高中数学 常见函数:正比例函数、反比例函数与对勾函数(沐风教育)

合集下载

对勾函数

对勾函数

对勾函数图象性质对勾函数 :数学中一种常见而又特殊的函数。

如图一、对勾函数f(x)=ax+ 的图象与性质对勾函数是数学中一种常见而又特殊的函数。

它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。

(一 ) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+ (接下来写作f(x)=ax+b/x )。

当 a≠0, b≠0时, f(x)=ax+b/x 是正比例函数 f(x)=ax 与反比例函数 f(x)= b/x 叠“加”而成的函数。

这个观点,对于理解它的性质,绘制它的图象,非常重要。

当 a , b 同号时,f(x)=ax+b/x 的图象是由直线y= ax 与双曲线y= b/x 构成,形状酷似双勾。

故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。

如下图所示:a>0 b>0 a<0 b<0对勾函数的图像( ab 同号)当 a ,b 异号时, f(x)=ax+b/x 的图象发生了质的变化。

但是,我们依然可以看作是两个函数“叠加”而成。

(请自己在图上完成:他是如何叠加而成的。

)对勾函数的图像(ab 异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。

接下来,为了研究方便,我们规定a>0 , b>0 。

之后当a<0,b<0 时,根据对称就很容易得出结论了。

1(二 ) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。

利用均值不等式可以得到:当 x>0 时,。

当 x<0 时,。

即对勾函数的定点坐标:(三 ) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。

(四 ) 对勾函数的单调性y(五 ) 对勾函数的渐进线O Xy=ax由图像我们不难得到:(六 ) 对勾函数的奇偶性:对勾函数在定义域内是奇函数,二、类耐克函数性质探讨函数y ax b,在 a0或b0时为简单的单调函数,不予讨论。

一次函数、正比例函数、反比例函数

一次函数、正比例函数、反比例函数

1、正比例函数 一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.正比例函数的图像经过( 0,0 )和(1,k)的一条直线2、一次函数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次(x的指数是1)函数.当b=0时,y=kx+b即y=kx,所以正比例函数是特殊的一次函数.一次函数的图象)和经过(0,b两点的一条直线35、正比例函数与一次函数图象之间的关系 一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).6、直线l1:y1=k1x+b1与l2:y2=k2x+b2的位置关系当k1≠k2时,l1与l2相交,交点是(0,b)7、反比例函数(1)定义:一般地,形如(为常数,)的函数称为反比例函数。

还可以写成8、反比例函数的图像是双曲线轴对称图形(对称轴是或)9、反比例函数()中比例系数的几何意义是:过双曲线 ()上任意引轴轴的垂线,所得矩形面积为。

10、反比例函数性质如下表:的取值图像所在象限函数的增减性一、三象限在每个象限内,值随的增大而减小二、四象限在每个象限内,值随的增大而增大练习(1)若函数y=(k+1)x+k2-1是正比例函数,则k的值为( )A.0 B.1 C.±1 D.-1(3)当m=_______时,函数是一次函数.(4).函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()(5)一次函数 y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是__________。

(6)直线y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是_________。

(7)如果函数的图像是双曲线,且在第二,四象限内,那么k的值是 。

(8)直线y=kx+b过点A(-2,0),且与y轴交于点B,直线与两坐标轴围成的三角形面积为3,求直线y=kx+b的解析式.分析: 由直线与两坐标轴围成的三角形面积为3,求得点B(0,3)或(0,-3),此题直线与y轴交于B点有两种不同情况,即B点在y轴正半轴或B点在y轴负半轴.注意分类讨论求解直线的解析式.题型一、待定系数法求解析式(1)如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。

