语音信号的滤波与频谱分析

合集下载

语音识别技术中的语音增强方法

语音识别技术中的语音增强方法

语音识别技术中的语音增强方法语音识别技术是一种基于计算机的人机交互方式,它将人的语音信息转化为文本或命令,实现自然语言对计算机的控制和交流。

然而,由于语音信号受到环境噪音、语音质量等多种因素的影响,识别准确度可能会受到一定的影响。

为了提高语音识别的准确性和稳定性,语音增强方法应运而生。

一、噪声抑制技术噪声是语音识别中常见的干扰因素之一,它会降低语音信号的质量,阻碍识别系统的准确工作。

因此,噪声抑制技术成为解决这一问题的重要手段之一。

常见的噪声抑制方法包括:频域滤波法、时域滤波法和声学特征转换法。

1. 频域滤波法频域滤波法是基于频域分析的一种噪声抑制技术,它通过分析语音信号的频率特性,有选择性地抑制噪声成分,保留语音信号的有用信息。

常用的频域滤波方法包括谱减法、MMSE准则和Subspace方法等。

2. 时域滤波法时域滤波法是一种基于时域分析的噪声抑制方法,它通过分析语音信号在时间域上的特性,对噪声信号进行抑制。

经典的时域滤波方法有阻带滤波法、LMS自适应滤波法和Kalman滤波法等。

3. 声学特征转换法声学特征转换法是一种基于声学特征的噪声抑制方法,它通过对语音信号的声学特征进行转换,使其更适合于识别算法的处理。

常见的声学特征转换方法有Mel频率倒谱系数(MFCC)、倒频谱法和线性预测法等。

二、语音增强技术除了噪声抑制技术外,语音增强技术也是一种重要的语音处理手段。

它通过调节语音信号的频谱特性,改善语音信号的质量,为语音识别系统提供更清晰、准确的输入。

常见的语音增强技术包括谱减法、频谱平滑法和频谱估计法等。

1. 谱减法谱减法是一种常用的语音增强方法,它通过对语音信号的频谱进行减噪处理,去除噪声成分,提高语音信号的质量。

谱减法的基本原理是通过对语音信号的短时傅里叶变换,将频谱信息进行分析和处理。

2. 频谱平滑法频谱平滑法是一种通过平滑语音信号的频谱来增强语音质量的方法。

它通过对语音信号的频谱进行滤波,去除高频噪声成分,使得语音信号更加平滑。

请描述短时自相关函数在语音信号时域处理的应用

请描述短时自相关函数在语音信号时域处理的应用

请描述短时自相关函数在语音信号时域处理的应用短时自相关函数(Short-term autocorrelation
function,STAF)是描述语音信号时域特征的一种重要工具,通常用于分析语音信号的波形结构、频率特性等信息。

下面是STAF在语音信号时域处理中的应用:
1. 语音信号的频谱分析:通过计算短时自相关函数,可以确定语音信号在不同频率上的成分个数和强度分布情况。

这对于语音信号的频谱分析具有重要的参考意义。

2. 语音信号的滤波器设计:通过计算STAF,可以确定语音信号在不同频率上的系数,为语音信号的滤波器设计提供参考。

例如,使用快速傅里叶变换(FFT)进行频域分析,然后使用适当的滤波器来实现语
音信号的降噪、去基线等处理。

3. 短时功率谱密度分析(Short-term power spectrum density,SPD):通过计算短时自相关函数,可以得到语音信号在不同
频率上的功率谱密度分布情况。

这对于语音信号的功率谱分析具有重要的参考意义,可以用于语音信号的功率谱估计、功率限制等任务。

4. 语音信号的短时特征提取:通过计算短时自相关函数,可以得到语音信号的短时特征。

这些特征可以用于识别不同的说话人、区分不同的语音信号等任务。

例如,可以使用一些基于短时特征的语音分类算法,如基于语音谱聚类的算法。

短时自相关函数是语音信号时域处理中重要的工具,可以用于分析语音信号的波形结构、频率特性、滤波器设计、功率谱密度分析、
短时特征提取等任务,为语音信号的处理提供更好的参考和支持。

语音信号的采集与频谱分析(附代码)

语音信号的采集与频谱分析(附代码)

《信号与系统》大作业语音信号的采集与频谱分析——基于Matlab的语音信号处理学生姓名:学号:专业班级:电子工程学院卓越班指导老师:2015年6月22日摘要本设计用苹果手机自带的录音设备采集了原始语音,并导入了电脑转成wav格式,然后用MATLAB和Adobe audition对其进行时域分析。

接着利用傅里叶变换进行了频域分析,绘制频谱图,再录制一段加上歌曲的伴奏的语音与原唱进行了对比分析,得出了我与歌星在频域上的差别。

本设计给信号加了两种噪声并通过观察加噪后的频谱和试听回放效果比较加噪前后的差别,最后,设计了FIR数字低通滤波器和带通滤波器,分析滤波前后的频谱。

再次试听回放效果,得出结论。

关键词:语音、FFT、频谱图、噪声、滤波器AbstractThis design is based on the general function of Matlab and Adobe edition to deal with Audio signals. The original signals are collected by iPhone’s built-in recording equipment.First,I compare the file generated by myself with that of thesame song sang by a famous singer.The emphasis is generally laid on analysing the difference in frequncy domain,but time domain will be included too.After that,two noise signals are added to the original signal respectively and let them pass a filter to analyse it.In the two process mentioned before,I make comparison between the before and after frequency domain.Sampling Theorem is the base of my design.It is by sampling we can get discrete signals from the original one and draw the image in time domain.Also,fast fourier transform is employed(FFT)to get the signals in frequency domain.The ayalysis of frequency domain is the highlight of this design.Through this design,I can deepen my comprehension of principles of audio signals and I have learnt how to deal with it.Through met with much hindrance,I improved my skills finally.Keywords: audio signal、TTT、noise、filter1 绪论1.1课题的研究意义语音信号处理属于信息科学的一个重要分支,它是研究用数字信号处理技术对语音信号进行处理的一门新兴学科,同时又是综合性的多学科领域和涉及面很广的交叉学科,因此我们进行语言信号处理具有时代的意义。

实验三 语音信号的滤波处理

实验三  语音信号的滤波处理

实验三 语音信号的滤波处理一、实验目的通过对语音信号的滤波处理,掌握信号频谱的计算、滤波方法,实现从频域上分离不同特点的信号,从而达到滤除信号中的干扰、降低噪声、以及分离男声和女声的目的。

