2019届深圳中考数学专题复习(9)二次函数应用题-推荐
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习(九)——二次函数应用题
一、 一般的图形面积问题与利润问题
1、某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m ,求能建成的饲养室的最大面积.
2、鄂州化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克70元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x =60时,y =80;x =50时,y =100.在销售过程中,每天还要支付其他费用450元.
(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围;
(2) 当销售单价为多少元时,该公司日获利最大?最大获利是多少元?求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;
(3) 若销售单价上限改为不高于每千克60元,下限不变,该公司日最大获利是多少元?
3、如图,抛物线()21y x 312=--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D.
(1)求点A ,B ,D 的坐标;
(2)连接CD ,过原点O 作OE ⊥CD ,垂足为H ,OE 与抛物线的对称轴交于点E ,连接AE ,AD.
求证:∠AEO=∠ADC ;
(3)以(2)中的点E 为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P ,过点P 作⊙O 的切线,切点为Q ,当PQ 的长最小时,求点P 的坐标.
二、 建模问题
4、如图,排球运动员站在点O 处练习发球,将球从点O 正上方2米的点A 处
发出把球看成点,其运行的高度y (米)与运行的水平距离x (米)满足关系
式y=a (x ﹣6)2,已知 球网与点O 的水平距离为9米,高度为2.43米,球场的边界距点O 的水平距离为18米.
(1)当h=2.6时,求y 与x 的函数关系式.
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.
(3)若球一定能越过球网,又不出边界.则h 的取值范围是多少?
三、 二次函数与分段函数
5、在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y (万件)与销售单价x (元)之间的函数关系式为:.
(年获利=年销售收入﹣生产成本﹣投资成本) ()40x 25x 30⎧-≤≤⎪
(1)当销售单价定为28元时,该产品的年销售量为多少万件?
(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?
(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.
6、某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.
(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.
(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?
(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.
7、某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.
(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该商品每天的销售利润最大;
(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.
方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.
请比较哪种方案的最大利润更高,并说明理由.
8、经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为O千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.
(1)求大桥上车流密度为100辆/千米时的车流速度;
(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.
9、某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A 、B 两类,A 类杨梅包装后直接销售,B 类杨梅深加工再销售.A 类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y (单位∶万元/吨)与销售数量x (x≥2)(单位∶吨)之间的函数关系式如图,B 类杨梅深加工总费用s (单位:万元)与加工数量t (单位∶吨)之间的函数关系是s =12+3t ,平均销售价格为9万元/吨.
(1)直接写出A 类杨梅平均销售价格y 与销售量x 这间的函数关系式;
(2)第一次,该公司收购了20吨杨梅,其中A 类杨梅x 吨,经营这批杨梅所获得的毛利润为w 万元(毛利润=销售总收人-经营总成本). ①求w 关于x 的函数关系式;
②若该公司获得了30万元毛利润,问∶用于直销的A 类杨梅有多少吨?
(3)第二次该公司准备投人132万元资金,请设计-种经营方案,使公司获得最大毛利润,并求出最大毛利润.
四、 选择函数问题
10、某公司销售一种进价为20元/个的计算机,其销售量y (万个)与销售价格x (元/个)的变化如下表:
价格x (元/个) … 30 40 50 60 …
销售量y (万个) … 5 4 3 2 …
同时,销售过程中的其他开支(不含造价)总计40万元.
(1)观察并分析表中的y 与x 之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y (万个)与x (元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z (万个)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?
五、 二次函数与参数
11、东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p =
⎩
⎪⎨⎪⎧14t +30(1≤t≤24,t 为整数),-12
t +48(25≤t≤48,t 为整数),其日销售量y(kg)与时间t(天)的关系如表: 时间t(天) 1 3 6 10 20 40 …
日销售量y(kg) 118 114 108 100 80 40 …
(1)已知y 与t (2)问哪一天的销售利润最大?最大日销售利润为多少?
(3)在实际销售的前24天中,公司决定每销售1 kg 水果就捐赠n 元利润(n <9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围.
12、某企业为了增收节支,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据: