51单片机矩阵键盘与8051连接设计
1-单片机键盘与显示电路设计
独立式按键 单片机控制系统中,往往只需要几个 功能键,此时,可采用独立式按键结构。 1.独立式按键结构 独立式按键是直接用I/O口线构成的单 个按键电路,其特点是每个按键单独占 用一根I/O口线,每个按键的工作不会影 响其它I/O口线的状态。独立式按键的典 型应用如图9-3所示。
V CC
P 1.0 P 1.1 P 1.2 P 1.3 P 1.4 P 1.5 P 1.6 P 1.7
P1口某位结构
P1口电路中包含有一个数据输出锁存器、一个三态数据输入缓冲器 、一个数据输出的驱动电路。 P1口的功能和驱动能力
P1口只可以作为通用的I/O口使用;
P1可以驱动4个标准的TTL负载电路; 注意在P1口作为通用的I/O口使用时,在从I/O端口读入数据时,应 该首先向相应的I/O口内部锁存器写“1”。 举例:从P1口的低四位输入数据 MOV MOV P1,#00001111b ;;先给P1口底四位写1 A,P1 ;;再读P1口的底四位
依此规律循环,即可使各位数码管显 示将要显示的字符。虽然这些字符是在不 同的时刻分别显示,但由于人眼存在视觉 暂留效应,只要每位显示间隔足够短就可 以给人以同时显示的感觉。 采用动态显示方式比较节省I/O口,硬 件电路也较静态显示方式简单,但其亮度 不如静态显示方式,而且在显示位数较多 时,CPU要依次扫描,占用CPU较多的时 间。
矩阵式按键 单片机系统中,若使用按键较多时,通 常采用矩阵式(也称行列式)键盘 1.矩阵式键盘的结构及原理 矩阵式键盘由行线和列线组成,按键位 于行、列线的交叉点上,其结构如下图9-4 所示。
+5 V 0 4 8 12 0 1 5 9 13 1 2 6 10 14 2 3 7 11 15 3 0 1 2 3
基于51单片机的简易计算器设计
基于单片机的简易计算器设计摘要2关键字:80C51 LCD1602 4*4矩阵键盘计算器2第一章绪论21。
1系统开发背景21。
2系统开发意义21.3设计目的21。
4设计任务2第二章单片机发展现状22.1目前单片机的发展状况22。
1。
1单片机的应用场合32.2计算器系统现状42.3简易计算器系统介绍4第三章系统硬件设计及说明43。
1系统组成及总体框图53.2AT89S52单片机介绍63。
3其它器件介绍及说明83.3.1 LCD1602液晶显示83。
3.2 4*4矩阵扫描按键9第四章 PROTEUS模拟仿真11第五章系统硬件设计及说明11第六章软件设计116.1汇编语言和C语言的特点及选择116.2源程序代码12摘要近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。
在实时检测和自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,但仅单片机方面的知识是不够的,还应根据具体硬件结构、软硬件结合,来加以完善。
计算机在人们的日常生活中是比较常见的电子产品之一.可是它还在发展之中,以后必将出现功能更加强大的计算机,基于这样的理念,本次设计主要以80C51单片机为控制芯片,用C语言进行编程实现,通过4*4矩阵键盘控制,输出用液晶屏LCD1602显示,该计算器可以实现一般的加减乘除四则混合运算。
关键字:80C51 LCD1602 4*4矩阵键盘计算器第一章绪论1.1 系统开发背景随着社会的发展,科学的进步,人们的生活水平在逐步的提高,尤其是微电子技术的发展,犹如雨后春笋般的变化。
电子产品的更新速度快就不足惊奇了。
计算器在人们的日常中是比较的常见的电子产品之一。
如何使计算器技术更加的成熟,充分利用已有的软件和硬件条件,设计出更出色的计算器,使其更好的为各个行业服务,成了如今电子领域重要的研究课题.1.2 系统开发意义今天,人们的日常生活中已经离不开计算器了,社会的各个角落都有它的身影,比如商店,办公室,学校……。
单片机实验报告——矩阵键盘数码管显示
单片机实验报告信息处理实验实验二矩阵键盘专业:电气工程及其自动化指导老师:***组员:明洪开张鸿伟张谦赵智奇学号:152703117 \152703115\152703118\152703114室温:18 ℃日期:2017 年10 月25日矩阵键盘一、实验内容1、编写程序,做到在键盘上每按一个键(0-F)用数码管将该建对应的名字显示出来。
按其它键没有结果。
二、实验目的1、学习独立式按键的查询识别方法。
2、非编码矩阵键盘的行反转法识别方法。
3、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。
4、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。
5、掌握利用Keil51软件对程序进行编译。
6、会根据实际功能,正确选择单片机功能接线,编制正确程序。
对实验结果能做出分析和解释,能写出符合规格的实验报告。
三、实验原理1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。
2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。
3、识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。
这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。
由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。
51单片机键盘接口电路(含源程序)
51单片机键盘接口电路(含源程序)键盘是由若干按钮组成的开关矩阵,它是单片机系统中最常用的输入设备,用户能通过键盘向计算机输入指令、地址和数据。
一般单片机系统中采和非编码键盘,非编码键盘是由软件来识别键盘上的闭合键,它具有结构简单,使用灵活等特点,因此被广泛应用于单片机系统。
按钮开关的抖动问题组成键盘的按钮有触点式和非触点式两种,单片机中应用的一般是由机械触点组成的。
在下图中,当开<键盘结构图>< P> 图1 < P> 图2关S未被按下时,P1。
0输入为高电平,S闭合后,P1。
0输入为低电平。
由于按钮是机械触点,当机械触点断开、闭合时,会有抖动动,P1。
0输入端的波形如图2所示。
这种抖动对于人来说是感觉不到的,但对计算机来说,则是完全能感应到的,因为计算机处理的速度是在微秒级,而机械抖动的时间至少是毫秒级,对计算机而言,这已是一个“漫长”的时间了。
