信号与系统课程设计应用MATLAB实现连续信号的采样与重构仿真

合集下载

利用MATLAB实现连续信号的采样与重构仿真课程设计 2

利用MATLAB实现连续信号的采样与重构仿真课程设计 2

华北水利水电大学之杨若古兰创作课程设计课程名称:连续旌旗灯号的采样与重构专业班级:通信工程目录1、摘要12、注释22.1、设计目的2、设计道理(1)、连续时间旌旗灯号2(2)、采样定理3(3)、旌旗灯号重构5、旌旗灯号采样与恢复的程序5(1)设计连续旌旗灯号6(2)设计连续旌旗灯号的频谱7(3)设计采样旌旗灯号8(4)设计采样旌旗灯号的频谱图9(5)设计低通滤波器10(6)恢复原旌旗灯号123、总结与称谢134、参考文献14本次课程设计利用MATLAB实现连续旌旗灯号的采样与重构仿真,了解MATLAB软件,进修利用MATLAB软件的仿真技术.它次要偏重于某些理论常识的灵活应用,和一些关键命令的把握,理解,分析等.初步把握线性零碎的设计方法,培养独立工作能力.加深理解采样与重构的概念,把握利用MATLAB分析零碎频率呼应的方法和把握利用MATLAB实现连续旌旗灯号采取与重构的方法.计算在临界采样、过采样、欠采样三种分歧条件下重构旌旗灯号的误差,并由此总结采样频率对旌旗灯号重构误差的影响.要做到以下基本请求:1. 把握利用MATLAB分析零碎频率呼应的方法,添加对仿真软件MATLAB的感性认识,学会该软件的操纵和使用方法.2. 把握利用MATLAB实现连续旌旗灯号采取与重构的方法,加深理解采样与重构的概念.3 . 初步把握线性零碎的设计方法,培养独立工作能力.4. 进修MATLAB中旌旗灯号暗示的基本方法及绘图函数的调用,实现对经常使用连续时间旌旗灯号的可视化暗示,加深对各种电旌旗灯号的理解.5. 加深理解采样对旌旗灯号的时域和频域特性的影响;验证旌旗灯号与零碎的基本概念、基本理论,把握旌旗灯号与零碎的分析方法.6. 加深对采样定理的理解和把握,和对旌旗灯号恢复的须要性;把握对连续旌旗灯号在时域的采样与重构的方法.2.1 设计目的与请求对连续旌旗灯号进行采样,在满足采样定理和不满足采取定理两种情况下对连续旌旗灯号和采样旌旗灯号进行FFT频谱分析.2.2 设计道理(1)连续时间旌旗灯号连续旌旗灯号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点之外,旌旗灯号都有确定的值与之对应.严酷来说,MATLAB其实不克不及处理连续旌旗灯号,而是用等时间间隔点的样值来近似暗示连续旌旗灯号.当取样时间间隔足够小时,这些离散的样值就能较好地近似连续旌旗灯号.在必定条件下,一个连续时间旌旗灯号完整可以用该旌旗灯号在等时间间隔上的瞬时值来暗示,而且可以用这些样本值把旌旗灯号完整恢复过来.如许,抽样定理为连续时间旌旗灯号与离散时间旌旗灯号的彼此转换提供了理论根据.通过观察采样旌旗灯号的频谱,发现它只是原旌旗灯号频谱的线性反复搬移,只需给它乘以一个门函数,就可以在频域恢复原旌旗灯号的频谱,在时域是否也能恢复原旌旗灯号时,利用频域时域的对称关系,得到了旌旗灯号.(2)采样定理模拟旌旗灯号经过 (A/D) 变换转换为数字旌旗灯号的过程称为采样,旌旗灯号采样后其频谱发生了周期延拓,每隔一个采样频率 fs,反复出现一次.为包管采样后旌旗灯号的频谱外形不失真,采样频率必须大于旌旗灯号中最高频率成分的两倍,这称之为采样定理.时域采样定理从采样旌旗灯号恢复原旌旗灯号必须满足两个条件:a 、必须是带限旌旗灯号,其频谱函数在>各处为零;(对旌旗灯号的请求,即只要带限旌旗灯号才干适用采样定理.)b 、 取样频率不克不及过低,必须>2(或>2).(对取样频率的请求,即取样频率要足够大,采得的样值要足够多,才干恢复原旌旗灯号.)如图1所示,给出了旌旗灯号采样道理图图1 旌旗灯号采样道理图由图1可见,)()()(t t f t f s T s δ⋅=,其中,冲激采样旌旗灯号)(t s T δ的表达式为:∑∞-∞=-=n s T nT t t s )()(δδ其傅立叶变换为∑∞-∞=-n s s n )(ωωδω,其中s s T πω2=.设)(ωj F ,)(ωj F s 分别为)(t f ,)(t f s 的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=n s s n s s s n j F T n j F j F )]([1)(*)(21)(ωωωωδωωπω(1)若设)(t f 是带限旌旗灯号,带宽为m ω,)(t f 经过采样后的频谱)(ωj F s 就是将)(ωj F 在频率轴上搬移至 ,,,,,02ns s s ωωω±±±处(幅度为原频谱的s T 1倍).是以,当m s ωω2≥时,频谱不发生混叠;而当ms ωω2<时,频谱发生混叠. 一个理想采样器可以看成是一个载波为理想单位脉冲序列)(t T δ的幅值调制器,即理想采样器的输出旌旗灯号)(*t e ,是连续输入旌旗灯号)(t e 调制在载波)(t T δ上的结果,如图2所示.图2 旌旗灯号的采样用数学表达式描述上述调制过程,则有 )()()(*t t e t e T δ=理想单位脉冲序列)(t T δ可以暗示为 ∑∞=-=0)()(n T nT t t δδ其中)(nT t -δ是出此刻时刻nT t =,强度为1的单位脉冲.因为的数值仅在采样瞬时才成心义,同时,假设00)(<∀=t t e所以)(*t e 又可暗示为 *0()()()n e t e nT t nT δ∞==-∑(3) 旌旗灯号重构设旌旗灯号)(t f 被采样后构成的采样旌旗灯号为)(t f s ,旌旗灯号的重构是指由)(t f s 经过内插处理后,恢复出本来旌旗灯号)(t f 的过程,又称为旌旗灯号恢复.若设)(t f 是带限旌旗灯号,带宽为m ω,经采样后的频谱为)(ωj F s .设采样频率m s ωω2≥,则由式(1)知)(ωj F s 是觉得s ω周期的谱线.现拔取一个频率特性⎪⎩⎪⎨⎧><=c cs T j H ωωωωω0)((其中截止频率c ω满足2sc m ωωω≤≤)的理想低通滤波器与)(ωj F s 相乘,得到的频谱即为原旌旗灯号的频谱)(ωj F .2.3 旌旗灯号采样与恢复的程序此刻以正弦函数为例,进行MATLAB 仿真实验.(1) 设计连续旌旗灯号.先建造一个程序,使之发生一个正弦连续旌旗灯号.所用程序如下所示:f1=50;t=(1:50)/2000; %时间轴步距x=sin(2*pi*t*f1);figure(1);plot(x); %绘制x(t)的图形图片号加底框xlabel('t');ylabel('x(t)');title('连续时间旌旗灯号波形'); %图片命名 grid;发生的图形如下:(2)设计连续旌旗灯号的频谱设计一频谱程序,使其发生频谱波形图.程序如下:n=0:511; %长度N=512; %设采样点的N值Xk=abs(fft(x,N));figure(2); %频域波形plot(n,Xk);axis([0 N 1.1*min(Xk) 1.1*max(Xk)]);%可用axis函数来调整图轴的范围xlabel('时域频谱波形图');ylabel('|Xk|');波形如下:(3)设计采样旌旗灯号设计一采样程序,使之输出采样波形.程序如下:X=fft(x,512);w=(0:255)/256*500;T=4*t;x=sin(2*pi*T*f1);figure(3);stem(x) ; %图形x(n)的绘制xlabel('n');ylabel('x(n)');title('采样旌旗灯号波形图'); %图形命名grid;波形如下:(4)设计采样旌旗灯号的频谱图设计出该采样旌旗灯号的频谱程序,程序如下:figure(4);plot(w,abs([X(1:256)])); %频谱图的绘制xlabel('Hz');ylabel('频率呼应幅度');title('采样频谱波形图'); %命名grid;波形如下:(5)设计低通滤波器设计一低通滤波器,使之具有滤波感化.程序如下:[B,A]=butter(8,350/500); %巴特沃斯低通滤波器的设计[H,w]=freqz(B,A,512,2000);figure(5);subplot(2,1,1);plot(w*2000/(2*pi),abs(H)); %低通频谱图的绘制xlabel('Hz');ylabel('频率呼应幅度');title('低通滤波器波形图'); %命名grid;当采样频率f=350Hz时,波形图如下:(6)恢复原旌旗灯号.设计程序,对采样旌旗灯号频谱进行滤波,并输出该旌旗灯号所恢复频谱旌旗灯号与连续旌旗灯号,程序如下:y=filter(B,A,x);figure(6);subplot(2,1,1);plot(y);xlabel('t');ylabel('x(t)');title('连续旌旗灯号波形');grid;Y=fft(y,512);w=(0:255)/256*500;subplot(2,1,2);plot(w,abs([Y(1:256)])); %频谱图的绘制xlabel('Hz');ylabel('频率呼应幅度');title('恢复后的频谱波形图');grid;波形如下:下图为采样f=150Hz时的图形经过此次MATLAB课程设计我学到了一些软件常识和进修方法.我现有的常识还缺乏以完成此次课程设计,所觉得了此次的课程设计,我查阅了一些材料,并上网搜索了与此有关的常识.在此次设计中,同样也学到了对旌旗灯号的采样定理的利用,和旌旗灯号的重构,并通过观察MATLAB所生成的频谱图,进一步了解了有关旌旗灯号的采样与重构.同时,感谢本构成员的热心帮忙下,使我能够顺利的完成课程设计.参考材料1.董长虹. Matlab旌旗灯号处理与利用[M].北京:国防工业出版社,2005.01.2.甘俊英. 基于MATLAB的旌旗灯号与零碎实验指点[M].北京:清华大学出版社,2007.8.3.吴大正. 旌旗灯号与线性零碎分析[M].北京:高等教育出版社,2005.08.——旌旗灯号处理[M].西安:西安电子科技大学出版社,2005.05.5.丁志中叶中付.频谱无混叠采样和旌旗灯号完整可重构采样[J].数据收集与处理,2005,20(3).6.林茂六尹宝智.高速采样旌旗灯号数字内插理论与正弦内插算法研讨[J].电子学报,2000,28(12).。

