3碳水化合物

合集下载

食品化学第三章碳水化合物

食品化学第三章碳水化合物
。多糖(Polysaccharides) : 由许多单糖分子缩合而成。
2. 按功能分 • 结构多糖 • 贮存多糖 • 抗原多糖
食品中的糖类化合物(见表一)
Carbohydrates comprise more than 75%of the dry matter of Plants. eg: corn, vegetable, fruit, and so on.
。 糖苷键的连接方式 -D: 16 < 1 2 < 14 < 1 3 -D: 16 < 14 < 13 < 12
。聚合度(DP)大小 水解速度随着DP增大而明显减小
B.环境
. 温度
温度提高,水解速度急剧加快。 。 酸度:
单糖在pH3~7范围内稳定; 糖苷在碱性介质中相当稳定, 但在 酸性介质中易降解。
五碳糖
H—C C—CHO + 3 H2O O
糠醛
3.2.5.2复合反应:
。单糖受酸和热的作用,缩合失水生成低聚糖的反应称为复合反应 。 是水解反应的逆反应。
例如:2 C6H12O6
C12H22O11 + H2O
3.2.5.3 变旋现象
葡萄糖溶液经放置一段时间后的旋光值与最初的旋光 值不同的现象,稀碱可催化变旋。
蔗糖12~17
纤维素0.7
甘薯 26.3 肉
葡萄糖0.87 0.1
食品中碳水化合物的作用
。提供人类能量的绝大部分。 。提供适宜的质地、口感和甜味
(如麦芽糊精作增稠剂、稳定剂) . 有利于肠道蠕动,促进消化 (如纤维素被称为膳食纤维,低聚糖可促小孩肠
- D-呋喃葡萄糖
- D-吡喃葡萄糖
开链式葡萄糖
-D-呋喃葡萄糖

第三章碳水化合物

第三章碳水化合物

(2)有多元醇的性质 CHO
(CHOH )4Leabharlann + 5 CH3COOH
浓H2SO4 加热
CH2OH
CHO
+
5 H2 O
(CHOOCCH 3) 4
CH2OOCCH3 五乙酸葡萄糖酯
糖果
保温瓶胆
酿酒
镜子 医药
4.葡萄糖的用途
生活中——糖果 工业上——制镜、热水瓶胆、酿酒 医药上——迅速补充营养
小结:葡萄糖的结构和性质
药物疗法:要坚持服药、定期随访,不断 调整,注意低血糖发生。
血糖控制:检测血糖比尿糖准确、可靠。
果糖在体内的代谢不受胰 岛素的控制,在肝脏内果 糖首先磷酸化生成1—磷 酸果糖,然后分解成丙糖, 丙糖进一步合成为葡萄糖 和甘油三酯或进入酵解途 径。
果糖的代谢不受胰岛 素影响,故糖尿病人 可适量食用果糖。
糖类化合物。是 一类多羟基醛, 多羟基酮;或者 一些能水解成多 羟基醛或多羟基 酮的化合物。
H
O
C
(CHOH)n CH2OH
多羟基醛
CH2OH CO
(CHOH)n CH2OH
多羟基酮
一、碳水化物分类
按照聚合度的不同,营养学上一般将其分为四类
单糖
最简单的糖,不能再被水解
双糖 寡糖 多糖
2个单糖组成的 3-10个单糖组成的 10个以上单糖组成的
糖尿病综合治疗
• 饮食治疗 • 运动治疗 • 药物治疗 • 健康教育与心理治疗 • 病情监测
饮食控制:是糖尿病治疗的基础,以维 持标准体重为准。WHO倡导人群饮 食控制目标为"二高"(高复合碳水化 合物、高粗纤维)、"四低"(低糖、 低盐、低脂、低胆固醇)、"一平" (蛋白质)。

第三章 碳水化合物

第三章  碳水化合物

第三章碳水化合物(一)名词解释1.淀粉糊化——β-淀粉在水中经加热后出现膨润现象继续加热,成为溶液状态的现象。

2. 淀粉老化——经过糊化的α-淀粉在室温或低于室温下放置后,会变得不透明甚至凝结而沉淀,这现象称为老化3.美拉德反应:美拉德反应又称羰氨反应,指羰基与氨基经缩合聚合反应生成类黑色素的反应。

4.膨润现象:淀粉在水中经加热后,一部分胶束被溶解,空隙逐渐扩大,淀粉粒因吸水而膨胀,胶束消失,这种现象称为膨润现象。

(二)判断题5. 糖浓度只有在70%以上才能抑菌,故通常利用高浓度的果糖来保存食品. 答: 是的.糖浓度只有在70%以上才能抑制大多数微生物的生长,而在室温条件(20 OC)下,只有果糖的浓度可以达到70%,其它糖的溶解度都低于70%,故通常利用高浓度的果糖来保存食品. 6、淀粉的糊化温度是指淀粉开始糊化的温度。

错,淀粉糊化过程中双折射开始小时的温度维糊化点或糊化初始温度7、考虑到在20℃时要有好的保存性,果汁和蜜饯类食品最好利用66%蔗糖作为保存剂。

.错,,应选用淀粉糖浆,因其具有高溶解度,且最高浓度约80%保存性较好。

(三)填空8.糖原是一种_______,主要存在于_______和_______中,淀粉对食品的甜味没有贡献,只有水解成_______或_______才对食品的甜味起作用。

