿过磁场的整个过程中,导线框的动能不变.设导线框克服安培力做功为W 安,根据动能定理有2m g l -W 安=0 .....................1分 解得W 安=2mgl (1)17.(8分)(1)交流发电机产生电动势的最大值E m =nBS ω ..........................................1分 而Φm =BS 、ω= ,所以,E m = ......................................................1 由Φ-t 图线可知:Φm =2.0×10-2 W b ,T =6.28×10-2 s .................................... 所以E m =200 V (1)(2)电动势的有效值E = E m =1002V …………………………………………1分 由闭合电路的欧姆定律,电路中电流的有效值为I =rR E + =2 A …………………1 交流电压表的示数为U =IR =902V=127 V …………………………………………2分18.(8分)(1)对子通过加速电场的过程,根据动能定理有eU 0= mv 2 (2)解得U 0=728 V ……………………………………………………………………………1 (2)设偏转电场电压为U 1时,电子刚好飞出偏转电场,则此时电子沿电场方向的位移恰好为d /2,即 = at 2= ·t 2……………………………………………………………………1 电子通过偏转电场的时间t = …………………………………………………………1分 解得U 1= =91 V , 所以,为使电子束不打在偏转电极上,加在偏转电极上的电压U 应小于91V ……1分(3)由u =40sin 100πt (V )可知ω=100π s -1,U m =40 V偏转电场变化的周期T = =0.02 s ,而t = =2.5×10-9 s .T t ,可见每个电子通过偏转电场的过程中,电场可视为稳定的匀强电场.当极板间加最大电压时,电子有最大偏转量y m = at 2= ·t 2=0.20 cm .电子飞出偏转电场时平行极板方向分速度v x =v 14.(7分)(1)导体棒、金属导轨和直流电源构成闭合电路,根据闭合电路欧姆定律有: R v l B 2222222R v l B T π2T n m π2Φ22212d 2121mdeU 1vl 22et m d ωπ2vl 21mdeU m 21I = =1.5A …………………………………………………………………………2分(2)导体棒受到的安培力F 安=B I L =0.30 N …………………………………………………………………………2分(3)导体棒所受重力沿斜面向下的分力F 1=mgsin 37°=0.24 N由于F 1小于安培力,故导体棒受沿斜面向下的摩擦力f (1)分根据共点力平衡条件m g s i n 37°+f =F安 (1)分 解得:f =6.0×10-2 N …………………………………………………………………1分15.(7分)(1)金属棒产生的电动势大小为:E =B 2Lv =0.42V=0.56 V ………………2分(2)金属棒运动到AC 位置时,导线框左、右两侧电阻并联,其并联电阻为:R 并=1.0 Ω,根据闭合电路欧姆定律I = =0.47 A ………………………………2分 根据右手定则,电流方向从N 到M …………………………………………………1分(3)导线框消耗的功率为:P 框=I 2R 并=0.22 W ……………………………………2分16.(8分)(1)设线框cd 边刚进入磁场时的速度为v ,则在cd 边进入磁场过程时产生的感应电动势为E =Blv , 根据闭合电路欧姆定律,通过导线框的感应电流为I= 导线框受到的安培力为F 安=BIl = ………………………………………………1分 因cd 刚进入磁场时导线框做匀速运动,所以有F 安=mg , ……………………………1 以上各式联立,得:v = ……………………………………………………………1分(2)导线框cd 边在磁场中运动时,克服安培力做功的功率为:P 安=F 安v代入(1)中的结果,整理得:P 安= ……………………………………………1分导线框消耗的电功率为:P 电=I 2R= R= ……………………………………………………………1分rR E 并R Blv R v l B 2222l B mgR Rv l B 222R v l B 2222222R v l B因此有P 安=P电 (1)分 (3)导线框ab 边刚进入磁场时,cd 边即离开磁场,因此导线框继续做匀速运动.导线框穿过磁场的整个过程中,导线框的动能不变.设导线框克服安培力做功为W 安,根据动能定理有2m g l -W 安=0 .....................1分 解得W 安=2mgl (1)17.(8分)(1)交流发电机产生电动势的最大值E m =nBS ω ……………………………………1分 而Φm =BS 、ω= ,所以,E m = ………………………………………………1 由Φ-t 图线可知:Φm =2.0×10-2 W b ,T =6.28×10-2 s ………………………………1分所以E m =200 V (1)(2)电动势的有效值E = E m =1002V …………………………………………1分 由闭合电路的欧姆定律,电路中电流的有效值为I =r R E + =2 A …………………1 交流电压表的示数为U =IR =902V=127 V …………………………………………2分18.