实验二__三态门和OC门的研究
三态门、oc门实验报告 湖南大学数字逻辑
实验二三态门,OC门的设计与仿真一、实验目的熟悉三态门、OC门的原理,用逻辑图和VHDL语言设计三态门、OC门,并仿真。
二、实验内容1.用逻辑图和VHDL语言设计三态门,三态门的使能端对低电平有效。
2.用逻辑图和VHDL语言设计一个OC门(集电极开路门)。
三、实验原理1.三态门,又名三态缓冲器(Tri-State Buffer)用途:用在总线传输上,有效而又灵活地控制多组数据在总线上通行,起着交通信号灯的作用。
功能:三态逻辑输出三种不同的状态,其中两种状态常见的逻辑1和逻辑0,第三个状态高阻值,称为高阻态,用Hi-Z或者Z或z表示三态缓冲器比普通缓冲器多了一个使能输入EN,即连接到缓冲器符号底部的信号。
从真值表可以看出,如果是EN=1.则OUT等于IN,就像普通缓冲器一样。
但是当EN=0时,无论输入的值什么,输出结果为高阻态(Hi-Z)。
逻辑图真值表EN A OUT0 0 Hi-Z0 1 Hi-Z1 0 01 1 1波形图2.OC门,又名集电极开路门(opndrn)用途:集电极开路门(OC门)是一种用途广泛的门电路。
典型应用是可以实现线与的功能。
逻辑图真值表A B0 01 Hi-Z波形图四、实验方法与步骤实验方法:采用基于FPGA进行数字逻辑电路设计的方法。
采用的软件工具是QuartusII软件仿真平台,采用的硬件平台是Altera EPF10K20TI144_4的FPGA试验箱。
实验步骤:1、编写源代码。
打开QuartusⅡ软件平台,点击File中得New建立一个文件。
编写的文件名与实体名一致,点击File/Save as以“.vhd”为扩展名存盘文件。
VHDL 设计源代码如下:三态门:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY tri_s ISPORT (enable,datain:IN STD_LOGIC;dataout:OUT STD_LOGIC);END tri_s;ARCHITECTURE bhv OF tri_s ISBEGINPROCESS (enable,datain)BEGINIF enable='1' THEN dataout<=datain;ELSE dataout<='Z';END IF;END PROCESS;END bhv;OC门:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY oc ISPORT(datain:IN STD_LOGIC;dataout:OUT STD_LOGIC);END oc;ARCHITECTURE bhv OF oc ISBEGINPROCESS (datain)BEGINIF (datain='0') THEN dataout<='0';ELSE dataout<='Z';END IF;END PROCESS;END bhv;2、按照实验箱上FPGA的芯片名更改编程芯片的设置。
oc门的研究实验
实验三、OC门的研究一、实验目的:了解负载电阻RL对集电极开路门工作状态的影响;掌握集电极开路门的使用方法;二、实验要求:实现OC门的线与功能:a)用四个OC门线与,驱动四个与非门;b)计算负载电阻RL;c)在该阻值条件下,测量V oh与Vol。
三、实验设计说明:1集电极开路门(OC门)集电极开路门是将推拉式输出改为三极管集电极开路输出的特殊TTL电路,它允许把两或两个以上OC门电路的输出端连接起来以完成一定的逻辑功能。
其逻辑符号如图:OC门共用一个集电极负载电阻RL和电源VC,从而可将n个OC门的输出端并联使用,使n个OC门输出相线与,从而完成与或非的逻辑功能。
假定将n个OC门输出端并联去驱动m个TTL与非门,则负载RL可根据OC门数目n与负载TTL与非门的数目m进行选择。
为保证输出的高、低电平符合所在数字系统的要求,对外接集电极负载电阻RL的数值选择范围为:测得:RLmax=4791欧姆,RLmin=1562欧姆。
式中:IOH—OC门输出管截止时的漏电流ILM—OC门所允许的最大负载电流IIH—负载门的高电平输入电流IIL—负载门的低电平输入电流VCC—负载电阻所接的外电源电压n—线与输出的OC门个数m’—负载门的个数m—接入电路的负载门输入端的总个数本实验74LS01(OC与非门)的电特性如下表四、实验设备与元器件:1.数字电路与系统实验箱1台2.数字万用表1块3.元器件74LS01 1片74LS00 1片电阻变阻器1个五、实验数据及分析实验中测量所得数据如下:电阻R(欧姆)不同状态下的电压值输入端电平电压值VOH/VOL(伏特)A B C D0 0 0 00 0 0 10 0 1 10 1 1 11 1 1 1分析:所得实验数据回代入公式结果符合理论。
且测得的电压值的变化规律随着输入OC门高电平输入端个数增加而减小,且不输入高信号和输入高信号之间电压差距明显,符合理论分析结果。
测得的电阻符合理论计算值的Rmax<R<Rmin,测得的电压值也近似等于按表格里查找所得的电压值。
