51单片机3-4矩阵键盘程序

合集下载

实验一 矩阵键盘检测

实验一  矩阵键盘检测

实验一矩阵键盘检测一、实验目的:1、学习非编码键盘的工作原理和键盘的扫描方式。

2、学习键盘的去抖方法和键盘应用程序的设计。

二、实验设备:51/AVR实验板、USB连接线、电脑三、实验原理:键盘接口电路是单片机系统设计非常重要的一环,作为人机交互界面里最常用的输入设备。

我们可以通过键盘输入数据或命令来实现简单的人机通信。

1、按键的分类一般来说,按键按照结构原理可分为两类,一类是触点式开关按键,如机械式开关、导电橡胶式开关等;另一类是无触点式开关按键,如电气式按键,磁感应按键等。

前者造价低,后者寿命长。

目前,微机系统中最常见的是触点式开关按键(如本学习板上所采用按键)。

按键按照接口原理又可分为编码键盘与非编码键盘两类,这两类键盘的主要区别是识别键符及给出相应键码的方法。

编码键盘主要是用硬件来实现对键的识别,非编码键盘主要是由软件来实现键盘的识别。

全编码键盘由专门的芯片实现识键及输出相应的编码,一般还具有去抖动和多键、窜键等保护电路,这种键盘使用方便,硬件开销大,一般的小型嵌入式应用系统较少采用。

非编码键盘按连接方式可分为独立式和矩阵式两种,其它工作都主要由软件完成。

由于其经济实用,较多地应用于单片机系统中(本学习板也采用非编码键盘)。

2、按键的输入原理在单片机应用系统中,通常使用机械触点式按键开关,其主要功能是把机械上的通断转换成为电气上的逻辑关系。

也就是说,它能提供标准的TTL 逻辑电平,以便与通用数字系统的逻辑电平相容。

此外,除了复位按键有专门的复位电路及专一的复位功能外,其它按键都是以开关状态来设置控制功能或输入数据。

当所设置的功能键或数字键按下时,计算机应用系统应完成该按键所设定的功能。

因此,键信息输入是与软件结构密切相关的过程。

对于一组键或一个键盘,通过接口电路与单片机相连。

单片机可以采用查询或中断方式了解有无按键输入并检查是哪一个按键按下,若有键按下则跳至相应的键盘处理程序处去执行,若无键按下则继续执行其他程序。

【免费下载】单片机中用矩阵键盘实现计算器

【免费下载】单片机中用矩阵键盘实现计算器

col_1=1;
col_2=1;
col_3=1;
col_4=0;
keyfind(12);
col_1=0;
col_2=0;
col_3=0;
col_4=0;
//第一列输出'0'
//第二列输出'0'
//第三列输出'0'
//第四列输出'0'
//列线输出全为'0'
flag++; //每按一下标志位加 1
while(((P1&0x0f)!=0x0f)); //等待按键释放
break; case 2:
keynum=2+col_dat; break; case 4: keynum=3+col_dat; break; case 8: keynum=4+col_dat; break; }
} void keyprocess(void) {
switch(keynum) {
case 1:if(flag==1) //flag=1 表示是第一次按下,按得是被除数 num1=7; //第一个键按下对应是数字 7 if(flag==3) //flag=3 表示是第三次按下,按的是除数 num2=7; break;
计算器
1.程序要求:
用矩阵按键实现简单的加减乘除运算。
2.程序代码:
#include <reg51.h> #include <stdio.h> sbit col_1=P1^4; sbit col_2=P1^5; sbit col_3=P1^6; sbit col_4=P1^7;
unsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//共阴极数 码管 unsigned char keynum,flag; unsigned char num1,num2,flag1,flag2,flag3,flag4; void keyscan(void); void display(); void keyfind(unsigned char); void keyprocess(void);

单片机按键程序设计

单片机按键程序设计

单片机按键程序设计单片机按键的基本原理其实并不复杂。

通常,按键就是一个简单的开关,当按键按下时,电路接通,对应的引脚电平发生变化;当按键松开时,电路断开,引脚电平恢复到初始状态。

在程序设计中,我们需要不断检测引脚的电平变化,从而判断按键是否被按下。

在实际的按键程序设计中,有多种方式可以实现按键检测。

其中一种常见的方法是查询法。

这种方法是通过不断地读取按键对应的引脚状态来判断按键是否被按下。

以下是一个简单的查询法示例代码:```cinclude <reg51h> //包含 51 单片机的头文件sbit key = P1^0; //定义按键连接的引脚void main(){while(1) //无限循环{if(key == 0) //如果按键按下,引脚为低电平{//执行按键按下的操作//比如点亮一个 LED 灯P2 = 0xfe;while(key == 0);//等待按键松开}}}```上述代码中,我们首先定义了按键连接的引脚`key`,然后在主函数的无限循环中不断检测按键引脚的状态。