(8分)(1)对于电子通过加速电场的过程,根据动能定理有eU 0= mv 2 .....................2分 解得U 0=728 V (1)(2)设偏转电场电压为U 1时,电子刚好飞出偏转电场,则此时电子沿电场方向的位移恰好为d /2,即 = at 2= .t 2 (1)电子通过偏转电场的时间t = …………………………………………………………1分 解得U 1= =91 V ,所以,为使电子束不打在偏转电极上,加在偏转电极上的电压U 应小于91V ……1分(3)由u =40sin 100πt (V )可知ω=100π s -1,U m =40 V偏转电场变化的周期T = =0.02 s ,而t = =2.5×10-9 s .T t ,可见每个电子通过偏转电场的过程中,电场可视为稳定的匀强电场.当极板间加最大电压时,电子有最大偏转量y m = at 2= ·t 2=0.20 cm .电子飞出偏转电场时平行极板方向分速度v x =v ,垂直极板方向的分速度v y =a y t = ·t T π2Tn m π2Φ22212d 2121md eU 1v l22et m d ωπ2vl 21md eU m 21mdeU m电子离开偏转电场到达荧光屏的时间t ′= =电子离开偏转电场后在竖直方向的位移为y 2=v y t ′=2.0 cm .电子打在荧光屏上的总偏移量Y m =y m +y 2=2.2 cm ………………………………………1分电子打在荧光屏产生亮线的长度为2Y m =4.4 cm (1)分用下面的方法也给2分设电子射出偏转电场时速度与水平线的夹角为θ,因此有tan θ= =0.11 因此电子的总偏转量y =( +L )tan θ …………………………………………………1分电子打在荧光屏沿竖直方向的长度范围为2y =4.4 cm ………………………………1分19.(9分)(1)粒子在电场中自S 1至S 2做匀加速直线运动;自S 2至进入磁场前做匀速直线运动;进入磁场后做匀速圆周运动;离开磁场至荧光屏做匀速直线运动. ………………………………离开磁场后做匀速直线运动,给1分.………………2分说明:说出粒子在电场中匀加速运动,离开电场做匀速直线运动,给1分;说出粒子在匀强磁场中做匀速圆周运动,(2)设粒子的质量为m ,电荷量为q ,垂直打在荧光屏上的P 点时的速度为v 1,粒子垂直打在荧光屏上,说明粒子在磁场中的运动是四分之一圆周,运动半径r 1=R , ...................................................................................................1分 根据牛顿第二定律Bqv 1=m ,依题意:k =q /m (1)分解得:v 1=BkR ……………………………………………………………………………1分(3)设粒子在磁场中运动轨道半径为r 2,偏转角为2θ,粒子射出磁场时的方向与竖直方向夹角为α,粒子打到Q 点时的轨迹如图所示,由几何关系可知tan α= = ,α=30°,θ=30°tan θ= 解得:r 2=3R ……………………………………1 设此时A 、K 两极板间的电压为U ,粒子离开S 2时的速度为v m 根据动能定理有qU = mv 22 …… 解得:U = kB 2R 2 …… x yv v 21121r v hPQ 332r R 222r v 2123vx L v L20.(9分)(1)a 向b 运动过程中受向下的重力,向上的电场力和向下的洛伦兹力.小球a 的直线运动必为匀速直线运动,a 受力平衡,因此有q 1E 1-q 1v 0B -m 1g =0 ………………………………………………… …………………1分解得v 0=20 m/s (2)分(2)二球相碰动量守恒m 1v 0=(m 1+m 2)v ,解得v =10 m/s …………………………1分 物体c 所受洛伦兹力f =(q 1-q 2)vB =4.0×10-4 N ,方向向下 ………………………1 物体c 在M 右场区受电场力:F 2=(q 1-q 2)E 2=4.0×10-3 N ,方向向右物体c 受重力:G =(m 1+m 2)g = 3.6×10-3 N ,方向向下物体c 受合力:F 合=22)(2G f F ++=22×10-3 N 物体c 的加速度:a = = 2m/s 2=15.7 m/s 2 (1)设合力的方向与水平方向的夹角为θ,则tan θ= =1.0,解得θ=45°加速度指向右下方与水平方向成45°角 (1)(3)物体c 通过界面M 后的飞行过程中电场力和重力都对它做正功,设物体c 落到Q 点时的速率为v t ,由动能定理(m 1+m 2)gh +(q 1-q 2)E 2L = (m 1+m 2)v t 2- (m 1+m 2)v 2 ……………………1分 解得v t =2.122m/s=11 m/s . …………………………………………………………1分, 垂直极板方向的分速度v y =a y t = ·t电子离开偏转电场到达荧光屏的时间t ′= =电子离开偏转电场后在竖直方向的位移为y 2=v y t ′=2.0 cm .