葡聚糖;肌肉;肝脏;低聚糖;葡萄糖9.大分子多糖溶液都有一定的黏稠性,其溶液的黏度取决于分子的_______、_______、_______和溶液中的_______. 大小;形状;所带净电荷;构象10.通常将酯化度大于_______的果胶称为高甲氧基果胶,酯化度低于_______的是低甲氧基果胶。

果胶酯酸是甲酯化程度_______的果胶,水溶性果胶酯酸称为_______果胶,果胶酯酸在果胶甲酯酶的持续作用下,甲酯基可全部除去,形成_______. 50%;50%;不太高;低甲氧基;果胶酸(四)简答题11.碳水化合物吸湿性和保湿性在食品中的作用。

食品化学 第三章 碳水化合物

食品化学 第三章 碳水化合物

工业上生产焦糖色素
以蔗糖为原料生产的三种色素及用途
NH4HSO3催化 pH2-4.5 耐酸焦糖色素 (可用于可口可乐饮料,棕色) 糖和铵盐加热 pH4.2-4.8 焙烤食品用焦糖色素 (红棕色) 蔗糖加热 pH3-4 啤酒美色剂 (含醇类饮料,红棕色)
第一节 单糖在食品中的作用
第二节 低聚糖
蔗糖形成焦糖的过程
蔗糖
200℃,约 35 min起泡
(无甜味而具有温和的苦味)
异蔗糖酐
焦糖酐 焦糖稀 焦糖素
二次起泡55 min
(熔点为 138℃,可溶于水 及乙醇,味苦)
焦糖色素是一种结构不明确 继续加热 的大的聚合物分子,这些聚 (熔点为 154℃,可溶于水) 继续加热 合物形成了胶体粒子,形成 (高分子量的深色物质 ) 胶体粒子的速度随温度和pH 的增加而增加。
裂解:
裂解 挥发性的醛、酮
第一节 单糖在食品中的作用
焦糖化反应条件
①无水或浓溶液,温度150-200℃。 ②催化剂的存在加速反应:铵盐、磷酸盐 苹果酸、延胡索酸、柠檬酸、酒石酸等。 ③pH8比pH5.9时快10倍。 ④不同糖反应速度不同,例如果糖大于葡 萄糖(熔点的不同)。
第一节 单糖在食品中的作用
一、单糖的物理性质
吸湿性和保湿性
吸湿性:指糖在空气湿度较高的情况下吸收水分 的性质。 保湿性:指糖在空气湿度较低条件下保持水分的 性质。果糖的吸湿性最强
结晶性
糖的特征之一是能形成结晶,糖溶液越纯越易 结晶。
其它
黏度、渗透压、发酵性、抗氧化性
第一节 单糖在食品中的作用
二、单糖的化学反应
• 具有醇羟基的成酯、成醚、成缩醛等反应 和羰基的一些加成反应,还具有一些特殊 反应 。 非酶褐变反应 美拉德反应(Maillard reaction) 焦糖化反应(Phenomena of Caramelization )

碳水化合物百度百科

碳水化合物百度百科

碳水化合物碳水化合物(carbohydrate)是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样,故称为碳水化合物。

它是为人体提供热能的三种主要的营养素中最廉价的营养素。

食物中的碳水化合物分成两类:人可以吸收利用的有效碳水化合物如单糖、双糖、多糖和人不能消化的无效碳水化合物,如纤维素,是人体必须的物质。

糖类化合物是一切生物体维持生命活动所需能量的主要来源。

它不仅是营养物质,而且有些还具有特殊的生理活性。

例如:肝脏中的肝素有抗凝血作用;血型中的糖与免疫活性有关。

此外,核酸的组成成分中也含有糖类化合物——核糖和脱氧核糖。

因此,糖类化合物对医学来说,具有更重要的意义。

自然界存在最多、具有广谱化学结构和生物功能的有机化合物。

可用通式Cx(H2O)y来表示。

有单糖、寡糖、淀粉、半纤维素、纤维素、复合多糖,以及糖的衍生物。

主要由绿色植物经光合作用而形成,是光合作用的初期产物。

从化学结构特征来说,它是含有多羟基的醛类或酮类的化合物或经水解转化成为多羟基醛类或酮类的化合物。

例如葡萄糖,含有一个醛基、六个碳原子,叫己醛糖。

果糖则含有一个酮基、六个碳原子,叫己酮糖。

它与蛋白质、脂肪同为生物界三大基础物质,为生物的生长、运动、繁殖提供主要能源。

是人类生存发展必不可少的重要物质之一。

发现历史在人们知道碳水化合物的化学性质及其组成以前,碳水化合物已经得到很好的作用,如今含碳水化合物丰富的植物作为食物,利用其制成发酵饮料,作为动物的饲料等。

一直到18世纪一名德国学者从甜菜中分离出纯糖和从葡萄中分离出葡萄糖后,碳水化合物研究才得到迅速发展。

1812年,俄罗斯化学家报告,植物中碳水化合物存在的形式主要是淀粉,在稀酸中加热可水解为葡萄糖。

1884年,另一科学家指出,碳水化合物含有一定比例的C、H、O三种元素,其中H和O的比例恰好与水相同为2:1,好像碳和水的化合物,故称此类化合物为碳水化合物,这一名称,一直沿用至今。