MATLAB实现连续信号的采样与重构仿真

MATLAB实现连续信号的采样与重构仿真

目录概述 (1)设计原理 (2)1.1 MATLAB 介绍 (2)1.2 连续时间信号 (2)1.3 采样定理 (3)1.4 信号重构 (5)连续信号采样及重构 (7)2.1 S A(T)的临界采样及重构 (7)2.1.1 实现程序代码 (7)2.1.2 程序运行运行结果图与分析 (8)2.2 S A(T)的过采样及重构 (9)2.2.1 实现程序代码 (9)2.2.2 程序运行运行结果图与分析 ............................. 1..1 2.3 S A(T)的欠采样及重构 (12)2.3.1 实现程序代码 (12)2.3.2 程序运行运行结果图与分析 (13)2.4 程序中的常见函数和功能 (14)致谢 (14)参考资料 (15)课程设计总结 (15)前言信号与系统课程设计是学习《信号与系统》课程必要的教学环节。

由于该课程是专业基础课,需要通过实践了巩固基础知识,为使学生取得最现代化的设计技能和研究方法,课程设计训练也就成为了一个重要教学环节。

通过一个模拟信号的一系列数据处理,达到进一步完善对信号与系统课程学习的效果。

信号与系统课程同时也是一门实用性较强、涉及面较广的专业基础课,该课程是将学生从电路分析的知识领域引入信号处理与传输领域的关键性课程,对后续专业课起着承上启下的作用。

该科的基本方法和理论大量应用于计算机信息处理的各个领域特别是通信,数字语音处理、数字图象处理、数字信号分析等领域,应用更为广泛。

概述本次课程设计应用MATLAB实现连续信号的采样与重构仿真,了解MATLAB件,学习应用MATLAB软件的仿真技术。

它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。

初步掌握线性系统的设计方法,培养独立工作能力。

加深理解采样与重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB现连续信号采用与重构的方法。

计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响。

应用_MATLAB实现连续信号的采样与重构

应用_MATLAB实现连续信号的采样与重构

应用_MATLAB实现连续信号的采样与重构连续信号的采样与重构是数字信号处理中一个重要的概念,MATLAB作为一种强大的数值计算软件,可以很方便地实现连续信号的采样和重构。

连续信号的采样是指将连续时间上的信号转换为离散时间上的信号。

在MATLAB中,可以使用两种方式进行采样:时间域采样和频率域采样。

时间域采样是指根据一定的采样频率对连续信号进行采样。

在MATLAB中,可以使用"linspace"函数生成一定时间范围内的等间隔采样点。

例如,生成一个时间范围为0到1秒,采样频率为1000Hz的采样点序列可以使用以下代码实现:```fs = 1000; % 采样频率t = linspace(0, 1, fs); % 生成采样点序列```频率域采样是指将连续信号的频谱进行采样。

在MATLAB中,可以使用"fft"函数对信号进行傅里叶变换,得到信号的频谱。

然后可以根据需要选择一定数量的频域采样点进行重构。

例如,对一个连续信号x进行频域采样,可以使用以下代码实现:```X = fft(x); % 对信号进行傅里叶变换得到频谱Xn=1000;%选择1000个频域采样点进行重构x_reconstructed = ifft(X(1:n)); % 对频域采样点进行逆傅里叶变换得到重构信号```连续信号的重构是指根据采样点进行信号的还原。

在MATLAB中,可以使用插值方法进行重构,常用的插值方法有线性插值、样条插值等。

例如,使用线性插值对连续信号进行重构,可以使用以下代码实现:```x_reconstructed = interp1(t, x, t_reconstructed, 'linear'); % 使用线性插值对信号进行重构```上述代码中,t为原始采样点序列,x为原始信号,t_reconstructed为重构时使用的采样点序列。

除了插值方法,MATLAB还提供了其他一些重构信号的函数,例如"upfirdn"函数可以实现区间插值和抽取操作,"resample"函数可以实现信号的重采样等。

利用MATLAB实现连续信的采样与重构仿真课程设计方案9

利用MATLAB实现连续信的采样与重构仿真课程设计方案9

目录1、摘要12、正文22.1、设计目的 (2)2.2、设计原理 (2)(1>、MTLAB简介………………………………………2(2>、连续时间信号??(3>、采样定理3(4>、信号重构52.3、信号采样与恢复的程序??<1)设计连续信号6<2)设计连续信号的频谱7<3)设计采样信号??<4)设计采样信号的频谱图9<5)设计低通滤波器10<6)恢复原信号123、总结与致谢????4、参考文献151.摘要本次课程设计应用MATLAB实现连续信号的采样与重构仿真,了解MATLAB软件,学习应用MATLAB软件的仿真技术。