二、实验原理1. 信号的和、积运算信号和与积运算是指信号相加与相乘。

这类运算较为简单。

需要注意的是,必须将同一瞬间的两个函数值相加或相乘。

在图1中,将()x t 视为缓慢波动的信道噪声,()g t 视为要传输的数字信号,则()()x t g t +表示了实际发送的数字信号,()()x t g t ⋅表示了信道噪声()x t 的取样输出信号。

tttt图1 信号的相乘与相加 图2 正弦信号与噪声相加 在实际应用中,最常见的是有用信号与噪声相加,这样的信号中,信号功率与噪声功率之比称为信噪比。

如图2所示是正弦信号、噪声信号的波形及两种信噪比下正弦信号与噪声相加的波形图。

然而有用信号是相对的,例如在语音信号中,正弦信号则是干扰信号,它同噪声一起,都是需要设法去掉的信号。

2. 信号的频谱计算实际应用中的信号绝大多数表现为振荡形式。

如图3所示是语音信号及其一个局部的波形图,可见该信号是一种振荡形式。

语音信号语音信号局部图3 语音信号的波形将复杂振荡分解为振幅不同和频率不同的正(余)弦振荡,这些谐振荡的幅值按频率排列的图形叫做频谱(幅度谱)。

广泛应用在声学、光学和无线电技术等方面。

它将对信号的研究从时域引到频域,从而带来更直观的认识。

在信号与系统中,采用FS、FT、DFS、DTFT等工具来计算信号的频谱。

实际信号的频谱往往比教材中的例子要复杂得多。

例如图4是图3所示语音信号的幅度谱,其中上图是fft()输出的结果,其表示的频率范围为0~f,下图s是中心频率在零频率处的幅度谱,它与教材中的表示方式一致。

应用FFT计算的幅度谱中心在零频率的幅度谱图4 语音信号的频谱3. 信号的理解本课程的教材中讲到了“信号的分类”、“典型信号(或常用信号)”等内容,这对于理解信号还远远不够。

语音信号的滤波——滤波器的设计

语音信号的滤波——滤波器的设计

图7-6 保存输出信号
图7-7 输出信号波形图和频谱图
涉及到在matlab中利用滤波器对语音信号进行滤波
注意: 1. 可利用filter函数 2. 可语音信号频谱与滤波器频响相乘(即对语音信号进行高、低通滤波),得到 输出信号的频谱,将所得结果经过傅里叶反变换函数变换为时域信号,绘出处 理后信号的波形图,并分别存档。
audeofile= strcat(filepath,filename); [datatemp,fs,le);
•对数据进行频谱分析,绘出语音信号的波形图和频谱图。
图7-4 输入信号波形图和频谱图
涉及到在matlab中绘制语音的时域波形图和频谱图
语音信号的滤波
输入信号 波形图
系统参数设定
输出信号 波形图
扬声器
输入信号 f(t)
系统函数 h(t)
输出信号y(t)
傅立叶变换 F(w)
×
傅立叶变换 H(w)

傅立叶变换 Y(w)
傅立叶反变换 y(t)
输入信号 频谱图
系统频响
输出信号 频谱图
• 系统的组成模块:
• (语音)输入信号
• 语音录入模块实现语音信号录入功能
• 高通滤波模块、低通滤波模块和带通滤波模块运用频域滤波理论实现对语音 信号的滤波处理功能

处理后的(语音)信号保存
– 处理后的语音存档模块实现信号保存功能
图7-2 实验界面
按“输入语音信号”按钮,录入语音信号的数据。
图7-3 选择输入信号
涉及到在matlab中打开文件夹,选择文件 handles.ChosFileOK = 1;%表示已经选择了音频按钮 guidata(hObject,handles); %读入一段音频文件 [filename,filepath]=uigetfile('.wav','选择音频文件'); if(filename==0) return; end

声音谱分析与声音处理:声音频谱与滤波

声音谱分析与声音处理:声音频谱与滤波

声音谱分析与声音处理:声音频谱与滤波声音是我们日常生活中不可或缺的一部分,通过声音可以传达信息、产生情感,也给我们带来了丰富的音乐和娱乐体验。

然而,要深入了解声音的本质和进行声音处理,我们需要掌握声音谱分析与声音滤波的相关知识。

一、声音频谱分析声音的频谱是指将声波信号的频率分解并得到各个频率成分的过程。

通过声音频谱分析,我们可以了解声音的构成、频率分布以及声音功率等信息。

在声音频谱分析中,有一个重要的工具被广泛应用,那就是傅里叶变换。

傅里叶变换可以将一个时域信号转换为频域信号,将声音信号分解为不同频率的正弦波成分。

根据奈奎斯特定理,声音信号的采样频率要大于声音信号中最高频率的两倍,以避免频谱中的混叠。

因此,在进行声音频谱分析时,我们需要先对声音信号进行采样,然后使用傅里叶变换将其转换为频域信号。

通过观察声音频谱图,我们可以判断声音的音调、音量和频率分布。

例如,高音会在高频率范围内有较高的能量,低音则在低频率范围内能量较高。

声音频谱分析不仅适用于音乐和语音处理,还在音频编解码、语音识别等领域发挥着重要作用。

二、声音滤波声音滤波是指通过某种滤波器对声音信号进行处理,可以增强或减弱特定频率成分,改变声音的音色和效果。

常用的声音滤波方法包括低通滤波、高通滤波、带通滤波和带阻滤波等。

1. 低通滤波低通滤波器可以通过滤除高频信号,仅保留低频信号,从而实现声音信号的低音增强或噪音抑制。

低通滤波常用于音乐制作中的低音增强和语音通信中的噪音过滤。

2. 高通滤波高通滤波器则相反,滤除低频信号,增强高频信号。

高通滤波常用于音频处理中的尖锐音效增强和语音识别中的噪音过滤。

3. 带通滤波带通滤波器可以选择滤除或保留某一段频率范围的信号。

通过带通滤波,我们可以突出某一段频率范围内的声音特性,达到特定的音色效果。

4. 带阻滤波带阻滤波器与带通滤波器相反,可以选择滤除或保留某一段频率范围之外的信号。

带阻滤波常用于语音通信中的背景噪音去除以及音频制作中的特殊音效处理。

语音信号的同态滤波和倒谱分析课件

语音信号的同态滤波和倒谱分析课件
倒谱系数反映了语音信号的动态特征 和声道特征,可以用于语音识别、语 音合成等领域。
倒谱分析的应用
倒谱分析在语音识别领域中应 用广泛,用于提取语音特征, 提高识别准确率。
Hale Waihona Puke 倒谱分析还可以用于语音合成 ,通过对倒谱系数的调整和重 构,实现语音信号的合成。
此外,倒谱分析在语音降噪、 语音增强等领域也有广泛应用 。
语音信号的同态滤波 和倒谱分析课件
目录
• 语音信号的同态滤波 • 语音信号的倒谱分析 • 语音信号的同态滤波与倒谱分析的比较 • 语音信号处理的其他方法 • 语音信号处理的应用前景
01
语音信号的同态滤波
同态滤波的定义
同态滤波是一种信号处理方法,它通过非线性变换将输入信号分解为两部分:包 络信号和调制信号。包络信号表示信号的幅度变化,调制信号表示信号的相位变 化。
01
倒谱分析是一种语音信号处理技 术,通过对语音信号的倒谱变换 ,提取出语音信号的特征信息。
02
倒谱分析通过将语音信号的频谱 转换为倒谱,实现了对语音信号 的频域和时域特征的综合分析。
倒谱分析的原理
倒谱分析基于对语音信号的短时傅里 叶变换(STFT)和逆变换,通过对 频谱取对数后再进行逆变换,得到倒 谱系数。
质量。
05
语音信号处理的应用前景
语音识别
语音识别技术是实现人机语音交互的 关键技术,能够将人的语音转换为文 字或命令,从而实现人机交互。
随着人工智能技术的不断发展,语音 识别技术在智能家居、智能客服、智 能车载等领域的应用越来越广泛,为 人们的生活和工作带来了便利。
语音合成
语音合成技术是将文字转换为语音的技术,广泛应用于语音导航、语音播报、虚拟人物等领域。

语音信号的同态滤波和倒谱分析.