前面我们讲到中断时曾有个问题,就是说按钮有时灵,有时不灵,其实就是这个原因,你只按了一次按钮,可是计算机却已执行了多次中断的过程,如果执行的次数正好是奇数次,那么结果正如你所料,如果执行的次数是偶数次,那就不对了。
为使CPU能正确地读出P1口的状态,对每一次按钮只作一次响应,就必须考虑如何去除抖动,常用的去抖动的办法有两种:硬件办法和软件办法。
单片机中常用软件法,因此,对于硬件办法我们不介绍。
软件法其实很简单,就是在单片机获得P1。
0口为低的信息后,不是立即认定S1已被按下,而是延时10毫秒或更长一些时间后再次检测P1。
0口,如果仍为低,说明S1的确按下了,这实际上是避开了按钮按下时的抖动时间。
而在检测到按钮释放后(P1。
0为高)再延时5-10个毫秒,消除后沿的抖动,然后再对键值处理。
不过一般情况下,我们常常不对按钮释放的后沿进行处理,实践证明,也能满足一定的要求。
当然,实际应用中,对按钮的要求也是千差万别,要根据不一样的需要来编制处理程序,但以上是消除键抖动的原则。
51单片机矩阵键盘设计
51单片机矩阵键盘设计
一、引言
AT89C51单片机矩阵键盘设计是嵌入式系统中一个重要的技术,它的
作用是以矩阵形式把外部按键与MCU相连,使得系统可以对外部的按键进
行检测和响应。
矩阵键盘设计在可编程嵌入式系统的设计中占有重要的地位,如智能交通系统、智能家居系统、航空电子系统等。
本文主要介绍了矩阵键盘设计中硬件电路的设计,包括按键、拉电阻、和矩阵编码等,同时给出系统的控制算法,使得系统可以实现有效的按键
检测和响应。
二、矩阵键盘概述
矩阵键盘是将多个按键排布成列行形式进行连接,一般来说,矩阵键
盘是由按键、拉电阻、矩阵编码器和控制器组成,按键是系统中重要的部件,其作用是将外部输入信号传递给控制器。
拉电阻起到的作用是防止按
键耦合,一般可以使用4.7KΩ拉电阻来防止按键耦合。
矩阵编码器用来
识别按键的状态,通常通过硬件把按键信号编码为数字信号,输入到处理
器或控制器。
控制器用来实现按键信号的检测,通过定义硬件定时器和软
件定时器,实现按键检测和处理。
1、硬件电路设计
应用AT89C51单片机矩阵键盘。
单片机与键盘或按键接口设计与实现方法
单片机与键盘或按键接口设计与实现方法单片机与键盘或按键接口设计是嵌入式系统开发中常见的任务,它可以实现通过键盘或按键输入控制单片机的功能。
本文将介绍单片机与键盘或按键接口设计的基本原理和实现方法。
一、基本原理单片机与键盘或按键接口设计的基本原理是通过将键盘或按键连接到单片机的IO口,利用IO口的输入功能来获取输入信号,并进行相应的处理。
在接口设计中,常见的有行列式键盘接口和矩阵式键盘接口两种方式。
1. 行列式键盘接口行列式键盘接口是一种常见的键盘接口设计方式。
它将键盘的行线和列线通过矩阵的方式连接到单片机的IO口。
当按下某个键时,单片机通过扫描每一行或每一列的电平变化,来检测按键的触发信号。
通过扫描方式,可以确定按下的键是哪一个。
行列式键盘接口的设计步骤如下:(1)将键盘的行线和列线分别连接到单片机的IO口。
(2)将行线接入IO口的输出引脚,并设置为高电平输出状态。
(3)将列线接入IO口的输入引脚,并设置为上拉输入状态。
(4)单片机通过改变行线的输出状态,逐行扫描键盘。
具体方法是将某一行的输出引脚设置为低电平,然后扫描各列的输入引脚,检测是否有低电平表示某个键被按下。
2. 矩阵式键盘接口矩阵式键盘接口是另一种常见的键盘接口设计方式。
它将键盘的每一个按键连接到单片机的IO口,通过设置IO口的输入输出模式和状态来检测按键的触发信号。
矩阵式键盘接口的设计步骤如下:(1)将键盘的每一个按键分别连接到单片机的IO口。
(2)将IO口的输入输出模式设置为相应的模式,如输入模式或输出模式。
(3)设置IO口的状态,如上拉输入状态或输出高电平状态。
(4)根据需要,单片机不断扫描每一个IO口,检测按键的触发信号。
二、实现方法实现单片机与键盘或按键接口可以使用各种软件开发工具,如Keil、IAR等,配合相应的编程语言,如C语言或汇编语言。
下面分别介绍两种接口设计的实现方法。
1. 行列式键盘接口实现方法在行列式键盘接口设计中,需要设置IO口的输入输出状态和扫描方法。
51单片机设计电子锁密码锁含代码
电子锁设计报告一,实验目的1. 学习8051定时器时间计时处理,键盘扫描及LED数码管显示的设计方法。
2. 设计任务及要求利用实验平台上8个LED数码管,设计带有报警功能的可掉电保存的电子密码锁。
3.通过本次实验,加强对所学知识的理解,增强编程能力及实践能力。
二,实验要求A.基本要求:1:用4×4矩阵键盘组成0-9数字键及确认键和删除键。
2:可以自行设定或删除8位密码,能够掉电保存。
3:用5位数码管组成显示电路提示信息,当输入密码时,只显示“8.”,当密码位数输入完毕按下确认键时,对输入的密码与设定的密码进行比较,若密码正确,则门开,此处用绿色led发光二极管亮一秒钟做为提示,若密码不正确,禁止按键输入3秒,同时用红色led发光二极管亮三秒钟做为提示;若在3秒之内仍有按键按下,则禁止按键输入3秒被重新禁止。
4:自由发挥其他功能.5:要求有单片机硬件系统框图,电路原理图,软件流程图B.拓展部分:无三,实验基本原理单片机密码锁是集计算机技术、电子技术、数字密码技术为一体的机电一体化高科技产品,具有安全性高,使用方便等优点。
本系统考虑到单片机密码锁成本及体积因素,在设计单片机密码锁部分时,以AT89S52单片机为核心,24C04、LED等构成外围电路。
本系统单片机密码锁硬件部分结构简单、成本低,软件部分使用电子加密提高锁的安全性,具有比较好的市场前景。
同时,由于本电子密码锁可以实现掉电保存,而且可以自行设计或者删除8位密码,所以具有较高的实用价值。
本密码锁采用5位数码管组成显示电路提示信息,当输入密码时,只显示“8.”,当密码位数输入完毕按下确认键时,对输入的密码与设定的密码进行比较,若密码正确,则门开,此处用绿色led 发光二极管亮一秒钟做为提示,若密码不正确,禁止按键输入3秒,同时用红色led 发光二极管亮三秒钟做为提示;若在3秒之内仍有按键按下,则禁止按键输入3秒被重新禁止。
此项功能方便用户使用。
矩阵式键盘实验报告
矩阵式键盘实验报告矩阵键盘设计实验报告南京林业大学实验报告基于AT89C51单片机4x4矩阵键盘接口电路设计课程院系班级学号姓名指导老师机电一体化设计基础机械电子工程学院杨雨图2013年9月26日一、实验目的1、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。