对勾函数介绍

对勾函数介绍

对勾函数f(x)=ax+的图象与性质繁华分享对勾函数是数学中一种常见而又特殊的函数。

它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。

(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x)。

当a≠0,b≠0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x“叠加”而成的函数。

这个观点,对于理解它的性质,绘制它的图象,非常重要。

当a,b同号时,f(x)=ax+b/x的图象是由直线y=ax与双曲线y= b/x构成,形状酷似双勾。

故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。

如下图所示:a>0 b>0 a<0 b<0对勾函数的图像(ab同号)当a,b异号时,f(x)=ax+b/x的图象发生了质的变化。

但是,我们依然可以看作是两个函数“叠加”而成。

(请自己在图上完成:他是如何叠加而成的。

)对勾函数的图像(ab异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。

接下来,为了研究方便,我们规定a>0,b>0。

之后当a<0,b<0时,根据对称就很容易得出结论了。

(二)对勾函数的顶点对勾函数性质的研究离不开均值不等式。

利用均值不等式可以得到:当x>0时,。

当x<0时,。

即对勾函数的定点坐标:(三)对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。

(四)对勾函数的单调性(五)对勾函数的渐进线由图像我们不难得到:(六)对勾函数的奇偶性对勾函数在定义域内是奇函数,X。

对勾函数图象性质

对勾函数图象性质

对勾函数图象性质对勾函数:数学中一种常见而又特殊的函数。

如图一、对勾函数f(x)=ax+ 的图象与性质对勾函数是数学中一种常见而又特殊的函数。

它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。

(一)对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x)。

当a≠0,b≠0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x “叠加”而成的函数。

这个观点,对于理解它的性质,绘制它的图象,非常重要。

当a,b同号时,f(x)=ax+b/x的图象是由直线y=ax与双曲线y= b/x构成,形状酷似双勾。

故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。

如下图所示:当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。

但是,我们依然可以看作是两个函数“叠加”而成。

(请自己在图上完成:他是如何叠加而成的。

)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。

接下来,为了研究方便,我们规定a>0,b>0。

之后当a<0,b<0时,根据对称就很容易得出结论了。

(二) 对勾函数的顶点a>0 b>0 a<0 b<0对勾函数的图像(ab 同号)对勾函数的图像(ab 异号)对勾函数性质的研究离不开均值不等式。

利用均值不等式可以得到: 当x>0时,当且尽当时取等号 ,此时。

当x<0时,当且尽当时取等号 ,此时。

(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。

(四) 对勾函数的单调性(五) 对勾函数的渐进线(六) 对勾函数的奇偶性 :对勾函数在定义域内是奇函数, 二、类对勾函数性质探讨X函数xbax y +=,在时或00==b a 为简单的单调函数,不予讨论。

最新正比例函数、一次函数、反比例函数知识点总结教学文案

最新正比例函数、一次函数、反比例函数知识点总结教学文案

学习资料正比例函数、一次函数、反比例函数的性质及图象、一次函数的性质和图象:概念:一般地,形如y=kx+b(k , b是常数,且k z0 的函数,叫做一次函数。

图像和性质:①k>0,b>0,则图象过_________________________ 象限②k>0,b<0,则图象过_________________________ 象限当k>0时,y随x的增大而__________________________③k<0,b>0,则图象过______________________ 象限④k<0,b<0,则图象过______________________ 象限当k v 0时,y 随x的增大而___________________________________三、反比例函数性质和图象:1. ______________________ 定义:形如 (k为常数,k z0的函数称为反比例函数。

其他形式________________________________________________________2. 图像:反比例函数的图像是双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

,在每个象限内y,在每个象限内y一、正比例函数性质和图象:概念:一般地,形如___________ (k是常数,且k z0的函数,叫做正比例函数。

当k>0时,图象过_________________象限;y随x的增大而_________________________________。

3. _________________________________________________ 性质:当k >0时双曲线的两支分别位于_______________________________________值随x值的增大而减小。

当k v0时双曲线的两支分别位于____________________4. |k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

正比例函数与反比例函数(含图像)

正比例函数与反比例函数(含图像)