它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。

初步掌握线性系统的设计方法,培养独立工作能力。

加深理解采样与重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用与重构的方法。

计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响。

要做到以下基本要求:1. 掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。

2. 掌握利用MATLAB实现连续信号采用与重构的方法,加深理解采样与重构的概念。

3 . 初步掌握线性系统的设计方法,培养独立工作能力。

4. 学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。

5. 加深理解采样对信号的时域和频域特性的影响;验证信号与系统的基本概念、基本理论,掌握信号与系统的分析方法。

6. 加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样与重构的方法。

2.正文2.1设计目的与要求对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连续信号和采样信号进行FFT频谱分析。

信号与系统课程设计--应用MATLAB实现连续信号的采样与重构仿真

信号与系统课程设计--应用MATLAB实现连续信号的采样与重构仿真

应用MATLAB 实现连续信号的采样与重构仿真1、课程设计目的信号与系统分析是通信工程专业的基础课,学好这一科对将来学习专业课有着不可估量的作用。

本次课程设计,会引入一个模拟的信号,通过MATLAB 软件的防真技术来实现对它的分析、理解与学习。

本次课程设计的目的是:增加对仿真软件MATLAB 的感性认识,熟悉MATLAB 软件平台的使用和MATLAB 编程方法及常用语句;了解MATLAB 的编程方法和特点;加深理解采样与重构的概念,掌握连续系统频率响应概念,掌握利用MATLAB 分析系统频率响应的方法和掌握利用MATLAB 实现连续信号采用与重构的方法;计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响;初步掌握线性系统的设计方法,培养独立工作能力。

2、原理说明2.1连续时间信号系统是连续事物或各个部分的一个复杂的整体,有形或无形事物的组成体。

系统可以分为即时系统与动态系统;连续系统与离散系统;线性系统与非线形系统;样时变系统和非时变系统等等。

在连续时间系统中,如一个连续时间系统接收,输入信号x(t),并产生输出信号y(t)。

连续时间信号:在连续时间范围内定义的信号值,信号的幅值可以是连续数值,也可以是离散数值。

当信号幅值连续是,则称之为模拟信号。

2.2信号采样取样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值(或称样本值)表示,这些样本值包含了连续时间信号的全部信息,利用这些样本值可以恢复原信号。

可以说取样定理在连续时间信号与离散时间信号中架起了一座桥梁。

其具体内容如下:取样定理:设为带限信号,带宽为0F ,则当取样频率02F F s ≥时,可从取样序列)()(s a nT x n x =中重构,否则将导致)(n x 的混叠现象。

带限信号的最低取样频率称为Nyquist (奈奎斯特)速率。

2.3重构仿真Simulink 是MATLAB 中的一种可视化仿真工具,是实现动态系统建模、仿真和分析的一个集成 环境,广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。

利用MATLAB实现连续信号的采样与重构仿真课程设计 2

利用MATLAB实现连续信号的采样与重构仿真课程设计 2

华北水利水电大学之袁州冬雪创作课程设计课程称号:持续信号的采样与重构专业班级:通信工程目录1、摘要12、正文22.1、设计目标2、设计原理(1)、持续时间信号2(2)、采样定理3(3)、信号重构5、信号采样与恢复的程序5(1)设计持续信号6(2)设计持续信号的频谱7(3)设计采样信号8(4)设计采样信号的频谱图9(5)设计低通滤波器10(6)恢复原信号123、总结与致谢134、参考文献14本次课程设计应用MATLAB实现持续信号的采样与重构仿真,懂得MATLAB软件,学习应用MATLAB软件的仿真技术.它主要偏重于某些实际知识的矫捷运用,以及一些关键饬令的掌握,懂得,分析等.初步掌握线性系统的设计方法,培养独立工作才能.加深懂得采样与重构的概念,掌握操纵MATLAB分析系统频率响应的方法和掌握操纵MATLAB实现持续信号采取与重构的方法.计算在临界采样、过采样、欠采样三种分歧条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响.要做到以下基本要求:1. 掌握操纵MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操纵和使用方法.2. 掌握操纵MATLAB实现持续信号采取与重构的方法,加深懂得采样与重构的概念.3 . 初步掌握线性系统的设计方法,培养独立工作才能.4. 学习MATLAB中信号暗示的基本方法及绘图函数的调用,实现对常常使用持续时间信号的可视化暗示,加深对各种电信号的懂得.5. 加深懂得采样对信号的时域和频域特性的影响;验证信号与系统的基本概念、基本实际,掌握信号与系统的分析方法.6. 加深对采样定理的懂得和掌握,以及对信号恢复的需要性;掌握对持续信号在时域的采样与重构的方法.2.1 设计目标与要求对持续信号停止采样,在知足采样定理和不知足采取定理两种情况下对持续信号和采样信号停止FFT频谱分析.2.2 设计原理(1)持续时间信号持续信号是指自变量的取值范围是持续的,且对于一切自变量的取值,除了有若干个不持续点以外,信号都有确定的值与之对应.严格来讲,MATLAB其实不克不及处理持续信号,而是用等时间间隔点的样值来近似暗示持续信号.当取样时间间隔足够小时,这些团圆的样值就可以较好地近似持续信号.在一定条件下,一个持续时间信号完全可以用该信号在等时间间隔上的瞬时值来暗示,而且可以用这些样本值把信号完全恢复过来.这样,抽样定理为持续时间信号与团圆时间信号的相互转换提供了实际依据.通过观察采样信号的频谱,发现它只是原信号频谱的线性重复搬移,只要给它乘以一个门函数,便可以在频域恢复原信号的频谱,在时域是否也能恢复原信号时,操纵频域时域的对称关系,得到了信号.(2)采样定理摹拟信号颠末 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱发生了周期延拓,每隔一个采样频率 fs,重复出现一次.为包管采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理.时域采样定理从采样信号恢复原信号必须知足两个条件: a、必须是带限信号,其频谱函数在>各处为零;(对信号的要求,即只有带限信号才干适用采样定理.)b 、 取样频率不克不及过低,必须>2(或>2).(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才干恢复原信号.)如图1所示,给出了信号采样原理图图1 信号采样原理图由图1可见,)()()(t t f t f s T s δ⋅=,其中,冲激采样信号)(t sT δ的表达式为:∑∞-∞=-=n sT nT t t s)()(δδ其傅立叶变换为∑∞-∞=-n ss n )(ωωδω,其中s sT πω2=.设)(ωj F ,)(ωj F s 分别为)(t f ,)(t f s 的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=n ss n s s s n j F T n j F j F )]([1)(*)(21)(ωωωωδωωπω(1)若设)(t f 是带限信号,带宽为m ω,)(t f 颠末采样后的频谱)(ωj F s 就是将)(ωj F 在频率轴上搬移至 ,,,,,02ns s s ωωω±±±处(幅度为原频谱的s T 1倍).因此,当m s ωω2≥时,频谱不发生混叠;而当m s ωω2<时,频谱发生混叠.一个抱负采样器可以当作是一个载波为抱负单位脉冲序列)(t T δ的幅值调制器,即抱负采样器的输出信号)(*t e ,是持续输入信号)(t e 调制在载波)(t T δ上的成果,如图2所示.图2 信号的采样用数学表达式描绘上述调制过程,则有 )()()(*t t e t e T δ=抱负单位脉冲序列)(t T δ可以暗示为∑∞=-=0)()(n T nT t t δδ其中)(nT t -δ是出现在时刻nT t =,强度为1的单位脉冲.由于 的数值仅在采样瞬时才有意义,同时,假设00)(<∀=t t e所以)(*t e 又可暗示为 *()()()n e t e nT t nT δ∞==-∑(3) 信号重构设信号)(t f 被采样后形成的采样信号为)(t f s ,信号的重构是指由)(t f s 颠末内插处理后,恢复出原来信号)(t f 的过程,又称为信号恢复.若设)(t f 是带限信号,带宽为m ω,经采样后的频谱为)(ωj F s .设采样频率m s ωω2≥,则由式(1)知)(ωj F s 是以s ω为周期的谱线.现选取一个频率特性⎪⎩⎪⎨⎧><=ccsT j H ωωωωω0)((其中截止频率c ω知足2scmωωω≤≤)的抱负低通滤波器与)(ωj F s 相乘,得到的频谱即为原信号的频谱)(ωj F .2.3 信号采样与恢复的程序现在以正弦函数为例,停止MATLAB 仿真实验.(1) 设计持续信号.先制作一个程序,使之发生一个正弦持续信号.所用程序如下所示:f1=50;t=(1:50)/2000; %时间轴步距 x=sin(2*pi*t*f1); figure(1);plot(x); %绘制x(t)的图形图片号加底框 xlabel('t');ylabel('x(t)');title('持续时间信号波形'); %图片定名 grid; 发生的图形如下:(2)设计持续信号的频谱设计一频谱程序,使其发生频谱波形图.程序如下:n=0:511; %长度N=512; %设采样点的N值Xk=abs(fft(x,N));figure(2); %频域波形plot(n,Xk);axis([0 N 1.1*min(Xk) 1.1*max(Xk)]);%可用axis函数来调整图轴的范围xlabel('时域频谱波形图');ylabel('|Xk|');波形如下:(3)设计采样信号设计一采样程序,使之输出采样波形.程序如下:X=fft(x,512);w=(0:255)/256*500;T=4*t;x=sin(2*pi*T*f1);figure(3);stem(x) ; %图形x(n)的绘制xlabel('n');ylabel('x(n)');title('采样信号波形图'); %图形定名grid;波形如下:(4)设计采样信号的频谱图设计出该采样信号的频谱程序,程序如下:figure(4);plot(w,abs([X(1:256)])); %频谱图的绘制xlabel('Hz');ylabel('频率响应幅度');title('采样频谱波形图'); %定名grid;波形如下:(5)设计低通滤波器设计一低通滤波器,使之具有滤波作用.程序如下:[B,A]=butter(8,350/500); %巴特沃斯低通滤波器的设计[H,w]=freqz(B,A,512,2000);figure(5);subplot(2,1,1);plot(w*2000/(2*pi),abs(H)); %低通频谱图的绘制xlabel('Hz');ylabel('频率响应幅度');title('低通滤波器波形图'); %定名grid;当采样频率f=350Hz时,波形图如下:(6)恢复原信号.设计程序,对采样信号频谱停止滤波,并输出该信号所恢复频谱信号与持续信号,程序如下:y=filter(B,A,x);figure(6);subplot(2,1,1);plot(y);xlabel('t');ylabel('x(t)');title('持续信号波形');grid;Y=fft(y,512);w=(0:255)/256*500;subplot(2,1,2);plot(w,abs([Y(1:256)])); %频谱图的绘制xlabel('Hz');ylabel('频率响应幅度');title('恢复后的频谱波形图');grid;波形如下:下图为采样f=150Hz时的图形颠末此次MATLAB课程设计我学到了一些软件知识和学习方法.我现有的知识还缺乏以完成这次课程设计,所以为了这次的课程设计,我查阅了一些资料,并上网搜索了与此有关的知识.在这次设计中,同样也学到了对信号的采样定理的应用,以及信号的重构,并通过观察MATLAB所生成的频谱图,进一步懂得了有关信号的采样与重构.同时,感谢本组成员的热心帮忙下,使我可以顺利的完成课程设计.参考资料1.董长虹. Matlab信号处理与应用[M].北京:国防工业出版社,2005.01.2.甘俊英. 基于MATLAB的信号与系统实验指导[M].北京:清华大学出版社,2007.8.3.吴大正. 信号与线性系统分析[M].北京:高等教导出版社,2005.08.——信号处理[M].西安:西安电子科技大学出版社,2005.05.5.丁志中叶中付.频谱无混叠采样和信号完全可重构采样[J].数据收集与处理,2005,20(3).6.林茂六尹宝智.高速采样信号数字内插实际与正弦内插算法研究[J].电子学报,2000,28(12).。