电子打在荧光屏上的总偏移量Y m =y m +y 2=2.2 cm ………………………………………1分电子打在荧光屏产生亮线的长度为2Y m =4.4 cm (1)分用下面的方法也给2分设电子射出偏转电场时速度与水平线的夹角为θ,因此有tan θ= =0.11因此电子的总偏转量y =( +L )tan θ (1)分电子打在荧光屏沿竖直方向的长度范围为2y =4.4 cm ………………………………1分19.(9分)(1)粒子在电场中自S 1至S 2做匀加速直线运动;自S 2至进入磁md eU m x y v v 21vx L v L 21m m F+合91002F Gf +2121场前做匀速直线运动;进入磁场后做匀速圆周运动;离开磁场至荧光屏做匀速直线运动. ………………………………………………2分说明:说出粒子在电场中匀加速运动,离开电场做匀速直线运动,给1分;说出粒子在匀强磁场中做匀速圆周运动,离开磁场后做匀速直线运动,给1分.(2)设粒子的质量为m ,电荷量为q ,垂直打在荧光屏上的P 点时的速度为v 1,粒子垂直打在荧光屏上,说明粒子在磁场中的运动是四分之一圆周,运动半径r 1=R , ………………………………………………………………………………………1分根据牛顿第二定律Bqv 1=m ,依题意:k =q /m ………………………………………1分解得:v 1=BkR ……………………………………………………………………………1分(3)设粒子在磁场中运动轨道半径为r 2,偏转角为2θ,粒子射出磁场时的方向与竖直方向夹角为α,粒子打到Q 点时的轨迹如图所示,由几何关系可知 tan α= = ,α=30°,θ=30°tan θ= 解得:r 2=3R ……………………………………1分设此时A 、K 两极板间的电压为U ,粒子离开S 2时的速度为v 2,根据牛顿第二定律Bqv 2=m ………………………………………………………………………………1分根据动能定理有qU = mv 22 ………………………………………………………………1 解得:U = kB 2R 2 …………………………………………………………………………1分20.(9分)(1)a 向b 运动过程中受向下的重力,向上的电场力和向下的洛伦兹力.小球a 的直线运动必为匀速直线运动,a 受力平衡,因此有q 1E 1-q 1v 0B -m 1g =0 ………………………………………………… …………………1分解得v 0=20 m/s (2)分(2)二球相碰动量守恒m 1v 0=(m 1+m 2)v ,解得v =10 m/s …………………………1分 物体c 所受洛伦兹力f =(q 1-q 2)vB =4.0×10-4 N ,方向向下 ………………………1分物体c 在M 右场区受电场力:F 2=(q 1-q 2)E 2=4.0×10-3 N ,方向向右物体c 受重力:G =(m 1+m 2)g = 3.6×10-3 N ,方向向下物体c 受合力:F 合=22)(2G f F ++=22×10-3 N 121r v hPQ 332r R 222r v 2123物体c 的加速度:a = =2m/s 2=15.7 m/s 2 (1)分 设合力的方向与水平方向的夹角为θ,则tan θ= =1.0,解得θ=45°加速度指向右下方与水平方向成45°角 ………………………………………………1分(3)物体c 通过界面M 后的飞行过程中电场力和重力都对它做正功,设物体c 落到Q 点时的速率为v t ,由动能定理(m 1+m 2)gh +(q 1-q 2)E 2L = (m 1+m 2)v t 2- (m 1+m 2)v 2 ……………………1分 解得v t =2.122m/s=11 m/s . …………………………………………………………1分 21m m F +合91002F G f +2121。
专题12 带电粒子在磁场中的运动-2023年高考物理大题限时集训(解析版)
专题12带电粒子在磁场中的运动【例题】如图所示,直线MN 上方有垂直纸面向外的匀强磁场,磁感应强度2T B =。
两带有等量异种电荷的粒子,同时从O 点以相同速度6110m/s v =⨯射入磁场,速度方向与MN 成30°角。
已知粒子的质量均为236.410kg m -=⨯,电荷量-163.210C q =⨯,不计粒子的重力及两粒子间相互作用力,求:(1)它们从磁场中射出时相距多远?(2)射出的时间差是多少?【答案】(1)0.2m ;(2)7410s 3π-⨯【解析】(1)易知正、负电子偏转方向相反,做匀速圆周运动的半径相同,均设为r ,根据牛顿第二定律有2v qvB m r=解得0.1m mv r qB==作出运动轨迹如图所示,根据几何关系可得它们从磁场中射出时相距220.2m mv d r qB===(2)正、负电子运动的周期均为72210s r T vππ-==⨯根据几何关系可知正、负电子转过的圆心角分别为60°和300°,所以射出的时间差是7410s 3603t T θπ-︒∆∆==⨯1.