1、正比例函数
定义:
形如y=kx(k为常数,且k≠0),我们就说y是x的正比例函数。

正比例函数是特殊的一次函数【一次函数的一般形式为y=kx+b(b不为0,k为常数)】。

图象作法:
a.列表(待定系数)
b.描点
c.连线
正比例函数的图象是一条直线,一定经过坐标的原点;
当k>0时,图象经过一、三象限,y随x的增大而增大;
当k<0时,图象经过二、四象限,y随x的增大而减小。

具体图像:
正比例函数y=x的函数图像
2、反比例函数
定义:
形如y=k/x(k为常数且k≠0)的函数,我们就说y是x的反比例函数。

(自变量x的取值范围是不等于0的一切实数)
图像作法:
反比例函数的图像为双曲线。

它可以无限地接近坐标轴,但永不相交;
当k>0时,图象在一、三象限,在每个象限内,y随x的增大而减小;
当k<0时,图象在二、四象限,在每个象限内,y随x的增大而增大。

具体图像:
反比例函数y=1/x的函数图像。

对勾函数图象性质

对勾函数图象性质
3. 若 x>1. 求 y x 2 x 1 的最小值 x 1
4. 若 x>0. 求 y 3x 2 的最小值 x
5.已知函数 y x2 2x a (x [1,)) x
(1) 求 a 1 时,求f (x)的最小值 2
(2)若对任意 x∈[1,+∞],f(x)>0 恒成立,求 a 范围
(3) a 0,b 0
(4) a 0,b 0
设 y1 ax , y2

b x
,则
y
y1
y2
ax
b x
,其定义域为
x | x R,且x 0
(1) a
0, b
0
时,
y1
ax

y2
b x
在 (,0),(0,)
上分别单调递增。

y
y1
y2
ax
b x
在 (,0),(0,)
为单调递增函数。
(2) a
f(x)=ax+b/x)。 当 a≠0,b≠0 时,f(x)=ax+b/x 是正比例函数 f(x)=ax 与反比例函数 f(x)= b/x
“叠加”而成的函数。这个观点,对于理解它的性质,绘制它的图象,非常重要。 当 a,b 同号时,f(x)=ax+b/x 的图象是由直线 y=ax 与双曲线 y= b/x 构成,形
对勾函数图象性质
对勾函数:数学中一种常见而又特殊的函数。如图
一、对勾函数 f(x)=ax+ 的图象与性质
对勾函数是数学中一种常见而又特殊的函数。它在高中教材上不出现,但考试总 喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像
对勾函数是一种类似于反比例函数的一般函数,形如 f(x)=ax+ (接下来写作