2、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。
3、掌握利用Keil51软件对程序进行编译。
4、用Proteus软件绘制“矩阵键盘扫描”电路,并用测试程序进行仿真。
5、会根据实际功能,正确选择单片机功能接线,编制正确程序。
对实验结果能做出分析和解释,能写出符合规格的实验报告。
二、实验要求通过实训,学生应达到以下几方面的要求:素质要求1.以积极认真的态度对待本次实训,遵章守纪、团结协作。
2.善于发现数字电路中存在的问题、分析问题、解决问题,努力培养独立工作能力。
能力要求1.模拟电路的理论知识2.脉冲与数字电路的理念知识3.通过模拟、数字电路实验有一定的动手能力4.能熟练的编写8951单片机汇编程序5.能够熟练的运用仿真软件进行仿真三、实验工具1、软件:Proteus软件、keil51。
2、硬件:PC机,串口线,并口线,单片机开发板四、实验内容1、掌握并理解“矩阵键盘扫描”的原理及制作,了解各元器件的参数及格元器件的作用。
2、用keil51测试软件编写AT89C51单片机汇编程序3、用Proteus软件绘制“矩阵键盘扫描”电路原理图。
4、运用仿真软件对电路进行仿真。
五.实验基本步骤1、用Proteus绘制“矩阵键盘扫描”电路原理图。
2、编写程序使数码管显示当前闭合按键的键值。
3、利用Proteus软件的仿真功能对其进行仿真测试,观察数码管的显示状态和按键开关的对应关系。
4、用keil51软件编写程序,并生成HEX文件。
5、根据绘制“矩阵键盘扫描”电路原理图,搭建相关硬件电路。
6、用通用编程器或ISP下载HEX程序到MCU。
单片机课程设计---4×4矩阵式键盘识别显示电路的设计
数理与信息工程学院《单片机原理及应用》期末课程设计题目:4×4矩阵式键盘识别显示电路的设计专业:电子信息工程班级:电信061班*名:***学号:********指导老师:***成绩:( 2008.12 )目录第1节引言 (2)1.1 4*4矩阵式键盘系统概述 (2)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (4)2.1 单片机控制系统原理 (4)2.2 单片机主机系统电路 (5)2.2.1 时钟电路 (4)2.2.2 复位电路 (5)2.2.3 矩阵式键盘电路 (5)2.3 译码显示电路 (6)第3节系统软件设计 (11)3.1 软件流程图 (8)3.2 系统程序设计 (9)第4节结束语 (12)参考文献 (13)4*4矩阵式键盘识别显示电路的设计数理与信息工程学院电信061 姜铮铮指导教师:余水宝第一节引言矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,即时在LED数码管上。
单片机控制的据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。
4*4矩阵式键盘采用AT89S51单片机为核心,主要由矩阵式键盘电路、译码电路、显示电路等组成,软件选用汇编语言编程。
单片机将检测到的按键信号转换成数字量,显示于LED显示器上。
该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。
1.1 4*4矩阵式键盘识别显示系统概述矩阵式键盘模式以N个端口连接控制N*N个按键,实时在LED数码管上显示按键信息。
显示按键信息,既降低了成本,又提高了精确度,省下了很多的I/O端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。
并且在实际应用中经常要用到输入数字、字母、符号等操作功能,如电子密码锁、电话机键盘、计算器按键等,至少都需要12到16个按键,在这种情况下如果用独立式按键的话,显然太浪费I/O端口资源,为了解决这一问题,我们使用矩阵式键盘。
51单片机矩阵键盘设计
工业大学课程设计资料袋电气与信息工程学院(系、部)2009--2010 学年第 1 学期课程名称单片机应用系统指导教师贺正芸学生专业班级电子信息科学与技术学号题目4*4矩阵键盘成绩起止日期2009 年11 月23 日~2009 年12 月04 日目录清单工业大学课程设计任务书2009 —2010 学年第 1 学期电气与信息工程学院(系、部)电子信息科学与技术专业班级课程名称:单片机应用系统设计题目:4*4矩阵键盘完成期限:自2009 年11 月9 日至2009 年11 月20 日共 2 周指导教师(签字):年月日系(教研室)主任(签字):年月日单片机应用系统4*4矩阵键盘设计说明书学生 班级 电科072学号成绩指导教师(签字)起止日期:2009 年 11 月 23 日 至 2009 年 12 月4 日电气与信息工程学院(部)年月日单片机设计题目:矩阵式键盘数显设计一、设计要求及任务1、设计要求(1)由P1.0—P1.3(列)和P1.4—P1.7(行)组成4*4矩阵键盘,P0口接LED 静态显示电路。
由于P0口部无上拉电阻,因此必须外部接上上拉电阻,其阻值的选择可以根据LED数码管发光电流及其亮度来决定,参考值为560欧姆。
编写4*4键盘的驱动程序。
(2)编写主程序,当按键按下时,能够在数码管显示器与按键的键值对应的数字2、设计任务(1)以AT89S51为核心,设计系统硬件电路,并根据所设计的电路制作实物。
(2)分析任务要求,绘制程序流程图,编写相应的软件程序。
(3)编写设计说明书,容包括:电路原理图;程序流程图,源程序清单;电路实测波形、电路原理分析、硬件调试分析;软件调试分析;结论和体会。
根据任务要求知此课程设计是做一个4*4的矩阵键盘P1口接键盘,P0口接数码管。
19脚和18脚接晶振电路,9脚接复位电路,P1.5—P1.7要接下载接口。
应先画出电路原理图,根据原理图列出报目表,编写程序,进行软件仿真,软件仿真成功后开始做硬件。
基于STC89C52单片机的电子密码锁(完整版)-附-仿真图-原理图