语音信号的同态滤波和倒谱分析.
§7 语音信号的同态滤波和倒谱分析
一、同态信号处理的基本原理 二、复倒谱和倒谱 三、语音信号两个卷积分量的复倒谱 四、语音信号倒谱 五、MEL频率倒谱参数(MFCC)
一、同态信号处理的基本原理 1.同态信号处理的作用
同态信号处理也称为同态滤波,实现将卷 积关系和乘积关系变换为求和关系的分离处
理。×,* +,将非线性信号处理变 为线性信号处理的过程。
(2)第二个子系统对加性信号进行所需要的线 性处理(满足线性叠加原理等)
yˆ(n) LTI [xˆ(n)] LTI [xˆ1 (n) xˆ2 (n)]
(3)第三个子系统是逆特征系统D*-1[],使其恢 复为卷积性信号。
(yˆ1()nZ)[yˆ (yˆn1 ()n] )Yˆyˆ(2
(n)
z)
☆复倒谱的傅立叶变换定义
xˆ(n) IFT [ln FT (x(n))] IFT [ Xˆ (e jw )]
N 1
X (e jw ) FT (x(n)) x(n)e jwn n0
x(n) IFT ( X (e jw )) 1 X (e jw )e jwn dw
2
FT [x(n)] X (e jw )
D*1[D*[x(n)]] x(n)
(1)Z[x(n)] X (z), (2) ln X (z), (3)Z 1[ln X (z)] (4)Z{Z 1[ln X (z)]} ln X (z), (5) exp{ln X (z)} X (z) (6)Z 1[ X (z)] x(n)
3.常见的同态信号处理系统
x(n) 特征系统 +
*
D*[]
线性系统
+
逆特征系统 y(n)Fra bibliotekD*-1[]

语音识别技术中的噪音抑制方法

语音识别技术中的噪音抑制方法

语音识别技术中的噪音抑制方法随着科技的发展,语音识别技术在各个领域得到了广泛应用。

然而,在实际场景中,噪音会对语音识别系统的性能产生很大的影响。

为了提高语音识别的准确率和稳定性,需要采用一些噪音抑制方法。

本文将介绍三种常见的语音识别技术中的噪音抑制方法。

一、频域滤波法频域滤波法是一种常见的噪音抑制方法。

它通过将语音信号从时域转换到频域,利用频谱特征对噪音进行滤波。

具体步骤如下:首先,将语音信号进行傅里叶变换,得到频谱;然后,根据频谱特征,对噪音进行判别和滤波;最后,将滤波得到的频谱进行逆傅里叶变换,得到抑制噪音后的语音信号。

二、时域滤波法时域滤波法是另一种常见的噪音抑制方法。

它主要通过对语音信号的时域上的波形进行滤波,实现对噪音的抑制。

具体步骤如下:首先,将语音信号划分为多个片段;然后,计算每个片段的时域特征,如能量、过零率等;接下来,通过对时域特征进行分析和比较,判断是否存在噪音;最后,对存在噪音的片段进行时域滤波,降低噪音的影响。

三、混合域滤波法混合域滤波法是一种综合利用频域和时域信息的噪音抑制方法。

它通过将语音信号同时转换到频域和时域,综合利用两个域的信息对噪音进行抑制。

具体步骤如下:首先,将语音信号进行傅里叶变换,得到频谱;然后,根据频谱特征,对噪音进行判别和滤波;接下来,将滤波得到的频谱和原始语音信号进行时域滤波;最后,将时域滤波得到的语音信号进行逆傅里叶变换,得到抑制噪音后的语音信号。

总结:在语音识别技术中,噪音抑制是提高识别性能的关键环节。

本文介绍了三种常见的噪音抑制方法,即频域滤波法、时域滤波法和混合域滤波法。

这些方法可以有效地抑制噪音,提高语音识别的准确率和稳定性。

然而,每种方法都有其局限性,需要根据实际应用场景来选择适合的方法。

未来,随着技术的不断发展,我们相信会有更多更高效的噪音抑制方法被提出,为语音识别技术的进一步发展提供更好的支持。

语音信号的滤波与处理

语音信号的滤波与处理

广西工学院数字信号处理课程设计题目:语音信号的处理与滤波(难度系数:0.8)系别:计算机工程学院专业:通信工程班级:通信091学号:200900402037姓名:郑志军指导教师:周坚和日期:2012.01.01目录摘要: ...................................错误!未定义书签。

一.设计内容 .. (5)二.设计目的 (5)三.基本步骤 (5)四、相关原理知识 (6)五、实现过程 (12)1.录制声音 (12)2.分别取8000个和16000个数据进行频谱分析,得到幅度和相位谱,比较二者异同并分析原因 (15)3.滤波器的设计 (17)4.对声音进行滤波 (18)5.把处理后的所有数据存储为声音文件,与原始声音进行比较19六、心得体会 (20)七、参考文献 (21)摘要信号处理是现代信息处理的基本内容,数字信号的处理更是重中之重。

数字信号处理的研究内容主要是语音信号和图像信号,而研究语音信号对于现代语音通信有着积极的意义。

研究语音信号又分为时域和频域两个方面。

(1)语音信号的时域分析处理:一类是进行语音信号分析,另一类是生成和变换各种调制信号,对信号平均累加器的动态范围进行压缩扩张,用门限方法进行噪声的抑制等等。

前一类是属于时域中信号平均累加器的线性处理,主要通过信号的加减、时移、倍乘、卷积、求相关函数等来实现。

而后一类,则属于非线性的变换和处理。

(2)语音信号的频谱分析处理:信号的时域频谱分析通常是要结合在一起进行的。

在数字设计系统中,任何信号处理器件都可以看成是一个滤波器,滤波器设计是数字信号处理的重要内容。

滤波器就是在对信号进行分析的基础上,设计适当的系统,提取有用的信号,抑制噪声信号干扰。

滤波器的设计通常是在频率域进行的[1]。

本设计是用MATLAB仿真软件设计滤波器对受干扰的语音信号进行滤波处理,并对各部分进行频谱分析。

MATLAB工具介绍:MATLAB是MathWorks公司开发的一种跨平台的用于多种仿真的简单高效的数学语言。

数字信号处理期末实验-语音信号分析与处理

数字信号处理期末实验-语音信号分析与处理

语音信号分析与处理摘要用MATLAB对语音信号进行分析与处理,采集语音信号后,在MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。