【最新资料】应用_MATLAB实现连续信号的采样与重构

【最新资料】应用_MATLAB实现连续信号的采样与重构

抽样定理及应用2.1课程设计的原理 2.1.1连续信号的采样定理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件:(1)必须是带限信号,其频谱函数在>各处为零;(对信号的要求,即只有带限信号才能适用采样定理。

)(2) 取样频率不能过低,必须 >2 (或>2)。

(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。

)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号。

一个频谱在区间(- ,)以外为零的频带有限信号,可唯一地由其在均匀间隔(< )上的样点值所确定。

根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。

一个时间受限信号()t f ,它集中在(m m ωω+-,)的时间范围内,则该信号的频谱()ωj F 在频域中以间隔为1ω的冲激序列进行采样,采样后的频谱)(1ωj F 可以惟一表示原信号的条件为重复周期m t T 21≥,或频域间隔mt f 2121≤=πω(其中112T πω=)。

采样信号 的频谱是原信号频谱的周期性重复,它每隔 重复出现一次。

当s ω>2时,不会出现混叠现象,原信号的频谱的形状不会发生变化,从而能从采样信号中>2的含义是:采样频率大于等于信号最高频率恢复原信号。

(注:s的2倍;这里的“不混叠”意味着信号频谱没有被破坏,也就为后面恢复原信号提供了可能!)(a)(b)(c)图* 抽样定理a)等抽样频率时的抽样信号及频谱(不混叠)b)高抽样频率时的抽样信号及频谱(不混叠)c) 低抽样频率时的抽样信号及频谱(混叠)2.1.2信号采样如图1所示,给出了信号采样原理图信号采样原理图(a )由图1可见,)()()(t t f t f s T s δ⋅=,其中,冲激采样信号)(t s T δ的表达式为:∑∞-∞=-=n sT nT t t s)()(δδ其傅立叶变换为∑∞-∞=-n s s n )(ωωδω,其中ss T πω2=。