三态门实验报告
三态门实验报告三态门实验报告引言:在科学研究中,实验是获取真实数据和验证理论的重要方法之一。
本次实验旨在研究三态门的工作原理和应用。
通过实验,我们能够深入了解三态门的特性,并进一步探究其在现实生活中的应用。
一、实验目的本次实验的目的是通过搭建三态门电路,观察和分析三态门的工作原理,探究其在数字电路中的应用。
二、实验材料和仪器本次实验所需材料和仪器如下:1. 电路板2. 三态门芯片3. 连接线4. 电源5. 开关6. LED灯三、实验步骤1. 将三态门芯片插入电路板中,并用连接线连接芯片和其他元件。
2. 将电源接入电路板,确保电路板正常供电。
3. 通过开关控制输入信号,观察LED灯的亮灭情况。
四、实验结果和分析通过实验观察和数据记录,我们得出以下实验结果和分析:1. 当输入信号为低电平时,LED灯熄灭。
2. 当输入信号为高电平时,LED灯点亮。
3. 当输入信号为无效电平时,LED灯保持上一状态。
根据实验结果,我们可以得出以下结论:三态门是一种数字逻辑门,具有三个输入端和一个输出端。
它的工作原理是根据输入信号的不同状态,输出相应的电平。
当输入信号为低电平时,输出为低电平;当输入信号为高电平时,输出为高电平;当输入信号为无效电平时,输出保持上一状态。
五、三态门的应用三态门在数字电路中有广泛的应用。
以下是一些常见的应用场景:1. 数据总线控制:在计算机系统中,三态门常用于数据总线的控制,实现数据的传输和共享。
2. 内存芯片:三态门可以用于内存芯片的控制线路,实现数据的读取和写入。
3. 多路选择器:三态门可以用于多路选择器的实现,根据输入信号的不同状态,选择不同的输入通路。
4. 缓冲器:三态门可以用作缓冲器,将信号从一个电路传递到另一个电路,保持信号的强度和波形。
六、实验总结通过本次实验,我们深入了解了三态门的工作原理和应用。
三态门作为一种重要的数字逻辑门,在现代电子技术中起着重要的作用。
通过进一步研究和实践,我们可以更好地应用三态门,推动数字电路技术的发展。
实验三 0C门和三态门的应用(3)
图4.26
用OC门实现两组数据传输线路图
实验三 0C门和三态门的应用
三、实验内容及步骤
表4.8
M 0 1 0 1 A1 A2 A3 A4 1 0 0 0 0 0 1 1 1.集电极开路(OC)门实验
OC门数据分时传输
B1 B2 B3 B4 0 0 0 1 1 1 1 0 L1 L2 L3 L4
L1 A 1 M B1M A 1M B1M M 0, L1 B1 M 1, L1 A 1
实验三 0C门和三态门的应用
二、实验原理和电路
1.集电极开路门(OC门)
图4.19
Hale Waihona Puke 0C与非门逻辑符号 图4.20 0C与非门“线与”应用
实验三 0C门和三态门的应用
二、实验原理和电路
1.集电极开路门(OC门) RL的计算方法可通过图4.21来说明。如果n个OC门“线与” 上式中: 驱动N个TTL“与非”门,则负载电阻 RL可以根据“线与”的“与非” 门(OC)数目n和负载门的数目N来进行选择。 为保证输出电平符合逻辑关系,RL的数值范围为: IOH—OC门输出管的截止漏电流。 ILM—OC门输出管允许的最大负载电流。 IIL—负载门的低电平输入电流。 EC—负载电阻RL所接的外接电源电压。 IIH—负载门的高电平输入电流。 n—“线与”输出OC门的个数。 N—负载门的个数。 m—接入电路的负载门输入端个数。 RL的大小会影响输出波形的边沿时间,在工 作速度较高时,RL的值应尽量小,接近RLmin。
图4.21
实验三 0C门和三态门的应用
二、实验原理和电路
2.三态门
三态门有三种状态0、1、高阻态。处于高阻态时,电路与负载之 间相当于开路。图4.22(a)是三态门的逻辑符号,它有一个控制 N 端(又称禁止端或使能端) E, =1为禁止工作状态,Q呈高阻状态; EN =0为正常工作状态,Q=A。 EN
(完整版)OC门及三态门解析
二、集成逻辑门电路的选用
若要求功耗低、抗干扰能力强,则应选用 工C根M作据O频S电率电路1路工M。作H其z要以中求下C和、M市驱O场S动4因0能0素0力等系要综列求合一不决般高定用的于 场合;HCMOS 常用于工作频率 20 MHz 以下、 要求较强驱动能力的场合。
若对功耗和抗干扰能力要求一般,可选用 TTL 电路。目前多用 74LS 系列,它的功 耗较小,工作频率一般可用至 20 MHz; 如工作频率较高,可选用 CT74ALS 系列, 其工作频率一般可至 50 MHz。
1. 电路、逻辑符号和工作原理 三态门的输出有0、1、高阻三种状态,故称三态门。
当出现高阻状态时,门电路的输出阻抗很大,使得输入 和输出之间呈现开路状态。
当 EN = 0 时,Y = AB, 三态门处于工作态;
当 EN = 1 时,三态门输出呈 EN 称使能信号或控制信号, 现高阻态,又称禁止态。 A、B 称数据信号。
注意:使用时, OC门公共输出端和电源 VCC 间接上拉电阻
三态门:输出0,输出1,输出高阻
注意:三态门输出端可并联使用,但同一时刻只能有一个 门工作,其他门输出处于高阻状态。
