(完整)小升初数学_阴影部分算面积
小升初数学几何求阴影部分面积题带解析
![小升初数学几何求阴影部分面积题带解析](https://img.taocdn.com/s3/m/c5d6d6699b89680203d825d8.png)
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积。
(精选)2020苏教版六年级数学小升初分类复习《图形面积》第1讲
![(精选)2020苏教版六年级数学小升初分类复习《图形面积》第1讲](https://img.taocdn.com/s3/m/107c357d0975f46526d3e17e.png)
第一讲图形面积本次阴影专题是在阴影专题(一)的基础上加深对三角形的认识,再引入圆形阴影部分。
1、r2的运用涉及圆的面积有:圆的面积公式S圆=πr2;扇形面积公式S扇=360nπr2“月牙形”面积公式S月牙=0.285r2;“风筝形”面积公式S风筝=0.215 r2通过以上公式,我们发现一个共同的特点,即在计算圆的阴影面积时,从本质上讲,我们不用求出r的值,只要求出r2是多少,把r2作为一个整体,即可求解。
这是学习圆的阴影面积时首先需要掌握的。
2、割补法学习圆的阴影面积时,有一个解题办法非常重要,它是“割补法”。
很多看似无法解的问题,运用割补法,解起来非常巧妙、简洁。
3、“容斥”原理在例题中讲解。
总体看,与三角形相比,求圆的阴影面积,变化不多,题型较为简单。
因此本讲仍将把三角形阴影面积的求法做为学习重点,继续运用“等底等高,高相等底倍数”的办法解题,达到熟练掌握的程度,同时学习用代数法、等分法、旋转法、割补法、填补法等方法解题。
[关键词]:r2的运用割补法代数法例1、如图,三角形ABC的面积是1平方厘米,且BE=2EC,F是CD的中点。
那么阴影部分的面积是多少平方厘米?例2、如图正方形ABCD的边长为10cm,EC=2BE,求阴影部分面积?例3、如图正方形边长10厘米,E、F、H分别为三边中点,阴影四边形面积是多少平方厘米?H例4、如图:有一张斜边为22厘米的红色直角三角形纸片,一张斜边为36厘米的蓝色直角三角形的纸片,一张黄色正方形纸片,拼成一个直角三角形,红、蓝两张三角形纸片的面积之和为多少平方厘米?例5、如图所示四边形ABCD,线段BC长为6厘米,角ABC为直角,角BCD为135o,而且点A到边CD的垂线AE的长为12厘米,线段ED的长为5厘米,求四边形ABCD的面积。
例6、有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠放,如图所示。
已知露出部分中红色面积是20,黄色部分是14,绿色部分是10,那么正方形盒子的面积是多少?综合训练1、如图,把△ABC的BA边延长一倍到D点,CB边延长两倍到F点,AC边延长三倍到E点,连接DE,EF,FD得到△DEF,△DEF是△ABC面积的几倍?2、已知三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积。
【2020】最新小升初数学几何图形阴影部分面积题型大全(详细答案解析)
![【2020】最新小升初数学几何图形阴影部分面积题型大全(详细答案解析)](https://img.taocdn.com/s3/m/b4a5cca37fd5360cba1adbd2.png)
知
S
= GFA
1 4
SDAHG
,
S
= GEC
1 4 SGHBC
,所以
S阴 =S
GFA+S
GEC
111来自= 4 SGHBC +
4 SDAHG
= 4
1
1
SGHBC +SDAHG
= 4
SABCD
= 4
10
4 =10cm 2 。
10、如图,阴影部分的面积是空白部分的 2 倍,求阴影部分三角形的底。 (单位: 厘米) 解:阴影部分的面积是空白部分的 2 倍, 这 2 个三角形是等高三角形,阴影三角 形的底是空白三角形的 2 倍,即 2× 4=8cm。
2
2
4 ÷2+3× 4÷ 2-3.14 × 5 ÷2=6cm2 。
2
2
9
32、下图中,长方形面积和圆面积相等。已知圆的半径是 面积和周长。
解:因为长方形 面积 和圆 面积 相等,所 以
33 S阴 = S圆 =
r2 = 3
3.14 32 =21.195 cm 2
44
4
长方形的长为 3
cm, C阴 =C长 -2r
45o
2
360o
21 BC AB BC
2
= 3.14
10 2 2
45o 360o
3.14 102
1 10 10
2
=37.5 ×3.14-50
=67.75 cm2
34、下图中正方形面积是 4 平方厘米,求涂色部分的面积。 解:设圆的半径为 r ,则 r2 =4, S阴=S正 - 1 S圆
4 =4- 1 r 2 =4-3.14=0.86 cm 2
小升初数学图形求面积方法技巧及阴影面积求法详解总结
![小升初数学图形求面积方法技巧及阴影面积求法详解总结](https://img.taocdn.com/s3/m/e3a70c46580216fc700afda6.png)
求图形的面积是小学数学常考的一种题型。
在数学考试中,很多图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。
一般我们称这样的图形为不规则图形。
基本图形我们都有固定的面积和周长公式,直接套用就可以计算。
那么,不规则图形的面积和周长怎么计算呢?这个问题是数学考试中经常难倒孩子的一个难题,特别是小学升学考试中最容易考查这类题型!三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。
面积及周长都有相应的公式直接计算,如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
先看三道例题感受一下例1:如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(ABG、BDE、EFG)的面积之和。
例2:如右图,正方形ABCD的边长为6厘米,ABE、ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。
一句话:因为ABE、ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米.解:SABE=SADF=S四边形AECF=12在ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴ECF的面积为2×2÷2=2。
所以SAEF=S四边形AECF-SECF=12-2=10(平方厘米)。
例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
一句话:阴影部分面积=SABG-SBEF,SABG和SBEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
小升初数学复习专题:求阴影部分面积(含答案解析)
![小升初数学复习专题:求阴影部分面积(含答案解析)](https://img.taocdn.com/s3/m/bbd0c6559ec3d5bbfc0a746d.png)
小升初数学复习专题:求阴影部分面积(含答案解析)1、几何图形计算公式:1) 正方形:周长=边长×4 C=4a面积=边长×边长S=a×a2) 正方体:表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3) 长方形:周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4)长方体:表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)体积=长×宽×高V=abh5)三角形:面积=底×高÷2 s=ah÷26)平行四边形:面积=底×高s=ah7)梯形:面积=(上底+下底)×高÷2 s=(a+b)×h÷28)圆形:周长=直径×Π=2×Π×半径C=Πd=2Πr面积=半径×半径×Π9)圆柱体:侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高10)圆锥体:体积=底面积×高÷32、面积求解大致分为以下几类:Ø 从整体图形中减去局部;割补法:将不规则图形通过割补,转化成规则图形。