带电粒子在有界匀强磁场中的运动(1)粒子从同一直线边界射入磁场和射出磁场时,入射角等于出射角.粒子经过磁场时速度方向的偏转角等于其轨迹的圆心角.(如图,θ1=θ2=θ3)(2)圆形边界(进、出磁场具有对称性)①沿径向射入必沿径向射出,如图所示.②不沿径向射入时.射入时粒子速度方向与半径的夹角为θ,射出磁场时速度方向与半径的夹角也为θ,如图所示.2.临界问题(1)解决带电粒子在磁场中运动的临界问题,关键在于运用动态思维,寻找临界点,确定临界状态,根据粒子的速度方向找出半径方向,同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系.(2)粒子射出或不射出磁场的临界状态是粒子运动轨迹与磁场边界相切.3.多解问题题目描述的条件不具体,存在多解的可能性,常见的多解原因有:(1)磁场方向不确定形成多解;(2)带电粒子电性不确定形成多解;(3)速度不确定形成多解;(4)运动的周期性形成多解.【变式训练】如图所示,矩形区域内有垂直于纸面向外的匀强磁场,磁感应强度的大小为25.010T B -=⨯,矩形区域长为235,宽为0.2m 。
高考物理动量守恒定律题20套(带答案)
高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。
高三物理专题:参考答案
高三物理专题训练²参考答案-127直线运动8.2. 13 m9.解:(1)设t=0时刻,人位于路灯的正下方O 处,在时刻t ,人走到S 处,根据题意有vt OS =,过路灯P 和人头顶的直线与地面的交点M 为t 时刻人头顶影子的位置,如图所示.OM 为人头顶影子到O 点的距离.由几何关系,有 OSOM l OMh -=,即t lh h v OM -=.因OM 与时间t 成正比,故人头顶的影子做匀速运动.(2)由图可知,在时刻t ,人影的长度为SM ,由几何关系,有OSOM SM -=,则=SM t lh lv -.可见影长SM 与时间t 成正比,所以影长随时间的变化率为k t lh lv -=。
力和平衡12.21214)(,2k k k k G G +13.解:A 球受力如图所示,则有水平方向:C B F F F +=θθcos cos ① 竖直方向:mg F F B =+θθsin sin ② 由②式得: NN mg F mg F B 6.34320sin sin ==≤-=θθ由①、②式得:NN F mg F C 3.17310cos 2sin 2=≥+=θθ所以力F 大小应满足的条件是17.3 N ≤F ≤34. 6 N.高三物理专题训练²参考答案-128-牛顿运动定律、曲线运动、万有引力定律19.2v20.μ21.mg sin (2对人有得: a =向下.22.(2a =4 g .此加速度即火箭起飞时的加速度,对火箭进行受力分析,列方程为F -Mg=M a ,解得火箭的最大推力为F=2.4³107N.(3)飞船绕地球做匀速圆周运动,万有引力提供向心力,)(4222h R Tm h R mM G +=+π)(地,在地球表面,万有引力与重力近似相等,得,2mg Rm M G=地,又s h T 3104.55.1⨯==. 解得h=3. 1³102 km.23.解:由v -t 图象可知,物块在0~3s内静止,3 s ~6 s 内做匀加速运动,加速度为a ,6 s ~9 s 内做匀速运动,结合F -t 图象可知f=4 N=μm g ,F 3-f=2 N=ma , v 2=6 m/s=at =3a ,由以上各式得m=1 k g ,μ=0.4. 24.解:(1)kg kg gF gG m 2101022=⨯===(2) 22,)4(RMm G mg R R Mm G g m =+='-129解之得222/4.6)4(s m g R R R g =+=' (3)由牛顿第二定律,得:ma g m F ='-'2,所以2/6.132s m mg m F a ='-'=.25.解:(1)在图(a )情况下,对箱子有11,sin ,cos N f N mg F f F μθθ==+=由以上三式得F=120 N.(2)在图(b )情况下,物体先以加速度a 1做匀速运动,然后以加速度a 2做匀减速运动直到停止.对物体有 ,),sin (cos cos 11121t a v F mg F N F ma =--=-=θμθμθ2122322,v s a mg N ma ===μμ,解之得s 2=13.5 m.26.解:(1)当f=mg 时,雨点达到最终速度m v ,则,34,3222g r v r k mg kSv mmπρπ==得krg v m 34ρ=(2)由牛顿第二定律得ma f mg =-,则ma v kS mg m =-2)2(解得ma kSv mg m=-24,即g a 43=。
高中物理高考经典名题专项练习(共20题,附参考答案和解析)