目录1绪论 (1)1.1本设计的研究背景与研究目的 (1)1.2国内外研究现状 (2)2电子密码锁的总体设计方案 (3)2.1方案论证 (3)2.1.1方案一采用单片机控制方案 (3)2.1.2方案二采用数字电路控制方案 (4)2.1.3方案三采用EDA控制方案 (5)2.2方案比较以及可行性 (5)3电子密码锁硬件电路的设计 (6)3.1中央控制模块的设计 (6)3.1.1主控芯片STC89C52单片机的简介 (6)3.1.2时钟电路的设计 (7)3.1.3复位电路的设计 (8)3.2键盘输入模块的设计 (9)3.2.1矩阵键盘工作原理 (9)3.2.2单片机键盘扫描法 (10)3.3LCD显示密码模块的设计 (10)3.3.1LCD1602简介 (11)3.3.2LCD1602液晶显示模块与单片机连接电路 (12)3.4开锁模块的设计 (13)3.5报警模块的设计 (13)3.6硬件电路总体设计 (14)4电子密码锁的软件设计 (15)4.1主程序流程介绍 (15)4.2键盘模块流程图 (16)4.3显示模块流程图 (18)4.4修改密码流程图 (19)4.5开锁和报警模块流程图 (20)5电子密码锁的系统调试及分析 (22)5.1硬件电路调试及结果分析 (22)5.2软件调试及功能分析 (22)5.2.1调试过程 (22)5.2.2仿真结果分析 (24)5.3系统调试 (26)6结论及展望 (28)6.1结论 (28)6.2展望 (28)谢辞 (29)参考文献 (30)附录 (32)附1部分代码 (32)附2总电路图 (40)电子密码锁的设计与制作1绪论1.1本设计的研究背景与研究目的随着人们生活水平的提高和社会科技的进步,锁已发展到了密码锁、磁性锁、电子锁、激光锁、声控锁等等。
在传统钥匙的基础上,加了一组或多组密码,不同声音,不同磁场,不同声波,不同光束光波,不同图像。
(如指纹、眼底视网膜等)来控制锁的开启。
单片机中键盘输入接口的设计与应用案例
单片机中键盘输入接口的设计与应用案例键盘输入接口在单片机中具有重要的作用,它可以实现用户与单片机之间的信息交互。
在本文中,我们将探讨单片机中键盘输入接口的设计原理,并给出一个应用案例来展示其实际应用。
一、设计原理单片机中实现键盘输入接口的基本原理是通过矩阵键盘扫描的方式进行的。
具体步骤如下:1. 连接矩阵键盘首先,我们需要将矩阵键盘与单片机连接起来。
矩阵键盘由多个按钮组成,每个按钮有一个独特的按键码。
常见的矩阵键盘有4×4和4×3两种类型。
2. 设置引脚模式接下来,我们需要设置单片机的引脚模式,将指定的引脚配置为输入模式。
这样,我们就可以通过这些引脚来读取矩阵键盘上的按键信息。
3. 扫描按键在单片机程序中,我们需要编写代码来扫描键盘。
扫描的步骤是逐行扫描矩阵键盘,通过拉低某一行的引脚,然后读取对应列的引脚状态。
如果发现某个按键被按下,则对应的引脚状态为低电平。
4. 处理按键事件一旦检测到按键按下事件,我们就可以根据按键的按键码进行相应的处理。
这可能包括显示按键信息、执行特定的功能等。
二、应用案例为了更好地理解键盘输入接口的设计与应用,我们以一个简单的密码锁系统为例来说明。
1. 系统设计这个密码锁系统需要用户通过按下特定的按键组合来输入密码,一旦输入正确,系统会开启门锁。
2. 硬件设计我们可以选择4×4矩阵键盘作为输入设备,并连接到单片机的引脚上。
3. 程序设计我们需要编写相应的程序来实现密码锁系统的功能。
程序的主要逻辑如下:(1)初始化引脚:将矩阵键盘对应的引脚设置为输入模式。
(2)密码输入:通过扫描矩阵键盘,读取按键信息。
根据按键码将按键信息存储到一个缓冲区中。
(3)密码验证:当用户输入完整的密码后,我们需要对其进行验证。
如果密码正确,则开启门锁;否则提示密码错误。
(4)功能实现:在密码验证通过后,我们可以添加一些额外的功能,例如计时器、报警器等。
4. 系统测试完成程序编写后,我们需要将代码烧录到单片机中,并测试系统的功能。
单片机矩阵式键盘连接方法及工作原理
矩阵式键盘的连接方法和工作原理什么是矩阵式键盘?当键盘中按键数量较多时,为了减少I/O 口线的占用,通常将按键排列成矩阵形式。
在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。
这样做有什么好处呢?大家看下面的电路图,一个并行口可以构成4*4=16 个按键,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别就越明显。
比如再多加一条线就可以构成20 键的键盘,而直接用端口线则只能多出一个键(9 键)。
由此可见,在需要的按键数量比较多时,采用矩阵法来连接键盘是非常合理的。
矩阵式结构的键盘显然比独立式键盘复杂一些,识别也要复杂一些,在上图中,列线通过电阻接电源,并将行线所接的单片机4 个I/O 口作为输出端,而列线所接的I/O 口则作为输入端。
这样,当按键没有被按下时,所有的输出端都是高电平,代表无键按下,行线输出是低电平;一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了,具体的识别及编程方法如下所述:二.矩阵式键盘的按键识别方法确定矩阵式键盘上任何一个键被按下通常采用“行扫描法”或者“行反转法”。
行扫描法又称为逐行(或列)扫描查询法,它是一种最常用的多按键识别方法。
因此我们就以“行扫描法”为例介绍矩阵式键盘的工作原理:1.判断键盘中有无键按下将全部行线X0-X3 置低电平,然后检测列线的状态,只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4 根行线相交叉的4 个按键之中;若所有列线均为高电平,则表示键盘中无键按下。
2.判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。
其方法是:依次将行线置为低电平(即在置某根行线为低电平时,其它线为高电平),当确定某根行线为低电平后,再逐行检测各列线的电平状态,若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。
下面给出一个具体的例子:单片机的P1 口用作键盘I/O 口,键盘的列线接到P1 口的低4 位,键盘的行线接到P1 口的高4位,也就是把列线P1.0-P1.3 分别接4 个上拉电阻到电源,把列线P1.0-P1.3 设置为输入线,行线P1.4-P1.7 设置为输出线,4 根行线和4 根列线形成16 个相交点,如上图所示。
Protues 仿真8051单片机实现矩阵键盘扫描
Protues仿真8051单片机实现矩阵键盘扫描,7段数码管静态显示该例程使用80C52单片机实现矩阵键盘的扫描。
为简化程序,代码中定义了一个二维数组table[i][j]与矩阵键盘位置一一对应,方便键盘扫描的编写。
键盘扫描函数scan()通过写读、写读单片机P3口的状态确定按下键的位置,并改变i、j的值,并返回table[i][j],显示函数display(scan( ))将对应位置的字型输出到数码管上。
电路图中,键盘的1~4行分别与P3口的P3.0、P3.1、P3.2、P3.3连接。