对勾函数

对勾函数

对勾函数f(x)=ax+错误!未找到引用源。

的图象与性质对勾函数是数学中一种常见而又特殊的函数。

它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。

(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+错误!未找到引用源。

(接下来写作f(x)=ax+b/x)。

当a≠0,b≠0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x“叠加”而成的函数。

这个观点,对于理解它的性质,绘制它的图象,非常重要。

当a,b同号时,f(x)=ax+b/x的图象是由直线y=ax与双曲线y= b/x构成,形状酷似双勾。

故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。

如下图所示:a>0 b>0 a<0 b<0对勾函数的图像(ab同号)当a,b异号时,f(x)=ax+b/x的图象发生了质的变化。

但是,我们依然可以看作是两个函数“叠加”而成。

对勾函数的图像(ab异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。

接下来,为了研究方便,我们规定a>0,b>0。

之后当a<0,b<0时,根据对称就很容易得出结论了。

(二)对勾函数的顶点对勾函数性质的研究离不开均值不等式。

利用均值不等式可以得到:当x>0时,错误!未找到引用源。

当x<0时,错误!未找到引用源。

即对勾函数的定点坐标:(三)对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。

(四)对勾函数的单调性(五)对勾函数的渐进线由图像我们不难得到:(六)对勾函数的奇偶性对勾函数在定义域内是奇函数,X。

正、反比例函数的图像和性质

正、反比例函数的图像和性质

图像形状
反比例函数的图像是两条 关于原点对称的双曲线, 分别位于第一、三象限和 第二、四象限。
图像趋势
当 $x$ 趋近于正无穷或负 无穷时,$y$ 趋近于 0; 当 $x$ 趋近于 0 时,$y$ 趋近于无穷大。
图像与坐标轴关系
反比例函数的图像与坐标 轴没有交点,即不经过任 何象限的角平分线。
反比例函数性质分析
正比例函数性质分析
01
02
03
比例性
正比例函数中,$y$ 与 $x$ 成正比,即当 $x$ 增 大时,$y$ 也随之增大; 当 $x$ 减小时,$y$ 也随 之减小。
直线性
正比例函数的图像是一条 直线,因此具有直线性, 即函数值的变化是均匀的 。
过原点性
正比例函数的图像经过原 点,这意味着当 $x = 0$ 时,$y = 0$。
函数的对称性
如果函数的图像关于某条直线对称,则称该函数具有对称性。例如,二次函数$f(x)=ax^2+bx+c$的图像关于直 线$x=-frac{b}{2a}$对称。
02
正比例函数图像与性质
正比例函数定义及表达式
定义
正比例函数是形如 $y = kx$ ( $k$ 为常数,且 $k neq 0$)的 函数。
反比例函数图像
反比例函数 $y = frac{k}{x}$($k > 0$)的图像是两条分别位于第一象限 和第三象限的双曲线。这两条曲线关 于原点对称,且随着 $x$ 的增大, $y$ 逐渐减小并趋近于 0。
性质异同点分析
相同点
正比例函数和反比例函数都是关于原点对称的,即它们都是奇函数。
不同点
正比例函数的图像是直线,而反比例函数的图像是双曲线;正比例函数的值随着 $x$ 的增大而增大, 而反比例函数的值随着 $x$ 的增大而减小。

对勾函数(目前最全面的版本了吧)

对勾函数(目前最全面的版本了吧)

对勾函数f(x)=ax+的图象与性质繁华分享对勾函数是数学中一种常见而又特殊的函数。

它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。

(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x)。

当a≠0,b≠0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x“叠加”而成的函数。

这个观点,对于理解它的性质,绘制它的图象,非常重要。

当a,b同号时,f(x)=ax+b/x的图象是由直线y=ax与双曲线y= b/x构成,形状酷似双勾。

故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。

如下图所示:a>0 b>0 a<0 b<0对勾函数的图像(ab同号)当a,b异号时,f(x)=ax+b/x的图象发生了质的变化。

但是,我们依然可以看作是两个函数“叠加”而成。

(请自己在图上完成:他是如何叠加而成的。

)对勾函数的图像(ab异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。

接下来,为了研究方便,我们规定a>0,b>0。

之后当a<0,b<0时,根据对称就很容易得出结论了。

(二)对勾函数的顶点对勾函数性质的研究离不开均值不等式。

利用均值不等式可以得到:当x>0时,。

当x<0时,。

即对勾函数的定点坐标:(三)对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。

(四)对勾函数的单调性(五)对勾函数的渐进线由图像我们不难得到:(六)对勾函数的奇偶性对勾函数在定义域内是奇函数,yXOy=ax。

正比例函数和反比例函数(很好很经典精品)

正比例函数和反比例函数(很好很经典精品)

正比例函数和反比例函数(很好很经典精品)正比例函数和反比例函数一、知识梳理1.如果变量y是自变量x的函数,对于x在定义域内取定的一个值a,变量y的对应值叫做当x=a时的函数值。

为了深入研究函数,我们把“y是x的函数”用记号y=f(x)表示,这里括号里的x表示自变量,括号外的字母f表示y随x变化而变化的规律。

f(a)表示当x=a时的函数值。

2.函数的自变量允许取值范围,叫做这个函数的定义域。

3.正、反比例函数的解析式、定义域、图像、性质解析式图像经过象限增减性正比例函数y=kx(k≠0) 经过(0,0)与(1,k)两点的直线当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

y随着x的增大而增大。

反比例函数y=k(k≠0) 经过(1,k)与(k,1)两点的双曲线当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