•TTL门电路的使用注意事项
EXIT
三、CMOS 数字集成电路应用要点
(一)CMOS 数字集成电路系列
CMOS4000 系列
EXIT
应用集成门电路时,应注意:
(1)电源电压的正确使用
TTL电路只能用+5 V(74系列允许误差±5%);CMOS 4000 系列可用 3 ~ 15 V;HCMOS系列可用 2 ~ 6 V; CTMOS 系列用 4.5 ~ 5.5 V。一般情况下,CMOS 门多 用 5 V,以便与 TTL 电路兼容。
三态门和集电极开路(OC)门实验报告
4、验证 74LS03 集成电机开路门的逻辑功能
接上拉电阻
不接上拉电阻
A/V
B/V
Y/V
A/V
B/V
Y/V
4.93
4.93
0.17
4.93
4.93
0
4.93
0
12.15
0
0
0
0
4.93
12.15
0
4.93
0
0
0
12.15
4.93
0
0
由上表可得,当不接上拉电阻时,Y 端始终为 0;当接上拉电阻时,Y 当且仅
当 A、B 同时为高电压时取低电压,74LS03 集成电机开路门实现了与非门的功能。
5、74LS03 实现线与、电平转换功能
VB
VA
VF
4.93
4.93
0.12
4.93
0
4.93
0
4.93
4.93
0
0
4.93
由上表和电路图可得,只要 A、B 中有一个低电平那么输出端就为低电平,
逻辑上实现了线与的关系。
示:
数据选择器
e)三态门构成双向数据收发器及总线数据传输 :
• DIR1 = 1 且 DIR2 = 0 时,数据传送方向从 X → Y • DIR1 = 0 且 DIR2 = 1 时,数据传送方向从 Y → X
三态门和集电极开路(OC)门
2010-10-15
Page 4 of 9
f)集电极开路门总线数据收发传输: 电路图和功能表如下
如下图表所示:
三态门和集电极开路ge 2 of 9
74LS125 芯片
3、集电极开路(OC)门:
a)对 TTL 逻辑门,将逻辑门电路输出级的三极管 T4 去掉, 此时 T5 的集电极直接输出,T5 集电极呈开路状态,其输 出驱动电源由外部提供。
实验四 OC门与三态门
实验四 OC门和TS门
4. 实验内容及步骤
(1)用OC门实现“线与”
(a)四2输入与非门(oc)74LS03 电源电压VCC为+5V。
(b)六非门74LS04
负载电阻RL用100Ω 电阻和10K电位器串联代替, 用实验方法确定RLmax和RLmin的值, 并与理论计算值相比。
计算时取 VOH=2.8V, VOL=0.35V, n=4,VCC=+5V, IOH=0.05mA,ILM=20mA, IIL=1.6mA, IIH=0.05mA。
负载电阻的测定
RL RL(max)
理论值
实测值
RL(min) 验证:Y = A1 + A2 +A3+A4
OC“线与”实验电路
(2)用OC门实现电平转换 OC门实现TTL~CMOS接口电路
实验四 OC门和TS门
(4)三态(TS)门逻辑功能测试
四总线缓冲器74LSl25 (低电平使能有效)
电源电压为+5V
74LSl26(高电平使能有效)
实验四 OC门和TS门
Байду номын сангаас
测试TS门的总线功能
① 通过译码器 G 控制,使 Y0~Y3全部为“1”, 用万用表测量总线输出端 Y的电平,并观察LED状态。
RL(max)
VC' C nIOH
VOH mIIH
53
k 2.63k
20.2 9 0.04
RL(min)
VC'C VOL ILM mIIL
5 0.4 k 0.35k 16 31
选定的 RL值应在 2.63kΩ 与 0.35kΩ 之间,考虑标称值
东南大学数字电路实验报告(二)
东南大学电工电子实验中心实验报告课程名称:数字逻辑电路实验第二次实验实验名称:门电路和组合逻辑院(系):电气工程专业:电气工程及自动化姓名:学号:实验室: 104 实验时间:2013年11月8日评定成绩:审阅教师:一、实验目的(1)掌握TTL和CMOS器件的静态特性和动态特性测量方法及这些特性对数字系统设计的影响;(2)掌握通过数字器件手册查看器件静态和动态特性参数;(3)掌握不同结构的数字器件之间的互连;(4)掌握OC门和三态门的特性和使用方法;(5)加深示波器测量技术的训练;(6)掌握小规模组合逻辑的工程设计方法;(7)了解竞争和冒险的产生原因,消除方法,掌握用示波器和逻辑分析捕捉毛刺的方法。
二、实验器材74LS00 74LS2074LS244 74HC0174LS04三、 必做实验1.(1)用 OC 门实现三路信号分时传送的总线结构a. 用OC 门实现三路信号分时传送的总线结构,框图如图所示,功能如表所示。
(注意OC 门必须外接负载电阻和电源,E C 取5V )待设计电路D 2D 1D 0A 2A 1A 0Y图 三路分时总线原理框图① 查询相关器件的数据手册,计算OC 表 设计要求的逻辑功能控制输入输出 A 2A 1 A 0 Y 01D 0连接电路。