数字滤波器是数字信号处理的基础,用来对信号进行过滤、检测和参数估计等处理。

IIR数字滤波器最大的优点是给定一组指标时,它的阶数要比相同组的FIR滤波器的低的多。

信号处理中和频谱分析最为密切的理论基础是傅立叶变换(FT)。

离散傅立叶变换(DFT)和数字滤波是数字信号处理的最基本内容。

关键词:MATLAB;语音信号;加入噪声;滤波器;滤波1. 设计目的与要求(1)待处理的语音信号是一个在20Hz~20kHz频段的低频信号。

(2)要求MATLAB对语音信号进行分析和处理,采集语音信号后,在MATLAB平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器进行滤除噪声,恢复原信号。

2. 设计步骤(1)选择一个语音信号或者自己录制一段语音文件作为分析对象;(2)对语音信号进行采样,并对语音信号进行FFT频谱分析,画出信号的时域波形图和频谱图;(3)利用MATLAB自带的随机函数产生噪声加入到语音信号中,对语音信号进行回放,对其进行FFT频谱分析;(4)设计合适滤波器,对带有噪声的语音信号进行滤波,画出滤波前后的时域波形图和频谱图,比较加噪前后的语音信号,分析发生的变化;(5)对语音信号进行回放,感觉声音变化。

3. 设计原理及内容3.1 理论依据(1)采样频率:采样频率(也称采样速度或者采样率)定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。

采样频率只能用于周期性采样的采样器,对于非周期采样的采样器没有规则限制。

通俗的讲,采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。

采样频率越高,即采样的间隔时间越短,则在单位之间内计算机得到的声音样本数据就越多,对声音波形的表示也越精确。

语音信号处理与滤波

语音信号处理与滤波

语音信号处理与滤波班级: xxxxxx学号: xxxxx 姓名: xxx 指导老师: xxx 成绩:二○一五年五月二十七目录一、设计要求 0二、设计步骤 02.1 理论依据 02.2 信号采集 02.3 构造受干扰信号并对其进行FFT频谱分析 02.4 数字滤波器设计 02.5 信号处理 (1)三、课程设计实现 (1)3.1 语音信号的采集 (1)3.2 语音信号的FFT频谱分析 (1)3.3 构造受干扰信号并对其进行FFT频谱分析 (3)3.4 设计数字滤波器 (5)3.5 用滤波器对加噪语音信号进行滤波 (6)3.6 比较滤波前后语音信号的波形及频谱 (6)四、心得体会 (8)五、参考文献............................. 错误!未定义书签。

六、源程序代码 (10)一、设计要求本次课程设计要求利用MATLAB对语音信号进行数字信号处理和分析,要求采集语音信号后,在MA TLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。

二、设计步骤2.1 理论依据根据设计要求分析系统功能,掌握设计中所需理论(采样频率、采样位数的概念,采样定理;时域信号的FFT分析;数字滤波器设计原理和方法,各种不同类型滤波器的性能比较),阐明设计原理。