食品营养学第三章碳水化合物 第五节 膳食纤维

食品营养学第三章碳水化合物 第五节 膳食纤维

第三章 碳水化合物
• 六.膳食纤维的摄取与食物来源
• 1.膳食纤维的摄取 美国FDA推荐的总膳食纤维摄入量为成人每日20~35g。每
天摄入一定量的植物性食物如400~500g的蔬菜和水果,一定 量的粗粮:如杂豆、玉米和小米等,可满足机体对膳食纤维 的需要。
此外,美国供给量专家委员会推荐膳食纤维中以不溶性纤 维70%~75%,可溶性纤维25%~30%为宜,并且应由天然纤维 提供膳食纤维,而不是纯纤维素。另据报告,澳大利亚人每 日平均摄入膳食纤维25g,可明显减少冠心病的发病率和死亡 率。
• 6.木质素
木质素是使植物木质化的物质。不是多糖而是多聚苯丙 烷聚合物,或称苯丙烷聚合物。其与纤维素、半纤维素同时 存在于植物细胞壁中,进食时往往一并摄入体内,被认为是 膳食纤维的组成部分。通常果蔬植物所含木质素甚少,人和 动物均不能消化木质素。
第三章 碳水化合物
• 三、膳食纤维的营养学意义
• 1.促进结肠功能,预防结肠癌 大多数纤维素具有促进肠道蠕动和吸水膨胀的特性。一方
含量 0.51~1.19 0.82~1.04 0.27~1.11 1.17~2.92 0.10~0.50 1.00~2.00
0.78
第三章 碳水化合物
表3-6 膳食纤维的种类、食物来源和主要功能
种类
不溶性纤维 木质素 纤维素 半纤维素 可溶性纤维 果胶、树胶、黏胶、 少数半纤维素
主要食物来源
所有植物 所有植物(如小麦制品) 小麦、黑麦、大米、蔬菜 柑橘类、燕麦制品和豆类
第三章 碳水化合物
碳水化合物又称糖类,是由碳、氢、氧组成的一类多 羟基醛或多羟基酮类化合物,是生物界三大基础物质之一, 其基本结构式为Cm(H2O)n。碳水化合物主要存在于植物界, 多是通过绿色植物的光合作用而产生。碳水化合物占植物干 重的50%~80%,占动物体干重的2%左右。在植物组织中碳水 化合物主要以能源物质(如淀粉)和支持结构(如纤维素和 果胶等)的形式存在,在动物组织中,碳水化合物主要以肝

第3章_碳水化合物剖析

第3章_碳水化合物剖析

第三章碳水化合物一、碳水化合物的一般概念碳水化合物:糖类化合物的分子组成可用Cn(H2O)n通式来表示,因此也叫碳水化合物。

但后来发现有些糖如鼠李糖(C6H12O5)和脱氧核糖(C5H10O4)并不符合上述通式,并且有些糖还含有N、S、P等成分。

而像醋酸(C2H4O2)也符合上述通式,但它不是糖类化合物,所以叫碳水化合物已不合适,但是应用已久有许多书还在用。

糖类的定义:多羟基醛或酮及其衍生物和缩合物。

二、碳水化合物的分类:碳水化合物:①单糖、寡糖和多糖(单糖的数量);②均多糖或杂多糖(单糖的种类);③植物多糖、动物多糖和微生物多糖(多糖的来源);④结构多糖、贮藏多糖和功能多糖(体内的功能);⑤多糖复合物。

三、碳水化合物与食品质量①碳水化合物是营养的基本物质之一。

②形成一定色泽和风味。

③游离糖本身有甜度,对食品口感有重要作用。

④食品的粘弹性也是与碳水化合物有很大关系,如果胶、卡拉胶等。

⑤食品中纤维素、果胶等不易被人体吸收,除对食品的质构有重要作用外,还是膳食纤维的构成成分。

⑥某些多糖或寡糖具有特定的生理功能,是保健食品的主要活性成分。

四、食品中的糖类化合物谷物蔬菜、水果和可供食用的其他植物都含有糖类化合物。

食品中常见的单糖是葡萄糖、低聚糖是蔗糖、乳糖、麦芽糖和棉子糖,多糖是淀粉、纤维素、果胶。

谷物中的游离糖类的含量谷物中游离单糖及多糖含量很低,如大米(0.1%~0.2%)、小麦(0.1%~2.4%)、大豆(0.1%)、玉米(0.6%~0.9%)、鲜嫩荚青豆(2.3%)、鲜青豌豆(0.55%)。