)(107.66105.039.45'36min max Ω⨯=⨯⨯-=⋅+-=-IH CEO OH C C I N nI V E R )(5.911102.526.053max ax min Ω=⨯-=⋅--=-IL OL OLm C C I N I V E R选取Ω=k R C 2。
设计图如右图所示接线图如下② 静态验证:控制输入和数据输入端加高低电平,用电压表测量输出高低电平的电压值,注意测量A 2A 1A 0=000时的输出值。
E c =A 2A1AD2D1D输出Y电压/V001X X00001X X11010X0X0010X1X11000X X01001X X1000X X X1③动态验证:控制输入加高低电平,数据输入端加连续脉冲信号,用示波器双踪显示输入和输出波形,测量波形的峰峰值、高电平电压和低电平电压,对结果进行分析并解释为什么要选择“DC”。
实验 OC门和三态门28页PPT
60、生活的道路一旦选定,就要勇敢地是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
实验 OC门和三态门
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
三态门电路实验报告
实验二(1)三态门电路设计班级姓名学号一、实验目的熟悉QuartusII仿真软件的基本操作,并用VHDL/Verilog语言设计一个三态门。
二、实验内容1、熟悉QuartusII软件的基本操作,了解各种设计输入方法(原理图设计、文本设计、波形设计)2、用VHDL语言设计一个三态门,最终在FPGA芯片上编程指令译码器,并验证逻辑实现。
三、实验方法1、实验方法:采用基于FPGA进行数字逻辑电路设计的方法。
采用的软件工具是QuartusII软件仿真平台,采用的硬件平台是Altera EPF10K20TI144_4的FPGA试验箱。
2、实验步骤:1、新建,编写源代码。
(1).选择保存项和芯片类型:【File】-【new project wizard】-【next】(设置文件路径+设置project name为stm)-【next】(设置文件名zlym.vhd—在【add】)-【properties】(type=AHDL)-【next】(family=FLEX10K;name=EPF10K10TI144-4)-【next】-【finish】(2).新建:【file】-【new】(第二个AHDL File)-【OK】2、写好源代码,保存文件(stm.vhd)。
3、编译与调试。
确定源代码文件为当前工程文件,点击【processing】-【start compilation】进行文件编译。
编译结果有一个警告,文件编译成功。
4、波形仿真及验证。
新建一个vector waveform file。
按照程序所述插入EN,A以及dataout)四个节点(EN,A为输入节点,dataout为输出节点)。
(操作为:右击-【insert】-【insert node or bus】-【node finder】(pins=all;【list】)-【>>】-【ok】-【ok】)。
任意设置EN,A的输入波形…点击保存按钮保存。
门电路-OC门和三态门
门电路-OC门和三态门一、OC门实际使用中,有时需要两个或两个以上与非门的输出端连接在同一条导线上,将这些与非门上的数据(状态)用同一条导线输送出去。
因此,需要一种新的与非门电路来实现线与逻辑,这种门电路就是集电极开路与非门电路,简称OC门(open collector)。
OC门电路及逻辑符号见图Z1201,该电路的特点是输出管T5的集电极悬空,使用时需外接一个负载电阻RP和电源E c。
OC门的主要用途有以下3个方面:(1)实现与或非逻辑用n个OC门实现与或非逻辑的电路如图Z1202所示.因为任何一个门输入全为1时,其输出为零,而n个门的输出端又并接在一起(线与),故输出Y=0,即Y=A1B1+A2B2+……+A n B n,是与或非的逻辑功能。
(2)用做电平转换在数字系统的接口部分常需要进行所示电平转换,这可用OC门来实现.如图Z1203所示电路是用OC门把输出高电平变换为10V的电路。
(3)用做驱动器可以用OC门驱动指示灯,继电器等,其驱动指示灯的电路如图Z1204所示。
二、三态输出门1. 三态门的特点三态输出门又称三态电路。
它与一般门电路不同,它的输出端除了出现高电平、低电平外,还可以出现第三个状态,即高阻态,亦称禁止态,但并不是3个逻辑值电路。
2. 三态逻辑与非门三态逻辑与非门如图Z1205所示。
这个电路实际上是由两个与非门加上一个二极管D2组成。
虚线右半部分是一个带有源泄放电路的与非门,称为数据传输部分,T5管的u I1、u I2称为数据输入端。
而虚线左半部分是状态控制部分,它是个非门,它的输入端C称为控制端,或称许可输入端、使能端。
当C端接低电平时,T4输出一个高电平给T5,使虚线右半部分处于工作状态,这样,电路将按与非关系把u I1,u I2接受到的信号传送到输出端,使u0或为高电平,或为低电平。
当C端接高电平时,T4输出低电平给T5,使T6、T7、T10截止。
另一方面,通过D2把T8的基极电位钳在1v左右,使T9截止。