2.2 信号采集采集语音信号,并对其进行FFT频谱分析,画出信号时域波形图和频谱图。

2.3 构造受干扰信号并对其进行FFT频谱分析对所采集的语音信号加入干扰噪声,对语音信号进行回放,感觉加噪前后声音的变化,分析原因,得出结论。

并对其进行FFT频谱分析,比较加噪前后语音信号的波形及频谱,对所得结果进行分析,阐明原因,得出结论。

2.4 数字滤波器设计根据待处理信号特点,设计合适数字滤波器,绘制所设计滤波器的幅频和相频特性。

2.5 信号处理用所设计的滤波器对含噪语音信号进行滤波。

声学信号的频域分析方法研究

声学信号的频域分析方法研究

声学信号的频域分析方法研究声学信号的频域分析方法是一种重要的信号处理技术,它在声学领域中具有广泛的应用。

频域分析方法可以将声学信号转换为频谱图,从而更好地理解信号的特征和性质。

本文将介绍几种常见的声学信号频域分析方法,并探讨它们的应用和局限性。

一、傅里叶变换傅里叶变换是频域分析的基础,它可以将时域信号转换为频域信号。

通过傅里叶变换,我们可以得到声学信号的频谱信息,包括频率成分和幅度。

傅里叶变换广泛应用于音频处理、语音识别、音乐分析等领域。

然而,傅里叶变换存在一些问题,比如需要对整个信号进行变换,计算量大,且无法处理非平稳信号。

二、短时傅里叶变换为了克服傅里叶变换的局限性,短时傅里叶变换(STFT)被提出。

STFT将信号分割为多个小段,然后对每个小段进行傅里叶变换。

这样可以得到信号在不同时间段的频谱信息,从而更好地分析非平稳信号。

STFT广泛应用于语音信号处理、音乐合成等领域。

然而,STFT在时间和频率分辨率上存在一定的矛盾,无法同时获得高时间和高频率分辨率。

三、小波变换小波变换是一种时频分析方法,它可以在时间和频率上同时提供较好的分辨率。

小波变换通过使用一组基函数,将信号分解为不同频率的子信号。

小波变换在声音信号的压缩、去噪、特征提取等方面具有重要应用。

然而,小波变换的计算复杂度较高,选择合适的小波函数也是一个挑战。

四、自适应滤波自适应滤波是一种基于自适应算法的频域分析方法。

它通过不断调整滤波器的参数,使得输出信号与期望信号之间的误差最小化。

自适应滤波广泛应用于语音增强、噪声抑制等领域。

然而,自适应滤波对初始参数的选择较为敏感,且计算复杂度较高。

五、时频分析时频分析是一种将信号在时域和频域上同时分析的方法。

时频分析可以提供信号的瞬时频率、瞬时幅度等信息,对于非平稳信号的分析具有重要意义。

时频分析方法包括瞬时频率分析、瞬时幅度分析、瞬时相位分析等。

时频分析在声音信号的谱包络提取、乐器识别等方面具有广泛应用。

声学实验中的信号处理与分析

声学实验中的信号处理与分析

声学实验中的信号处理与分析声学实验是一项研究声音传播、声波振动特性以及声学现象的科学实践。

在声学实验中,信号处理与分析起着重要的作用,它可以帮助我们更好地理解声音的性质、捕捉声音的细节,并在各种应用领域中发挥重要作用。

一、信号处理在声学实验中的应用1. 声音采集与信号处理在声学实验中,首先需要采集声音信号。

传感器将声音信号转换成电信号,并通过采样与量化技术将连续的声音信号转换成数字信号。

然后,信号处理算法被应用于这些数字信号以提取和分析其中的音频特征。

2. 信号增强与滤波信号处理可以帮助我们对声音进行增强和滤波。

在声学实验中,我们可能面临各种环境噪声和杂音的干扰,这些噪声会对声音信号的质量和特征提供干扰。

通过应用信号处理技术,我们可以滤除这些噪声,以获得清晰的声音信号。

3. 频谱分析与谱估计频谱分析是声学实验中重要的信号处理任务之一。

它用于研究声音信号的频率成分和强度分布。

谱估计方法可以帮助我们分析声音信号的频谱特性,如频率成分、频谱泄露以及频谱斜率等。

4. 语音识别与语音合成信号处理在语音识别和语音合成中起着关键作用。

通过信号处理技术,我们可以将声音信号转换成文字或者根据文本生成自然流畅的语音。

二、声学实验中的信号分析1. 音频特征提取与识别在声学实验中,我们可以通过信号分析技术从声音信号中提取各种音频特征,如时域特征(如能量、过零率等)、频域特征(如频率、频谱特征等)以及时频域特征(如声谱图、梅尔频谱等)。

这些音频特征可以用于声音识别、语音指纹识别、音乐分类等应用中。

2. 噪声分析与环境监测声学实验中的噪声分析可以帮助我们了解各种环境下的噪声特征和强度。

通过分析噪声的频谱和时域特征,我们可以评估噪声对环境以及人体健康的影响,并采取相应的措施来减少噪声污染。

3. 振动分析与结构健康监测声学实验中的信号处理与分析也用于振动分析和结构健康监测。

通过对振动信号进行分析,我们可以评估结构的健康状态,检测结构的缺陷和损坏。

浅析语音信号频谱分析方法

浅析语音信号频谱分析方法

浅析语音信号频谱分析方法摘要:语音信号的频域分析就是分析语音信号的频域持征。

从广义上讲,语音信号的频域分析包括语音信号的频谱、功率谱、倒频谱、频谱包络分析等,而常用的频域分析方法有带通滤波器组法、傅里叶变换法、线件预测法等几种。

下面着重介绍前两种分析方法。

关键词:频谱分析、带通滤波器组法、傅里叶变换法傅里叶分析法因为语音波是一个非平稳过程,因此适用于周期、瞬变或平稳随机信号的标准傅里叶变换不能用来直接表示语音信号,而应该用短时傅里叶变换对语音信号的频谱进行分析,相应的频谱称为“短时谱”。

利用短时博里叶变换求语音的短时谱对第n 帧语音信号Xn(m)进行傅里叶变换(离散时域傅里叶变换,DTFT),可得到短时傅里叶变换,其定义如下:10()()N j w j w n n n m X e x m e --==∑(3-7)由定义可知,短时傅里叶变换实际就是窗选语音信号的标准傅里叶变换。

这里,窗w(n-m)是一个“滑动的”窗口,它随n 的变化而沿着序列X(n)滑动。

由于窗口是有限长度的,满足绝对可和条件,所以这个变换是存在的。

当然窗口函数不同,博里叶变换的结果也将不同。

设语音信号序列和窗口序列的标准傅早叶变换均存在。

当n 取固定值时,w(n-m)的傅里叶变换为:()()jw n jw n jw m w n m e e W e ∞---=-∞-=⋅∑(3-8)根据卷积定理,有:()()()jw jw jwn jw n X e X e e W e --⎡⎤=⋅⋅⎣⎦ (3-9) 因为上式右边两个卷积项均为关于角频率w 的以2π为周期的连续函数,所以也可将其写成以下的卷积积分形式:()-1()()()2jw j jn j w n X e W e e X e d θθθθ∏+∏⎡⎤⎡⎤=⋅⎣⎦⎣⎦∏⎰ (3-10) 即,假设x(m)的DTFT 是()jw X e ,且()w m 的DTFT 是()jw W e ,那么()jw n X e 是()jw X e 和()jw W e 的的周期卷积。

语音信号的频域分析

语音信号的频域分析
n
图5.2 同济大学电子与信息工程学院 - 5 用移动窗选取语音段示意图 赵晓群 教授
w(n m)
m
第5章
语音信号的频域分析
5.3
短时 Fourier 变换(STFT)的定义和性质
x(m)的短时 Fourier 变换(STFT)Xn(ejω)的定义:
X n (e ) m x(m) w(n m)e-jm
◆准确地恢复原信号的唯一约束条件是 w(0)≠0 。
同济大学电子与信息工程学院
- 7 -
赵晓群 教授
第5章
语音信号的频域分析
5.3
短时 Fourier 变换(STFT)的定义和性质
由STFT的谱 Xn(ejω) 求解 x(m) 的 Fourier 变换 X(ejω) 方法。 假设 x(m) 和 w(m) 的 Fourier 变换都存在,即:
j
式中, w(n)是窗函数。 ◆为位于 n 处的窗口观察到的窗选语音短段的 Fourier 变换; ◆ n 取不同值时,取出不同的语音短段;
◆ Xn(ejω) 是频率ω 和时间 n 的函数;有时-频性。
要求: STFT 存在,则对所有 n 值,一定绝对可和。 ◆因窗宽有限,或无限冲激响应窗函数,其有效宽度有限, 故满足绝对可和。
语音是非平稳信号,源于发声器官的物理运动过程。
◆在短时间段(如10 ~ 30 ms)内可认为是平稳的; ◆用时间依赖处理方法分析处理。
同济大学电子与信息工程学院 - 2 赵晓群 教授
第 5章
语音信号的频域分析
5.1
概述
短时 Fourier 分析(时间依赖 Fourier 变换):
用稳态分析处理非平稳信号的一种方法 语音的频域分析:包括语音信号的频谱、功率谱、倒频谱、 频谱包络等, 常用频域分析方法:带通滤波器组法、Fourier 变换法、

语音信号谱分析及去噪处理

语音信号谱分析及去噪处理

实验三:语音信号谱分析及去噪处理1、实验目的(1)通过对实际采集的语音信号进行分析和处理,获得数字信号处理实际应用的认识。

(2)掌握数字信号谱分析的知识。

(3)掌握数字滤波器设计的知识,并通过对语音信号的去噪处理,获得数字滤波器实际应用的知识。

2、实验内容(1)用麦克风自行采集两段语音信号[高频噪声、人声+高频噪声](.wav格式)。

(2)通过Matlab读入采集信号,观察其采样频率,并绘图采样信号。

(3)通过Matlab对语音信号进行谱分析,分析出噪声的频带。

(4)设计一滤波器,对叠加入噪声的语音信号进行去噪处理。

绘图并发声去噪后的信号。

3、实验步骤(1)利用麦克风采集一段5s以内的语音信号。

利用格式工厂软件对语音信号进行预处理。

通常语音信号为单声道,采样频率为8000Hz,语音信号为.wav格式。

(2)通过Matlab读入语音信号及其采样频率(使用Matlab库函数wavread),在Matlab软件的workspace工作平台上观察读入的语音信号,在Matlab中,对入的语音信号为一维矩阵。