五、糖的甜度蜂蜜和大多数果实的甜味主要取决于蔗糖(sucrose)、D-果糖(D -fructose)、D-葡萄糖(D- glucose)的含量。

1、甜度定义:是一个相对值,以蔗糖作为基准物,一般以10%或15%的蔗糖水溶液在20℃时的甜度为1,又称为比甜度。

2、糖的相对甜度3、影响甜味强度的因素:①构型的影响;②浓度的影响;③粒度的影响;④温度的影响;⑤介质的影响;⑥不同糖类之间的影响。

营养学笔记3碳水化合物

营养学笔记3碳水化合物
注意:
精制糖,不建议多吃。正常糖应占身体卡路里的5%,每天约25克。但是 一瓶汽水大约含65克糖,超过正常的量。
葡萄糖可以被身体的所有器官代谢,果糖的代谢主要靠肝脏,如果肝脏 负担过重,就会转化为脂肪。新鲜水果含有果糖,不过天然的不会过量,水 果中的纤维减缓其吸收。
糖使饼干耐嚼、糖果松脆、面包变成金黄色、糖还是最好的防腐剂。它 不会沸腾也不会蒸发,加了糖的食品更容易保存。
推荐日摄入量
国际
≥55%供能比 ≥50g/d
中国
55%-65%供能比 250-400g/d 精制糖<10%
碳水化合物供能比低于40%或高于80%都会出现相应的机体功能损害。
2.皮肤干燥
缺乏碳水化合物,机体只能分解自身蛋白质。皮肤 蛋白质缺乏的时候会出现皮肤干燥。
3.疲惫不堪
肌肉组织如果糖的供给,会出现肌肉酸痛,肌肉疲 乏。
推荐日摄入量
国际
≥55%供能比 ≥50g/d
中国
55%-65%供能比 250-400g/d 精制糖<10%
碳水化合物供能比低于40%或高于80%都会出现相应的机体功能损害。
血糖生成指数GI
含50克碳水化合物与相当量的葡萄糖或白面包在一定时间内 (一般为2小时)体内血糖反应水平百分比值。
GI=100标准血Fra bibliotek指数食物GI≦55
低血糖指数食物
蔬菜、奶类、豆 制品。
55<GI<75
中等血糖指数食物
薯类:如红薯、胡 萝卜、芋头
GI≥75
中等血糖指数食物
精米、精面、 及其制品。如:面 包、馒头等。
易溶于水 甜味明显 葡萄糖、果糖、 半乳糖。
2分子单糖 易溶于水
有甜味 蔗糖、麦芽糖、

食品化学知识点3碳水化合物

食品化学知识点3碳水化合物

3. 碳水化合物1.碳水化合物定义:多羟基醛或酮及其衍生物和缩合物。

2.分类按组成分单糖,低聚糖,多糖1) 单糖:不能再被水解的多羟基醛,酮,是碳水化合物的基本单位。

(按碳原子数目丙糖,丁糖。

)2)低聚糖(寡糖):由2~10个单糖分子缩合而成,水解后生成单糖。

(按水解后产生的单糖数分二糖,三糖。

二糖有蔗糖乳糖麦芽糖)3)多糖:单糖聚合度大于10的糖。

(淀粉,纤维素糖原)3.单糖,低聚糖的结构:单糖:除丙酮糖,都有手性碳。

天然单糖大多是D型,例外L-阿拉伯糖,L-半乳糖4.单糖低聚糖物性甜味(蔗糖为基准物)、水溶性(能溶于水,不溶于有机,果糖最大溶解度)旋光性(除丙酮糖,都有手性碳,都有旋光性):一种物质使直线偏振光的振动平面向左或向右旋转,右旋D-(+)变旋光现象:新配制的单糖溶液在放置时,其比旋光度会逐渐增加或减少,最后达到一个恒定值。

4单糖低聚糖化性(1)美拉德反应:含羰基化合物(如糖类等)与含氨基化合物(如氨基酸等)通过缩合、聚合而生成类黑色素的反应。

①初期阶段羰氨缩合:氨基化合物中的游离氨基与羰基化合物中的游离羰基缩合生成不稳定亚胺衍生物—薛夫碱,环化成氮代葡萄糖基胺。

(亚硫酸根抑制羰氨缩合,碱性条件有利)分子重排:氮代葡萄糖基胺在酸的催化下经过阿姆德瑞分子重排果糖基胺(单果糖胺)②中期阶段果糖基胺经多途径降解,生成各种羰基化合物果糖基胺脱水生成羟甲基糠醛(PH《5,先脱氨残基,在脱水,HMF积累与褐变相关)果糖基胺脱去胺基重排生成还原酮二羰基化合物与氨基酸反应在二羰基化合物存在,氨基酸发生脱羧、脱氨,自身转化为醛类和生成CO2,而氨基转移到二羰基化合物生成各种化合物(二酮接受氨转化为褐色色素)。

生成其他杂环化合物③末期阶段多羰基不饱和化合物(还原酮,糠醛)裂解产生挥发性物质;一方面缩合,聚合生成褐黑色类黑精物质影响Maillard反应因素(1)底物糖; a.五碳糖>六碳 b.单糖>双糖c.还原糖含量与褐变成正比d醛大于酮氨基酸:氨基在ε-位或在末端者,比α-位易褐变(2)PH大于3,P H↑褐变↑(3)水分↑褐变↑(10-15℅)(4)温度升10,褐变加快3-5倍(5)Fe Cu促进,Mn Zn抑制(6)O2影响后期色素形成(2)焦糖化现象:糖类在氨基化合物存在时,加热到熔点以上的高温,糖发生脱水与降解,会产生褐变反应,称为。

