高中数学 常见函数:正比例函数、反比例函数与对勾函数(沐风教育)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见函数之 正比例函数、反比例函数与对勾函数
1.正比例函数
如果y=kx (k 是常数,K ≠0),那么,y 叫做x 的正比例函数
一次函数的图象是直线,画一次函数的图象,只要先描出两点,再连成直线
一次函数的性质
当k>0时y 随x 的增大而增大,当k<0时,y 随x 的增大而减小。
2、反比例函数
(1) 反比例函数及其图象
如果)0,(≠=k k x
k
y 是常数,那么,y 是x 的反比例函数。
反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象 (2)反比例函数的性质
当K>0时,图象的两个分支分别在一、三象限内,在每个象限内, y 随x 的增大而减小; 当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y 随x 的增大而增大。
3.对勾函数()b
f x ax x
=+的图象与性质
对勾函数是数学中一种常见而又特殊的函数。它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。 (1) 对勾函数的图像
对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x )。 当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。如下图所示:
当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。但是,我们依然可以看作是两个函数“叠加”而成。(请自己在图上完成:他是如何叠加而成的。)
a>0 b>0 a<0b<0
对勾函数的图像(ab 同号)
一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0,b>0。之后当a<0,b<0时,根据对称就很容易得出结论了。(2)对勾函数的顶点
对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:
当x>0时,。
当x<0时,。
即对勾函数的定点坐标:
(3)对勾函数的定义域、值域
由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(4)对勾函数的单调性
(5)对勾函数的渐进线
由图像我们不难得到:
对勾函数的图像(ab异号)
y
X
O
y=ax
(6)对勾函数的奇偶性
对勾函数在定义域内是奇函数,