程序中使用了行扫描函数linescan(uchar a,ucharnum),其中a分别是0xfe,0xfd,0xfb和0xf7,是向单片机P3的数,分别让是矩阵键盘的第1、2、3和4行变为低电平,然后从各列读取键盘按下位置。
num是行标号,扫描第一行时为0,依次递增。
数码管为共阳极7段数码管。
用两个74HC573锁存器分别控制段选(dula)和位选(位选)。
程序代码如下:#include <reg52.h>#define uchar unsigned char#define uint unsigned intsbitdula=P2^6; //段选sbitwela=P2^7; //位选uchari,j,temp; //全局变量uchar code table[5][4]={0xc0,0xf9,0xa4,0xb0, //4*4键盘字型(共阳极)0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0x7f}; //初始输出字型void init(); //初始化函数void delay(uint z); //延时函数uchar scan(); //键盘扫描函数void linescan(uchar,uchar);//行扫描函数void display(uchar); //显示//@@@@@@@@@@@@@ main函数void main(){init();while(1){display(scan());}}void init() //¥¥¥¥初始化{dula=0;wela=1;P0=0xff;wela=0;i=4; //初始化输出字型j=0;}void delay(uint z){uintx,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}uchar scan() //¥¥¥¥键盘扫描{linescan(0xfe,0); //第1行扫描linescan(0xfd,1); //第2行扫描linescan(0xfb,2); //第3行扫描linescan(0xf7,3); //第4行扫描//返回输出字型return table[i][j];}void linescan(uchara,ucharnum) //¥¥¥¥行扫描{P3=a;temp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);P3=a;temp=P3;temp=temp&0xf0;if(temp!=0xf0){i=num; //扫描第i行switch(temp){case 0xe0:j=0; //第1列有键按下break;case 0xd0:j=1; //第2列按下break;case 0xb0:j=2; //第3列按下break;case 0x70:j=3; //第4列按下break;}while(temp!=0xf0) //松手检查,{temp=P3;temp=temp&0xf0;}}}}void display(ucharkeyno){dula=1;P0=keyno;dula=0;}。
51单片机矩阵键盘与8051连接设计
sbit L6=P0_;
sbit L7=P0_;
sbit L8=P0_;
sbit DUAN=P2_;
sbit WEI=P2_;
/*-----------------------------
定时器0初始化函数
-----------------------------*/
void init()
case 0xed:L5=~L5;/*按键05功能*/ break;
case 0xdd:L6=~L6;/*按键06功能*/ break;
case 0xbd:L7=~L7;/*按键07功能*/ break;
case 0x7d:L8=~L8;/*按键08功能*/ break;
case 0xeb:/*按键09功能*/ break;
{
TR0=0; //定时终止
TH0=(65536-10000)/256; //定时器0初值重装
TL0=(65536-10000)%256;
NUM--;
}
/*--------------------------------------------------
矩阵键盘检测兼编码函数
--------------------------------------------------*/
kvalue=matrixkeyscan();
switch(kvalue)
{
case 0xee:L1=~L1;/*按键01功能*/ break;
case 0xde:L2=~L2;/*按键02功能*/ break;
case 0xbe:L3=~L3;/*按键03功能*/ break;
case 0x7e:L4=~L4;/*按键04功能*/ break;
单片机键盘显示接口电路设计
单片机键盘显示接口电路设计设计单片机键盘显示接口电路,需要考虑到键盘输入与显示输出两个方面。
以下是一个简单的设计示例,供参考:键盘通常采用矩阵键盘连接电路的方式,通过扫描矩阵的方式读取键盘输入信息。
以下是矩阵键盘接口电路的设计流程:1.确定键盘的规格和类型:键盘一般有正方形、矩形、圆形等几种形状,需要根据键盘的规格和类型选择适合的扫描方式。
2.确定键盘的逻辑矩阵大小:根据键盘的布局和规格,确定键盘的逻辑矩阵的行和列数,例如4行4列。
3.确定键盘的连接方式:键盘的连接方式一般有行列扫描、列行扫描、行列+列行扫描等几种方式,需要根据键盘的输出信号特点和单片机的输入要求进行适当的选择。
4.设计按键输入的译码电路:将键盘的输出信号通过译码电路解码成易于读取的二进制数,以便单片机的输入端口读取。
显示输出接口电路设计一般有两种方式:数码管和液晶显示。
1.数码管显示电路设计:数码管是通过控制各个数码管的段选和位选,实现数字或字符的显示。
以下是数码管显示电路的设计流程:a.确定显示的数字或字符类型:根据设计需求,确定要显示的数字或字符类型,例如整数、小数、字母等。
b.确定数码管的位数和类型:根据显示需求,确定数码管的位数和类型,有共阴数码管和共阳数码管两种类型,需要选择适合的数码管。
c.设计数码管的译码电路:根据数码管的类型和位数,设计数码管的译码电路,将输入的数字或字符转换为控制各个数码管的段选和位选的电信号。
2.液晶显示电路设计:液晶显示器是一种常见的显示设备,通过控制液晶的极性来实现图形和字符的显示。
以下是液晶显示电路设计的流程:a.确定显示的内容类型:根据设计需求,确定要显示的内容,例如字符、图像等。
b.选择适合的液晶显示器:根据显示的内容和要求,选择适合的液晶显示器,有字符型液晶显示器和图形型液晶显示器两种类型。