高考物理经典名题练习班级考号姓名总分1、甲、乙两个储气罐储存有同种气体(可视为理想气体).甲罐的容积为V,罐中气体的压强为p;乙罐的容积为2V,罐中气体的压强为p.现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等.求调配后(i)两罐中气体的压强;(ii)甲罐中气体的质量与甲罐中原有气体的质量之比.2、在磁感应强度为 B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变,放射出的α粒子在与磁场垂直的平面内做圆周运动,其轨道半径为R.以m、q 分别表示α粒子的质量和电荷量,M 表示新核的质量,放射性原子核用表示,新核的元素符号用Y表示,该衰变过程释放的核能都转化为α粒子和新核Y 的动能,则()A.新核Y 和α粒子的半径之比B.α粒子的圆周运动可以等效成一个环形电流,环形电流大小(Wewuli)C.新核的运动周期D.衰变过程的质量亏损为3、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为,长为,导轨平面与水平面的夹角为,在导轨的中部刷有一段长为的薄绝缘涂层,匀强磁场的磁感应强度大小为,方向与导轨平面垂直,质量为的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。
导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为,其他部分的电阻均不计,重力加速度为,求:(1)导体棒与涂层间的动摩擦因数;(2)导体棒匀速运动的速度大小;(3)整个运动过程中,电阻产生的焦耳热。
4、如图,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动。
若保持F的大小不变,而方向与水平面成60°角,物块也恰好做匀速直线运动。
学.科网物块与桌面间的动摩擦因数为()A. B. C. D.5、如图,位于竖直水平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa 水平,b点为抛物线顶点。
已知h=2m,,s=。
高考物理直线运动题20套(带答案)
高考物理直线运动题20套(带答案)一、高中物理精讲专题测试直线运动1.某型号的舰载飞机在航空母舰的跑道上加速时,发动机产生的最大加速度为5m/s2,所需的起飞速度为50m/s,跑道长100m.通过计算判断,飞机能否靠自身的发动机从舰上起飞?为了使飞机在开始滑行时就有一定的初速度,航空母舰装有弹射装置.对于该型号的舰载飞机,弹射系统必须使它具有多大的初速度?m s【答案】不能靠自身发动机起飞39/【解析】试题分析:根据速度位移公式求出达到起飞速度的位移,从而判断飞机能否靠自身发动机从舰上起飞.根据速度位移公式求出弹射系统使飞机具有的初速度.解:当飞机达到起飞速度经历的位移x=,可知飞机不能靠自身发动机从舰上起飞.根据得,=.答:飞机不能靠自身发动机从舰上起飞,对于该型号的舰载飞机,弹射系统必须使它具有40m/s的初速度.【点评】解决本题的关键掌握匀变速直线运动的速度位移公式,并能灵活运用,基础题.2.如图所示,一圆管放在水平地面上,长为L=0.5m,圆管的上表面离天花板距离h=2.5m,在圆管的正上方紧靠天花板放一颗小球,让小球由静止释放,同时给圆管一竖直向上大小为5m/s的初速度,g取10m/s.(1)求小球释放后经过多长时间与圆管相遇?(2)试判断在圆管落地前小球能不能穿过圆管?如果不能,小球和圆管落地的时间差多大?如果能,小球穿过圆管的时间多长?【答案】(1)0.5s(2)0.1s【解析】试题分析:小球自由落体,圆管竖直上抛,以小球为参考系,则圆管相对小球向上以5m/s做匀速直线运动;先根据位移时间关系公式求解圆管落地的时间;再根据位移时间关系公式求解该时间内小球的位移(假设小球未落地),比较即可;再以小球为参考系,计算小球穿过圆管的时间.(1)以小球为参考系,则圆管相对小球向上以5m/s做匀速直线运动,故相遇时间为: 0 2.50.55/h m t sv m s=== (2)圆管做竖直上抛运动,以向上为正,根据位移时间关系公式,有2012x v t gt =- 带入数据,有2055t t =-,解得:t=1s 或 t=0(舍去); 假设小球未落地,在1s 内小球的位移为22111101522x gt m ==⨯⨯=, 而开始时刻小球离地的高度只有3m ,故在圆管落地前小球能穿过圆管; 再以小球为参考系,则圆管相对小球向上以5m/s 做匀速直线运动, 故小球穿过圆管的时间00.5'0.15/L mt s v m s===3.2018年12月8日2时23分,嫦娥四号探测器成功发射,开启了人类登陆月球背面的探月新征程,距离2020年实现载人登月更近一步,若你通过努力学习、刻苦训练有幸成为中国登月第一人,而你为了测定月球表面附近的重力加速度进行了如下实验:在月球表面上空让一个小球由静止开始自由下落,测出下落高度20h m =时,下落的时间正好为5t s =,则:(1)月球表面的重力加速度g 月为多大?(2)小球下落过程中,最初2s 内和最后2s 内的位移之比为多大? 【答案】1.6 m/s 2 1:4 【解析】 【详解】(1)由h =12g 月t 2得:20=12g 月×52 解得:g 月=1.6m /s 2(2)小球下落过程中的5s 内,每1s 内的位移之比为1:3:5:7:9,则最初2s 内和最后2s 内的位移之比为:(1+3):(7+9)=1:4.4.