门和三态门的逻辑功能
VCC 4EN 4A 4Y 3EN 3A 3Y
74LS01
74LS04
4.掌握三态门的典型应用14 13 12 11 10 9 8
14 13 12 11 10 9 8
1EN 1A 1Y 2EN 2A 2Y GND
1.数字电路实验箱,1台;
ቤተ መጻሕፍቲ ባይዱ
CD4069
74LS125
TTL电路与CMOS电路的电1平2 转3 换4 5 6 7
四、实验内容
1.集电极开路门(OC门)实验 2.三态门实验
1.Y熟1悉O1C 门和2 三态门VC的C逻4辑Y功4能B 4A 3Y 3B 3A
VCC 6A 6Y 5A 5Y 4A 4Y
1EN2 1A3 1Y4 25EN6 2A7 2Y GND 3.掌握TT1L与1CMOS21电4 1路3 1的2 1接1 10口9转8 换电路
14 13 12 11 10 9 8
62.7掌4L握SO00C(门四的2典输型入应与用非,了门解),R7L14L只对S01;OC电路的影响 1234567 C14 13 1D2 11 10E1 29 3 485 6 7
74LS04 1234567
31.4 掌13握T1T2L与1C1MO10S电路9 的接8 口转换电路
12345 67
1A 1Y 2A 2Y 3A 3Y VSS
1EN 1A 1Y 2EN 2A 2Y GND
(a)CD4069
(b)74LS125
CD4069、74LS125的引脚排列图
]
2
1
1
K1
EN
逻
辑 开
K2
关
5V
5
1
4
EN
9
1
oc门_三态门_线与
锁存器:输出端的状态不会随输入端的状态变化而变化,只有在有锁存信号时输入的状态被保存到输出,直到下一个锁存信号。
通常只有0和1两个值。
典型的逻辑电路是D触发器。
缓冲器:多用在总线上,提高驱动能力、隔离前后级,缓冲器多半有三态输出功能。
三态缓冲器就是典型的线与逻辑器件,可允许多个器件挂在一条总线上,当然OC输出也可用在线与逻辑应用上。
OC门,又称集电极开路(漏极开路)与非门门电路,Open Collector(Open Drain)。
为什么引入OC门?实际使用中,有时需要两个或两个以上与非门的输出端连接在同一条导线上,将这些与非门上的数据(状态电平)用同一条导线输送出去。
因此,需要一种新的与非门电路--OC门来实现“线与逻辑”。
OC门主要用于3个方面:实现与或非逻辑,用做电平转换,用做驱动器。
由于OC门电路的输出管的集电极悬空,使用时需外接一个上拉电阻Rp到电源VCC。
OC门使用上拉电阻以输出高电平,此外为了加大输出引脚的驱动能力,上拉电阻阻值的选择原则,从降低功耗及芯片的灌电流能力考虑应当足够大;从确保足够的驱动电流考虑应当足够小。
线与逻辑,即两个输出端(包括两个以上)直接互连就可以实现“AND”的逻辑功能。
在总线传输等实际应用中需要多个门的输出端并联连接使用,而一般TTL门输出端并不能直接并接使用,否则这些门的输出管之间由于低阻抗形成很大的短路电流(灌电流),而烧坏器件。
在硬件上,可用OC门或三态门(ST门)来实现。
用OC门实现线与,应同时在输出端口应加一个上拉电阻。
三态门(ST门),主要用在应用于多个门输出共享数据总线,为避免多个门输出同时占用数据总线,这些门的使能信号(EN)中只允许有一个为有效电平(如高电平),由于三态门的输出是推拉式的低阻输出,且不需接上拉(负载)电阻,所以开关速度比OC门快,常用三态门作为输出缓冲器。
实验 OC门和三态门
F = AB + CD+ EF
实验内容和步骤
(1)OC门应用 OC门应用 ①TTL集电极开路与非门74LS01负载电阻 TTL集电极开路与非门74LS01负载电阻 RL的确定。 用两个集电极开路与非门“线与” 用两个集电极开路与非门“线与”使用驱 动一个TTL非门;按图1 动一个TTL非门;按图1–2–4连接实验电路, 负载电阻R 用一只200 电阻和100k 负载电阻RL用一只200 电阻和100k 电位 器串联而成,用实验方法确定和的阻值, 并和理论计算值相比较。填入表1 并和理论计算值相比较。填入表1–2–2中。
假设将n OC门的输出端并联“线与”,负载是m 假设将n个OC门的输出端并联“线与”,负载是m 个TTL与非门的输入端,为了保证OC门的输出电 TTL与非门的输入端,为了保证OC门的输出电 平符合逻辑要求,OC门外接负载电阻R 平符合逻辑要求,OC门外接负载电阻RL的数值应 介于与所规定的范围值之间。
UOH —— OC门输出高电平; OC门输出高电平; UOL ―― OC门输出低电平; OC门输出低电平; ――负载电阻所接的外接电源电压; ――负载电阻所接的外接电源电压; ――接入电路的负载门输入端个数; ――接入电路的负载门输入端个数; ――“线与”输出的OC门的个数; ――“线与”输出的OC门的个数; ――负载门的个数; ――负载门的个数; IIH――负载门高电平输入电流; IH――负载门高电平输入电流; IIL――负载门低电平输入电流; IL――负载门低电平输入电流; IOLmax――OC门导通时允许的最大负载电流; OLmax――OC门导通时允许的最大负载电流; IOH――OC门输出截止时的漏电流。 OH――OC门输出截止时的漏电流。
OC门电路应用范围较广泛,利用电路的 OC门电路应用范围较广泛,利用电路的 “线与”特性,可以方便地实现某些特定 线与” 的逻辑功能,例如:把两个以上OC结构的 的逻辑功能,例如:把两个以上OC结构的 与非门“线与”可完成“与或非” 与非门“线与”可完成“与或非”的逻辑 功能;实现电平的转换等任务。
实验二 OC门和三态门的应用
实验二 OC 门和三态门的应用一、实验目的1.能够正确使用数字电路实验系统。
2.掌握TTL 三态门的逻辑应用。
3.掌握TTL OC 门的逻辑应用4.熟悉TTL 三态门、OC 门电路应用的测试方法。
二、实验原理三态门工作时,有三种输出状态0态、1态、高阻态。
当使能端 时三态门正常工作;当使能端 时三态门工作在高阻状态。
适当的利用三态门的控制端可实现单向数据传输总线。
OC 门为集电极开路的与非门,正常工作时要在输出端和电源之间外接电阻R L 才能完成与非功能。
利用多个OC 门输出端“线与”可完成“与或非”功能,从而使OC 门的与非功能得到了扩展。
三、实验内容与步骤1. 74LS125三态门应用测试74LS125三态门外引脚排列为图2.1所示。
利用三态门实现总线传输,实验电路见图2.2所示。
将三个三态门的输入端分别接高电平、地、连续脉冲。
根据三个开关S 1、S 2、S 3的不同状态(S 1、S 2、S 3中每次只允许有一个为低电平),观察输出端指示灯LED 的变化,体会三态门实现总线传输的作用。
切记:要先认清三态门的使能端( ),用逻辑开关使三个三态门的使能端全处于高电平(三态门全处于高阻状态),才允许接通电源。
然后,只能一个门工作,观测总线的逻辑状态。
观测结束,先使工作的三态门转换到高阻状态,再让另一个门开始工作。
否则,将损坏器件。
将测试结果填入表2.1。
表2.1 三态门实现总线传输功能表2.TTLOC门(74LS03)实现线与功能测试OC 门选用芯片74LS03,实验电路如图2.3,此电路构成了线与逻辑。
完成真值表2.2测试,根据真值表判断其逻辑功能。
注意R C 的选择(R=1K Ω,R P =1K Ω)。
输入 使能端(控制端) 输出S1 S2 S3 Y A 1(0V ) A 2(5V ) 连续脉冲 V CC EN 4 A 4 Y 4 EN 3 A 3 Y 374LS125EN 1 A 1 Y 1 EN 2 A 2 Y 2 GND14 813 12 9 10 111EN 1ENS 1 逻辑电平 S 2开 5V×A 1A 2 Y 1 Y 2LED EN , EN=1 EN=0表2.2 OC 门线与功能测试表输入逻辑状态Y 输出A B C D状态 电位(V ) 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 11图2.1 74LS125三态门外引脚排列图 图2. 2 利用三态门实现总线传R P RR CV CC & ◇& ◇A BC DG 1G 2Y 1Y 2}&LED图2. 3 OC 门线与功能测试电路1 0 0 01 0 0 11 0 1 01 0 1 11 1 0 01 1 0 11 1 1 01 1 1 1四、实验报告要求1.画出实验用各逻辑门的逻辑符号,并写出逻辑表达式。
2 实验二三态门实验
实验二、三态门实验一、实验目的1、掌握三态门逻辑功能和使用方法。
2、掌握用三态门构成总线的特点和方法。
3、初步学会用示波器测量简单的数字波形。
二、实验所用仪器和芯片1、四二输入与非门74LS00 1片2、三态输出的四总线缓冲门74LS125 1片3、TEC-5实验系统 1台4、示波器 1台三、实验内容1、74LS125三态门的输出负载为74LS00的一个与非门输入端。
74LS00同一个与非门的另一个输入端接低电平,测试74LS125三态门的三态(高阻)输出、高电平输出、低电平输出的电压值。
同时测试74LS125三态输出时74LS00的输出值。
2、74LS125三态门的输出负载为74LS00的一个与非门输入端。
74LS00同一个与非门的另一个输入端接高电平,测试74LS125三态门三态(高阻)输出、高电平输出、低电平输出的电压值。
同时测试74LS125三态输出时74LS00的输出值。
*3、用74LS125两个三态门输出构成一条总线。
使两个控制端一个为低电平,另一个为高电平。
一个三态门的输入接50kHz信号,另一个三态门的输入接500KHz信号。
用示波器观察三态门的输出。
四、实验提示1、三态门74LS125的控制端C为低电平有效。
2、用实验台的电平开关输出作为被测器件的输入。
拨动开关,则改变器件的输入电平。
五、实验报告要求1、画出实验的逻辑电路图。
2、分析每个实验的实验现象。
3、分析实验1和实验2中三态门呈高阻状态时,74LS00输出电压不同的原因。
*4、用三态门74LS125构成总线时,三态门输出应怎样连接?为什么在任何时刻,构成总线的三态门中只允许一个控制端为低电平,其余控制端应为高电平。
OC门
注意:连线完成再通电!!!