c.设计液晶的驱动电路:根据液晶显示器的类型和特性,设计液晶的驱动电路,将输入的数字或字符转换为控制液晶的电信号。
8051 单片机与输入输出外设
上一页
返回
8.2 字符型LCD 显示模块
• 下面逐条解释各指令的功能: • ● 指令1:清显示,光标复位到地址00H 位置。 • ● 指令2:光标复位,光标返回到地址00H。 • ● 指令3:读/写方式下的光标和显示模式设置命令。 • I/D:表示地址计数器的变化方向,即光标移动的方向。 • I/D = 1:AC 自动加1,光标右移一个字符位。 • I/D = 0:AC 自动减1,光标左移一个字符位。 • S:显示屏上画面向左或向右全部平移一个字符位。 • S = 0:无效;S = 1:有效。 • S = 1,I/D = 1:显示画面左移。 • S = 1,I/D = 0:显示画面右移。
• 8.3.3 与内藏HD61830 的液晶模块的接口和编 程
• 整个模块有18 个外引出线可供接口使用,其引脚顺序如下。
上一页 下一页 返回
8.3 点阵型LCD 显示模块
• 其中GND、VCC 为地和 + 5 V 电源。V0 为负向液晶驱动电源,对 MGLS - 240128 来说V0 的取值为 - 15 V 左右。4 ~ 10 引脚含义见 HD61830 的引脚说明。LED + 和LED - 为接背景光时的电源。图8.6 是采用间接方式用8255 控制MGLS - 240128模块的接口电路,8255 的地址为8000H~8003H。
• 8.3.2 HD61830 指令集
• HD61830 的指令结构是一致的,一条指令由一个字节的指令代码与 一个字节的指令参数组成。
• (1)方式控制:指令代码为00H。向指令寄存器写入00 后紧接着向 数据存储器写入参数即可定义显示方式。方式控制参数格式如下:
上一页 下一页 返回
8.3 点阵型LCD 显示模块
单片机与矩阵键盘接口电路设计实验报告
单片机与矩阵键盘接口电路设计实验报告姓名:林蔼龄学号:1060601007班级:10级物理系电子信息工程A班单片机与矩阵键盘接口电路设计实验报告一:实验内容使用单片机的P1口与矩阵式键盘连接时,可以将P1口低4位的4条端口线定义为行线,P1口高4位的4条端口线定义为列线,形成4*4键盘,可以配置16个按键,将单片机P2口与七段数码管连接,当按下矩阵键盘任意键时,数码管显示该键所在的键号。
二:电路图三:程序流程图四:程序org 0000hljmp mainmain:mov p1,#0fh;列线输出0,行线设为输入mov a,p1;读P1口anl a,#0fh;屏蔽高4位,留下行线状态cjne a,#0fh,look;有按键按下,转lookret;无按键按下,返回主程序look:lcall dlay10;延时10msmov a,p1;读P1口anl a,#0fh;屏蔽高4位,留下行线状态cjne a,#0fh,rank ;确认键已按稳,转RANK ljmp main;是抖动,未按稳,重新扫描rank:mov r2,#00h ;窜键标志寄存器请0mov r3,#04h ;查列次数mov r4,#0f7h ;列扫描字初值mov r5,#0ffh ;列号处值rloop1:inc r5 ;开始列扫描,列号加1mov a,r4 ;列扫描字送Arl a ;列扫描字左移一位mov r4,a ;暂存列扫描字mov p1,a ;送出列扫描字mov a,p1 ;读P1口anl a,#0fh ;屏蔽高4位,留下行线状态cjne a,#0fh,next1 ;当前列有键按下,转next1rloop2:djnz r3,rloop1 ;列扫描未完,继续sjmp line ;列扫描完,转行扫描next1:inc r2 ;窜键标志加1mov 20h,r5 ;暂存有按键的列号sjmp rloop2 ;继续列扫描line:cjne r2,#01h,main ;若已窜键,转main,重新扫描mov r2,#00h ;开始查行,窜键标志寄存器清0mov r3,#04h ;行扫描次数mov r6,#0ffh ;行号初值mov p1,#0fh ;列线送0,准备读行线mov a,p1 ;读P1口,获取行线状态lloop1:inc r6 ;行号加1rrc a ;从第0行开始,判断有无按键jnc next2 ;本行有按键,转next2lloop2:djnz r3,lloop1 ;无按键,继续查下一行sjmp next3 ;查完,转next3next2:inc r2 ;窜键标志加1mov 21h,r6 ;暂存有按键的行号sjmp lloop2 ;继续行扫描next3:cjne r2,#01h,main ;若窜键,转main,重新扫描gainky:mov a,21h ;无窜键,取出行号mov b,#04h ;键盘列数mul ab ;行号*键盘列数add a,20h ;乘积与列号相加,得到键号mov b,#03h;为执行键处理程序做准备mul ab ;键号*3mov dptr,#ptab ;键处理程序表首地址送DPTRjmp @a+dptr ;散转至与键号对应的键处理程序ptab:ljmp prog0;键处理程序表ljmp prog1ljmp prog2ljmp prog3ljmp prog4ljmp prog5ljmp prog6ljmp prog7ljmp prog8ljmp prog9ljmp prog10ljmp prog11ljmp prog12ljmp prog13ljmp prog14ljmp prog15prog0:mov p2,#3fhretprog1:mov p2,#06hretprog2:mov p2,#5bhretprog3:mov p2,#4fhretprog4:mov p2,#66hretprog5:mov p2,#6dhretprog6:mov p2,#7dhretprog7:mov p2,#07hretprog8:mov p2,#7fhretprog9:mov p2,#6fhretprog10:mov p2,#77hretprog11:mov p2,#7chretprog12:mov p2,#39hretprog13:mov p2,#5ehretprog14:mov p2,#79hretprog15:mov p2,#71hretdlay10:mov r0,#100 ;约10ms延时dlay1:mov r1,#50dlay2:djnz r1,dlay2djnz r0,dlay1retend五:实验结果当矩阵键盘的3号键被按下时,P2口的七段数码管显示的数据为3.如下图1所以:图1当矩阵键盘的A号键被按下时,P2口的七段数码管显示的数据为A.如下图2所以:图2当矩阵键盘的D号键被按下时,P2口的七段数码管显示的数据为d.如下图3所以:图3当矩阵键盘的F号键被按下时,P2口的七段数码管显示的数据为F.如下图4所以:图4。