如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m=1 kg 的无人机,其动力系统所能提供的最大升力F=16 N ,无人机上升过程中最大速度为6m/s .若无人机从地面以最大升力竖直起飞,打到最大速度所用时间为3s ,假设无人机竖直飞行时所受阻力大小不变.(g 取10 m /s )2.求:(1)无人机以最大升力起飞的加速度;(2)无人机在竖直上升过程中所受阻力F f 的大小;(3)无人机从地面起飞竖直上升至离地面h=30m 的高空所需的最短时间. 【答案】(1)22/m s (2)4f N = (3)6.5s 【解析】(1)根据题意可得26/02/3v m s a m s t s∆-===∆ (2)由牛顿第二定律F f mg ma --= 得4f N =(3)竖直向上加速阶段21112x at =,19x m = 匀速阶段12 3.5h x t s v-== 故12 6.5t t t s =+=5.某运动员助跑阶段可看成先匀加速后匀速运动.某运动员先以4.5m/s 2的加速度跑了5s .接着匀速跑了1s .然后起跳.求: (1)运动员起跳的速度? (2)运动员助跑的距离? 【答案】(1)22.5m/s (2)78.75m【解析】(1)由题意知,运动员起跳时的速度就是运动员加速运动的末速度,根据速度时间关系知,运动员加速运动的末速度为:即运动员起跳时的速度为22.5m/s ;(2)根据位移时间关系知,运动员加速运动的距离为:运动员匀速跑的距离为:所以运动员助跑的距离为:综上所述本题答案是:(1)运动员将要起跳时的速度为22.5m/s ; (2)运动员助跑的距离是78.75m .6.如图所示,有一条沿顺时针方向匀速传送的传送带,恒定速度v=4m/s ,传送带与水平面的夹角θ=37°,现将质量m=1kg 的小物块轻放在其底端(小物块可视作质点),与此同时,给小物块沿传送带方向向上的恒力F=10N ,经过一段时间,小物块上到了离地面高为h=2.4m 的平台上.已知物块与传送带之间的动摩擦因数μ=0.5,(g 取10m/s 2,sin37°=0.6,cos37°=0.8).问:(1)物块从传送带底端运动到平台上所用的时间?(2)若在物块与传送带达到相同速度时,立即撤去恒力F ,计算小物块还需经过多少时间离开传送带以及离开时的速度? 【答案】(1)1.25s (2)2m/s【解析】试题分析: (1)对物块受力分析可知,物块先是在恒力作用下沿传送带方向向上做初速为零的匀加速运动,直至速度达到传送带的速度,由牛顿第二定律1cos37sin37ma F mg mg μ=+︒-︒(1分),计算得: 218/a m s = 110.5v t s a ==(1分)21112v x m a ==(1分)物块达到与传送带同速后,对物块受力分析发现,物块受的摩擦力的方向改向2cos37sin37ma F mg mg μ=-︒-︒(1分),计算得: 20a =4.0sin37hx m ==︒Q (1分)2120.75x x x t s v v-===(1分)得12 1.25t t t s =+= (1分) (2)若达到同速后撤力F ,对物块受力分析,因为sin37mg ︒> cos37mg μ︒,故减速上行 3sin37cos37ma mg mg μ=︒-︒(1分),得232/a m s =设物块还需t '离开传送带,离开时的速度为t v ,则22322t v v a x -=(1分),2/t v m s=(1分)3tv v t a -'=(1分)1t s '=(1分) 考点:本题考查匀变速直线运动规律、牛顿第二定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理大题常考题型专项练习题型一:追击问题题型二:牛顿运动问题题型三:牛顿运动和能量结合问题题型四:单机械能问题题型五:动量和能量的结合题型六:安培力/电磁感应相关问题题型七:电场和能量相关问题题型八:带电粒子在电场/磁场/复合场中的运动题型一:追击问题31. (2014年全国卷1,24,12分★★★)公路上行驶的两汽车之间应保持一定的安全距离。
当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。
通常情况下,人的反应时间和汽车系统的反应时间之和为1s。
当汽车在晴天干燥沥青路面上以108km/h的速度匀速行驶时,安全距离为120m。
设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m,求汽车在雨天安全行驶的最大速度。
答案:v=20m/s2.(2018年全国卷II,4,12分★★★★★)汽车A在水平冰雪路面上行驶,驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m,已知A和B 的质量分别为2.0×103 kg和1.5×103kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小g = 10m/s2.求:(1)碰撞后的瞬间B车速度的大小;(2)碰撞前的瞬间A车速度的大小.答案.(1)v B′ = 3.0 m/s (2)v A = 4.3m/s3.(2019年全国卷II,25,20分★★★★★)一质量为m=2000kg的汽车以某一速度在平直公路上匀速行驶。