思考题3碳水化合物营养

思考题3碳水化合物营养

碳水化合物营养思考题一、名词解释:1.寡糖:2-10个糖单位通过糖苷键组成的一类糖2.多糖:含10个糖单位以上的糖3.非淀粉多糖(NSP):由纤维素、半纤维素、果胶和抗性淀粉(阿拉伯木聚糖、β-葡聚糖、甘露聚糖)4.能量饲料:水分含量低于45%,粗纤维低于18%,粗蛋白质低于20%的饲料,称为。

二、填空1.营养性多糖包括:淀粉、糖原、菊糖;2.结构性多糖包括:纤维素、半纤维素。

3.淀粉在动物消化道内消化后产生二糖,二糖需要在二糖酶的作用下被降解成单糖被吸收,动物的二糖酶包括:麦芽糖酶、蔗糖酶、乳糖酶4.三、选择1.反刍动物前胃消化碳水化合物的本质是(A、D )?A微生物利用纤维素;B动物产生的纤维素酶消化纤维素;C动物和微生物共同消化纤维素;D微生物消耗可溶性碳水化合物,不断产生纤维素分解酶分解粗纤维;2.当反刍动物饲粮中粗饲料比例比较高时,瘤胃液中哪一种挥发性脂肪酸的比例相对较高(A ,C)。

A.乙酸B.丙酸C.丁酸D.戊酸3.反刍动物使用高精料饲粮时,容易出现酸中毒,饲粮中添加缓冲剂,可以提高瘤胃的消化功能,防止酸中毒,生产中常用的缓冲剂为(A)。

A.碳酸氢钠B.氢氧化钠C.硫酸铜D.氯化钠4.从营养生理的角度考虑,多糖可以分为营养性多糖和结构性多糖两种,下列哪一种养分属于营养性多糖(A,C)。

A.纤维素B.木质素C.半纤维素D.淀粉5.刍动物如奶牛饲粮中粗纤维严重不足或粉碎过细时,会产生(A,B,C,D,E )?A蹄叶炎;B 乳酸中毒;C 瘤胃卜完全角化;D皱胃位移;E乳脂率降低。

6、反刍动物对碳水化合物的消化部位主要在瘤胃内进行,对碳水化合物的消化吸收以最终形成(C)为主。

A.葡萄糖B.氨基酸C.挥发性脂肪酸D.二氧化碳7、从营养生理的角度考虑,多糖可以分为营养性多糖和结构性多糖两种,下列哪一种养分属于营养性多糖(D)。

A.纤维素B.木质素C.半纤维素D.淀粉四、问答1.饲粮中纤维对反刍动物的营养作用有哪些?①、维持瘤胃的正常功能和动物的健康。

食品营养学第三章碳水化合物 第四节碳水化合物的供给量及食物来源

食品营养学第三章碳水化合物 第四节碳水化合物的供给量及食物来源

第三章 碳水化合物
表3-2 几种常见食物的碳水化合物含量(%)
食物
蔗糖 玉米淀粉 葡萄干 小麦面粉 (70%) 空心粉(干) 全麦面包
大米 烤马铃薯
香蕉
碳水化合 物总 量
99.5 87.6 77.4
76.1
75.2 47.7 24.2 21.1 22.2
粗纤维 0 0.1 0.9 0.3 0.3 1.6 0.1 0.6 0.5
(1)谷物摄入减少造成B族维生素的缺乏。根据食物成 分0.34mg,100g特级大米中的含量仅为0.08mg。
第三章 碳水化合物
(2)主食谷物不足造成动物脂肪代谢不完全。当人体碳 水化合物摄入不足,或身体不能利用糖时(如糖尿病人), 所需能量大部分要由脂肪供给。脂肪氧化不完全,会产生一 定数量的酮体,酮体过分聚积使血液中酸度偏高,引起酮性 昏迷。另外,由于酮体积聚,造成膳食蛋白质的浪费和组织 中蛋白质的分解加速,钠离子的丢失和脱水,导致代谢紊乱。
动者所需要的15%~20%的热能是由蔗糖提供的。按体重计算, 碳水化合物的供给量,成年人每日每1kg体重约6~10g,1岁 以下婴儿约12g。
(1)促进冠心病的发生和发展 过多的碳水化合物若不 能被及时消耗掉,多余的糖在体内转化为甘油三脂和胆固醇, 促进了动脉粥样硬化的发生和发展。
(2)对血脂的影响 进食大量的碳水化合物,使糖代谢 增加,细胞内ATP增加,脂肪合成速度加快,多余的脂肪蓄积 在体内,造成血脂异常情况的发生。
第三章 碳水化合物
碳水化合物又称糖类,是由碳、氢、氧组成的一类多 羟基醛或多羟基酮类化合物,是生物界三大基础物质之一, 其基本结构式为Cm(H2O)n。碳水化合物主要存在于植物界, 多是通过绿色植物的光合作用而产生。碳水化合物占植物干 重的50%~80%,占动物体干重的2%左右。在植物组织中碳水 化合物主要以能源物质(如淀粉)和支持结构(如纤维素和 果胶等)的形式存在,在动物组织中,碳水化合物主要以肝