当检测到按键按下时,执行相应的操作,并通过`while(key == 0)`等待按键松开。

除了查询法,还有中断法可以用于按键检测。

中断法的优点是能够及时响应按键动作,不会因为程序的其他操作而导致按键响应延迟。

```cinclude <reg51h> //包含 51 单片机的头文件sbit key = P1^0; //定义按键连接的引脚void int0_init()//中断初始化函数{IT0 = 1; //下降沿触发中断EX0 = 1; //使能外部中断 0EA = 1; //开总中断}void int0() interrupt 0 //外部中断 0 服务函数{//执行按键按下的操作//比如点亮一个 LED 灯P2 = 0xfe;}void main(){int0_init();//初始化中断while(1);//无限循环,保持程序运行}```在上述代码中,我们首先在`int0_init` 函数中对中断进行了初始化设置,然后在`int0` 函数中编写了按键按下时的处理代码。

51单片机矩阵键盘线反转法体会

51单片机矩阵键盘线反转法体会

51单片机矩阵键盘线反转法体会独立式键盘扫描只需读取IO口状态,而矩阵式键盘描通常有两种实现方法:逐行扫描法和线反转法。

(1)逐行扫描法依次从第一至最末行线上发出低电平信号, 如果该行线所连接的键没有按下的话, 则列线所接的端口得到的是全“1”信号, 如果有键按下的话, 则得到非全“1”信号。

(2)线反转法线反转法比行扫描速度快,原理是先将行线作为输出线, 列线作为输入线, 行线输出全“0”信号, 读入列线的值, 那么在闭合键所在的列线上的值必为0;然后从列线输出全“0”信号,再读取行线的输入值,闭合键所在的行线值必为 0。

这样,当一个键被按下时, 必定可读到一对唯一的行列值。

再由这一对行列值可以求出闭合键所在的位置。

/*在TX-1C实验板上实现如下描述:实验板上电时,数码管不显示,顺序按下矩阵键盘后,在数码管上依次显示0~F,6个数码管同时显示。

这里用“线反转”的方法写,可以代替郭天祥书上例【4.2.1】该书上使用逐行扫描的方式。

*/#include<reg52.h>#define uchar unsigned char#define uint unsigned intsbit duan=P2^6; //打开位选和段选sbit wei=P2^7;uchar code table[]={ //数码管显示数值表0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};void delay(uint x) //毫秒级延时函数{uint i,j;for(i=x;i>0;i--)for(j=110;j>0;j--);}void xianshi(uchar num) //段选显示函数{P0=table[num];duan=1;duan=0;}uchar keyscan(void) //矩阵键盘扫描函数{uchar h,l; //定义行、列值中间变量P3=0x0f; //列线输出全为0h=P3&0x0f; //读入行线if(h!=0x0f) //检测有无按键按下{ delay(10); //延时去抖if(h!=0x0f) //如果确实按下{h=P3&0x0f; //再次读入行线P3=0xf0; //输出当前列线值,行线反转l=P3&0xf0; //读入列线值return (h+l); //键盘最后组合编码值,也就是键值}}return 0xff; //其余情况返回该值}void main(){uchar key;P0=0; //关闭所有数码管段选,实验板上电数码管不显示duan=1;duan=0;P0=0xc0; //选中6位数码管wei=1;wei=0;while(1){key=keyscan(); //用key读取keyscan()的值switch(key){case 0xee: key=0; while(keyscan()!=0xff); xianshi(key); break;//while(keyscan()!=0xff)是松手检测语句,松手时检测case 0xde: key=1; while(keyscan()!=0xff); xianshi(key); break; //keyscan()函数会得到返回值0xff,!=oxff时表示按下去了case 0xbe: key=2; while(keyscan()!=0xff); xianshi(key); break;case 0x7e: key=3; while(keyscan()!=0xff); xianshi(key); break;case 0xed: key=4; while(keyscan()!=0xff); xianshi(key); break;case 0xdd: key=5; while(keyscan()!=0xff); xianshi(key); break;case 0xbd: key=6; while(keyscan()!=0xff); xianshi(key); break;case 0x7d: key=7; while(keyscan()!=0xff); xianshi(key); break;case 0xeb: key=8; while(keyscan()!