在每个象限内,y随着x的增大而减小。

4.函数的表示法有三种:列表法,图像法,解析法。

二、典型题选讲概念辨析1.在问题研究过程中,可以取不同数值的量叫做变量。

保持数值不变的量叫做常量。

表达两个变量之间依赖关系的数学式子称为函数。

2.写出下列函数的定义域:1)y=x+1 定义域为实数集。

2)y=2/x 定义域为x≠0的实数集。

3)y=x-3 定义域为实数集。

4)y=(x-1)/5 定义域为x≠1的实数集。

3.已知:f(x)=-x^2+1,f(0)=1,f(-1)=0,f(2)=-3.4.解析式形如y=kx(k≠0)的函数叫做正比例函数。

5.函数y=3x的图像是经过(1,3)和(0,0)的一条直线。

当自变量x的值从小到大逐渐变化时,函数值y相应地从0到正无穷逐渐变化。

6.反比例函数的解析式是y=k/x,反比例函数的图像叫做双曲线。

7.已知:反比例函数y=-8/x,点A(-2,-4)在它的图像上。

8.反比例函数y=-2/x的图像的两支在第二、四象限。

对勾函数图象性质

对勾函数图象性质

对勾函数图象性质对勾函数:数学中一种常见而又特殊的函数。

如图一、对勾函数f(x)=ax+ 的图象与性质对勾函数是数学中一种常见而又特殊的函数。

它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。

(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x )。

当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。

这个观点,对于理解它的性质,绘制它的图象,非常重要。

当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。

故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。

如下图所示:当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。

但是,我们依然可以看作是两个函数“叠加”而成。

(请自己在图上完成:他是如何叠加而成的。

)a>0 b>0 a<0 b<0对勾函数的图像(ab 同号)对勾函数的图像(ab异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。

接下来,为了研究方便,我们规定a>0,b>0。

之后当a<0,b<0时,根据对称就很容易得出结论了。

(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。

利用均值不等式可以得到:当x>0时,。

当x<0时,。

即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。

(四) 对勾函数的单调性(五) 对勾函数的渐进线由图像我们不难得到:(六) 对勾函数的奇偶性 :对勾函数在定义域内是奇函数, 二、类对勾函数性质探讨 函数xbax y +=,在时或00==b a 为简单的单调函数,不予讨论。

高考中所有的函数图像大汇总

高考中所有的函数图像大汇总

高考中所有的函数图像大汇总 专项二 高考用到的函数图像总结高考中用到的函数图像是指:一次函数图像、反比例函数图像、二次函数图像、幂函数图像(五种)、对勾(也称对号)函数图像、指数函数图像、对数函数图像、简单的三角函数图像、简单的三次函数图像一、一次函数图像(1)函数)0(≠+=k b kx y 叫做一次函数,它的定义域是R ,值域是R ; (2)一次函数的图象是直线,这条直线不能竖直,所以一次函数又叫线性函数;(3)一次函数)0(≠+=k b kx y 中,k 叫直线的斜率,b 叫直线在y 轴上的截距; 0>k 时,函数是增函数,0<k 时,函数是减函数;注意截距不是距离的意思,截距是一个可正可负可为零的常数 (4)0=b 时该函数是奇函数且为正比例函数,直线过原点;0≠b 时,它既不是奇函数,也不是偶函数; (5)作一次函数图像时,一般先找到在坐标轴上的两个点,然后连线即可 二、反比例函数图像 (一)反比例函数的概念1.()可写成()的形式,注意自变量x 的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可写成xy=k 的形式,用它可迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x 轴、y 轴无交点.(二)反比例函数及其图象的性质函数解析式:(),自变量的取值范围:越大,图象的弯曲度越小,曲线越平直.图像越远离坐标轴越小,图象的弯曲度越大.图像越靠近坐标轴 当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k 的几何意义如图1,设点P (a ,b )是双曲线上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA的面积是(三角形PAO 和三角形PBO 的面积都是).如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC ⊥PA 的延长线于C ,则有三角形PQC 的面积为.图1 图2 三、二次函数图像(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递减; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递增 在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递增; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递减对称性函数的图象关于x=-b2a对称(2)我们在做题的时候,作比较详细的二次函数图像,需要作出开口方向、对称轴所在位置、与两个坐标轴的交点位置、顶点所在位置,而不能随手一条曲线,就当做二次函数的图像了。

高中数学:7大函数,1图搞定!