单片机 矩阵键盘实验 实验报告
实验五矩阵键盘实验一、实验内容1、编写程序,做到在键盘上每按一个数字键(0-F)用发光二极管将该代码显示出来。
按其它键退出。
2、加法设计计算器,实验板上有12个按键,编写程序,实现一位整数加法运算功能。
可定义“A”键为“+”键,“B”键为“=”键。
二、实验目的1、学习独立式按键的查询识别方法。
2、非编码矩阵键盘的行反转法识别方法。
三、实验说明1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。
2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。
3、识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。
这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。
由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。
行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。
51单片机的矩阵键盘协处理器设计
摘要各种数字系统的终端设备都需要对十进制信息进行数码显示,而LED是最常用的显示器件。
在大规模可编程逻辑器件CPLD的硬件基础上,根据显示译码器原理运用VHDL硬件描述语言对LED的通用七段显示译码器进行了设计,同时使用ISE开发软件对设计电路进行了时序仿真和功能验证。
此设计在大规模数字电路的数码显示中更为实用,具有设计简单使用灵活和工作可靠等优点。
通过本次设计,可以体现出可编程逻辑器件CPLD等在电子设计领域的广泛应用,设计者可以方便的设计出符合要求的芯片或应用系统。
相对于普通键盘,矩阵键盘有效的提高按键操作的效率,它可以提高系统的准确行,有利于资源的节约。
对操作者的要求也比较低。
能够准时、时实、高效的显示按键信息。
4*4矩阵键盘式键盘采用AT89S51单片机作为核心控制器件,以按键信号作为简单的输入信息,利用8段数码管和VHDL语言编程,单片机将检测到的按键信号转换成数字量。
最种在数码管显示了0-F,并且在程序设计中利用按键扫描技术来对按键进行消抖。
该设计实现了对矩阵键盘简单的信息输入的识别。
关键词:VHDL;LED显示;CPLD;矩阵键盘AbstractTerminal equipment digital system needs to decimal information digital display, while LED are the most common display devices. In the hardware foundation of large-scale programmable logic device CPLD, according to the principle of display decoder using VHDL hardware description language for general LED seven segment display decoder is designed, and the circuits are simulated to validate the use of ISE software. This design in large scale digital circuit digital display more practical, has the advantages of simple design, flexible and reliable. Through this design,it can see that CPLD has a widely application in electronic a rea.The design a chip or a system expediently.Compared to ordinary keyboard, matrix keyboard, effectively improve the efficiency of the key operation, it can improve the accuracy for the system, is conducive to resource saving. The operator's requirements are relatively low. on time,when the real and efficient display key information . 4*4 matrix keyboard keyboard using AT89S51 singlechipas the core control device, as a simple information input to key signal, the use of 8 digital tube and VHDL language programming. SCM will push the detected signal into digital quantity. The total in the digital tube display 0-F. The design and implementation of the recognition of information input matrix keyboard simple.Keywords:VHD;LED display;CPLD;matrix keyboard目录1 绪论 (1)1.1 课题背景 (1)1.2 EDA的历史及发展 (2)1.3 课题意义 (4)2 硬件介绍 (5)2.1 51单片机简介 (5)2.1.1 51单片机的功能及引脚 (5)2.1.2 51单片机在课题中的运用 (7)2.2 CPLD简介 (10)2.2.1 CPLD的基本结构及特点 (10)2.2.2 应用及发展趋势 (11)2.2.3 CPLD在本课题中的运用 (12)3 VHDL语言及相关软件介绍 (15)3.1 VHDL简介 (15)3.2 ISE简介及工程设计流程 (16)3.3 Keil C51简介及HEX格式文件创建 (18)3.3.1 Keil C51简介 (18)3.3.2 HEX格式文件创建 (20)3.4 Easy 51Pro简介 (20)4 51单片机的显示协处理器设计 (23)4.1 课题任务 (23)4.2 相关原理 (23)4.3 51单片机的显示协处理器的VHD代码设计 (24)4.4 操作步骤 (32)5 51单片机的矩阵键盘协处理器设计 (36)5.1 课题任务 (36)5.2 相关原理 (36)5.3 51单片机的矩阵键盘协处理器VHDL代码设计 (37)6 结论 (42)6.1 单片机的显示协处理器设计结果 (42)6.2 51单片机的矩阵键盘协处理器设计结果 (42)致谢 ........................................................................................................ 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