=0xff); xianshi(key); break;case 0xdb: key=9; while(keyscan()!=0xff); xianshi(key); break;case 0xbb: key=10; while(keyscan()!=0xff); xianshi(key); break;case 0x7b: key=11; while(keyscan()!=0xff); xianshi(key); break;case 0xe7: key=12; while(keyscan()!=0xff); xianshi(key); break;case 0xd7: key=13; while(keyscan()!=0xff); xianshi(key); break;case 0xb7: key=14; while(keyscan()!=0xff); xianshi(key); break;case 0x77: key=15; while(keyscan()!=0xff); xianshi(key); break;default: break;}}}/*后记*//*刚开始写这个程序时我把主函数里面的switch—case语句这样写的,while(1){key=keyscan(); //用key读取keyscan()的值switch(key){case 0xee: key=0; break;case 0xde: key=1; break;case 0xbe: key=2; break;case 0x7e: key=3; break;case 0xed: key=4; break;case 0xdd: key=5; break;case 0xbd: key=6; break;case 0x7d: key=7; break;case 0xeb: key=8; break;case 0xdb: key=9; break;case 0xbb: key=10; break;case 0x7b: key=11; break;case 0xe7: key=12; break;case 0xd7: key=13; break;case 0xb7: key=14; break;case 0x77: key=15; break;default: break;}xianshi(key);}运行程序后发现当手按下按键时会有数码的显示,但是一旦放开按键数码管就什么都不显示了。

51单片机矩阵键盘扫描程序

51单片机矩阵键盘扫描程序
void Timer0_isr(void) interrupt 1
{
TH0=(65536-2000)/256;//重新赋值2ms
TL0=(65536-2000)%256;
Display(0,8); //调用数码管扫描
}
/*------------------------------------------------
unsigned char code dofly_DuanMa[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,
0x77,0x7c,0x39,0x5e,0x79,0x71};//显示段码值0~F
unsigned char code dofly_WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码
case 0xd7:return 11;break;//b
case 0xee:return 12;break;//c
case 0xed:return 13;break;//d
case 0xeb:return 14;break;//e
case 0xe7:return 15;break;//f
default:return 0xff;break;
}
}
/*------------------------------------------------
uS延时函数,含有输入参数unsigned char t,无返回值
unsigned char是定义无符号字符变量,其值的范围是
0~255这里使用晶振12M,精确延时请使用汇编,大致延时
长度如下T=tx2+5 uS

经典的矩阵键盘扫描程序

经典的矩阵键盘扫描程序

经典的矩阵键盘扫描程序查找哪个按键被按下的方法为:一个一个地查找。

先第一行输出0,检查列线是否非全高;否则第二行输出0,检查列线是否非全高;否则第三行输出0,检查列线是否非全高;如果某行输出0时,查到列线非全高,则该行有按键按下;根据第几行线输出0与第几列线读入为0,即可判断在具体什么位置的按键按下。

下面是具体程序:void Check_Key(void){unsigned char row,col,tmp1,tmp2;tmp1 = 0x10; //tmp1用来设置P1口的输出,取反后使P1.4~P1.7中有一个为0for(row=0;row<4;row++) // 行检测{P1 = 0x0f; // 先将p1.4~P1.7置高P1 =~tmp1; // 使P1.4~p1.7中有一个为0tmp1*=2; // tmp1左移一位if ((P1 & 0x0f) < 0x0f) // 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测{tmp2 = 0x01; // tmp2用于检测出哪一列为0for(col =0;col<4;col++) // 列检测{if((P1 & tmp2)==0x00) // 该列如果为低电平则可以判定为该列{key_val =key_Map[ row*4 +col ]; // 获取键值,识别按键;key_Map为按键的定义表return; // 退出循环}tmp2*=2; // tmp2左移一位}}}} //结束这是一种比较经典的矩阵键盘识别方法,实现起来较为简单,程序短小精炼。