高中数学:7大函数,1图搞定!

高中数学:7大函数,1图搞定!
高中数学中,函数是最重要的考点,同时也是最难的。

高中数学的函数,包括一次函数、二次函数、对数函数、指数函数、反比例函数、幂函数、对勾函数7大类,绝大部分同学学了3年,对函数都没有一个总体、全面的认识,更别说是掌握了。

学习函数,图像是关键,我们不仅要学会如何通过一个图像求出函数式,也要学会通过一个函数式画出一个函数图像,因为只有把函数式和函数图像结合起来,我们才能解决函数问题。

可见,函数问题对于函数的解题有多么重要。

刚开始教同学们函数的时候,班上没有一个同学的头脑是清楚的,全部都是四懂非懂的状态,好在通过我们共同的努力,大家现在的学习情况已经非常好了。

今天,我要跟大家分享的就是高中数学中的7大函数,的内容不多,但都是关键和重点,通过这我对这几个图像的解读,我相信,同学们一定会有很多收获的。

我把高中的函数做了总结,分别用了图像进行分析和说明,同学们把图像和函数式结合在一起看,很容易就能明白函数的关键以及解题的一些技巧。

那些说函数很难学,做题老师错的同学,是因为没有找到一个好的点,没有找到一个好的学习方法。

我相信,觉得函数难的同学并不在少数,所以来给大家做一个分享,希望大家花时间好好看看,一定会对大家的学习有很多帮助的。

希望大家能够好好利用这份资料。

由于篇幅有限,今天先分享到这里。

我专注研究提分技巧、学习方法,更多学习资料,我会每天更新。

敬请关注!。

正比例函数和反比例函数的区别(附图)

正比例函数和反比例函数的区别(附图)

正比例函数和反比例函数的区别(附图)
一:正比例函数
y=kx(k为常数,且k≠0),我们就说y是x的正比例函数,
正比例函数是特殊的一次函数,一次函数的一般形式为y=kx+b(b不为0,k为常数)。

正比例函数的图象是一条直线,一定经过坐标的原点,
当k>0时,图象经过一、三象限,y随x的增大而增大,
当k<0时,图象经过二、四象限,y随x的增大而减小。

二、反比例函数
y=k/x(k为常数且k≠0) 的函数,我们就说y是x的反比例函数 (自变量x的取值范围是不等于0的一切实数) 。

反比例函数的图像为双曲线,它可以无限地接近坐标轴,但永不相交,
当k>0时,图象在一、三象限,在每个象限内,y随x的增大而减小,
当k<0时,图象在二、四象限,在每个象限内,y随x的增大而增大。

对勾函数图象性质

对勾函数图象性质

对勾函数图象性质对勾函数:数学中一种常见而又特殊的函数。

如图一、对勾函数f(x)=ax+bx 的图象与性质对勾函数是数学中一种常见而又特殊的函数。

它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。

(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+bx (接下来写作f(x)=ax+b/x )。

当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。

这个观点,对于理解它的性质,绘制它的图象,非常重要。

当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。

故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。

如下图所示:当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。

但是,我们依然可以看作是两个函数“叠加”而成。

(请自己在图上完成:他是如何叠加而成的。

)a>0 b>0 a<0 b<0 对勾函数的图像(ab 同号) 对勾函数的图像(ab 异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。