应注意,库函数wavread自动将语音信号幅度归一化[-1,1]区间范围。

使用Matlab库函数plot 绘图语音信号,并使用库函数sound发音语音信号。

(3)分析噪声的频谱。

在这里进行谱分析的目的,是了解噪声信号的频谱特性,为去噪滤波器的技术指标提供依据。

(4)通过Matlab对语音信号进行谱分析。

应注意,对信号进行谱分析,在实验一中已经详细介绍过。

在这里进行谱分析的目的,是了解本段语音信号的频谱特性,为去噪滤波器的技术指标提供依据。

(5)根据语音信号及噪声信号的频谱特性,自行设计一滤波器,对叠加入噪声的语音信号进行去噪处理。

最后绘图并发声去噪后的信号。

应注意,数字滤波器的实际应考虑实际需求,合理制定滤波器的技术指标。

4、实验原理用麦克风采集一段语音信号,绘制波形并观察其频谱,添加一段随机信号,给定相应的滤波器指标,用脉冲响应不变法设计的一个满足指标的巴特沃斯IIR滤波器,对该语音信号进行滤波去噪处理,比较滤波前后的波形和频谱并进行分析。

音频信号频谱分析及滤波要点

音频信号频谱分析及滤波要点

宜宾学院物理与电子工程学院(DSP)设计报告题目:音频信号频谱及滤波专业:物理与电子工程学院班级:2012级硕勋励志班学号:120302023姓名:杨龙音频信号频谱分析及滤波一、 设计任务1、 用计算机 开始—所有程序---娱乐—录音机程序,录取本人的“物电学院”音频信号,时间约为2秒。

格式为8KHz 采样,8位量化,单声道,以自已名字命名的.wav 文件。

(格式转化在录音机的“文件”下拉菜单的“属性”,选择“立即转换”,再到“属性”里选择相应参数计算机录音一般是采样率为44.1kHz ,16位量化;为减小计算量,在录机的文件—属性—立即转换, 将声音数据转换为采样率8kHz ,8位量化)。

2、 对语音信号逐字进行频谱分析,分析自己语音信号的频谱特征。

用wavread()读取声音文件,作图画出声音的时域波形,对其进行频谱分析,画出其频域波形。

分析自已音频信号的特点。

3、设计一个0Hz----3.4KHz 的IIR 低通滤波器,Hz f p 3400= , Hz f s 3550=, dB s 25=α dB p 1=α。

对“物”字和“电”字音频信号逐字滤波。

要求:画出所设计滤波器的幅频特性曲线,并用该滤波器对音频信号滤波,画出滤波后的音频信号的时域和频域波形,结合波形比较滤波前后的时域和频域信号。

同时用sound 回放滤波后的声音信号。

(本题即为设计一个IIR 低通滤波器,通带截止频率为3400Hz,阻带截止频率为3550Hz ,阻带衰减为25dB,通带衰减为1dB )4、设计一个0Hz----3.4KHz 的FIR 低通滤波器,Hz f p 3400= , Hz f s 3550=, dB s 25=α dB p 1=α 。

对“物”字和“电”字音频信号逐字滤波。

要求:画出所设计滤波器的幅频特性曲线,并用该滤波器对音频信号滤波,画出滤波后的音频信号的时域和频域波形,结合波形比较滤波前后的时域和频域信号。

语音信号的频谱分析实验报告

 语音信号的频谱分析实验报告

综合设计实验语音信号的频谱分析一、实验内容录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。

二、实现步骤1.语音信号的采集利用Windows下的录音机,录制一段自己的话音(“信号与系统”),时间在3s内。

然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,采样频率设置为4kHz。

[y,fs,bits]=wavread('j.wav',[1024 63500]);sound(y,fs,bits);2.语音信号的频谱分析要求首先画出语音信号的时域波形;然后对语音号进行傅里叶变换,得到信号的频谱特性。