食品营养学第三章碳水化合物

食品营养学第三章碳水化合物

第三章 碳水化合物
• 七、食品工业的重要原料和辅助材料
碳水化合物是食品工业中糖果、糕点的重要原辅材料, 同时也是其他多种食品的辅助材料。例如,在食品加工时 要控制一定的糖酸比;焙烤食品主要由富含碳水化合物的 谷类原料制成;而硬糖则几乎全是由蔗糖制成的。此外, 碳水化合物一般有甜味,不仅是食物,而且可以做佐料, 调节食物风味,增加食欲。
第三章 碳水化合物
• 第二节 碳水化合物的分类
碳水化合物是自然界最丰富的有机物,人体总能量的 60%~70%来自食物中的碳水化合物。它在人体内消化后,主 要以葡萄糖的形式被吸收利用。中国以淀粉类食物为主食, 主要有大米、面粉、玉米、小米等谷物以及豆类、根茎类富 含淀粉的食品。
第三章 碳水化合物
• 一、按照分子结构和性质分类
第三章 碳水化合物
• 三、维持神经系统的功能和解毒
在正常情况下,神经组织主要靠葡萄糖氧化供给能量, 若血中葡萄糖水平下降(低血糖),神经组织供能不足, 易出现昏迷、四肢麻木、烦躁易怒等症状。
机体里肝糖元对某些细菌毒素有很强的抵抗力,充足 的肝糖元能加强肝脏功能。如果体内肝糖元不足时,对四 氯化碳、酒精、砷等有害物质的解毒作用明显下降。
第三章 碳水化合物
• 四、抗生酮作用
脂肪在体内被彻底分解,需要葡萄糖的协同作用。当 膳食中碳水化合物供应不足时,脂肪动员加速,肝脏中酮 体生成量增加,再加上糖代谢减少,丙酮酸缺乏,可与乙 酰辅酶A缩合成柠檬酸的草酰乙酸减少,更减少了酮体的去 路使酮体聚集于血液成为酮血症。血中酮体过多,由尿排 出,又形成酮尿。酮体为酸性物质,若超过血液的缓冲能 力时,引起酸中毒。
糖醇是糖的衍生物,由单糖或多糖加氢而成,也有天 然存在的。在食品工业中常用其代替蔗糖作为甜味剂使用。

食品营养学 3.碳水化合物

食品营养学 3.碳水化合物
化学与环境工程学院
第3章 碳水化合物
化学与环境工程学院
主要内容
碳水化合物的功能 食品中重要的碳水化合物 食品加工对碳水化合物的影响 碳水化合物的摄取与食物来源
化学与环境工程学院
第一节 碳水化合物的功能
➢ 一、供能及节约蛋白质 ➢ 二、构成体质 ➢ 三、维持神经系统的功能与解毒 ➢ 四、有益肠道功能 ➢ 五、食品加工中重要原、辅材料 ➢ 六、抗生酮作用
化学与环境工程学院
4.乳糖醇
➢ 来源:由乳糖催化加氢制得。 ➢ 特点: 甜度为蔗糖的30~40%; 在肠道内几乎不被消化、吸收、能值很低; 不致龋齿。
化学与环境工程学院
二、低聚糖(寡糖)
聚合度为4~10的低聚糖。麦芽低聚糖、甘露低 聚糖、低聚木糖。 ➢ 功能性食品
【低热、低脂、低胆固醇、低盐、高纤维素 低聚糖(寡糖)和短肽(寡肽)】 ➢ 具有特殊保健功能的低聚糖 低聚果糖、乳果聚糖、低聚异麦芽糖、低聚 木糖、低聚氨基葡萄糖
低聚乳果糖的特性
➢ 低聚乳果糖是非还原性低聚糖; ➢ 其甜味味质类似蔗糖,通常为蔗糖的30~50%。 ➢ 低聚乳果糖几乎不被人体消化吸收,可供糖尿
乳酸;在乳糖酶作用下水解;乳糖不耐症。 ➢ 功能: 是婴儿主要食用的碳水化合物。 构成乳糖的D—半乳糖除作为乳糖的构成成分外,
还参与构成许多重要的糖脂(如脑苷脂、神经节 苷酯)和精蛋白,细胞膜中也有含半乳糖的多糖, 故在营养上仍有一定意义。
化学与环境工程学院
5.异构乳糖
➢ 组成:1分子半乳糖和1分子果糖组成 ➢ 来源:乳糖异构; ➢ 特点: 无天然存在,由乳糖异构而来; 不能被消化吸收,通便作用; 促进肠道有益菌的增殖、抑制腐败菌的生长; 促进肠道中双歧杆菌自行合成多种B族维生素。 甜度约为蔗糖的一半(约50)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、改性食品淀粉
为了适应需要,将天然淀粉经化学处理或 酶处理,使淀粉原有物理性质发生改变, 如水溶性,粘度,色泽,味道,流动性等。 经过处理的淀粉总称为变性淀粉。
改性方法
淀粉分子中的少量羟基被改性(酯基或
醚基),取代度DS为0.002~0.2。 酯化:醋酐、三聚磷酸钠、磷酸、三偏磷酸钠 醚化:氧化丙烷 作用:阻止链间缔合,防止沉淀,稳定化 性能变化