接下来,为了研究方便,我们规定a>0,b>0。

之后当a<0,b<0时,根据对称就很容易得出结论了。

(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。

利用均值不等式可以得到:当x>0时,f (x )=ax +bx ≥2√ab (当且尽当ax =bx 时取等号),此时x =√ba 。

当x<0时,f (x )=ax +bx ≤−2√ab (当且尽当ax =bx 时取等号),此时x =−√ba 。

(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。

而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。

1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。

其图像的画法是按定义域的划分分别作图。

正比例反比例函数性质

正比例反比例函数性质

04
正反比例函数在生活中的 应用实例
正比例关系在生活中的应用举例
01 02
速度、时间和距离之间的关系
在匀速直线运动中,速度是恒定的,因此时间和距离成正比。例如,如 果一辆汽车以恒定速度行驶,那么它行驶的时间越长,行驶的距离就越 远。
工资和工作时间的关系
在计时工资制中,工资通常与工作时间成正比。例如,如果一名工人每 小时的工资是固定的,那么他工作的时间越长,获得的工资就越高。
指数函数与对数函数
形如 y = a^x(a > 0, a ≠ 1)和 y = log_a(x)(a > 0, a ≠ 1)的函 数。具有独特的增减性、图像特征以及在实际问题中的应用。
THANKS
求解正比例函数相关数学问题方法技巧
01
确定比例系数
根据题目条件,确定正比例函 数的比例系数k,通常利用已知
的一组对应值来求解。
02
利用图象求解
画出正比例函数的图象,利用 图象的直观性来求解相关问题 ,如求交点、判断函数值大小
等。
03
利用函数性质
利用正比例函数的性质,如增 减性、对称性等,来求解相关
综合运用正反比例关系解决问题
农业生产中的施肥问 题
农业生产中需要合理施肥以保证作物 生长。施肥量与作物产量之间通常存 在正比关系,即施肥量增加,作物产 量也相应增加。然而,过量施肥会导 致土壤污染和作物生长受阻。因此, 需要综合运用正比和反比关系来确定 最佳施肥量。
城市规划中的交通拥 堵问题
城市规划中需要解决交通拥堵问题。 一方面可以通过增加道路容量来提高 交通流量(正比关系),另一方面也 可以通过提高公共交通使用率来减少 私家车出行(反比关系)。综合运用 这两种方法可以有效缓解城市交通拥 堵问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见函数之 正比例函数、反比例函数与对勾函数
1.正比例函数
如果y=kx (k 是常数,K ≠0),那么,y 叫做x 的正比例函数
一次函数的图象是直线,画一次函数的图象,只要先描出两点,再连成直线
一次函数的性质
当k>0时y 随x 的增大而增大,当k<0时,y 随x 的增大而减小。

2、反比例函数
(1) 反比例函数及其图象
如果)0,(≠=k k x
k
y 是常数,那么,y 是x 的反比例函数。

反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象 (2)反比例函数的性质
当K>0时,图象的两个分支分别在一、三象限内,在每个象限内, y 随x 的增大而减小; 当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y 随x 的增大而增大。

3.对勾函数()b
f x ax x
=+的图象与性质
对勾函数是数学中一种常见而又特殊的函数。

它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。

(1) 对勾函数的图像
对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x )。

当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。

这个观点,对于理解它的性质,绘制它的图象,非常重要。

当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。

故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。

如下图所示:
当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。

但是,我们依然可以看作是两个函数“叠加”而成。

(请自己在图上完成:他是如何叠加而成的。


a>0 b>0 a<0b<0
对勾函数的图像(ab 同号)
一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。

接下来,为了研究方便,我们规定a>0,b>0。

之后当a<0,b<0时,根据对称就很容易得出结论了。

(2)对勾函数的顶点
对勾函数性质的研究离不开均值不等式。

利用均值不等式可以得到:
当x>0时,。

当x<0时,。

即对勾函数的定点坐标:
(3)对勾函数的定义域、值域
由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。

(4)对勾函数的单调性
(5)对勾函数的渐进线
由图像我们不难得到:
对勾函数的图像(ab异号)
y
X
O
y=ax
(6)对勾函数的奇偶性
对勾函数在定义域内是奇函数,。

相关文档
最新文档