在采集得到的语音信号中加入正弦噪声信号(频率为10kHz),然后对加入噪声信号后的语音号进行傅里叶变换,得到信号的频谱特性。

并利用sound试听前后语音信号的不同。

3. 设计滤波器设计一个理想低通滤波器,滤除正弦噪声信号,得到信号的频谱特性。

要求采样卷积计算的方式滤除噪声,并利用sound试听滤波前后语音信号的不同。

1、语音信号的采集[y,fs,bits]=wavread('j.wav',[1024 63500]);sound(y,fs,bits);2、语音信号的频谱分析Y=fft(y,4096);figure(1);plot(y);title('语音信号的时域波形');figure(2);plot(abs(Y));title('语音信号的频谱特性');IIR 数字滤波器低通clear;close all;[y,fs,bits]=wavread('j.wav',[1024 63500]);Y=fft(y,4096);fb=1000;fc=1200;As=100;Ap=1;fs=22050;wc=2*fc/fs; wb=2*fb/fs;[n,wn]=ellipord(wc,wb,Ap,As);[b,a]=ellip(n,Ap,As,wn);figure(1);freqz(b,a,512,fs);x=filter(b,a,y);X=fft(x,4096);figure(2);subplot(2,2,1);plot(y);title('滤波前信号波形');subplot(2,2,2);plot(abs(Y));title('滤波前信号频谱');Subplot(2, 2 ,3);plot(x);title('滤波后信号波形');Subplot(2, 2 ,4);plot(abs(X));title('滤波后信号频谱');sound(x,fs,bits);IIR 高通wp=2*pi*4800/18000;wr=2*pi*5000/18000;Ap=1;Ar=15;T=1[N,wn]=buttord(wp/pi,wr/pi,Ap,Ar);[b,a]=butter(N,wn,'high');[db,mag,pha,grd,w]=freqz_m(b,a);subplot(211);plot(w/pi,mag);title('数字巴特沃茨高通滤波器幅度响应|Ha(J\Omega)|'); subplot(212);plot(w/pi,db);title('数字巴特沃茨高通滤波器幅度响应(db)');[y,Fs,nbite]=wavread('j.wav',[1024 63500]);Y=fft(y,4096);x=filter(b,a,y);X=fft(x,4096);figure(3)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形');figure(4)subplot(211);plot(abs(Y));title('原频谱频谱');subplot(212);plot(abs(X));title('滤波后信号频谱');sound(x,Fs);IIR 带通wp=[1200*pi*2/9000,3000*2*pi/9000];wr=[1000*2*pi/9000,3200*2*pi/9000];Ap=1;Ar=10 0;[N,wn]=buttord(wp/pi,wr/pi,Ap,Ar);[b,a]=butter(N,wn,'bandpass');[db,mag,pha,grd,w]=freqz_m(b,a);subplot(211);plot(w/pi,mag);title('数字巴特沃茨带通滤波器幅度响应|Ha(J\Omega)|');subplot(212);plot(w/pi,db);title('数字巴特沃茨带通滤波器幅度响应(db)');[y,Fs,nbite]=wavread('j.wav');Y=fft(y,4096);x=filter(b,a,y);X=fft(x,4096);figure(3)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形');figure(4)subplot(211);plot(abs(Y));title('原频谱频谱');subplot(212);plot(abs(X));title('滤波后信号频谱');sound(x,Fs);FIR 数字滤波器FIR 低通fsamp=8000;rp=1;rs=100;fcuts=[1000 1200];d1=(10^(rp/20)-1)/(10^(rp/20)+1);d2=10^(-rs/20);mags=[1 0];devs=[d1 d2];[n,wn,beta,ftype]=kaiserord(fcuts,mags,devs,fsamp); hh=fir1(n,wn,ftype,kaiser(n+1,beta),'noscale'); freqz(hh);[y,Fs,nbite]=wavread('j.wav');Y=fft(y,4096);x=fftfilt(hh,y);X=fft(x,4096);figure(2)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形'); figure(3)subplot(211);plot(abs(Y));title('原频谱频谱'); subplot(212);plot(abs(X));title('滤波后信号频谱'); sound(x,Fs);FIR 高通wc=2*pi*4800;wp=5000*2*pi/18000;f=[0.5333,0.5556]; m=[0,1];rp=1;rs=100;d1=(10^(rp/20)-1)/(10^(rp/20)+1);d2=10^(-rs/20); rip=[d2,d1];[N,fo,mo,w]=remezord(f,m,rip);N=N+2;hn=remez(N,fo,mo,w);[hw,w]=freqz(hn,1);plot(w/pi,20*log10(abs(hw)));[y,Fs,nbite]=wavread('j.wav');Y=fft(y,4096);x=fftfilt(hn,y);X=fft(x,4096);figure(2)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形');figure(3)subplot(211);plot(abs(Y));title('原频谱频谱');subplot(212);plot(abs(X));title('滤波后信号频谱');sound(x,Fs);FIR 带通wp1=2*pi*1200/8000;wp2=3000*2*pi/8000;wc1=2*pi*1000/8000;wc2=2*pi*3200*8000; f=[0.25,0.30,0.75,0.80][n,wn,bta,ftype]=kaiserord([0.25,0.30,0.75,0.80],[0 1 0],[0.01 0.1087 0.01]);h1=fir1(n,wn,ftype,kaiser(n+1,bta),'noscale');[hh1,w1]=freqz(h1,1,256);figure(1);plot(w1/pi,20*log10(abs(hh1)));grid;[y,Fs,nbite]=wavread('j.wav');Y=fft(y,4096);x=fftfilt(h1,y);X=fft(x,4096);figure(2)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形');figure(3)subplot(211);plot(abs(Y));title('原频谱频谱');subplot(212);plot(abs(X));title('滤波后信号频谱');sound(x,Fs);设计结果分析(1)语音分析图1图2Fs=22050; n=4096(2)IIR 低通图3滤波器在通带内平滑,通带截止频率为 1000hz,最大衰减 0dB;阻带起始频率为1200hz,最小衰减 100dB;相位不是线性变化, 基本满足性能要求.图4语音信号经过低通滤波器后,基本没发生变化(3) IIR 高通图5数字滤波器在通带内平滑,通带截止频率为0. 5π,最大衰减 0dB;阻带起始频率为 0. 48π,最小衰减 100dB;相位不是线性变化, 基本满足性能要求.语言信号经过高通滤波器后,低频分量基本被衰减。

MatLab对语音信号进行频谱分析及滤波

MatLab对语音信号进行频谱分析及滤波

数字信号处理综合实验报告综合实验名称:应用Matlab对语音信号进行频谱分析及滤波系:学生姓名:班级:通信学号:11成绩:指导教师:开课时间:2011-2012学年上学期一.综合实验题目应用MatLab对语音信号进行频谱分析及滤波二.主要内容录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;课程设计应完成的工作:1、语音信号的采集;2、语音信号的频谱分析;3、数字滤波器的设计;4、对语音信号进行滤波处理;5、对滤波前后的语音信号频谱进行对比分析;三.具体要求1、学生能够根据设计内容积极主动查找相关资料;2、滤波器的性能指标可以根据实际情况作调整;3、对设计结果进行独立思考和分析;4、设计完成后,要提交相关的文档;1)课程设计报告书(纸质和电子版各一份,具体格式参照学校课程设计管理规定),报告内容要涵盖设计题目、设计任务、详细的设计过程、原理说明、、频谱图的分析、调试总结、心得体会、参考文献(在报告中参考文献要做标注,不少于5篇)。

2)可运行的源程序代码(电子版)在基本要求的基础上,学生可以根据个人对该课程设计的理解,添加一些新的内容;四.进度安排五.成绩评定(1)平时成绩:无故旷课一次,平时成绩减半;无故旷课两次平时成绩为0分,无故旷课三次总成绩为0分。

迟到15分钟按旷课处理(2)设计成绩:按照实际的设计过程及最终的实现结果给出相应的成绩。

(3)设计报告成绩:按照提交报告的质量给出相应的成绩。

课程设计成绩=平时成绩(30%)+设计成绩(30%)+设计报告成绩(40%)应用MatLab对语音信号进行频谱分析及滤波第一章实验任务录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物医学信号处理大作业题目:语音信号的滤波与频谱分析学生姓名学院名称精密仪器与光电子工程专业学号一、实验目的语音信号的滤波与频谱分析录制自己的一段语音:“天津大学精密仪器与光电子工程学院生物医学工程X班XXX, College of precision instrument and opto-electronics engineering, biomedical engineering”,时间控制在15秒到30秒左右;利用wavread 函数读入语言信号,记住采样频率。