多糖的粘度
与分子的大小、形状、构象有关 无序的无规线团状态,存在偏差 紧密或松散的线团

无规线团状多糖分子
占有空间
碰撞频率
线性分子,很高粘度
支链分子,粘度较低
直链多糖
带电的,粘度提高
静电斥力,链伸展,链长增加,占有体积增大 海藻酸钠、黄原胶及卡拉胶形成稳定高粘溶液
不带电,倾向于缔合、形成结晶
期望
牛奶巧克力风味 糖果风味 不期望的 营养(氨基酸)损失 有毒、致突变物质的产生

Aw
Maillard反应过程
还原糖+胺 葡基胺(无色)
Amadori重排
1-氨基-1-脱氧-D果糖衍生物 pH≤5 5-羟甲基-2-呋喃甲醛(HMF) pH>5 快速聚合,生成深色物质
加成反应

糖中羟基与有机酸和无机酸相互作用生成酯 天然多糖中存在醋酸酯、磷酸酯(马铃薯淀 粉)、硫酸酯(卡拉胶)等羧酸酯 蔗糖酯是一种很好的乳化剂 卡拉胶中含有硫酸酯基(OSO3-),和酸性饮 料中带正电荷的蛋白质结合,是一种很好的乳 化、稳定剂
醚化
进一步改良功能性 红藻多糖C3与C6间形成内醚(3,6-脱水 环)
二、糊化
直链与支链分子呈径向有序排列 结晶区和非结晶区交替排列 结晶区,偏光十字
直链
支链

糊化
加热破坏了结晶胶束区弱的氢键后,淀粉颗粒开始
水合膨胀,结晶区消失,粘度增加,双折射消失 在具有足够的水(至少60%)条件下加热淀粉颗粒 达一特定温度(玻璃化相变温度),淀粉颗粒的无 定形区由玻璃态转向橡胶态。
一、多糖的溶解性
多羟基,氧原子,形成氢键 结合水,不结冰,多糖分子溶剂化 不会显著降低冰点,提供冷冻稳定性 保护产品结构和质构,提供贮藏稳定性 大多数多糖不结晶 胶或与亲水胶体

二、多糖溶液的粘度与稳定性
主要具有增稠和胶凝功能 还控制流体食品与饮料的流动性质与 质构以及改变半固体食品的变形性等 0.25%~0.5%
碰撞时形成分子间键,分子间缔合,重力作用下
产生沉淀和部分结晶 淀粉老化
多糖的流变性质

假塑性流体
剪切变稀:剪切速率增高,粘度快速下降 粘度变化与时间无关

触变
也是剪切变稀 粘度与时间有关

温度升高,粘度下降
三、凝胶
三维网络结构 氢键、疏水相互 作用、范德华引 力、离子桥连、 缠结或共价键 网孔中液相
亲核反应 碱性条件
Maillard 反应最适条件
Maillard本人的研究,褐变程度为 D-木糖L-阿拉伯糖己糖二糖 酮糖在褐变中遵循不同的机制, D-果糖<D-葡萄糖 中等水分含量 pH 7.8~9.2(偏碱性) 金属离子

Cu与Fe促进褐变

Fe(III)Fe(II)
抑制Maillard反应的方法
稀释或降低水分含量 降低pH 降低温度 除去一种作用物

加入葡萄糖转化酶,除去糖,减少褐变

色素形成早期加入还原剂(亚硫酸盐)
营养变化
部分氨基酸的损失 尤其是必需氨基酸L-赖氨酸

含有2个氨基,第一限制氨基酸

组氨酸和精氨酸侧链中含有含氮基团
焦糖化反应

支链淀粉分子排列



分支是成簇和以双螺 旋形式存在 形成许多小结晶区 偏光黑十字 侧链的有序排列
马铃薯淀粉的颗粒和偏光十字
一些淀粉中直链和支链淀粉的含量(%) 淀粉来源 高直链淀粉 玉米 蜡质玉米 小麦 大米 马铃著 木著 直链淀粉 50~85 24 1 25 17 21 17 支链淀粉 15~50 76 99 75 83 79 83
直接加热糖和糖浆 热解反应引起糖分子脱水,双键引入糖环, 产生不饱和环中间物(呋喃) 共轭双键吸收光,产生颜色 少量酸和盐可以加速反应 不同催化剂产生不同类型的色素

三种商品化焦糖色素
蔗糖通常被用来制造焦糖色素和风味物 耐酸焦糖色素
亚硫酸氢铵催化
应用于可乐饮料、酸性饮料
第三章 碳水化合物
第一节

食品中的碳水化合物
存在于所有的谷物、蔬菜、水果及可食植 物中 提供膳食热量 提供质构、口感和甜味 表达式Cx(H2O)y 包括单糖、低聚糖以及多糖 最丰富的碳水化合物是纤维素
第二节