重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。
能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
练习题例1.求阴影部分的面积。
(单位:厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)例3.求图中阴影部分的面积。
(单位:厘米)例4.求阴影部分的面积。
(单位:厘米)例5.求阴影部分的面积。
(单位:厘米)例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。
不规则或组合平面图形阴影部分面积计算-2024年小升初数学复习热点题型专项训练(通用版)(含解析)
![不规则或组合平面图形阴影部分面积计算-2024年小升初数学复习热点题型专项训练(通用版)(含解析)](https://img.taocdn.com/s3/m/457f93053a3567ec102de2bd960590c69ec3d8de.png)
2024年小升初复习热点题型专项训练热点11不规则或组合平面图形阴影部分面积计算姓名:_________ 班级:_________ 学号:_________1.计算下列图形的周长。
(单位:米)2.求阴影部分的面积。
3.计算如图阴影部分的面积。
(单位:cm)4.梯形的面积是18.6dm2,求阴影部分的面积。
5.已知如图,正方形的面积是2dm2,求阴影部分的面积。
6.求阴影部分的周长。
7.求下列组合图形的面积。
(单位:cm)8.计算如图中阴影部分的面积。
9.计算下边阴影图形的周长。
10.求组合图形的面积。
(单位:米)11.求组合图形的面积。
(单位:cm)12.求图中阴影部分的面积(单位:厘米)13.如图中阴影部分的面积是多少?14.求如图阴影部分的周长和面积。
15.求阴影部分的面积(单位:厘米)。
16.求下面图形中阴影部分的面积。
17.求图中涂色部分的面积。
(单位:厘米)18.如图中,大圆的半径等于小圆的直径。
请计算阴影部分的周长。
19.计算如图阴影部分的面积。
20.求图形中阴影部分的面积。
(单位:分米)21.求下面图形阴影部分的周长和面积。
22.求下图中阴影部分的周长和面积。
23.求图中阴影部分的面积。
(单位:厘米)( 取3.14)24.求阴影部分的面积。
(单位:厘米)25.求下面图中阴影部分的面积(单位:厘米)。
26.计算如图所示图形阴影部分的面积。
(单位:厘米;圆周率取3.14)27.求下面图形中阴影部分的周长和面积。
28.计算如图所示图形阴影部分的面积。
(单位:厘米;圆周率取3.14)29.求出下图中阴影部分的面积。
(单位:米)30.求出前两个图形的面积和第三个图形中涂色部分的面积。
参考答案1.122米;12米【分析】(1)长方形的周长=(长+宽)×2,代入数据即可解答;(2)把这个图形上方的小线段分别向上、向左及向右平移,则这个图形的周长就是边长为3米的正方形的周长,据此利用正方形的周长公式即可解答。
小升初数学压轴题试题精粹及解析(26)
![小升初数学压轴题试题精粹及解析(26)](https://img.taocdn.com/s3/m/2788e0a8ed3a87c24028915f804d2b160b4e86e2.png)
小升初数学压轴题试题精粹及解析(26)1.(长寿区)第1、2题求阴影部分周长和面积,第3﹣6题只求阴影部分面积.考点:组合图形的面积.专题:综合题;压轴题.分析:(1)阴影部分的周长等于直径4厘米,直径6厘米,直径(4+6)厘米,3个圆的周长的一半,阴影部分的面积用大半圆的面积减去2个小半圆的面积.(2)阴影部分的周长等于半径3厘米的圆的周长的加上长方形的两条长边(因为长是宽的2倍),阴影部分的面积用长方形的面积减去半径3厘米的圆面积的.(3)通过旋转把两部分阴影拼在一起正好是三角形面积的一半,根据三角形的面积公式解答.(4)根据环形面积的计算方法求环形的面积再除以2即可.(5)用正方形的面积减去两个半径是2厘米,圆心角是90°的扇形面积.(6)用半径5厘米圆心角是90°的扇形面积减去三角形的面积.解答:解:(1)阴影部分的周长:3.14×(4+6+4+6)÷2,=3.14×20÷2,=31.4(厘米);阴影部分的面积:[3.14×(10÷2)2﹣3.14×(4÷2)2﹣3.14×(6÷2)2]÷2,=[3.14×25﹣3.14×4﹣3.14×9]÷2,=[3.14×(25﹣4﹣9)]÷2,=[3.14×12]÷2,=37.68÷2,=18.84(平方厘米);(2)阴影部分的周长:3.14×3×2×+3×2×2,=4.71+12,=16.71(厘米);阴影部分的面积:3×2×3﹣3.14×32×,=18﹣3.14×9×,=18﹣7.065,=10.935(平方厘米);(3)阴影部分的面积:10×10÷2÷2=25(平方厘米);(4)阴影部分的面积:3.14×(8÷2+2)2÷2﹣3.14×(8÷2)2÷2,=3.14×36÷2﹣3.14×16÷2,=56.52﹣25.12,=31.4(平方厘米);(5)(5+2)×(5+2)﹣3.14×22×,=7×7﹣3.14×4×,=49﹣6.28,=42.72(平方厘米);(6)阴影部分的面积:3.14×52×﹣5×5÷2,=3.14×25×﹣12.5,=19.625﹣12.5,=7.125(平方厘米).点评:此题主要考查求组合图形的周长和面积,解答关键是明确周长和面积的意义,认真分析图形是由几部分组成,然后再根据相应的公式进行解答.2.(长寿区)下图表示的是某人骑自行车所走的路程和花费的时间.求往返的平均速度.考点:单式折线统计图;从统计图表中获取信息.专题:平均数问题.分析:通过观察统计图,可知:某人骑自行车往返所走的总路程是(30×2)千米,往返花费的总时间是(12﹣9)小时;要求往返的平均速度,就用往返的总路程除以往返的总时间,列式解答即可.解答:解:往返的总路程:30×2=60(千米),往返的总时间:12﹣9=3(小时),往返的平均速度:60÷3=20(千米/小时);答:某人骑自行车往返的平均速度是20千米/小时.点评:此题首先根据问题从图中找出所需要的信息,然后根据数量关系式:往返的路程÷往返的时间=往返的平均速度即可作出解答.3.(长寿区)张亮家离学校3600米,放学后他从学校回家,同时他妈妈从家骑电动车来接张亮,12分钟后两人相遇.已知张亮和妈妈的速度比是1:4,张亮每分钟行多少米?考点:相遇问题;比的应用.专题:应用题.分析:解答此题先根据路程÷相遇时间=速度和,求出张亮和妈妈的速度和是3600÷12,因为“张亮和妈妈的速度比是1:4”所以把张亮的速度看作1份,妈妈的速度就是4份,然后求出一份的数即可得知张亮的速度.解答:解:3600÷12÷(1+4),=3600÷12÷5,=300÷5,=60(米);答:张亮每分钟行60米.点评:此题是一道相遇问题和比的应用的综合题,解答思路是先根据路程÷相遇时间=速度和求出张亮和妈妈的速度和,再求出1份的数即可.4.(仙游县)用2,6,4,9四个数字组成一个算式,只能用“+、﹣、×、÷”四种运算中的几种,可以用括号,使结果为24,算式是4÷2×9+6.考点:填符号组算式.分析:在添加运算符号时,要注意最后的答数是24,通过实验可得出答案.