二、实验过程(1)求原始语音信号的特征频带:可以分别对一定时间间隔内,求功率谱(傅里叶变换结果取模的平方)并画出功率谱。

(2)根据语音信号频谱特点,设计FIR或IIR滤波器,分别画出滤波器幅频和相频特性曲线。

说明滤波器特性参数。

用设计的滤波器对信号滤波,画出滤波后时域波形。

用sound 函数回放语音信号。

(3)求出特征频段语音信号随时间变化的曲线(每隔0.05秒求一次功率谱,连接成曲线)。

(4)选做:语谱图:横轴为时间,纵轴为频率,灰度值大小表示功率谱值的大小。

(提示,可以采用spectrogram函数)(1)读入语音文件并画出其时域波形和频域波形,实现加窗fft 并求出其功率谱。

clcclear all; close all;[x,Fs,bits]=wavread('C:\Users\刘冰\Desktop\数字信号处理\liubing');x0=x(:,1); %将采集来的语音信号转换为一个数组 sound(x0,Fs,bits); y=fft(x);figure;plot(x,’b’);title ('原始语音信号时域波形'); y1=fft(x0);y1=fftshift(y1); d = Fs/length(x);figure;plot([-Fs/2:d: Fs/2-d],abs(y1),’b’);title('原始语音信号的频域信号'); % 画出原始语音信号的频谱图123456789x 105-1-0.8-0.6-0.4-0.200.20.40.60.81原始语音信号时域波形N=length(x);w1 = window(@hann,N); w2 = window(@blackman,N); x1=x0.*w1; %对原始信号加汉宁窗处理 x2=x0.*w2; %对原始信号加布兰克曼窗处理 figure,plot(x1);title(加汉宁窗后的语音信号) %显示加窗后的时域语音信号 s=floor(length(x0)/Fs);%计算原始语音信号的时间长度,这里得到的结果是18秒,因为floor 是向下取整,所以信号的末尾一点会被去掉,但是因为最后一点没有声音信号,所以影响可以忽略。

%加汉宁窗后功率谱,加布兰克曼窗后又可以得到一组图,只需要将下列循环中的x1改为x2,这里就不再显示%每两秒对语音信号求一次功率谱并显示for i=1:1:s/2f=x1((i -1)*Fs*2+1:i*Fs*2); %每两秒取出一段信号 l=length(f); q=fft(f,l);E=abs(q).*abs(q); %傅里叶变换结果取模的平方figure,plot(E(1:3000),'b');title(['第',num2str(i*2-1),'~',num2str(i*2),'秒语音功率谱']);%因为语音信号主要集中在低频段,所以这里只需要显示低频段即可,取(1:3000)end-2.5-2-1.5-1-0.500.51 1.52 2.5x 104050010001500200025003000原始语音信号的频域波形加窗后的时域波形0123456789x 105-0.8-0.6-0.4-0.200.20.40.60.80500100015002000250030000500100015002000250030003500400045005000第1~2秒语音功率谱频谱分析:人说话的频率基本集中在1200Hz以内的低频段,但我这里可以在高频段(2000Hz左右)可以观察到部分能量,这应该是在录音的时候电脑本身的噪音以及录音设备的误差造成(2)根据功率谱线,大致可观察到语音信号在150~400和500~650之间有两个波峰,因此取这两个频宽作为我语音信号的特征频带,根据要求选择汉宁窗作为滤波器滤波。

1)汉宁窗滤波器的幅频特性显示%汉宁窗f1=150;%通带上下两个频率f2=400; %带通滤波器的通带范围w1=2*pi*f1/Fs; %归一化w2=2*pi*f2/Fs; w=[w1,w2];N=ceil(4*pi/(2*pi*200/Fs));%求出所需滤波器的阶数Windows=HANNING(N);b1=FIR1(N-1,w, Windows);%带通滤波器figure;freqz(b1,1,512);title('汉宁窗带通(150~400)滤波器的频率响应');%数字滤波器频率响应f1=500;f2=650; %带通滤波器的通带范围w1=2*pi*f1/Fs;w2=2*pi*f2/Fs; w=[w1,w2];N=ceil(4*pi/(2*pi*200/Fs));Nw=N;Windows=HANNING(N);b2=FIR1(N-1,w, Windows);%带通滤波器figure;freqz(b2,1,512);title('汉宁窗带通(500~~650)滤波器的频率响应');%数字滤波器频率响应00.10.20.30.40.50.60.70.80.91-2000-100001000Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )-300-200-1000100Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )汉宁窗带通(150~400)滤波器的频率响应0.10.20.30.40.50.60.70.80.91-1500-1000-5000500Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s)00.10.20.30.40.50.60.70.80.91-300-200-1000Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )汉宁窗带通(500~~650)滤波器的频率响应2)将原始语音信号分别通过两个频带,以下是滤波后的时域波形band1=fftfilt(b1,x0);sound(band1,Fs,bits); %滤波后听到的声音有了明显的变化subplot(2,1,1);plot(band1);title('汉宁窗(150~400)滤波后的时域波形'); band2=fftfilt(b2,x0); sound(band2,Fs,bits);subplot(2,1,2);plot(band2);title('汉宁窗(500~650)滤波后的时域波形');(3)特征频段语音信号随时间变化的曲线,分别作出150~400和500~650特征频带的语音信号曲线a=zeros(s/0.05,1);%这一步是为了求出所画信号曲线的长度,并定义空数组 for i=1:s/0.05f=x0((i -1)*Fs*0.05+1:i*Fs*0.05);%每0.05秒取出一段数据 l=length(f); q=fft(f,l);E=q.*conj(q)/l; %求出该段的功率 a(i)=mean(E(150~400)); %求平均 endfigure,plot(0:0.05:s -0.05,a);title('150~400Hz 汉宁窗滤波后的功率谱曲线')123456789x 105-2-1012汉宁窗(150~400)滤波后的时域波形123456789x 105-0.4-0.200.20.4汉宁窗(500~650)滤波后的时域波形b=zeros(s/0.05,1); for i=1:s/0.05f=x0((i -1)*Fs*0.05+1:i*Fs*0.05); l=length(f); q=fft(f,l);E=q.*conj(q)/l;b(i)=mean(E(500:650)); endfigure,plot(0:0.05:s -0.05,b);title('500~650Hz 汉宁窗滤波后的功率谱曲线')0.511.522.5-3150~400Hz 汉宁窗滤波后的功率谱曲线-5500~650Hz 汉宁窗滤波后的功率谱曲线(4)语谱图,也叫频谱分析视图,如果针对语音数据的话,叫语谱图。

语谱图的横坐标是时间,纵坐标是频率,坐标点值为语音数据能量。

由于是采用二维平面表达三维信息,所以能量值的大小是通过颜色来表示的,颜色深,表示该点的语音能量越强。

所有函数:spectrogram功能:使用短时傅里叶变换得到信号的频谱图。

语法:[S,F,T,P]=spectrogram(x,window,noverlap,nfft,fs)x---输入信号的向量。

默认情况下,即没有后续输入参数,x将被分成8段分别做变换处理,如果x不能被平分成8段,则会做截断处理。

默认情况下,其他参数的默认值为window---窗函数,默认为nfft长度的海明窗Hammingnoverlap---每一段的重叠样本数,默认值是在各段之间产生50%的重叠nfft---做FFT变换的长度,默认为256和大于每段长度的最小2次幂之间的最大值。

fs---采样频率,默认值归一化频率程序:figure,spectrogram(x0,512,500,512,Fs,'yaxis');colormap('g ray');colorbar;title('语谱图');这里由于语谱图的数据量太大,很容易造成死机,因此这里采用截屏得到。

相关文档
最新文档