应用MATLAB实现连续信号的采样与重构

应用MATLAB实现连续信号的采样与重构

抽样定理及应用2.1课程设计地原理 2.1.1连续信号地采样定理模拟信号经过 (A/D) 变换转换为数字信号地过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次.为保证采样后信号地频谱形状不失真,采样频率必须大于信号中最高频率成分地两倍,这称之为采样定理.时域采样定理从采样信号恢复原信号必需满足两个条件:b5E2RGbCAP(1)必须是带限信号,其频谱函数在>各处为零;(对信号地要求,即只有带限信号才能适用采样定理.)(2)取样频率不能过低,必须>2(或>2).(对取样频率地要求,即取样频率要足够大,采得地样值要足够多,才能恢复原信号.)如果采样频率大于或等于,即(为连续信号地有限频谱),则采样离散信号能无失真地恢复到原来地连续信号.一个频谱在区间(-,)以外为零地频带有限信号,可唯一地由其在均匀间隔(<)上地样点值所确定.根据时域与频域地对称性,可以由时域采样定理直接推出频域采样定理.一个时间受限信号()t f ,它集中在(m m ωω+-,)地时间范围内,则该信号地频谱()ωj F 在频域中以间隔为1ω地冲激序列进行采样,采样后地频谱)(1ωj F 可以惟一表示原信号地条件为重复周期m t T 21≥,或频域间隔m t f 2121≤=πω(其中112T πω=).采样信号地频谱是原信号频谱地周期性重复,它每隔重复出现一次.当s ω>2时,不会出现混叠现象,原信号地频谱地形状不会发生变化,从而能从采样信号中恢复原信号.(注:s >2地含义是:采样频率大于等于信号最高频率地2倍;这里地“不混叠”意味着信号频谱没有被破坏,也就为后面恢复原信号提供了可能!)p1EanqFDPw(a)(b)(c)图* 抽样定理a)等抽样频率时地抽样信号及频谱(不混叠)b)高抽样频率时地抽样信号及频谱(不混叠)c) 低抽样频率时地抽样信号及频谱(混叠)2.1.2信号采样如图1所示,给出了信号采样原理图信号采样原理图(a )由图1可见,)()()(t t f t f s T s δ⋅=,其中,冲激采样信号)(t s T δ地表达式为:∑∞-∞=-=n sT nT t t s)()(δδ其傅立叶变换为∑∞-∞=-n s s n )(ωωδω,其中ss T πω2=.设)(ωj F ,)(ωj F s 分别为)(t f ,)(t f s 地傅立叶变换,由傅立叶变换地频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=n ss n s s s n j F T n j F j F )]([1)(*)(21)(ωωωωδωωπω若设)(t f 是带限信号,带宽为m ω,)(t f 经过采样后地频谱)(ωj F s 就是将)(ωj F 在频率轴上搬移至 ,,,,,02ns s s ωωω±±±处(幅度为原频谱地s T 1倍).因此,当m s ωω2≥时,频谱不发生混叠;而当m s ωω2<时,频谱发生混叠.DXDiTa9E3d一个理想采样器可以看成是一个载波为理想单位脉冲序列)(t T δ地幅值调制器,即理想采样器地输出信号)(*t e ,是连续输入信号)(t e 调制在载波)(t T δ上地结果,如图2所示.RTCrpUDGiT图2 信号地采样用数学表达式描述上述调制过程,则有)()()(*t t e t e T δ=理想单位脉冲序列)(t T δ可以表示为∑∞=-=0)()(n T nT t t δδ其中)(nT t -δ是出现在时刻nT t =,强度为1地单位脉冲.由于)(t e 地 数值仅在采样瞬时才有意义,同时,假设00)(<∀=t t e所以)(*t e 又可表示为*()()()n e t e nT t nT δ∞==-∑2.1.3信号重构设信号)(t f 被采样后形成地采样信号为)(t f s ,信号地重构是指由)(t f s 经过内插处理后,恢复出原来信号)(t f 地过程.又称为信号恢复.5PCzVD7HxA若设)(t f 是带限信号,带宽为m ω,经采样后地频谱为)(ωj F s .设采样频率msωω2≥,则由式(9)知)(ωj F s是以sω为周期地谱线.现选取一个频率特性⎪⎩⎪⎨⎧><=ccsT j H ωωωωω0)((其中截止频率c ω满足2sc m ωωω≤≤)地理想低通滤波器与)(ωj F s 相乘,得到地频谱即为原信号地频谱)(ωj F .jLBHrnAILg显然,)()()(ωωωj H j F j F s =,与之对应地时域表达式为)(*)()(t f t h t f s = (10)而∑∑∞-∞=∞-∞=-=-=n s s n s s nT t nT f nT t t f t f )()()()()(δδ)()]([)(1t Sa T j H F t h ccsωπωω==- 将)(t h 及)(t f s 代入式(10)得∑∞-∞=-==n scscsccssnT t Sa nT f T t Sa T t f t f )]([)()(*)()(ωπωωπω (11)式(11)即为用)(s nT f 求解)(t f 地表达式,是利用MATLAB 实现信号重构地基本关系式,抽样函数)(t Sa c ω在此起着内插函数地作用.xHAQX74J0X 例:设ttt Sa t f sin )()(==,其)(ωj F 为: ⎪⎩⎪⎨⎧><=11)(ωωπωj F即)(t f 地带宽为1=m ω,为了由)(t f 地采样信号)(t f s 不失真地重构)(t f ,由时域采样定理知采样间隔πωπ=<ms T ,取π7.0=sT (过采样).利用MATLAB 地抽样函数t t t Sinc ππ)sin()(=来表示)(t Sa ,有)/()(πt Sinc t Sa =.据此可知:LDAYtRyKfE ∑∞-∞=-==n s c s c s c c s s nT t Sinc nT f T t Sa T t f t f )]([)()(*)()(πωπωωπω通过以上分析,得到如下地时域采样定理:一个带宽为w m 地带限信号f(t),可唯一地由它地均匀取样信号fs(nTs)确定,其中,取样间隔Ts<π/w m, 该取样间隔又称为奈奎斯特间隔. 根据时域卷积定理,求出信号重构地数学表达式为:式中地抽样函数Sa(wct)起着内插函数地作用,信号地恢复可以视为将抽样函数进行不同时刻移位后加权求和地结果,其加权地权值为采样信号在相应时刻地定义值.利用MATLAB 中地抽样函数来表示Sa(t),有,,于是,信号重构地内插公式也可表示为:Zzz6ZB2Ltk2.2设计地思路连续信号是指自变量地取值范围是连续地,且对于一切自变量地取值,除了有若干个不连续点以外,信号都有确定地值与之对应.严格来说,MATLAB 并不能处理连续信号,而是用等时间间隔点地样值来近似表示连续信号.当取样时间间隔足够小时,这些离散地样值就能较好地近似连续信号.时域对连续时间信号进行采样,是给它乘以一个采样脉冲序列,就可以得到采样点上地样本值,信号被采样前后在频域地变化,可以通过时域频域地对应关系分别求得了采样信号地频谱.dvzfvkwMI1在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上地瞬时值来表示,并且可以用这些样本值把信号完全恢复过来.这样,抽样定理为连续时间信号与离散时间信号地相互转换提供了理论依据.通过观察采样信号地频谱,发现它只是原信号频谱地线性重复搬移,只要给它乘以一个门函数,就可以在频域恢复原信号地频谱,在时域是否也能恢复原信号时,利用频域时域地对称关系,得到了信号.rqyn14ZNXI2.3详细设计过程2.3.1)(t Sa 地临界采样及重构1实现程序代码当采样频率小于一个连续地同信号最大频率地2倍,即m s ωω2=时,称为临界采样.修改门信号宽度、采样周期等参数,重新运行程序,观察得到地采样信号时域和频域特性,以及重构信号与误差信号地变化.EmxvxOtOco Sa(t)地临界采样及重构程序代码;wm=1; %升余弦脉冲信号带宽 wc=wm;%频率Ts=pi/wm; %周期ws=2.4*pi/Ts; %理想低通截止频率 n=-100:100;%定义序列地长度是201 nTs=n*Ts %采样点 f=sinc(nTs/pi); %抽样信号 Dt=0.005;t=-20:Dt:20;fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); %信号重建SixE2yXPq5t1=-20:0.5:20;f1=sinc(t1/pi);subplot(211);stem(t1,f1);xlabel('kTs');ylabel('f(kTs)');title('sa(t)=sinc(t/pi)地临界采样信号');subplot(212);plot(t,fa)xlabel('t');ylabel('fa(t)');title('由sa(t)=sinc(t/pi)地临界采样信号重构sa(t)');grid;2程序运行运行结果图与分析图3 )Sa地临界采样及重构图(t运行结果分析:为了比较由采样信号恢复后地信号与原信号地误差,可以计算出两信号地绝对误差.当t选取地数据越大,起止地宽度越大.6ewMyirQFL版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.kavU42VRUs 用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.y6v3ALoS89Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevantobligee.M2ub6vSTnP转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.0YujCfmUCwReproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.eUts8ZQVRd。

利用MATLAB实现连续信号的采样与重构仿真课程设计 2之欧阳文创编

利用MATLAB实现连续信号的采样与重构仿真课程设计 2之欧阳文创编

华北水利水电大学课程设计课程名称:连续信号的采样与重构专业班级:通信工程目录1、摘要12、正文22.1、设计目的22.2、设计原理(1)、连续时间信号2(2)、采样定理3(3)、信号重构52.3、信号采样与恢复的程序5(1)设计连续信号6(2)设计连续信号的频谱7(3)设计采样信号8(4)设计采样信号的频谱图9(5)设计低通滤波器10(6)恢复原信号123、总结与致谢134、参考文献141.摘要本次课程设计应用MATLAB实现连续信号的采样与重构仿真,了解MATLAB软件,学习应用MATLAB软件的仿真技术。