本题可以这样去逆向推理:就是把24拆开,拆成2、4、6、9通过四则运算得来的,如把24拆成18+6,再把18拆成2×9,2由4÷2得到,这样就成了24=4÷2×9+6,也可把数字改变位置组成新的算式.解答:解:4÷2×9+6,=2×9+6,=18+6,=24;故答案为:4÷2×9+6.点评:此题考查对运算符号的熟练运用,有一定的技巧性,关键是把24如何拆成含那四个数的四则混合运算.5.(2012•无棣县)请你选取有用的信息解决问题.暑假期间,星光实验小学计划组织中、高年级部分学生参加夏令营活动,各年级分配名额如图:(1)三年级有多少名学生参加活动?(2)五年级有多少名学生参加活动?(用方程解)(3)六年级有多少名学生参加活动?考点:百分数的实际应用;列方程解应用题(两步需要逆思考);比的应用.专题:应用题;压轴题.分析:(1)运用和比问题的进行解答.(2)把五年级的人数设为x人,表示出三年级的人数,列方程解答.(3)运用比多比少问题进行解答,单位”1“知道运用乘法计算,不知道用除法计算.解答:解:(1)三年级参加活动的人数:80×=32(人);答:三年级有32名学生参加活动.(2)五年级参加活动的人数:设五年级参加活动的人数为x人.1.2x﹣28=32,1.2x﹣28+28=32+28,1.2x÷1.2=60÷1.2,x=50;答:五年级有50名学生参加活动.(3)六年级参加活动的人数:50×(1+20%),=50×1.2,=60(人);答:六年级有60名学生参加活动.点评:此题考查的是分数应用题的列式,要先找准单位“1”,再据题中的数量关系列式解答,灵活多变能运用方程解答题目.6.(长沙)已知0.123456789101112131415…是一个有规律的小数.(1)小数点后第100位上的数字是奇数.(填奇或偶)(2)小数点后第100位上的数字大小是5.(3)探究并填空:小数点后第100位前(包括第100位)的数字之和是365.考点:算术中的规律.专题:探索数的规律.分析:0.123456789101112131415…是一个有规律的小数,规律是自然数的依次排列,其中一位数1、2、3…9有9个数字,两位数10、11、…99有(99﹣10+1)×2=180个数字,所以第100为一定是某个两位数上的数字:(100﹣9)÷2=45…1,10+45=55,即第100为上的数字是5(第101位是5);第100为前的数字为:1、2、3、4、5、…54、5,所以个位数字之和为:(1+2+…+9)×5+(1+2+3+4)×10+5×6+1+2+3+4=365.据此得解.解答:解:(1)(2)0.123456789101112131415…是一个有规律的小数,规律是自然数的依次排列,其中一位数1、2、3…9有9个数字,两位数10、11、…99有(99﹣10+1)×2=180个数字,所以第100为一定是某个两位数上的数字:(100﹣9)÷2=45…1,10+45=55,即第100为上的数字是5(第101位是5);是奇数;(3)第100为前的数字为:1、2、3、4、5、…54、5,所以各位数字之和为:(1+2+…+9)×5+(1+2+3+4)×10+5×6+1+2+3+4=365答:(1)小数点后第100位上的数字是奇数.(2)小数点后第100位上的数字大小是5.(3)小数点后第100位前(包括第100位)的数字之和是365.点评:认真分析题意,找出小数点后面数字的规律是解决此题的关键.7.(东莞)下面是某次篮球联赛积分表,请同学们认真观察后回答问题.队名比赛场次胜场负场积分A 16 12 4 28B 16 12 4 28C 16 10 6 26D 16 10 6 26E 16 8 8 24F 16 8 8 24G 16 4 12 20H 16 0 16 16(1)用式子表示总积分与胜、负场数之间的数量关系.(2)某队的胜场总积分能等于它的负场总积分吗?并说明理由.考点:用字母表示数.专题:用字母表示数.分析:(1)如果一个队胜x场,根据比赛场次为16次,从而可得出负(16﹣x)场,再根据积分=胜场积分+负场的积分即可求解;(2)根据等量关系:某队的胜场总积分能等于它的负场总积分得出方程,解出x的值后结合实际进行判断即可.解答:解:(1)如果一个队胜x场,则负(16﹣x)场,胜场积分为2x分,负场积分为(16﹣x)分,总积分为2x+(16﹣x)=16+x分.故总积分与胜、负场数之间的数量关系为:2x+(16﹣x)=16+x.(2)根据题意得:2x=16﹣x3x=16x=,不是正整数,则某队的胜场总积分不能等于它的负场总积分.点评:此题考查了用字母表示数,解答本题的关键是根据表格得出胜一场、负一场各自所得的积分.8.(2021•泉州)笑笑家五月份每天预定3袋鲜牛奶,按批发价共付232.5元.每袋鲜牛奶可比零售价便宜多少元?考点:图文应用题;整数、小数复合应用题.专题:简单应用题和一般复合应用题.分析:由图可知:每袋牛奶的零售价是2.80元;先用每天预定的袋数乘上五月份的天数,求出五月份一共需要多少袋的牛奶,再用批发价的总钱数除以总袋数,求出批发价每袋需要多少钱,最后用零售价减去批发价即可.解答:解:五月份31天2.80﹣232.5÷(3×31)=2.80﹣232.5÷93=2.80﹣2.5=0.3(元)答:每袋鲜牛奶可比零售价便宜0.3元.点评:本题考查了总价、单价、数量三者之间的关系,单价=总价÷数量,关键是求出批发时的单价.9.(2021•尚义县)从甲地到乙地原来每隔45米要装一根电线杆,加上两端的两根,一共有53根电线杆,现在改成每隔60米装一根电线杆,除两端的两根不需要移动外,中途还有多少根不必移动?考点:公约数与公倍数问题;植树问题.分析:共有(53﹣1)=52个间隔,总长45×52=2340米,45,60的最小公倍数180,2340÷180=13个,由于2340也是180的倍数,所以中间还有13﹣1=12根不必移动.解答:解:从甲地到乙地一共长:45×(53﹣2)=2340(米),45和60的最小公倍数是:180;2340÷180﹣1,=12(根);答:中间还有12跟不必移动.点评:此题应先算出从甲地到乙地的总长度,然后找出45和60的最小公倍数,进而根据题意,列出算式,解答即可.10.(河西区)上海世博会从2010年5月1日开幕,到10月31日闭幕.各月参观人数如图,根据统计图填空并回答问题.(1)根据条形统计图将下面的统计表补充完整.月份5 7 7 8 9 10人数(万人)803 13101379 1246 1001 1570(2)5月参观人数最少,10月参观人数最多.(3)10月份参观人数比9月份增加了几分之几?考点:统计图表的综合分析、解释和应用.专题:统计数据的计算与应用.分析:(1)6月份参观的有1310万人,10月份参观的有1570万人;把这两个数据填入统计表中;(2)直条最矮的参观人数最少,直条最高的参观人数最多;(3)求出10月份比9月份多多少万人,然后用多的人数除以9月份的人数即可.解答:解:(1)统计表如下:月份5 6 7 8 9 10人数(万人)803 1310 1379 1246 1001 1570(2)5月参观人数最少,10月参观人数最多.(3)(1570﹣1001)÷1001,=569÷1001,≈56.8%;答:10月份参观人数比9月份增加了56.8%.故答案为:1310,1570;5,10.点评:本题关键是能从条形统计图中读出数据,再根据题目要求找出需要的数据,由基本的数量关系解决问题.11.(北京)一个长方体水箱里装有15cm高的水,聪聪把一个直径6cm的铁球放入水中,水面上升了0.6cm,弟弟把一块石块放进了水箱,石块没入水中后水面又上升了1.5cm,问这块石块的体积是多少?考点:长方体、正方体表面积与体积计算的应用.专题:压轴题.分析:先依据放入铁球后升高的水的体积就等于铁球的体积,即可求出水箱的底面积,铁球的直径已知,从而可以求其体积,也就能求出水箱的底面积;投入石块后水面上升的高度已知,用水箱底面积成升高的水面高度,就是石块的体积.解答:解:根据球的体积公式计算铁球体积:V球=πr3,=×3.14×,=×3.14×27,=3.14×36,=113.04(立方厘米);水箱的底面积:113.04÷0.6=188.4(平方厘米);石块的体积:188.4×1.5=282.6(立方厘米);答:这块石块的体积是282.6立方厘米.点评:解答此题的关键是:先求出水箱的底面积,主要依据是浸入水中的物体体积,就等于升高部分的水的体积.12.(2010•成都)一项工程,由甲队承租,需工期80天,工程费用100万元,由乙队承担,需工期100天,工程费用80万元.为了节省工期和工程费用,实际施工时,甲乙两队合做若干天后撤出一个队,由另一个队继续做到工程完成.结算时,共支出工程费用86.5万元,那么甲乙两队合做了多少天?考点:工程问题.分析:本题设出甲乙和干的天数,就可以表示出甲的工作量从而也可以求出乙的工作量,在相应的工作量下可以表示出各自的费用,把费用加在一起就是86.5万元.解答:解:设甲队工作x天,则甲队完成的工作量是,乙队完成的工作量是(1﹣).100×+80×(1﹣)=86.5,x+80﹣x=86.5,x=86.5﹣80,x=6.5,x=6.5×4,x=26;答:甲乙共合作了26天.点评:本题考查了学生的分析应变能力,在这儿表示出甲的工作量,其实乙的工作量也就可以表示出来,再表示出各自的费用,问题就解决了.13.(2020•硚口区)解方程.(温馨提醒:注意书写格式哦!)X:2=5:0.4 15.3﹣3X=0.3 x﹣x=0.7+2.3.考点:解比例;方程的解和解方程.专题:压轴题;简易方程;比和比例.分析:(1)根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以0.4求解,(2)依据等式的性质,方程两边同时加3x,再同时减0.3,最后同时除以3求解,(3)先化简方程,再依据等式的性质,方程两边同时除以求解.解答:解:(1)X:2=5:0.4,0.4x=2×5,0.4x=10,0.4x÷0.4=10÷0.4,x=25;(2)15.3﹣3X=0.3,15.3﹣3X+3x=0.3+3x,15.3﹣0.3=0.3+3x﹣0.3,15÷3=3x÷3,x=5;(3)x﹣x=0.7+2.3,=3,x=3,x=36.点评:等式的性质,以及比例基本性质是解方程的依据,解方程时注意对齐等号.。
【精品】六年级下册数学试题——解决问题之阴影面积 人教新课标(含答案)
![【精品】六年级下册数学试题——解决问题之阴影面积 人教新课标(含答案)](https://img.taocdn.com/s3/m/853b0564fc4ffe473368abc9.png)
小升初解决问题——阴影面积一、直接求法根据已知条件,从整体出发,直接求出阴影部分的面积。
例如:分析:从图形可知阴影部分是一个三角形,由于三角形的面积有特定的计算公式,因此,要计算三角形的面积只需知道三角形的底和高就可以了。
要注意的是先求出阴影三角形的“底”。
通过分析,阴影三角形的底为7厘米,高为14厘米解:阴影部分面积为:1/2x(15-8)x14=49(平方厘米)二、相减法这种方法就是阴影部分面积不能够直接算出来,但是总面积和空白部分的面积可以直接算出,因此可以用总面积减去空白部分面积,即得阴影之面积。
这是用得较多的一种方法,是求阴影面积的基础。
分析:由于阴影部分面积不能算出,但是总面积和空白部分面积是规则图形,可以根据计算公式计算出面积,然后用扇形面积减去三角形面积。
解:1/4x3.14x2x2-1/2x2x2=1.14(平方厘米)三、割补法这类题主要是阴影部分是一个不规则的图形。
但是通过割和补的方法,变成一个规则的图形,从而进行计算。
需要提醒的是,割补法重在割与补,割补后要有利于变整体为局部,化不规则为规则,化陌生为熟悉,化抽象为直观。
分析:通过看图发现连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半。
解:8x8÷2=32(平方厘米)四、拼凑法这种方法就是把所有的阴影部分放到一块进行拼凑成一个图形,然后根据计算公式进行计算。
分析:通过看图阴影部分是三个扇形,但是扇形的圆心角不知道,好像无法计算。
但是,通过分析吧三个扇形通过拼可以一个半圆,这样问题也就迎刃而解。
解:1/2x3.14x3x3=14.13(平方厘米)五、等面积变换法它通过平面图形之间的等面积变换,化难为易,求出阴影部分的面积。
如下图(已知CD为6厘米)分析:图形中的阴影部分是不规则图形,面积较难计算,注意到点C、D为半圆的三等分点。
通过分析发现把P点移动到O点三角形CDP和三角形CDO同底等高,所以三角形CDP和三角形CDO的面积相等。
六年级下册数学试题——解决问题之阴影面积 人教新课标(2014秋)(含答案)
![六年级下册数学试题——解决问题之阴影面积 人教新课标(2014秋)(含答案)](https://img.taocdn.com/s3/m/2fe1894a59eef8c75fbfb3dc.png)
小升初解决问题——阴影面积一、直接求法根据已知条件,从整体出发,直接求出阴影部分的面积。
例如:分析:从图形可知阴影部分是一个三角形,由于三角形的面积有特定的计算公式,因此,要计算三角形的面积只需知道三角形的底和高就可以了。
要注意的是先求出阴影三角形的“底”。
通过分析,阴影三角形的底为7厘米,高为14厘米解:阴影部分面积为:1/2x(15-8)x14=49(平方厘米)二、相减法这种方法就是阴影部分面积不能够直接算出来,但是总面积和空白部分的面积可以直接算出,因此可以用总面积减去空白部分面积,即得阴影之面积。
这是用得较多的一种方法,是求阴影面积的基础。
分析:由于阴影部分面积不能算出,但是总面积和空白部分面积是规则图形,可以根据计算公式计算出面积,然后用扇形面积减去三角形面积。
解:1/4x3.14x2x2-1/2x2x2=1.14(平方厘米)三、割补法这类题主要是阴影部分是一个不规则的图形。
但是通过割和补的方法,变成一个规则的图形,从而进行计算。
需要提醒的是,割补法重在割与补,割补后要有利于变整体为局部,化不规则为规则,化陌生为熟悉,化抽象为直观。
分析:通过看图发现连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半。
解:8x8÷2=32(平方厘米)四、拼凑法这种方法就是把所有的阴影部分放到一块进行拼凑成一个图形,然后根据计算公式进行计算。
分析:通过看图阴影部分是三个扇形,但是扇形的圆心角不知道,好像无法计算。
但是,通过分析吧三个扇形通过拼可以一个半圆,这样问题也就迎刃而解。
解:1/2x3.14x3x3=14.13(平方厘米)五、等面积变换法它通过平面图形之间的等面积变换,化难为易,求出阴影部分的面积。
如下图(已知CD为6厘米)分析:图形中的阴影部分是不规则图形,面积较难计算,注意到点C、D为半圆的三等分点。
通过分析发现把P点移动到O点三角形CDP和三角形CDO同底等高,所以三角形CDP和三角形CDO的面积相等。
30道小升初数学几何问题(附答案)
![30道小升初数学几何问题(附答案)](https://img.taocdn.com/s3/m/d23f185f227916888586d728.png)
图1
图2
【解析】我们可以让静止的瓷砖动起来,把对角线上的黑瓷砖,通过平移这种动态的
处理,移到两条边上(如图 2).在这一转化过程中瓷砖的位置发生了变化,但数量没
有变,此时白色瓷砖组成一个正方形.大正方形的边长上能放 (1011) 2 51(块),白
色 瓷 砖 组 成 的 正 方 形 的 边 长 上 能 放 : 511 50 ( 块 ) , 所 以 白 色 瓷 砖 共 用 了 :
60 的扇形面积 60 π 32 3 π 4.5(cm2 ) .