4*4矩阵键盘扫描程序/*设置行线为输入线,列线为输出线*/uchar KeyScan(); //按键扫描子程序void delay10ms(); //延时程序uchar key_free(); //等待按键释放程序void key_deal(); //键处理程序//主程序void main(){while(1){KeyScan();key_free();key_deal();}}//按键扫描子程序uchar KyeScan(){unsigned char key,temp;P1=0xF0;if(P1&0xF0!=0xF0){delay10ms(); //延时去抖动if(P1&0xF0!=0xF0){P1=0xFE; //扫描第一列temp=P1;temp=temp&0xF0;if(temp!=0xF0) //如果本列有键按下{switch(temp){case 0xE0: //第一行有键按下key=1;break;case 0xD0: //第二行有键按下key=4;break;case 0xB0: //第三行有键按下key=8;break;case 0x70: //第四行有键按下key=12;break;}}P1=0xFD; //扫描第二列temp=P1;temp&=0xF0;if(temp!=0xF0){switch(temp){case 0xE0: //第一行有键按下key=1;break;case 0xD0: //第二行有键按下key=5;break;case 0xB0: //第三行有键按下key=9;break;case 0x70: //第四行有键按下key=13;break;}}P1=0xFb; //扫描第三列temp=P1;temp&=0xF0;if(temp!=0xF0){switch(temp){case 0xE0: //第一行有键按下key=2;break;case 0xD0: //第二行有键按下key=6;break;case 0xB0: //第三行有键按下key=10;break;case 0x70: //第四行有键按下key=14;break;}}P1=0xF7; //扫描第四列temp=P1;temp&=0xF0;if(temp!=0xF0){switch(temp){case 0xE0: //第一行有键按下key=3;break;case 0xD0: //第二行有键按下key=7;break;case 0xB0: //第三行有键按下key=11;break;case 0x70: //第四行有键按下key=15;break;}}}return(key);}}//延时程序void delay10ms(){unsigned char i,j;for(i=0;i<10;b++)for(j=0;j<120;j++)//延时1ms{}}//等待按键释放程序uchar key_free(){key=key_scan(); //取扫描到的键值P1=0xF0;//置行线全为高电平,列线全为低电平wheile(P1&0xF0!=0xF0) //如果仍有键按下{}return(key);//返回键值}51单片机矩阵键盘扫描、数码管显示键值实验/***********************************************程序名称:矩阵键盘扫描显示键值简要说明:P1口接矩阵键盘:低四位列,高四位行使用共阳型数码管:P0口输出数码管段码,P2口输出数码管位码编写:***********************************************/#include <AT89x52.h>#define uchar unsigned char;uchar key_val=0; //定义键值,初始默认为0uchar code TAB[16]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xC6,0xa1,0x86,0x8e}; //0~F 共阳数码管显示段码/*****按键扫描*****/void Check_Key(void){unsigned char row,col,tmp1,tmp2;tmp1 = 0x10; //tmp1用来设置P1口的输出,取反后使P1.4~P1.7中有一个为0for(row=0;row<4;row++) // 行检测{P1 = 0x0f; // 先将p1.4~P1.7置高P1 =~tmp1; // 使P1.4~p1.7中有一个为0tmp1*=2; // tmp1左移一位if ((P1 & 0x0f) < 0x0f) // 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测{tmp2 = 0x01; // tmp2用于检测出哪一列为0for(col =0;col<4;col++) // 列检测{if((P1 & tmp2)==0x00) // 该列如果为低电平则可以判定为该列{key_val = row*4 +col; // 获取键值,识别按键return; // 退出循环}tmp2*=2; // tmp2左移一位}}}}/*****主函数,显示键值*****/void main(){P2=0x00; //位码,这里全部置低,点亮8位数码管(见视频效果)while(1){Check_Key();P0=TAB[key_val]; //显示}}实验7 矩阵按键识别技术矩阵按键部分由16个轻触按键按照4行4列排列,连接到JP50端口。