实验过程中常见典型故障
• 设计错误 • 器件与底板故障 • 布线错误(漏线和错线)
实验故障检查方法
• 加电前:
1)检查集成电路安装方向; 2)检查包括电源线和地线在内的连线是否有漏线 和错线; 3)用万用表测量电路的电源端和地线端之间的阻 值,排除电源和地线间的短路现象; 4)调整稳压电源输出电压值并用万用表测量。
数字逻辑设计实践
---三态门和OC门的应用
本次内容
• 电路连接基本技术回顾 • 三态门和OC门的数据总线传输
电路连接基本技术
1、集成电路安装
封装形式:双列直插封装(DIP) 安装位置:跨插在宽条面包板的凹槽上 安装方向:保证芯片缺口一律向左
布线示范
电路连接基本技术
2、布线
布线次序:先布电源线和地线,再布固定电平的 规则线,最后按照信号流程逐级连接各逻辑控制 线。 走线原则:
实验故障检查方法
• 加电后:
1)观察稳压电源短路指示灯; 2)检查各集成电路是否已加上电源; 3)未接地和未接电源; 4)检查是否有不允许悬空的输入端未接入电路; 5)静态检查:使电路处在某一故障的工作状态; 6)动态检查:在某一规律信号作用下检查各级工作 波形; 7)器件替换法。
举例说明
三态门和OC门的数据传输实验
普通门、OC门和三态门
• 多个普通门的输出端不允许连接在一起
普通门、OC门和三态门
• 多个OC门、ห้องสมุดไป่ตู้态门的输出端可以连接在一起
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图3_2_7 三态门总线传输方式
Байду номын сангаас
表3_2_1 单向总线逻辑功能
表3_2_2 双向总线逻辑功能
三、预习要求 (1)根据设计任务的要求,画出逻辑电路图,并注明管脚号。 (2)拟出记录测量结果的表格。 (3)完成第七项中的思考题1、2、3。 四、实验内容图3_2_8 设计要求框图
1、用三态门实现三路信号分时传送的总线结构。框图如图3_2_8所示,功能如表 3_2_3所示。
七、思考题 用OC 门时是否需外接其它元件?如果需要,此元件应如何取值? 几个OC 门的输出端是否允许短接? 几个三态门的输出端是否允许短接?有没有条件限制?应注意什么问题? 如何用示波器来测量波形的高、低电平? 八、实验仪器与器材 1、JD-2000通用电学实验台一台 2、CA8120A示波器一台 3、DT930FD数字多用表一块 4、主要器材 74LS01 1片, 74LS04 1片, 74LS244 2片, 逻辑开关盒1个 电阻1kΩ 3只
实验二 三态门和OC门的研究
一、实验目的 (1) 熟悉两种特殊的门电路:三态门和OC门; (2) 了解“总线”结构的工作原理。 二、实验原理 数字系统中,有时需把两个或两个以上集成逻辑门的输出端连接起来,完成一定的逻 辑功能。普通TTL门电路的输出端是不允许直接连接的。图2_1示出了两个TTL门输出短 接的情况,为简单起见,图中只画出了两个与非门的推拉式输出级。设门A处于截止状态, 若不短接,输出应为高电平;设门B处于导通状态,若不短接,输出应为低电平。在把门 A和门B的输出端作如图3_2_1所示连接后,从电源Vcc经门A中导通的T4、D3和门B中导 通的 T5到地,有了一条通路,其不良后果为:图3_2_1 不正常情况:普通TTL门电路输 出端短接 (1)输出电平既非高电平,也非低电平,而是两者之间的某一值,导致逻辑功能混乱。 (2)上述通路导致输出级电流远大于正常值(正常情况下T4和T5总有一个截止),导致功 耗剧增,发热增大,可能烧坏器件。 集电极开路门和三态门是两种特殊的TTL电路,它们允许把输出端互相连在一起使用。 1.集电极开路门(OC门) 集电极开路门(Open-Collector Gate),简称OC门。它可以看成是图3_2_1所示的TTL 与非门输出级中移去了T4、D3部分。集电极开路与非门的电路结构与逻辑符号如图 3_2_2所示。必须指出:OC门只有在外接负载电阻Rc和电源Ec后才能正常工作,如图中 虚线所示。
图3_2_8 设计要求框图 表3_2_3 设计要求的逻辑功能
在实验中要求: (1)静态验证 控制输入和数据输入端加高、低电平,用电压表测量输出高电平、低电平 的电压值。 (2)动态验证 控制输入加高、低电平,数据输入加连续矩形脉冲,用示波器对应地观察 数据输入波形和输出波形。 (3)动态验证时,分别用示波器中的AC耦合与DC耦合,测定输出波形的幅值Vp_p及 高、低电平值。 2、用集电极开路(OC)“与非”门实现三路信号分时传送的总线结构。 要求与实验内容 1相同。 3、在实验内容2的电路基础上将电源Ec从+5V改为+10V,测量OC门的输出高、低电 平的电压值。 五、注意事项 (1)做电平转换实验时,只能改变Ec,千万不能将OC门的电源电压+Vcc接至+10V,以 免烧坏器件。 (2)用三态门实现分时传送时,不能同时有两个或两个以上三态门的控制端处于使能状 态。 六、报告要求 (1) 画出示波器观察到的波形,且输入与输出波形必须对应,即在一个相位平面上比较 两者的相位关系。 (2)根据要求设计的任务应有设计过程和设计逻辑图,记录实际检测的结果,并进行分 析。 (3)完成第七项中的思考题4。