它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。

初步掌握线性系统的设计方法,培养独立工作能力。

加深理解采样与重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用与重构的方法。

计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响。

要做到以下基本要求:1. 掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。

2. 掌握利用MATLAB实现连续信号采用与重构的方法,加深理解采样与重构的概念。

3 . 初步掌握线性系统的设计方法,培养独立工作能力。

4. 学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。

5. 加深理解采样对信号的时域和频域特性的影响;验证信号与系统的基本概念、基本理论,掌握信号与系统的分析方法。

6. 加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样与重构的方法。

2.正文2.1 设计目的与要求对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连续信号和采样信号进行FFT频谱分析。

2.2 设计原理(1)连续时间信号连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。

利用MATLAB实现连续信号的采样与重构仿真课程设计 2之欧阳法创编

利用MATLAB实现连续信号的采样与重构仿真课程设计 2之欧阳法创编

华北水利水电大学课程设计课程名称:连续信号的采样与重构专业班级:通信工程目录1、摘要12、正文22.1、设计目的22.2、设计原理(1)、连续时间信号2(2)、采样定理3(3)、信号重构52.3、信号采样与恢复的程序5(1)设计连续信号6(2)设计连续信号的频谱7(3)设计采样信号8(4)设计采样信号的频谱图9(5)设计低通滤波器10(6)恢复原信号123、总结与致谢134、参考文献141.摘要本次课程设计应用MATLAB实现连续信号的采样与重构仿真,了解MATLAB软件,学习应用MATLAB软件的仿真技术。

它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。

初步掌握线性系统的设计方法,培养独立工作能力。

加深理解采样与重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用与重构的方法。

计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响。

要做到以下基本要求:1. 掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。

2. 掌握利用MATLAB实现连续信号采用与重构的方法,加深理解采样与重构的概念。

3 . 初步掌握线性系统的设计方法,培养独立工作能力。

4. 学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表2021.03.09 欧阳法创编示,加深对各种电信号的理解。

5. 加深理解采样对信号的时域和频域特性的影响;验证信号与系统的基本概念、基本理论,掌握信号与系统的分析方法。

6. 加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样与重构的方法。

2.正文2.1 设计目的与要求对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连续信号和采样信号进行FFT频谱分析。

2.2 设计原理(1)连续时间信号连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。

通信专业信号与系统课程设计

通信专业信号与系统课程设计
p(t)=
其中, 为抽样角频率。因此,抽样信号的频谱为

带限信号波形f(t)-t与频谱F( )
图2.2.f(t)--t
**大 学
课程设计说明书NO.4
图2.3F(w)-w
从信号处理的角度来看,采样定理描述了两个过程:其一是采样,这一过程将连续时间信号转换为离散时间信号;其二是信号的重建,这一过程离散信号还原成连续信号。连续信号在时间(或空间)上以某种方式变化着,而采样过程则是在时间(或空间)上,以T为单位间隔来测量连续信号的值。T称为采样间隔。在实际中,如果信号是时间的函数,通常他们的采样间隔都很小,一般在毫秒、微秒的量级。采样过程产生一系列的数字,称为样本。样本代表了原来地信号。每一个样本都对应着测量这一样本的特定时间点,而采样间隔地倒数,1/'即为采样频率,其单位为样本/秒,即赫兹(hertz)。采样又分为临界采样,过采样,欠采样,分别可用图形表示为:
当为第二种情况时(如图8所示) ,将此时的角频率称为过采样角频率,此时产生过采样,频谱不发生混叠。过采样信号重构时,原信号与重构信号之间的误差较小;
当为第三种情况时(如图9所示) ,将此时的角频率称为欠采样角频率,此时产生欠采样,频谱发生混叠。欠采样信号重构时,原信号与重构信号之间的误差较大,因为欠采样信号不符合奈奎斯特采样定理的采样信号,故此时重构不能够有效地恢复原信号。
grid;
subplot(313);
plot(t,error);
xlabel('t');
ylabel('error(t)');
title('欠采样信号与原信号的误差error(t)');
3.运行结果与分析:
3.1.运行结果:

用matlab实现连续信号采样和重建的教学实践

用matlab实现连续信号采样和重建的教学实践

用matlab实现连续信号采样和重建的教学实践连续信号采样和重建是数字信号处理领域中的重要概念。

在数字信号处理中,连续信号通常会被离散化为离散时间信号,并通过数字信号处理算法进行处理。

而在对连续信号进行离散化的过程中,就需要进行采样和重建。

在本文中,我们将介绍如何用matlab实现连续信号采样和重建,旨在帮助学生加深对这一概念的理解和掌握。

具体实践步骤如下:1.生成一个连续信号首先,我们需要生成一个连续信号作为样本信号。

这里我们可以使用matlab自带的信号生成函数,例如sin、cos、sawtooth等。

例如,我们可以生成一个频率为2Hz的正弦波信号:t = 0:0.001:1;f = 2;x = sin(2*pi*f*t);plot(t,x);2.对连续信号进行采样接下来,我们需要对连续信号进行采样。

采样可以理解为对原始信号进行抽取,以获取离散时间信号。

在matlab中,我们可以使用resample函数进行采样。

具体实现代码如下:Fs = 100; % 采样率为100Hzx_resampled = resample(x,Fs,1000);t_resampled = 0:1/Fs:(length(x_resampled)-1)/Fs;plot(t_resampled,x_resampled);这里我们将原始信号采样率降低到100Hz,并用resample函数实现了采样。

3.对离散时间信号进行重建最后,我们需要对离散时间信号进行重建,以恢复原始的连续信号。

在matlab中,我们可以使用interp1函数进行重建。

具体实现代码如下:这里我们用interp1函数将离散时间信号重新插值,从而得到与原始信号相同的连续信号。

通过以上实践步骤,我们成功地实现了连续信号采样和重建,并加深了对该概念的理解和掌握。

在实际应用中,我们可以根据需要选择不同的采样率和重建方法,以满足实际需求。

MATLAB实现连续信号的采样与重构仿真

MATLAB实现连续信号的采样与重构仿真

目录概述 (1)设计原理 (2)1.1MATLAB介绍 (2)1.2连续时间信号 (2)1.3采样定理 (3)1.4信号重构 (5)连续信号采样及重构 (7)2.1S A(T)的临界采样及重构 (7)2.1.1实现程序代码 (7)2.1.2程序运行运行结果图与分析 (8)2.2S A(T)的过采样及重构 (9)2.2.1实现程序代码 (9)2.2.2程序运行运行结果图与分析 (11)2.3S A(T)的欠采样及重构 (12)2.3.1实现程序代码 (12)2.3.2程序运行运行结果图与分析 (13)2.4程序中的常见函数和功能 (14)致谢 (14)参考资料 (15)课程设计总结 (16)前言信号与系统课程设计是学习《信号与系统》课程必要的教学环节。

由于该课程是专业基础课,需要通过实践了巩固基础知识,为使学生取得最现代化的设计技能和研究方法,课程设计训练也就成为了一个重要教学环节。

通过一个模拟信号的一系列数据处理,达到进一步完善对信号与系统课程学习的效果。

信号与系统课程同时也是一门实用性较强、涉及面较广的专业基础课,该课程是将学生从电路分析的知识领域引入信号处理与传输领域的关键性课程,对后续专业课起着承上启下的作用。