行驶过程中,司机突然发现前方100m处有一警示牌,立即刹车。
刹车过程中,汽车所受阻力大小随时间的变化可简化为图(a)中的图线。
图(a)中,0~t1时间段为从司机发现警示牌到采取措施的反应时间(这段时间内汽车所受阻力已忽略,汽车仍保持匀速行驶),t1=0.8s;t1~t2时间段为刹车系统的启动时间,t2=1.3s;从t2时刻开始汽车的刹车系统稳定工作,直至汽车停止。
已知从t2时刻开始,汽车第1s内的位移为24m,第4s内的位移为1m。
(1)在图(b)中定性画出从司机发现警示牌到刹车系统稳定工作后汽车运动的v﹣t图线;(2)求t2时刻汽车的速度大小及此后的加速度大小;(3)求刹车前汽车匀速行驶时的速度大小及t1~t2时间内汽车克服阻力做的功;从司机发现警示牌到汽车停止,汽车行驶的距离约为多少(以t1~t2时间段始末速度的算术平均值替代这段时间内汽车的平均速度)?答:(1)从司机发现警示牌到刹车系统稳定工作后汽车运动的v﹣t图线如图所示。
(2)t2时刻汽车的速度大小28m/s,此后的加速度大小为8m/s2;(3)刹车前汽车匀速行驶时的速度大小为30m/s,t1~t2时间内汽车克服阻力做的功为1.16×105J;从司机发现警示牌到汽车停止,汽车行驶的距离约为87.5m。
题型二:牛顿运动问题51.(2015年全国卷1,25,20分★★★★)一长木板置于粗糙水平地面上,木板左端放置一小物t=时刻开块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示.0t=时木板与墙壁碰撞(碰撞时间极始,小物块与木板一起以共同速度向右运动,直至1s短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰v图线如图(b)所示.木板的质量是小物块质量的15倍,重力撞后1s时间内小物块的t-加速度大小g 取210m/s .求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ;(2)木板的最小长度;(3)木板右端离墙壁的最终距离.答案:(1)10.1μ= 20.4μ= (2)6m (3)6.5m2.(2017年全国卷Ⅲ,25,20分★★★★)如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动学#科*网摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1。
某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s 。
A 、B 相遇时,A 与木板恰好相对静止。
设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2。
求(1)B 与木板相对静止时,木板的速度;(2)A 、B 开始运动时,两者之间的距离。
【参考答案】(1)1m/s ;(2)23618m=1.97m 12005A B A d x x x '=∆+∆+∆= 3.(2017年全国卷2,24,12分★★★)为提高冰球运动员的加速能力,教练员在冰面上与起跑线距离s 0和s 1(s 1<s 0)处分别设置一个挡板和一面小旗,如图所示。
训练时,让运动员和冰球都位于起跑线上,教练员将冰球以初速度v 0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板;冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗。
训练要求当冰球到达挡板时,运动员至少到达小旗处。
假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v 1。
重力加速度大小为g 。
求(1)冰球与冰面之间的动摩擦因数;(2)满足训练要求的运动员的最小加速度。
答案.(1) μ=220120v v gs - (2)2a =211020()2s v v s + 4.(2014年全国卷2,24,13分★★★)2012年10月,奥地利极限运动员菲利克斯·鲍姆加特纳乘气球升至约39km 的高空后跳下,经过4分20秒到达距地面约1.5km 高度处,打开降落伞并成功落地,打破了跳伞运动的多项世界纪录,取重力加速度的大小210/g m s =(1)忽略空气阻力,求该运动员从静止开始下落到1.5km 高度处所需要的时间及其在此处速度的大小;(2)实际上物体在空气中运动时会受到空气阻力,高速运动受阻力大小可近似表示为2f kv =,其中v 为速率,k 为阻力系数,其数值与物体的形状,横截面积及空气密度有关。