图3_2_5 计算OC门外接电阻Rc的工作状态
m'(7)个输入端(a) 计算Rc最大值(b) 计算Rc最小值图3_2_5 计算OC门外接电阻Rc的 工作状态
其中 IcEO -- OC门输出三极管T5截止时的漏电流; Ec — 外接电源电压值; m -- TTL负载门个数; n — 输出短接的OC门个数; m’— 各负载门接到OC门输出端的输入端总和。 Rc值的大小会影响输出波形的边沿时间,在工作速度较高时,Rc的取值应接近 Rc(min)。 2.三态门 三态门,简称TSL(Three-state Logic)门,是在普通门电路的基础上,附加使能控制端 和控制电路构成的。图3_2_6所示为三态门的结构和逻辑符号。三态门除了通常的高电平 和低电平两种输出状态外,还有第三种输出状态——高阻态。处于高阻态时,电路与负 载之间相当于开路。图(a)是使能端高电平有效的三态与非门,当使能端EN = 1时,电路 _____ 为正常的工作状态,与普通的与非门一样,实现y = AB ;当EN = 0时,为禁止工作 ______ 状态,y输出呈高阻状态。图(b)是使能端低电平有效的三态与非门,当 EN = 0时, _____ ______ 电路为正常的工作状态,实现Y = AB ;当 EN = 1时,电路为禁止工作状态,Y 输出呈高阻状态。
图3_2_6 三态门的结构和逻辑符号
三态门电路用途之一是实现总线传输。总线传输的方式有两种,一种是单向总线, 如图3_2_7(a)所示,功能表见表3_2_1所示,可实现信号A1、A2、A3向总线Y的分时传 送;另一种是双向总线,如图3_2_7(b)所示,功能表见表3_2_2所示,可实现信号的分时 双向传送。单向总线方式下,要求只有需要传输信息的那个三态门的控制端处于使能状 态(EN = 1),其余各门皆处于禁止状态(EN = O),否则会出现与普通TTL门线与运用时同 样的问题,因而是绝对不允许的。
图3_2_2 集电极开路与非门
图3_2_1 不正常情况: 普通TTL门电路输出端 短接
由两个集电极开路与非门(0C)输出端相连组成的电路如图3_2_3所示,它们的输出:
即把两个集电极开路与非门的输出相与(称为线与),完成与或非的逻辑功能。0C门主 要有以下三方面的应用: (1) 实现电平转换图3_2_3 OC门的线与应用 无论是用TTL电路驱动CMOS电路还是用CMOS电路驱动TTL电路,驱动门必须能为负 载门提供合乎标准的高、低电平和足够的驱动电流,即必须同时满足下列四式: 驱动门 负载门 VOH(min) ≥ VIH(min) VOL(max) ≤ VIL(max) IOH(max) ≥ IIH IOL(max) ≥ IIL
图3_2_4 TTL(OC)门驱动CMOS电路的电平转换
(2)实现多路信号采集,使两路以上的信息共用一个传输通道(总线); (3)利用电路的线与特性方便地完成某些特定的逻辑功能。 在实际应用时,有时需将几个OC门的输出端短接,后面接m个普通TTL与非门作为负载, 如图3_2_5所示。为保证集电极开路门的输出电平符合逻辑要求,Rc的数值选择范围为:
图3_2_3 OC门的线与应用
其中:VOH(min)--门电路输出高电平VOH的下限值; VOL(max) --门电路输出低电平VOL的上限值; IOH(max)--门电路带拉电流负载的能力,或称放电流能力; IOL(max)—门电路带灌电流负载的能力,或称吸电流能力; VIH(min)--为能保证电路处于导通状态的最小输入(高)电平; VIL(max) --为能保证电路处于截止状态的最大输入(低)电平。 IIH — 输入高电平时流入输入端的电流; IIL -- 输入低电平时流出输入端的电流。 当74系列或74LS系列TTL电路驱动CD4000系列或74HC系列CMOS电路时,不能直接 驱动,因为74系列的TTL电路VOH(min) = 2.4V,74LS系列的TTL电路VOH(min)=2.7V, CD4000系列的CMOS电路VIH(min)=3.5V,74HC系列CMOS电路VIH(min)=3.15V,显 然不满足VOH(min) ≥ VIH(min) 最简单的解决方法是在TTL电路的输出端与电源之间接入上拉电阻Rc,如图3_2_4所 示。