360
2
2.【割补法求面积】求下列各图中阴影部分的面积(图中长度单位为 cm ,圆周率按 3 计 算):
3
⑴
4
⑵
1
2
1
⑶
1
⑷
【解析】⑴ 4.5 ⑵ 4 ⑶1 ⑷ 2
3.【差不变】三角形 ABC 是直角三角形,阴影 I 的面积比阴影 II 的面积小 25cm2 , AB 8cm ,求 BC 的长度.
5
【解析】根据题意可知,挖去的 6 个边长 1 厘米的正方体相互之间是独立的,所以挖 去之后,原正方体的表面积相当于增加了六个小正方体的侧面积,所以现在它的表面 积为: 4 4 6 11 4 6 120 平方厘米. 16.【共高模型】如图,把四边形 ABCD 的各边都延长 2 倍,得到一个新四边形 EFGH 如果 ABCD 的面积是 5 平方厘米,则 EFGH 的面积是多少平方厘米?
【解析】该图形的上、左、前三个方向的表面分别由 9、7、7 块正方形组成.
该图形的表面积等于 (9 7 7) 2 46 个小正方形的面积,所以该图形表面积 为 46 平方厘米.
21.【取特殊点】长方形 ABCD 的面积为 36, E 、 F 、 G 为各边中点, H 为 AD 边上任 意一点,问阴影部分面积是多少?
小升初数学试题《空间与图形》计算体积、表面积、阴影面积(含答案)
![小升初数学试题《空间与图形》计算体积、表面积、阴影面积(含答案)](https://img.taocdn.com/s3/m/c3ad1452e53a580217fcfe81.png)
小升初数学试题《空间与图形》计算体积、表面积、阴影面积一、计算题1.求下面未知角的度数。
4.求下图阴影部分的周长2.计算下面各图形的面积. (单5.求下面立体图形的表面积和体积。
(单位: 分米)6.求阴影部分的面积7.求阴影部分的面积9.计算图中阴影部分的面积二、作图题10.分别画出每个图形底边上的高13.一个长方体的纸盒如图。
请在方格中画出这个长方体纸盒的展开图三、解答题每个12.过点 A 画直线 BC 的垂线 AD ,过点 C 画直线 AB 的14.一个长方形操场,长220 米,宽90 米。
小勇沿操场的边跑了两圈,他一共跑了多少米?15.下面的图形是由七巧板中的哪几块拼成的?你试着拼一拼.16.求下面体育场的面积.17.在一块周长是80 米的正方形花坛里,用一串红围出一个最大的圆形,这个圆形的面积是多少平方米?这个花坛还剩下多少平方米的空地?18.一间会议室长8m,宽 6.5m,用边长0.5m 的正方形瓷砖给这会议室铺上地面,大约要用瓷砖多少块?19.一个长方形的长和宽都是以厘米为单位的质数,并且周长是36 cm.这个长方形的面积最大是多少平方厘米?20.一个长方体长10 厘米、宽8 厘米、高 5 厘米.把它切成两个长方体,这两个长方体的表面积的和最大是多少平方厘米?21.如图中梯形的面积是20dm2,阴影三角形的面积是多少?22.一个圆形的铁环,直径是40 厘米,做这样一个铁环需要用多长的铁条?23.(东城区)将图中的长方形,以虚线为轴旋转一周,得到的立体形的体积是多少?24.把两个长30 厘米、宽20 厘米的长方形拼成一个大长方形,大长方形的周长比原来 2 个小长方形的周长的和少多少厘米?A画出已知直线的垂线和平行线.26.一个长方体的棱长之和是60 厘米,宽是 5 厘米,高是 2 厘米,长是多少厘米?27.到圆上各点的距离相等的点只有圆心一个点.28.画一个三角形,使它的面积与五边形(如图)面积相等.29.一块梯形的草地,上底250 米,下底150米,高是180米,它的面积是多少公顷?30.一个高30 厘米、底面半径10 厘米的无盖圆柱形铁皮水桶,要用多少平方厘米的铁皮?31.中祥小区靠墙边用46m的篱笆围了一块梯形空地(见下图)种草坪。
小升初数学求阴影部分图形面积新题型(含解答)
![小升初数学求阴影部分图形面积新题型(含解答)](https://img.taocdn.com/s3/m/4f2c9a064531b90d6c85ec3a87c24028915f851f.png)
求阴影部分图形面积新题型近年来的中考数学试卷中,围绕图形面积的知识,出现了一批考查应用与创新能力的新题型,归纳起来主要有:一、规律探究型例1宏远广告公司要为某企业的一种产品设计商标图案,给出了如下几种初步方案,供继续设计选用(设图中圆的半径均为r).(1)如图1,分别以线段O1O2的两个端点为圆心,以这条线段的长为半径作出两个互相交错的圆的图案,试求两圆相交部分的面积.(2)如图2,分别以等边△O1O2O3的三个顶点为圆心,以其边长为半径,作出三个两两相交的相同的圆,这时,这三个圆相交部分的面积又是多少呢?(3)如图3,分别以正方形O1O2O3O4的四个顶点为圆心,以其边长为半径作四个相同的圆,则这四个圆的相交部分的面积又是多少呢?(2005年黄冈市中考题)分析(1)利用“S阴=S菱形AO1B O2=4S弓形”即可;(2)利用“S阴=S△O1O2O3+3S弓”即可;(3)•直接求解比较困难,可利用求补法,即“S阴=S正方形O1O2O3O4-S空白”,考虑到四个圆半径相同,若延长O2O1交⊙O1•于A,则S空白=4SO1AB,由(1)根据对称性可求SO1B O4,再由“SO1AB=S扇形AO1O4-SO1BO4”,这样S空白可求.解答(1)设两圆交于A、B两点,连结O1A,O2A,O 1B,O2B.则S阴=S菱形AO1B O2+4S弓.∵S菱形=2S△AO1O2,△O1O2A为正△,其边长为r.∴S△AO1O2=r2,S弓=260360rπ2=26rπ2.∴S阴=22+4(6πr22)=23πr22.(2)图2阴影部分的面积为S阴=S△O1O2O3+3S弓.∵△O1O2O3为正△,边长为r.∴S△O1O2O32,S弓=260360rπ2.∴S阴r2+3(26rπ2)=2πr2r2.(3)延长O2O1与⊙O1交于点A,设⊙O1与⊙O4交于点B,由(1)知,SO1BO4=12(23πr2r2).∵SO1AB=S扇形AO1O4-SO1BO4=290360rπ-12(23πr2r2)=24rπ-13πr2+4r2.则S阴=S正方形O1O2O3O4-4SO1AB=r2-4(24rπ-13πr2r2)=r 2+13πr 2-2=(13π+1-r 2. 二、方案设计型例2 在一块长16m ,宽12m 的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半.下面分别是小明和小颖的设计方案.小明的设计方案:如图1,其中花园四周小路的宽度相等,经过解方程,•我得到路的宽为2m 或12m . 小颖的设计方案:如图2,其中花园中每个角上的扇形都相同. (1)你认为小明的结果对吗?请说明理由. (2)请你帮助小颖求出图中的x (精确到0.1m )(3)你还有其它的设计方案吗?请在右边的矩形中画出你的设计草图,•并加以说明.(2004年新疆建设兵团中考题)分析 (1)由小明的设计知,小路的宽应小于矩形荒地宽的一半,由此判断即可;(2)可由“花园面积为矩形面积一半”列方程求x ;(3)可由图形对称性来设计. 