已知该运动员在某段时间内高速下落的v t -图象如图所示,着陆过程中,运动员和所携装备的总质量100m kg =,试估算该运动员在达到最大速度时所受阻力的阻力系数(结果保留1位有效数字)【答案】(1)87s 8.7×102m/s (2)0.008kg/m5.(2015年全国卷2,25,20分★★★★)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾角为θ=37°(sin37°=0.6)的山坡C ,上面有一质量为m 的石板B ,其上下表面与斜坡平行;B 上有一碎石堆A (含有大量泥土),A 和B 均处于静止状态,如图所示.假设某次暴雨中,A 浸透雨水后总质量也为m (可视为质量不变的滑块),在极短时间内,A 、B 间的动摩擦因数μ1减小为,B 、C 间的动摩擦因数μ2减小为0.5,A 、B 开始运动,此时刻为计时起点;在第2s 末,B 的上表面突然变为光滑,μ2保持不变.已知A 开始20 30 40 50 60 70 80 90 10202535400v /(ms -1) t /s运动时,A 离B 下边缘的距离l=27m ,C 足够长,设最大静摩擦力等于滑动摩擦力.取重力加速度大小g=10m/s 2.求:(1)在0~2s 时间内A 和B 加速度的大小(2)A 在B 上总的运动时间.答:(1)在0~2s 时间内A 和B 加速度的大小分别为3m/s 2和1m/s 2;(2)A 在B 上总的运动时间为4s .题型三:牛顿运动和能量结合问题11.(2016年全国卷I ,25,18分★★★★)如图,一轻弹簧原长为2R ,其一端固定在倾角为37︒的固定直轨道AC 的底端A 处,另一端位于直轨道上B 处,弹簧处于自然状态。
直轨道与一半径为56R 的光滑圆弧轨道相切于C 点,7AC R A B C D =,、、、均在同一竖直平面内。
质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出)随后P 沿轨道被弹回,最高到达F 点,4AF R =。
已知P 与直轨道间的动摩擦因数14μ=,重力加速度大小为g 。
(取3sin375︒=,4cos375︒=) (1) 求P 第一次运动到B 点时速度的大小。
(2) 求P 运动到E 点时弹簧的弹性势能。
(3) 改变物块P 的质量,将P 推至E 点,从静止开始释放。
已知P 自圆弧轨道的最高点D处水平飞出后,恰好通过G 点。
G 点在C 点的左下方,与C 点水平相距72R 、竖直相距R ,求P 运动到D 点时速度的大小和改变后P 的质量。
答案:(1)2B v gR =(2)125mgR (3)1'3m m = 题型四:单机械能问题41.(2017年全国卷1,14,12分★★★★)一质量为8.00×104 kg 的太空飞船从其飞行轨道返回地面。
飞船在离地面高度1.60×105 m 处以7.5×103 m/s 的速度进入大气层,逐渐减慢至速度为100 m/s 时下落到地面。
取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s 2。
(结果保留2位有效数字)(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600 m 处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%。
【答案】(1)(1)4.0×108J 2.4×1012J ;(2)9.7×108J2.(2018年全国卷I ,24,12分★★★)(12分)一质量为m 的烟花弹获得动能E 后,从地面竖直升空。
当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E ,且均沿竖直方向运动。
爆炸时间极短,重力加速度大小为g ,不计空气阻力和火药的质量。
求(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;(2)爆炸后烟花弹向上运动的部分距地面的最大高度。
答案:(1)t = (2)122E h h h mg =+= 3.(2016年全国卷Ⅱ,14,6分★★★★)轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l .现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5l 的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图所示.物块P 与AB 间的动摩擦因数μ=0.5.用外力推动物块P ,将弹簧压缩至长度l ,然后放开,P 开始沿轨道运动,重力加速度大小为g .(1)若P 的质量为m ,求P 到达B 点时速度的大小,以及它离开圆轨道后落回到AB 上的位置与B 点间的距离;(2)若P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围.[答案] (1)6gl 2 2l (2)53m ≤M <52m 4.(2016年全国卷Ⅲ,24,12分★★★) 如图1-所示,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R 2.一小球在A 点正上方与A 相距R 4处由静止开始自由下落,经A 点沿圆弧轨道运动.(1)求小球在B、A两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C点.[答案] (1)5(2)能题型五:动量和能量的结合31.(2019年全国卷I,25,20分★★★★★)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。