该科的基本方法和理论大量应用于计算机信息处理的各个领域特别是通信,数字语音处理、数字图象处理、数字信号分析等领域,应用更为广泛。

概述本次课程设计应用MATLAB实现连续信号的采样与重构仿真,了解MATLAB软件,学习应用MATLAB软件的仿真技术。

它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。

初步掌握线性系统的设计方法,培养独立工作能力。

加深理解采样与重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用与重构的方法。

计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响。

要做到以下基本要求:1. 掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。

应用MATLAB实现连续信号的采样与重构

应用MATLAB实现连续信号的采样与重构

应用MATLAB实现连续信号的采样与重构部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑抽样定理及应用2.1课程设计的原理2.1.1连续信号的采样定理模拟信号经过 (A/D> 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件:b5E2RGbCAP(1>必须是带限信号,其频谱函数在>各处为零;<对信号的要求,即只有带限信号才能适用采样定理。

)(2>取样频率不能过低,必须>2<或>2)。

<对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。

)如果采样频率大于或等于,即<为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号。

一个频谱在区间<-,)以外为零的频带有限信号,可唯一地由其在均匀间隔<<)上的样点值所确定。

根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。

一个时间受限信号,它集中在<)的时间范围内,则该信号的频谱在频域中以间隔为的冲激序列进行采样,采样后的频谱可以惟一表示原信号的条件为重复周期,或频域间隔<其中)。

采样信号的频谱是原信号频谱的周期性重复,它每隔重复出现一次。

当>2时,不会出现混叠现象,原信号的频谱的形状不会发生变化,从而能从采样信号中恢复原信号。

<注:>2的含义是:采样频率大于等于信号最高频率的2倍;这里的“不混叠”意味着信号频谱没有被破坏,也就为后面恢复原信号提供了可能!)p1EanqFDPw(a>(b>(c>图* 抽样定理a)等抽样频率时的抽样信号及频谱<不混叠)b)高抽样频率时的抽样信号及频谱<不混叠)c> 低抽样频率时的抽样信号及频谱<混叠)2.1.2信号采样如图1所示,给出了信号采样原理图信号采样原理图<a)由图1可见,,其中,冲激采样信号的表达式为:其傅立叶变换为,其中。

利用MATLAB实现连续信号的采样与重构仿真课程设计 2之令狐文艳创作

利用MATLAB实现连续信号的采样与重构仿真课程设计 2之令狐文艳创作

华北水利水电大学令狐文艳课程设计课程名称:连续信号的采样与重构专业班级:通信工程目录1、摘要12、正文22.1、设计目的22.2、设计原理(1)、连续时间信号2(2)、采样定理3(3)、信号重构52.3、信号采样与恢复的程序5(1)设计连续信号6(2)设计连续信号的频谱7(3)设计采样信号8(4)设计采样信号的频谱图9(5)设计低通滤波器10(6)恢复原信号123、总结与致谢134、参考文献141.摘要本次课程设计应用MATLAB实现连续信号的采样与重构仿真,了解MATLAB软件,学习应用MATLAB软件的仿真技术。

它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。

初步掌握线性系统的设计方法,培养独立工作能力。

加深理解采样与重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用与重构的方法。

计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响。

要做到以下基本要求:1. 掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。

2. 掌握利用MATLAB实现连续信号采用与重构的方法,加深理解采样与重构的概念。

3 . 初步掌握线性系统的设计方法,培养独立工作能力。

4. 学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。

5. 加深理解采样对信号的时域和频域特性的影响;验证信号与系统的基本概念、基本理论,掌握信号与系统的分析方法。

6. 加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样与重构的方法。

2.正文2.1 设计目的与要求对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连续信号和采样信号进行FFT频谱分析。

2.2 设计原理(1)连续时间信号连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。

信号与系统课程设计应用MATLAB实现连续信号的采样与重构仿真

信号与系统课程设计应用MATLAB实现连续信号的采样与重构仿真

沈阳大学2.1.2MATLAB 绘图的基本指令---plotplot 是MATLAB 绘图的基本指令,MATLAB 中的绘图指令基本都是由它“衍生”而来,其基本指令形式有如下3种:plot(x1); plot(x2,y2); plot(x3,y3,x4,y4…);其中,x1、x2、y2、x3、y3等符号均代表需要绘制的参数,它门可以是向量、矩阵、复数矩阵等,plot 指令将根据不同的参数绘制不同的图形。

2.1.3多子图绘制指令---subplotMATLAB 为方便用户进行仿真分析,设置了subplot 指令,利用它可以在不同的子图下绘制图形,以进行对比分析。

subplot 的基本指令格式如下:subplot(m,n,k) %作出(mn)幅子图中的第k 幅图形subplot(‘position’,[left bottom width height]) %在人工指定位置作出字图。

subplot(m,n,k)指令表示在图形窗口中产生(m n )幅子图,k 代表当前绘制子图号。

如subplot (2,2,1)就是产生22幅子图,当前在子图1绘制图形。

2.1.4sinc 序列Sinc 函数是Matlab 软件中经常使用的函数之一,sinc 序列定义为:⎪⎩⎪⎨⎧=≠=010sin )(n n nnn S a ππ (2-1)这个信号可以利用Signal Processing Toolbox 中的函数sinc 来实现。

2.2 周期信号的频谱周期信号可以分解成一系列正弦信号和指数信号之和,即f(t)=20A +∑∞=1n An cos(n ω0t+n ϕ) (2-2)或f(t)=∑∞-∞=n nFe jn t 0ω (2-3)沈阳 大 学图1 周期信号的频谱由图1见,周期信号频谱具有以下特点:(1)频谱图由频率离散的谱线组成,每根谱线代表一个谐波分量。

即周期信号的频谱是离散谱。

(2)频谱图中的谱线只能在基波频率的整数倍频率上出现,即谐波性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计题目应用MATLAB实现连续信号的采样与重构仿真1、设计目的信号与系统课程设计是学习《信号与系统》课程必要的教学环节。

由于该课程是专业基础课,需要通过实践了巩固基础知识,为使学生取得最现代化的设计技能和研究方法,课程设计训练也就成为了一个重要教学环节。

通过对信号与系统一书的重新认识,我们将学习如何利用MATLAB软件进行仿真与重构并加深对滤波器的理解,这样的课程设计出了对我们的学习起着只关重要的作用,还可以很好的培养我们自己的动手能力。

本次课程设计,我们会引入一个模拟的信号,通过MATLAB软件的防真技术来实现对它的分析、理解与学习。

MATLAB软件是今年来比较长用的一种数学软件,它有很强大的功能,主要侧重于某些理论知识的灵活运用。

本次课程设计的目的是:增加对仿真软件MATLAB的感性认识,熟悉MATLAB软件平台的使用和MATLAB编程方法及常用语句;、初步掌握MATLAB的编程方法和特点;加深理解采样与重构的概念,应用MATLAB编程实现对信号的采样与重构;分别计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响;学生需要自拟题目,根据自己手中的资料独立思考与分析,明确实习内容,制定实习步骤与方案,独立完成作业。

2、原理说明2.1.1MATLABMATLAB是美国Math Works公司产品,MATLAB现已被广泛于数学、通信、信号处理、自动控制、神经网络、图形处理等许多不同学科的研究中。

并越来越多的应用到我们的学习生活中来,是目前通信工程上最广泛应用的软件之一。

最初的MATLAB 只是一个数学计算工具。

但现在的MATLAB已经远不仅仅是一个“矩阵实验室”,它已经成为一个集概念设计、算法开发、建模仿真,实时实现于一体的集成环境,它拥有许多衍生子集工具。

沈阳大学2.1.2MATLAB 绘图的基本指令---plotplot 是MATLAB 绘图的基本指令,MATLAB 中的绘图指令基本都是由它“衍生”而来,其基本指令形式有如下3种:plot(x1); plot(x2,y2); plot(x3,y3,x4,y4…);其中,x1、x2、y2、x3、y3等符号均代表需要绘制的参数,它门可以是向量、矩阵、复数矩阵等,plot 指令将根据不同的参数绘制不同的图形。