解 (1)小明的结果不对. 设小路宽x m ,则得方程 (16-2x )(12-2x )=12×16×12解得:x 1=2,x 2=12.而荒地的宽为12m ,若小路宽为12m ,不符合实际情况,故x 2=12m 不合题意.(2)由题意,4×24x π=12×16×12x 2=96π,x ≈5.5m .(3)方案有多种,下面提供5种供参考:三、网格求值型例3 图中的虚线网格我们称之为正三角形网格,它的每个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.(1)直接写出单位正三角形的高与面积; (2)图1中的A BCD 含有多少个单位正三角形?ABCD 的面积是多少?(3)求出图1中线段AC 的长(可作辅助线);(4)求出图2中四边形EF G H 的面积.(2005年吉林省中考题)分析 (1)由正三角形边角关系来求;(2)仔细观察图1便可找到答案;(3)考虑到图1中AB=3,BC=4,∠B=60°,可作△ABC 的高A K ,构造直角三角形,•再利用解直角三角形知识即可求得;(4)可利用网格构造特殊格点图形,再由求补法计算四边形E FGH•面积.解:(1)单位正三角形,(2)ABCD 含有24个单位正三角形,故其面积为24(3)如图1,过A 作AK ⊥BC 于K ,在Rt △ACK 中,AK=32KC=52.∴AC=(4)如图3,构造EQS R ,过F 作FT⊥QG 于T ,则S △FQG=12FT ·QG=12×2× 同理可求S △GSH S△EHR=6SEQSR ∴S 四边形E F G H = SEQSR -S △FQG -S △GSH -S △EHR四、图形对称型例4 如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD 、EF 均和x 轴垂直,以O 为顶点的两条抛物线分别经过C 、E 和D•、•F ,•则图中阴影部分的面积是_________.•(2005年河南省中考题)分析 由题意知,图中两半圆和两抛物线组成的图形关于y 轴对称,故y 轴左侧阴影部分面积等于半圆B 中的空白面积,所以所求阴影部分面积为半圆B 的面积,即S 阴=12π·12=12π. 解答:2π. 五、图形变换型例5 如图,矩形ABC D 的长与宽分别是2c m 和1cm ,AB 在直线L 上,依次为B 、C ′、•D ″,依次为B 、C ′、D ″为中心将矩形ABCD 按顺时针方向旋转90°.这样点A•走过的曲线依次为'AA 、 '''A A 、 '''''A A ,其中交CD 'AA于点P .(1)求矩形A ′BC ′D ′的对角线A ′C ′的长; (2)求'AA 的长;(3)求图中 部分的面积S ;(4)求图中 部分的面积T .(2005年吉林省中考题)分析 (1)要求A ′C ′,因长宽分别为2和1,利用勾股定理即可;(2)要求'AA ,因所对圆心'AA 角为∠ABA ′=90°,半径AB=2,利用弧长公式即可;(3)因△A ′C ′D•′≌△A ″C ′D ″,故S=S 扇形A`C``A``;(4)连PB ,则PB=AB=2,又BC=1,故∠PBC=60°,∠ABP=30°,•欲求T ,由“T=S 扇形AB P +S △BCP ”即可. 解答 (1)A ′C ′cm ).(2) 'AA =90180π×2=π(cm ).(3)S=S 扇形A`CA``54π(cm )(4)连结BP ,在Rt △BCP 中,BC=1,BP=2, ∴∠BPC=30°,ABP=30°,∴T=S 扇形AB P +S △PBC =30360π×22=(3π)cm 2.六、实际应用型例6 在栽植农作物时,一个很重要的问题是“合理密植”.如图是栽植一种蔬菜时的两种方法,A 、B 、C 、D 四珠顺次连结成为一个菱形,且AB=BD ;A ′、B ′、•C ′、D ′四株连结成一个正方形,这两种图形的面积为四株作物所占的面积,•两行作物间的距离为行距;一行中相邻两株作物的距离为株距;设这两种蔬菜充分生长后,每株在地面上的影子近似成一个圆面(相邻两圆如图相切),其中阴影部分的面积表示生长后空隙地面积.在株距都为a ,其他客观因素也相同的条件下,•请从栽植的行距,蔬菜所占的面积,充分生长后空隙地面积三个方面比较两种栽植方法.哪种方法能更充分地利用土地.分析:本题立意很新,要合理密植,充分利用土地,只需分别计算并比较两种方案的行距、阴影面积以及S 和S .对应值小的即为合理密植.解 连结AC 交B D 于点O .在菱形AB C D 中,有AB=AD ,AC ⊥BD ,BO=12BD .∵AB=BD=a ,∴BO=OD=12a .在Rt △AOD 中,AO=. ∴S 菱形AB C D =2×12BD ·AO=22, S 正方形A `B `C`D`=a 2.设方法(1)中空隙地面积为S 1,方法(2)中空隙地面积为S 2.则S 1=S 菱形AB C D -S ☉A2-4πa 2,S 2=S 正方形A `B `C`D`-S ☉A`=a 2-4πa 2., ∴AO<A ′B ′,S 菱形AB C D <S 正方形A `B `C`D`,S 1<S 2.∴栽植方法(1)比栽植方法(2)能更充分地利用土地.。
小升初数学阴影部分面积的解题策略
![小升初数学阴影部分面积的解题策略](https://img.taocdn.com/s3/m/40eb4d79c950ad02de80d4d8d15abe23482f032c.png)
小升初数学阴影部分面积的解题策略”教学的重点和难点,也是小升初数学试题命题的热点。
有关阴影部分面积的计算不会只是简单地求某个单一图形或者是规则图形的面积,而是将三角形、正方形、长方形、梯形、圆、扇形等多种图形进行组合,求组合后形成不规则图形阴影部分的面积。
这给小学生学习阴影部分面积带来一定困难,下面借助图形的运动和图形的割补,将不规则图形转化为规则图形,从而达到解决问题的目的。
一、和差法把所求阴影部分图形转化为若干图形面积的和或差来计算。
1、圆与正方形的组合例题1、如图1,已知正方形的边长为4cm,求图形阴影部分的面积。
分析:阴影部分图形是由边长为4cm的正方形和直径为4cm的半圆组成,即图形阴影部分的面积等于正方形的面积与半圆的面积之和。
解:S阴影=4×4+×3.14×22=22.28(cm2)2、圆与三角形的组合图1例题2、(2015年云南楚雄)如图2,求阴影部分的面积。
分析:阴影部分的面积等于直径为6cm的半圆面积减去一个三角形的面积,三角形的底是半圆的直径6cm,高是半圆的半径3cm。
图2解: S阴影=×3.14×32-(6×3)÷2 =5.13(cm2)3、圆与梯形的组合例题3、(2011年云南楚雄)如图3所示,已知圆的半径为5厘米,梯形的下底是9厘米,求阴影部分的面积。
图3分析:阴影部分的面积等于直角梯形的面积减去四分之一圆的面积,圆的半径为5厘米,直角梯形的高和上底都是5厘米。