单片机按键程序的编写

单片机按键程序的编写
下面我们来看看多个按键的情况 吧
一般情况下,如果多个按键每个都直接接在单片机的 I/O 上的话会占用很多的 I/O 资源。比 较合理的一种做法是,按照行列接成矩阵的形式。按键接在每一个的行列的相交处。这样对 于 m 行 n 列的矩阵,可以接的按键总数是 m*n。这里我们以常见的 4*4 矩阵键盘来讲解矩阵 键盘的编程。
/******************************************
* 此模块所需相关支持库
*
******************************************/
#include"regx52.h"
#define uint8 unsigned char
#define uint16 unsigned int
bit bdata StartScan = 0 ;//此变量需放在定时中断中置位
else
{
//SHOW_ICON
}
}
}
每次执行读键盘函数时,只是对一些标志进行判断,然后退出。因此能够充分的利用 CPU 的资源。同时可以处理连发按键。此按键扫描按键函数可以直接放在主函数中。如果感觉按 键太过灵敏或者迟钝则改一下相关消抖动的宏定义即可。此函数也可以通过中断标志位进行 定时的扫描。此时,需要添加一个定时标志位,并将相关消抖动的和连击时间的宏定义改小 即可。然后在主程序类似下面这样写即可
这个流程是好多教科书上的做法。可惜,误导了好多人。为什么呢。因为它根本就没有考虑 实际情况。我们根据这幅流程图来写它的代码看看。
unsigned char v_ReadKey_f( void )
{
unsigned char KeyPress ;

单片机课程设计题目及任务要求

单片机课程设计题目及任务要求

目录1、课题名称:8X8点阵LED电路设计 (2)2、课题名称:单片机实现数字钟(LED显示小时:分:秒) (2)3、课题名称:电子跑表,定时器的设计 (2)4、课题名称:倒计时器 (3)5、课题名称:4X4矩阵键盘设计 (3)6、课题名称:非编码键盘 (4)7、课题名称:基于8155芯片的键盘/LED设计 (4)8、课题名称:多功能接口芯片8155应用电路设计 (5)9、课题名称:电子密码锁 (5)10、课题名称:交通灯管理电路设计 (5)11、课题名称:简单红外收发器设计 (6)12、课题名称:温度检测报警器 (6)13、课题名称:脉搏信号检测 (7)14、课题名称:单频信号的测频和脉宽信号的测宽 (7)15、课题名称:自动打铃控制器 (8)16、课题名称:简单串行通讯终端 (8)17、课题名称:单片机间的串行通信系统 (8)18、课题名称:红外防盗报警器 (9)19、课题名称:直流电机控制 (9)20、课题名称:步进电机控制 (10)21、课题名称:电梯控制 (10)22、课题名称:简易防盗系统设计(光电传感,蜂鸣器) (11)23、课题名称:基于0809ADC芯片的简单采集系统设计 (11)24、课题名称:基于0832DAC芯片的简单信号发生器设计 (11)25、课题名称:温度采集显示系统 (12)26、课题名称:篮球比赛计分器 (12)1、课题名称:8X8点阵LED电路设计设计目的:训练学生综合运用已学课程的基本知识,独立进行单片机应用技术和开发工作,掌握单片机程序设计、调试和应用电路设计、分析及调试检测。

设计要求:1. 应用MCS-51单片机设计8X8点阵LED电路;2. 选用8X8点阵LED显示器,一个发光二极管控制点阵中的一个点,延时时间为1ms;3. 硬件设计根据设计的任务选定合适的单片机,根据控制对象设计接口电路。

设计的单元电路必须有工作原理,器件的作用,分析和计算过程;4. 软件设计根据电路工作过程,画出软件流程图,根据流程图编写相应的程序,进行调试并打印程序清单;5.原理图设计根据所确定的设计电路,利用Protel或EWB等有关工具软件绘制电路原理图、PCB 板图、提供元器件清单。

51单片机应用程序实例

51单片机应用程序实例
图 9.1 3.系统板上硬件连线 (1. 把“单片机系统”区域中的 P3.7/RD 端口连接到“独立式键盘”区域中的 SP1 端口上; (2. 把“单片机系统”区域中的 P1.0-P1.4 端口用 8 芯排线连接到“八路发光二 极管指示模块”区域中的“L1-L8”端口上;要求,P1.0 连接到 L1,P1.1 连接到 L2,
广告灯的左移右移
1. 实验任务
做单一灯的左移右移,硬件电路如图 4.1 所示,八个发光二极管 L1-L8 分别接在单 片机的 P1.0-P1.7 接口上,输出“0”时,发光二极管亮,开始时 P1.0→P1.1→P1.2→P1.3→┅→P1.7→P1.6→┅→P1.0 亮,重复循环。
2. 电路原理图
图 4.1
每次送出的数据是不同,具体的数据如下表 1 所示