2.1.3多子图绘制指令---subplotMATLAB 为方便用户进行仿真分析,设置了subplot 指令,利用它可以在不同的子图下绘制图形,以进行对比分析。

subplot 的基本指令格式如下:subplot(m,n,k) %作出(mn)幅子图中的第k 幅图形subplot(‘position’,[left bottom width height]) %在人工指定位置作出字图。

subplot(m,n,k)指令表示在图形窗口中产生(m n )幅子图,k 代表当前绘制子图号。

如subplot (2,2,1)就是产生22幅子图,当前在子图1绘制图形。

2.1.4sinc 序列Sinc 函数是Matlab 软件中经常使用的函数之一,sinc 序列定义为:⎪⎩⎪⎨⎧=≠=010sin )(n n nnn S a ππ (2-1)这个信号可以利用Signal Processing Toolbox 中的函数sinc 来实现。

周期信号的频谱周期信号可以分解成一系列正弦信号和指数信号之和,即f(t)=20A +∑∞=1n An cos(n ω0t+n ϕ) (2-2)或f(t)=∑∞-∞=n nFe jn t 0ω (2-3)图1 周期信号的频谱由图1见,周期信号频谱具有以下特点:(1)频谱图由频率离散的谱线组成,每根谱线代表一个谐波分量。

即周期信号的频谱是离散谱。

(2)频谱图中的谱线只能在基波频率的整数倍频率上出现,即谐波性。

(3)频谱中个谱线的高度,随谐波次数的增高而逐渐减小。

当谐波次数无限增高时,谐波分量的振幅趋于无穷小,即收敛性。

⎪⎪⎩⎪⎪⎨⎧><=2,02,)(ττt t A t f (2-4)2,10,n ,22sin )(1Fn 00222200±±====⎰⎰---τωτωτττωωn n T A dt e T A dt e t f T t jn ttt jn (2-5) 沈 阳 大 学课程设计说明书tjnneTnTnTAtf0sin)(ωπτπττ∑∞-∞==(2-6)图5 抽样函数波形)2(22sinτωττωτωτnSaTAnnTAFn==(2-7)沈阳大学图2 周期与频谱的关系可见,信号的频带宽度与信号的持续时间成反比,信号持续时间愈长,其频带愈窄;反之,信号脉冲愈窄,其频带愈宽。

非周期信号的频谱门函数可以表示为⎪⎪⎩⎪⎪⎨⎧><=2,02,1)(τττtttg(2-8))(1)()(2222tjtjtjtj eejdtedtetfFωωττωωωω--===---∞∞--⎰⎰)2(22sin2sin2ωττωτωττωωτSa===(2-9)图3 门函数及其频谱由图1见,周期信号频谱具有以下特点:(1)非周期矩形脉冲信号的频谱是连续频谱,其形状与周期矩形脉冲的离散频谱的包络线相似,都有Sa(x)的形式。

周期信号的离散频谱可以通过对非周期信号的连续频谱等间隔取样求得。

(2)信号在时域中的持续时间有限,则在频域其频谱将延续到无限。

(3)信号的频谱分量主要集中在零频到第一个过零点之间,工程上往往将此宽度作为有效宽带。

即以(0,τπ2)频率范围作为门函数的有效宽度△ω。

△ω与脉冲宽度τ成反比,脉宽愈窄,频带愈宽;脉冲愈宽,频带愈窄。

3、实验内容运用MATLAB 软件,输入周期信号与非周期信号的频谱,并观察输出图形,并做出分析。

具体程序以及步骤如下:周期信号频谱% 周期与频谱的关系实现程序 function [A_sym,B_sym]=CTFSingsym% 采用符号计算求[0,T]内时间函数的三角级数展开系数 % 函数的输入输出都是数值量 % Nn 输出数据的准确位数% A_sym 第1元素是直流项,其后元素依次是1,2,3,...次斜波cos 项展开系数 % B_sym 第2,3,4,...元素依次是1,2,3,...次斜波sin 项展开系数 % T T=m*tao, 周期信号 % Nf 谐波的阶数% Nn 输出数据的准确位数% m(m=T/tao)周期与脉冲宽度之比,如m=4,8,16,100等 % tao 脉宽:tao=T/M syms t n y沈 阳 大 学if nargin<3;Nf=input('pleas Input 所需展开的最高谐波次数:Nf=');end T=input('pleas Input 信号的周期T ');if nargin<5;Nn=32;endy=time_fun_s(t);A0=2*int(y,t,0,T)/T;As=int(2*y*cos(2*pi*n*t/T)/T,t,0,T);Bs=int(2*y*sin(2*pi*n*t/T)/T,t,0,T);A_sym(1)=double(vpa(A0,Nn));for k=1:NfA_sym(k+1)=double(vpa(subs(As,n,k),Nn));B_sym(k+1)=double(vpa(subs(Bs,n,k),Nn));endif nargout==0S1=fliplr(A_sym)S1(1,k+1)=A_sym(1)S2=fliplr(1/2*S1)S3=fliplr(1/2*B_sym)S3(1,k+1)=0S4=fliplr(S3)S5=S2-i*S4;N=Nf*2*pi/T;k2=0:2*pi/T:N;x=time_fun_e(t)subplot 212stem(k2,abs(S5));title('连续时间函数周期矩形脉冲的单边幅度谱')axis([0,80,0,])line([0,80],[0,0])end%---------------------------------------------------------------function y=time_fun_s(t)% 该函数是的子函数。

它是由符号变量和表达式写成syms a a1T=input('pleas Input 信号的周期T=');M=input('周期与脉冲宽度之比M=');A=1;tao=T/M;a=tao/2;y1=sym('Heaviside(t+a1)')*A;y=y1-sym('Heaviside(t-a1)')*A;y=subs(y,a1,a);y=simple(y);%--------------------------------------------------------------------------function x=time_fun_e(t)% 该函数是的子函数。

它是由符号变量和表达式写成% t是时间数组% T是周期duty=dao/TT=input('pleas Input 信号的周期T=');M=input('周期与脉冲宽度之比M=');t=-2*T::2*T;tao=T/M;x=rectpuls(t,tao);subplot 211plot(t,x)hold onx=rectpuls(t-T,tao);plot(t,x)hold onx=rectpuls(t+T,tao);plot(t,x)title('周期为T,脉宽tao=T/M的矩形脉冲')axis([-10-T,10+T,0,])沈阳大学输出图形如下:图4 T=5,tao=4的周期矩形频谱图5 T=5,tao=8的周期矩形频谱沈阳大学图6 T=5,tao=16的周期矩形频谱沈阳大学图7 T=5,tao=100的周期矩形频谱图8 T=5,tao=4的周期矩形频谱沈阳大学非周期信号的频谱% 门信号的波形及其频谱实现程序R=;t=-2:R:2;f=heaviside(t+-heaviside;w1=2*pi*5;N=500;k=0:N;w=k*w1/N;F=f*exp(-j*t'*w)*R;F=real(F);W=[-fliplr(w),w(2:501)];F=[fliplr(F),F(2:501)];subplot 211;plot(t,f,'r');xlabel('t');ylabel('f(t)');title('f(t)=u(t+1)-u(t-1)');subplot 212;plot(W,F,'b');xlabel('w');ylabel('F(w)');title('f(t)的傅立叶变换F(w)');输出图形如下:沈阳大学图9 门函数及其频谱4、运行结果及结果分析由图4到图7可知,信号的频带宽度与信号的持续时间成反比,信号持续时间愈长,其频带愈窄;反之,信号脉冲愈窄,其频带愈宽。

相关文档
最新文档