解:S阴影=(5+9)×5÷2-×3.14×52 =35-19.625=15.375(cm2)4、圆与四叶草的组合例题4、如图4,正方形的边长为4cm,求阴影部分(四叶草)的面积.分析:阴影部分是一个四叶草图案,先画正方形的两条对角线,则阴影部分面积等于一个半圆的面积减去一个三角形的面积的4倍。
解:S阴影=( 3.14×22-4×2÷2)×4=(6.28-4)×4=9.12(cm2)图4二、割补法根据阴影部分图形的特点,将组合图形利用分割或补形的方法将不规则图形转换为梯形、长方形、三角形、正方形、圆形等规则图形,再求面积。
小升初数学求阴影部分图形面积新题型(含解答)
![小升初数学求阴影部分图形面积新题型(含解答)](https://img.taocdn.com/s3/m/27e87f7231b765ce04081401.png)
求阴影部分图形面积新题型近年来的中考数学试卷中,围绕图形面积的知识,出现了一批考查应用与创新能力的新题型,归纳起来主要有:一、规律探究型例1宏远广告公司要为某企业的一种产品设计商标图案,给出了如下几种初步方案,供继续设计选用(设图中圆的半径均为r).(1)如图1,分别以线段O1O2的两个端点为圆心,以这条线段的长为半径作出两个互相交错的圆的图案,试求两圆相交部分的面积.(2)如图2,分别以等边△O1O2O3的三个顶点为圆心,以其边长为半径,作出三个两两相交的相同的圆,这时,这三个圆相交部分的面积又是多少呢?(3)如图3,分别以正方形O1O2O3O4的四个顶点为圆心,以其边长为半径作四个相同的圆,则这四个圆的相交部分的面积又是多少呢?(2005年黄冈市中考题)分析(1)利用“S阴=S菱形AO1BO2=4S弓形”即可;(2)利用“S阴=S△O1O2O3+3S弓”即可;(3)•直接求解比较困难,可利用求补法,即“S阴=S正方形O1O2O3O4-S空白”,考虑到四个圆半径相同,若延长O2O1交⊙O1•于A,则S空白=4S O1AB,由(1)根据对称性可求S O1BO4,再由“S O1AB=S扇形AO1O4-S O1BO4”,这样S空白可求.解答(1)设两圆交于A、B两点,连结O1A,O2A,O1B,O2B.则S阴=S菱形AO1BO2+4S弓.∵S菱形=2S△AO1O2,△O1O2A为正△,其边长为r.∴S△AO1O2=34r2,S弓=260360rπ3r2=26rπ32.∴S阴=232+4(6πr232)=23πr232.(2)图2阴影部分的面积为S阴=S△O1O2O3+3S弓.∵△O1O2O3为正△,边长为r.∴S△O1O2O332,S弓=260360rπ32.∴S阴32+3(26rπ32)=2πr23r2.(3)延长O2O1与⊙O1交于点A,设⊙O1与⊙O4交于点B,由(1)知,S O1BO4=12(23πr2-32r2).∵S O1AB=S扇形AO1O4-S O1BO4=290360rπ-12(23πr232)=24rπ-13πr2+34r2.则S阴=S正方形O1O2O3O4-4S O1AB=r2-4(24rπ-13πr23r2)=r2+13πr2-3r2=(13π+1-3)r2.二、方案设计型例2 在一块长16m,宽12m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半.下面分别是小明和小颖的设计方案.小明的设计方案:如图1,其中花园四周小路的宽度相等,经过解方程,•我得到路的宽为2m或12m.小颖的设计方案:如图2,其中花园中每个角上的扇形都相同.(1)你认为小明的结果对吗?请说明理由.(2)请你帮助小颖求出图中的x(精确到0.1m)(3)你还有其它的设计方案吗?请在右边的矩形中画出你的设计草图,•并加以说明.(2004年新疆建设兵团中考题)分析(1)由小明的设计知,小路的宽应小于矩形荒地宽的一半,由此判断即可;(2)可由“花园面积为矩形面积一半”列方程求x;(3)可由图形对称性来设计.解(1)小明的结果不对.设小路宽xm,则得方程(16-2x)(12-2x)=12×16×12解得:x1=2,x2=12.而荒地的宽为12m,若小路宽为12m,不符合实际情况,故x2=12m不合题意.(2)由题意,4×24xπ=12×16×12x2=96π,x≈5.5m.(3)方案有多种,下面提供5种供参考:三、网格求值型例3 图中的虚线网格我们称之为正三角形网格,它的每个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.(1)直接写出单位正三角形的高与面积;(2)图1中的ABCD含有多少个单位正三角形?ABCD的面积是多少?(3)求出图1中线段AC 的长(可作辅助线);(4)求出图2中四边形EFGH 的面积.(2005年吉林省中考题)分析 (1)由正三角形边角关系来求;(2)仔细观察图1便可找到答案;(3)考虑到图1中AB=3,BC=4,∠B=60°,可作△ABC 的高AK ,构造直角三角形,•再利用解直角三角形知识即可求得;(4)可利用网格构造特殊格点图形,再由求补法计算四边形EFGH•面积.解:(133,(2)ABCD 含有24个单位正三角形,故其面积为2433(3)如图1,过A 作AK ⊥BC 于K ,在Rt △ACK 中,AK=323KC=52. ∴22AK KC +2235(3)()22+13(4)如图3,构造EQSR ,过F 作FT ⊥QG 于T ,则S △FQG =12FT ·QG=12×332×3.同理可求 S△GSH 3S△EHR3SEQSR3.∴S 四边形EFGH = SEQSR-S △FQG -S △GSH -S △EHR 33333.四、图形对称型例4 如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD 、EF 均和x 轴垂直,以O 为顶点的两条抛物线分别经过C 、E 和D•、•F ,•则图中阴影部分的面积是_________.•(2005年河南省中考题)分析 由题意知,图中两半圆和两抛物线组成的图形关于y 轴对称,故y 轴左侧阴影部分面积等于半圆B 中的空白面积,所以所求阴影部分面积为半圆B 的面积,即S 阴=12π·12=12π.解答:2π. 五、图形变换型例5 如图,矩形ABCD 的长与宽分别是2cm 和1cm ,AB 在直线L 上,依次为B 、C ′、•D ″,依次为B 、C ′、D ″为中心将矩形ABCD 按顺时针方向旋转90°.这样点A•走过的曲线依次为'AA 、'''A A 、'''''A A ,其中'AA 交CD 于点P .(1)求矩形A ′BC ′D ′的对角线A ′C ′的长; (2)求'AA 的长;(3)求图中 部分的面积S ;(4)求图中 部分的面积T .(2005年吉林省中考题)分析 (1)要求A ′C ′,因长宽分别为2和1,利用勾股定理即可;(2)要求'AA ,因'AA 所对圆心角为∠ABA ′=90°,半径AB=2,利用弧长公式即可;(3)因△A ′C ′D•′≌△A ″C ′D ″,故S=S 扇形A`C``A``;(4)连PB ,则PB=AB=2,又BC=1,故∠PBC=60°,∠ABP=30°,•欲求T ,由“T=S 扇形ABP +S △BCP ”即可. 