unsigned char temp,reg1=0,reg2=0,key=0; //temp为临时变量,reg1为寄存器1,reg2为寄存器2,key为键盘编码号
P3=0x0f;
temp=P3&0x0f;
if(temp!=0x0f) //按键检测兼行坐标检测
51单片机矩阵键盘与8051连接设计
众所周知,51单片机一般的键盘检测原理为非编码键盘检测,没有专门用来产生键编码号或键值的电路芯片;而我们使用的电脑键盘为编码键盘,通过编码电路芯片为每个按键产生一个编码号,可以通过串行总线把键值传输给电脑。在进行矩阵键盘检测时,书本或老师一般教的都是扫描检测,即一行一行地检测或者一列一列地检测,代码繁琐复杂,且缺点很多(例如执行效率较低)。
case 0xed:L5=~L5;/*按键05功能*/ break;
case 0xdd:L6=~L6;/*按键06功能*/ break;
case 0xbd:L7=~L7;/*按键07功能*/ break;
case 0x7d:L8=~L8;/*按键08功能*/ break;
case 0xeb:/*按键09功能*/ break;
}
}
}
return key;
}
/*--------------------------------------------------
按键功能实现函数
--------------------------------------------------*/
void keyfuncTIon()
{
unsigned char kvalue=0;
{
EA=1;
ET0=1;
TMOD=0X01;
TH0=(65536-10000)/256;
TL0=(65536-10000)%256;
}
/*-----------------------------
中断服务函数
-----------------------------*/
void TImer0()interrupt 1
{
TR0=1; //-------------------
while(NUM); // 10ms去抖动延时
NUM=1; //-----------------f) //二次检测
{
reg1=temp; //把行坐标存入寄存器1
P3=reg1|0xf0; //关键,没有这句将导致整个函数出错
{
TR0=0; //定时终止
TH0=(65536-10000)/256; //定时器0初值重装
TL0=(65536-10000)%256;
NUM--;
}
/*--------------------------------------------------
矩阵键盘检测兼编码函数
--------------------------------------------------*/
while(1)
{
keyfuncTIon(); //按键循环检测
}
}
51单片机,矩阵键盘
举例电路:
矩阵键盘与8051连接如上图所示,首先,令P3=0x0f,检测P30、P31、P32、P33哪一行被按下,将此时P3的值存入寄存器1。然后,令P3=0xf0 |寄存器1,检测P34、P35、P36、P37哪一列被按下,将此时P3的值存入寄存器2。最后,把寄存器1的值和寄存器2的值组合起来即可得到矩阵键盘的编码。
代码如下:
#include《reg52.h》
unsigned char NUM=1;
/*-----------------------------
特殊功能位定义
-----------------------------*/
sbit L1=P0_;
sbit L2=P0_;
sbit L3=P0_;
sbit L4=P0_;
case 0x77:/*按键16功能*/ break;
default:;//空语句
}
}
/*-----------------------------
主函数
-----------------------------*/
void main()
{
DUAN=0;
WEI=0;
init(); //定时器初始化,装入初值10ms
temp=P3&0xf0;
if(temp!=0xf0) //检测列坐标
{
reg2=temp; //把列坐标存入寄存器2
key=reg1|reg2; //将寄存器1和寄存器2进行按位或,作用是组合坐标,格式为八位二进制的“列坐标行坐标”
while(temp!=0xf0) //等待按键释放
temp=P3&0xf0;
sbit L5=P0_;
sbit L6=P0_;
sbit L7=P0_;
sbit L8=P0_;
sbit DUAN=P2_;
sbit WEI=P2_;
/*-----------------------------
定时器0初始化函数
-----------------------------*/
void init()
case 0xdb:/*按键10功能*/ break;
case 0xbb:/*按键11功能*/ break;
case 0x7b:/*按键12功能*/ break;
case 0xe7:/*按键13功能*/ break;
case 0xd7:/*按键14功能*/ break;
case 0xb7:/*按键15功能*/ break;
kvalue=matrixkeyscan();
switch(kvalue)
{
case 0xee:L1=~L1;/*按键01功能*/ break;
case 0xde:L2=~L2;/*按键02功能*/ break;
case 0xbe:L3=~L3;/*按键03功能*/ break;
case 0x7e:L4=~L4;/*按键04功能*/ break;