单糖
一、结构
手性碳原子
原子或功能基团

-与-构型
异侧
同侧
其次

三糖
麦芽三糖、甘露三糖、蔗果三糖

聚合度为4~10的低聚糖
麦芽低聚糖、甘露低聚糖、低聚木糖
二、具有特殊功能的低聚糖

功能性食品
低热、低脂、低胆固醇、低盐、高纤维素 低聚糖(寡糖)和短肽(寡肽)

具有特殊保健功能的低聚糖
低聚果糖、乳果聚糖、低聚异麦芽糖、低聚木
糖、低聚氨基葡萄糖
三、环状低聚糖

四、多糖水解
在酸或酶的催化作用下,糖苷键水解 粘度下降 热加工,水解严重 配方中添加多糖,使用高粘度耐酸多糖 酶的影响

第五节

淀粉
不溶于水,冷水中少量水合 低粘度浆料烧煮时,增稠 直链淀粉和支链淀粉 营养功能 商业淀粉在食品工业中的应用
一、淀粉的化学结构 直链淀粉
生产量最大

焙烤食品用色素
糖与胺盐加热,产生红棕色
啤酒等含醇饮料用焦糖色素
蔗糖直接热解产生红棕色
焦糖化产品的风味
面包风味
各种风味和甜味的增强剂
第三节
低聚糖
一、食品中重要的低聚糖 低聚糖:2~20个糖单位通过糖苷键连接 多 糖:超过20个糖单位
麦芽糖
淀粉水解后得到的二糖 具有潜在的游离醛基,是一种还原糖 温和的甜味剂 糖苷配基
降低糊化温度,提高淀粉糊透明度,提高抗 老化以及冷冻-解冻的稳定性
交联淀粉的用途
随交联度增加,酸稳定性增加 降低了淀粉颗粒吸水膨胀和糊化的速率 保持初始的低粘度,有利于快速热传递和 升温,均匀杀菌 用于罐头、冷冻、焙烤和干燥食品中 功能性质改善 预糊化淀粉

第六节 纤维素
β-1,4
D-吡喃葡萄糖-1,4糖苷键连接
N=6
N=7
N=8
环糊精的结构特点
高度对称性 圆柱形 -OH在外侧,C-H和环O在内侧 环的外侧亲水,中间空穴是疏水区域 作为微胶囊壁材,包埋脂溶性物质

风味物、香精油、胆固醇
第四节

多糖
超过20个单糖的聚合物为多糖 单糖的个数称为聚合度(DP) 大多数多糖的DP为200-3000 纤维素的DP最大,达7000-15000 直链多糖,支链多糖 均匀多糖,非均匀多糖(杂多糖)
Ni 保湿剂 甜度为蔗糖的50%
甘露糖醇
甜度为蔗糖的65% 应用于硬糖、软糖和不含糖的巧克力中 保湿性小,作为糖果的包衣
C2差向异构
木糖醇
由半纤维素制得的木糖氢化 甜度为蔗糖的70% 在硬糖或胶姆糖中替代蔗糖 防止龋齿,治疗糖尿病 注意安全性

五、酯化与醚化
酯化

葡萄糖以-1,4糖苷键 少量 -1,6糖苷键,支链点隔开很远 25%直链淀粉 分子内的氢键作用成右手螺旋状,每个 环含有6个葡萄糖残基 相对分子质量约为106,甚至更大 聚合度约为100-6,000之间,一般为几百 在水溶液中呈线性分子

支链淀粉
C链为主链,由 -1,4连接 A、B链是支链,A由 -1,6键与B链连结, B链又经由 -1,6键与C链连接 支链淀粉分子如球状 DP 6,000以上,分子量可达107~5108

异头碳
生氰糖苷
降解时产生氰化氢 杏仁、木薯、高梁、竹笋和菜豆 为防止氰化物中毒,必须充分煮熟后再充 分洗涤

三、氧化反应
D-葡萄糖在葡萄糖氧化酶的作用下可被氧 化成D-葡萄糖酸,并形成内酯。
加入H2O2酶,消耗H2O2,使反应继续进行
δ-内酯
闭环是酯,加热后开环是酸
内酯是一种温和的酸化剂
为主
二、糖 苷
糖苷~功能特性
黄酮糖苷:具有苦味和其它风味和颜色 毛地黄苷:强心剂 皂角苷:起泡剂和稳定剂 甜菊苷:甜味剂

O-糖苷

糖在酸性条件下与醇发生反应,失去水 后形成的产品。 糖苷一般含有呋喃或吡喃糖环。
糖基
糖苷配基
糖苷的形成提高了配糖基的水溶性
O-糖苷的性质
在中性和碱性条件下一般是稳定的 在酸性条件下能被水解 可被糖苷酶水解

糊化点或糊化开始温度
双折射开始消失的温度
糊化终了温度
双折射完全消失的温度
测定方法
偏光显微镜 DSC
三、老化

稀淀粉溶液冷却后,线性分子重新排列并通过 氢键形成不溶性沉淀。 一般直链淀粉易老化,直链淀粉愈多,老化愈 快度下降 无定形转变为结晶的老化状态 加入极性脂(甘油一酯及其衍生物),形 成络合物,延迟老化
与带正电的蛋白质作用
第七节
果 胶
果胶物质的化学结构
-D-半乳糖醛酸基
-1,4 糖苷键
相关文档
最新文档