解答 (1)A ′C ′2221+5cm ).(2)'AA =90180π×2=π(cm ).(3)S=S 扇形A`CA``290(5)π54π(cm )(4)连结BP ,在Rt △BCP 中,BC=1,BP=2, ∴∠BPC=30°,3ABP=30°,∴T=S 扇形ABP +S △PBC =30360π×22+32=(3π+32)cm 2.六、实际应用型例6 在栽植农作物时,一个很重要的问题是“合理密植”.如图是栽植一种蔬菜时的两种方法,A 、B 、C 、D 四珠顺次连结成为一个菱形,且AB=BD ;A ′、B ′、•C ′、D ′四株连结成一个正方形,这两种图形的面积为四株作物所占的面积,•两行作物间的距离为行距;一行中相邻两株作物的距离为株距;设这两种蔬菜充分生长后,每株在地面上的影子近似成一个圆面(相邻两圆如图相切),其中阴影部分的面积表示生长后空隙地面积.在株距都为a ,其他客观因素也相同的条件下,•请从栽植的行距,蔬菜所占的面积,充分生长后空隙地面积三个方面比较两种栽植方法.哪种方法能更充分地利用土地.分析:本题立意很新,要合理密植,充分利用土地,只需分别计算并比较两种方案的行距、阴影面积以及S 和S .对应值小的即为合理密植.解 连结AC 交BD 于点O .在菱形ABCD 中,有AB=AD ,AC ⊥BD ,BO=12BD . ∵AB=BD=a ,∴BO=OD=12a . 在Rt △AOD 中,22AD OD -32a .∴S 菱形ABCD =2×12BD ·3a 2,S 正方形A`B`C`D`=a 2.设方法(1)中空隙地面积为S 1,方法(2)中空隙地面积为S 2.则S 1=S 菱形ABCD -S ☉A 32-4πa 2, S 2=S 正方形A`B`C`D`-S ☉A`=a 2-4πa 2. 3<1,∴AO<A ′B ′,S 菱形ABCD <S 正方形A`B`C`D`,S 1<S 2.∴栽植方法(1)比栽植方法(2)能更充分地利用土地.。
小升初数学《走进名校》真题---蝴蝶定理应用专题及解析
![小升初数学《走进名校》真题---蝴蝶定理应用专题及解析](https://img.taocdn.com/s3/m/21bb72909b89680203d8259c.png)
小升初数学《走进名校》真题---蝴蝶定理应用专题及解析1.如图,求阴影部分的面积。
(单位:厘米)2.如图所示,一个大长方形被两条线段AB、CD分成四个小长方形,其中小长方形①、②、③的面积分别为8平方厘米、5平方厘米、4平方厘米,那么阴影部分的面积是多少?3.如图,梯形ABCD的AB平行于CD,对角线AC,BD交于点O,已知△AOB与△BOC的面积分别为25平方厘米与35平方厘米,那么梯形ABCD的面积是多少平方厘米?4.如图所示,某公园的外轮廓是四边形ABCD,被对角线AC,BD分成四个部分,△AOB面积为1平方千米,△BOC面积为2平方千米,△COD的面积为3平方千米,公园由6.92平方千米的陆地和人工湖组成,则人工湖的面积是多少平方千米?5.如图,两个正方形组成的组合图形,大正方形的边长为5厘米,小正方形的边长为3厘米。
求图中阴影部分的面积。
6.如图所示,两个正方形,边长分别是6厘米和5厘米,求阴影部分的面积。
7.长方形ABCD中,△ABG的面积为27平方米,△CDH的面积为36平方米,求阴影部分的面积。
答案:1.如图,求阴影部分的面积。
(单位:厘米)解:因为图形是特殊的平行四边形,即可用平行四边形中的蝴蝶定理,对角线平行四边形的面积乘积相等。
S阴影=28×6÷12=14(cm²)答:略2.如图所示,一个大长方形被两条线段AB 、CD 分成四个小长方形,其中小长方形①、②、③的面积分别为8平方厘米、5平方厘米、4平方厘米,那么阴影部分的面积是多少?解:如图所示,长方形是特殊的平行四边形根据蝴蝶定理,可得①×③=②×④④=①×③÷②=8×4÷5=6.4(平方厘米)S 阴影=④÷2=6.4÷2=3.2(平方厘米)答:略3.如图,梯形ABCD 的AB 平行于CD,对角线AC,BD 交于点O,已知△AOB 与△BOC 的面积分别为25平方厘米与35平方厘米,那么梯形ABCD 的面积是多少平方厘米?解:由题意得,S △BOC=35cm ² S △AOB=25cm ²根据梯形的蝴蝶定理,可得 S △AOD=S △BOC=35cm ²,S △AOD ×S △BOC= S △AOB ×S △COD求的S △COD=49(cm ²)S 梯形的面积=25+35+35+49=155(cm ²)答:略4.如图所示,某公园的外轮廓是四边形ABCD ,被对角线AC,BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由6.92平方千米的陆地和人工湖组成,则人工湖的面积是多少平方千米?解:根据任意四边形的蝴蝶定理,可得S △AOD=1×3÷2=1.5(平方千米)S 四边形ABCD 的面积=1+2+3+1.5=7.5(平方千米)S 人工湖的面积=7.5-6.92=0.58(平方千米)答:略5.如图,两个正方形组成的组合图形,大正方形的边长为5厘米,小正方形的边长为3厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初阴影部分面积总结
【典型例题】
例1.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的面积。
例2.正方形边长为2厘米,求阴影部分的面积。
例3.图中四个圆的半径都是1厘米,求阴影部分的面积。
例4.如图,四个扇形的半径相等,求阴影部分的面积。
(单位:厘米)
分析:四个空白部分可以拼成一个以2为半径的圆.
所以阴影部分的面积为梯形面积减去圆的面积,
例22.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。
例23.求阴影部分的面积。
(单位:厘米)
例24.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米。
求BC的长度。
例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)
【练习】
1、求阴影部分的面积。
(单位:厘米)
五、周长、面积计算题。
1.下图中阴影部分的周长是多少?
3.已知阴影部分的面积是8平方厘米,求圆的面积。
4.如下图(单位:米),阴影部分的面积分别是1S和
S,1S与2S的比为1:
2
4,求1S、2S。
5.下图中,正方形的边长是2厘米,四个圆的半径都是1厘米,圆心分别是正方形的四个顶点。
求出阴影部分的面积。
七、能力拓展题。
1.求下图正方形内阴影部分的面积。
(正方形边长是4厘米)
2.长方形ABCD被虚线分割成4个面积相等的部分(如下图,单位:厘米)。
试求线段BE的长度。
3.图中四个等圆的周长都是50.24厘米,求阴影部分的面积。