P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 L8 L7 L6 L5 L4 L3 L2 1111111 1111110 1111101 1111011
P1.0 L1 0 1 1 1
说明
L1 亮 L2 亮 L3 亮 L4 亮
1110111 1 1101111 1 1011111 1 0111111 1
一键多功能按键识别技术
1.实验任务 如图 9.1 所示,开关 SP1 接在 P3.7/RD 管脚上,在 AT89S51 单片机的 P1 端口接有四 个发光二极管,上电的时候,L1 接在 P1.0 管脚上的发光二极管在闪烁,当每一次按 下开关 SP1 的时候,L2 接在 P1.1 管脚上的发光二极管在闪烁,再按下开关 SP1 的时 候,L3 接在 P1.2 管脚上的发光二极管在闪烁,再按下开关 SP1 的时候,L4 接在 P1.3 管脚上的发光二极管在闪烁,再按下开关 SP1 的时候,又轮到 L1 在闪烁了,如此轮 流下去。 2.电路原理图

矩阵键盘扫描汇编程序

矩阵键盘扫描汇编程序

4*4矩阵键盘扫描汇编程序(基于51单片机)// 程序名称:4-4keyscan.asm;// 程序用途:4*4矩阵键盘扫描检测;// 功能描述:扫描键盘,确定按键值。

程序不支持双键同时按下,;// 如果发生双键同时按下时,程序将只识别其中先扫描的按键;// 程序入口:void;// 程序出口:KEYNAME,包含按键信息、按键有效信息、当前按键状态;//================================================================== ====PROC KEYCHKKEYNAME DATA 40H ;按键名称存储单元;(b7-b5纪录按键状态,b4位为有效位,;b3-b0纪录按键)KEYRTIME DATA 43H ;重复按键时间间隔SIGNAL DATA 50H ;提示信号时间存储单元KEY EQU P3 ;键盘接口(必须完整I/O口) KEYPL EQU P0.6 ;指示灯接口RTIME EQU 30 ;重复按键输入等待时间KEYCHK:;//=============按键检测程序========================================= ====MOV KEY,#0FH ;送扫描信号MOV A,KEY ;读按键状态CJNE A,#0FH,NEXT1 ;ACC<=0FH; CLR C ;Acc等于0FH,则CY为0,无须置0NEXT1:; SETB C ;Acc不等于0FH,则ACC必小于0 FH,;CY为1,无须置1MOV A,KEYNAMEANL KEYNAME,#1FH ;按键名称屏蔽高三位RRC A ;ACC带CY右移一位,纪录当前按键状态ANL A,#0E0H ;屏蔽低五位ORL KEYNAME,A ;保留按键状态;//=============判别按键状态,决定是否执行按键扫描=================== =====CJNE A,#0C0H,NEXT2 ;110按键稳定闭合,调用按键检测子程序SJMP KEYSCANNEXT2:CJNE A,#0E0H,NEXT3 ;111按键长闭合,重复输入允许判断SJMP WAITNEXT3:CJNE A,#0A0H,EXIT ;101干扰,当111长闭合处理ORL KEYNAME,#0E0HWAIT:MOV A,KEYRTIMEJNZ EXIT ;时间没到,退出;//=============键盘扫描程序========================================= =====KEYSCAN:MOV R1,#0 ;初始化列地址MOV R3,#11110111B ;初始化扫描码LOOP:MOV A,R3RL AMOV R3,A ;保留扫描码MOV KEY,A ;送扫描码MOV A,KEY ;读键盘ORL A,#0F0H ;屏蔽高四位CJNE A,#0FFH,NEXT31 ;A不等于FFH,说明该列有按键动作INC R1 ;列地址加1,准备扫描下一列CJNE R1,#4,LOOP ;列地址不等于4,扫描下一列SJMP EXIT ;没有按键,退出;//=============按键判断对应位等于零,说明该行有按键按下============= =====NEXT31:JB ACC.0,NEXT32MOV R2,#0 ;第0行有按键SJMP NEXT5NEXT32:JB ACC.1,NEXT33MOV R2,#1 ;第1行有按键SJMP NEXT5NEXT33:JB ACC.2,NEXT34MOV R2,#2 ;第2行有按键SJMP NEXT5NEXT34:MOV R2,#3 ;第3行有按键NEXT5: ;计算按键地址MOV A,R1RL ARL A ;列地址乘4(每列对应4行)ADD A,R2 ;加行地址MOV DPTR,#KEYTABMOVC A,@A+DPTRANL KEYNAME,#0E0HORL KEYNAME,A ;送按键(送值的时候已经置按键有效)MOV KEYRTIME,#RTIME ;送重复按键等待时间CLR KEYPL ;打开指示灯MOV SIGNAL,#10 ;送信号提示时间(每次按键闪10 0ms)EXIT:MOV KEY,#0FFH ;置键盘接口高电平RET ;退出;//=============按键名称表=========================================== =====KEYTAB:DB 1AH ;扫描码0,对应A ************************************ ******DB 1BH ;扫描码1,对应B ** **DB 1CH ;扫描码2,对应C ** I/O口 PX.4 PX.5 PX.6 PX.7 **DB 1DH ;扫描码3,对应D ** **DB 11H ;扫描码4,对应1 ** PX.0 A(0) 1(4) 2(8) 3 (C) **DB 14H ;扫描码5,对应4 ** **DB 17H ;扫描码6,对应7 ** PX.1 B(1) 4(5) 5(9) 6 (D) **DB 1EH ;扫描码7,对应E ** **DB 12H ;扫描码8,对应2 ** PX.2 C(2) 7(6) 8(A) 9 (E) **DB 15H ;扫描码9,对应5 ** **DB 18H ;扫描码A,对应8 ** PX.3 D(3) E(7) 0(B) F(F) **DB 10H ;扫描码B,对应0 ** **DB 13H ;扫描码C,对应3 ************************************ ******DB 16H ;扫描码D,对应6DB 19H ;扫描码E,对应9DB 1FH ;扫描码F,对应FEND第二种解法ORG 0000HSTART: MOV R0,#00H ;初始化程序,开始的延时是为了使硬件能够准备好DJNZ R0,$LOOP: MOV SP,#60HCALL KEYDISPLAY:MOV A,R4MOV DPTR,#TABLE ;定义字形表的起始地址MOVC A,@A+DPTR ;TABLE为表的起始地址MOV P2,ASJMP LOOP;子程序内容,P1口的低四位为行线,高四位为列线KEY: PUSH PSWPUSH ACCMOV P1,#0F0H ;令所有的行为低电平,全扫描字-P1.0-P1.3,列为输入方式;这一段只是验证有键按下,并不能判断是哪一行MOV R7,#0FFH ;设置计数常数,作为延时KEY1: DJNZ R7, KEY1MOV A,P1 ;读取P1口的列值ANL A,#0F0H ;判别有键值按下吗(当有键按下时,P1口的高四位就不全为1了,底四位还是都为0的);这个地方进行相或的原因,是因为要把底四位的0000变成1111,以便下一步进行求反ORL A,#0FH //这个地方原版上没有,这是又加了,如果不加的的话,是不对的********CPL A ;求反后,有高电平就有键按下JZ EKEY;累加器为0则转移(意为求反后本来全为0的,如果有键按下时,求反后高四位就有1了),退出LCALL DEL20ms ;有键按下,进行处理;下面进行行行扫描,1行1行扫SKEY: MOV A,#00HMOV R0,A ;R0作为行计数器,开始初值为0MOV R1,A ;R1作为列计数器,开始初值为0MOV R2,#0FEH ;R2作为扫描暂存字,开始初值为1111 1110,(第四位作为行扫描字)SKEY2: MOV A,R2MOV P1,A ;输出行扫描字,1111 1110NOPNOPNOP ;3个NOP操作使P1口输出稳定MOV A,P1 ;读列值(和开始一样)MOV R1,A ;暂存列值(第一次为**** 1110,既高四位有一位"可能"会为0)ANL A,#0F0H ;取高四位,ORL A,#0FH ;使第四位全部置1CPL ABIAOZHI:JNZ SKEY3 ;累加器为非0则转移指令(意思是判断到按键在这一行),转去处理INC R0 ;如果按键没在这一行,行计数器加1SETB C ;进位标志位加1,为了在左移的时候开始的低位0不在出现在低(循环一圈后)MOV A,R2RLC A ;带进位左移1位(形成下一行扫描字,再次扫描)MOV R2,AMOV A,R0;把加1后的行计数器R0和总共扫描次数(4次比较)CJNE A,#04H,SKEY2 ;(扫描完了么)书本上这个地方也有错误,书本上写的是:SKEY1AJMP EKEY ;如果没有的话,退出;有键按下后行扫描过后,此为确列行SKEY3: MOV A,R1 ;JNB ACC.4,SKEY5 ;直接寻址位为0咋转移指令JNB ACC.5,SKEY6JNB ACC.6,SKEY7JNB ACC.7,SKEY8AJMP EKEY //我自己感觉到这命令没有用处SKEY5: MOV A,#00H ;存0列号MOV R3,AAJMP DKEYSKEY6: MOV A,#01H ;存1列号MOV R3,AAJMP DKEYSKEY7: MOV A,#02H ;存2列号MOV R3,AAJMP DKEYSKEY8: MOV A,#03H ;存3列号MOV R3,AAJMP DKEY;取出具体的行号,再加上列号,最终确认按键的号码DKEY: //MOV R4,#00HMOV A,R0MOV B,#04HMUL AB ;让行号*4,第四位放在A中(总共就4行,相乘后一定<16,也就是只有第四位有值)ADD A,R3 ;让行号和列号相加,最终确认任按键的具体号MOV R4,AEKEY: POP ACCPOP PSWRET ;按键扫描处理函数DEL20ms:MOV R7,#2DL2: MOV R6,#18DL1: MOV R5,#255DJNZ R5,$DJNZ R6,DL1DJNZ R7,DL2RET;此为共阴极数码管的数字表TABLE: DB 3FH ;0DB 06H ;1DB 5BH ;2DB 4FH ;3DB 66H ;4DB 6DH ;5DB 7DH ;6DB 27H ;7DB 7FH ;8DB 6FH ;9DB 77HDB 7CHDB 39HDB 5EHDB 79HDB 71HEND第三种PIC单片机键盘扫描汇编程序;本程序用于PIC外接键盘的识别,通过汇编程序,使按下K1键时第一个数码管显示1,按下K2键时第一;个数码管上显示2,按下K3键时第一个数码管上显示3,按下K4键时第一个数码管上显示4,;汇编程序对键盘的扫描采用查询方式LIST P=18F458INCLUDE "P18F458.INC";所用的寄存器JIANR EQU 0X20FLAG EQU JIANR+1 ;标志寄存器DEYH EQU JIANR+2DEYL EQU JIANR+3F0 EQU 0 ;FLAG的第0位定义为F0ORG 0X00GOTO MAINORG 0X30;*************以下为键盘码值转换表****************** CONVERT ADDWF PCL,1RETLW 0XC0 ;0,显示段码与具体的硬件连接有关RETLW 0XF9 ;1RETLW 0XA4 ;2RETLW 0XB0 ;3RETLW 0X99 ;4RETLW 0X92 ;5RETLW 0X82 ;6RETLW 0XD8 ;7RETLW 0X80 ;8RETLW 0X90 ;9RETLW 0X88 ;ARETLW 0X83 ;BRETLW 0XC6 ;CRETLW 0XA1 ;DRETLW 0X86 ;ERETLW 0X8E ;FRETLW 0X7F ;"."RETLW 0XBF ;"-"RETLW 0X89 ;HRETLW 0XFF ;DARKRETURN;***************PIC键盘扫描汇编程序初始化子程序***************** INITIALBCF TRISA,5 ;置RA5为输出方式,以输出锁存信号BCF TRISB,1BCF TRISA,3BCF TRISE,0BCF TRISE,1BSF TRISB,4 ;设置与键盘有关的各口的输入输出方式BCF TRISC,5BCF TRISC,3 ;设置SCK与SDO为输出方式BCF INTCON,GIE ;关闭所有中断LW 0XC0WF SSPSTAT ;设置SSPSTAT寄存器LW 0X30WF SSPCON1 ;设置SPI的控制方式,允许SSP方式,并且时钟下降;沿发送数据,与"74HC595当其SCLK从低到高电平;跳变时,串行输入数据(DI)移入寄存器"的特点相对应LW 0X01WF JIANR ;显示值寄存器(复用为键值寄存器)赋初值CLRF FLAG ;清除标志寄存器RETURN ;返回;**************显示子程序*****************DISPLAYCLRF PORTAWF SSPBUFAGAINBTFSS PIR1,SSPIFGOTO AGAINNOPBCF PIR1,SSPIFBSF PORTA,5 ;详细的程序语句请参考 pic教程语句部分,可在首页搜索。

矩阵键盘的键值计算及编程

矩阵键盘的键值计算及编程
P1口低四位是指:P1.3 P1.2 P1.1 P1.0
2 读取I/O口值的练习
.j
用程序控制单片机P2口工作,让高四位全高电平,低四位全低电平。 即:P2=0xf0; 具体实现见操作,结果如图。
P1口高四位是指:P1.7 P1.6 P1.5 P1.4
一般都是自高到低读出一个端口各脚电平 ,得到8位二进制数,再将8位二进制转换成2位十六进数。
P3口值= P3.7 P3.6 P3.5 P3.4P3.3 P3.2 P3.1 P3.0 =1111 1010=0xfa
2 读取I/O口值的练习
.j
当 程序使P2=0x0f; 外接一个两脚开关到P2口只能让P2产生如下四个新的值: 0x0e, 0x0d,0x0b,0x07 0x0d 0x0b
找出行线值 置行线所处端口位置高电平
找出列线值 置列线所处端口位置高电平
行线值+列线值=键值
计算键值一般方法
3 键盘的键值
.j
先找出行线值,再找出列线值,最后绘出矩阵键盘的键值。
总结
4×4矩阵键盘的键值 共有16个,计算键值时总是:
4 键盘扫描编程__线反转法
.j
/************键盘扫子描函数*******************/ char keyscan(void) //键盘扫描函数,键盘使用P2口 { char value_h,value_l; //value_h行值变量,value_l列值变量 P2=0xf0; //将行线所处位置置高电平 if((P2&0xf0)!=0xf0) //判断是否有键按下 { delay(10); //延时防抖 if((P2&0xf0)!=0xf0) //仍有键按下 { value_h=P2&0xf0; //读出P2口值给变量value_h P2=0x0f; //将列线所处位置置高电平 value_l=P2&0x0f; //读出P2口值给变量value_l return(value_l+value_h); //找到的键值返回给调用函数 } } }

51单片机矩阵键盘设计

51单片机矩阵键盘设计

51单片机矩阵键盘设计
一、引言
AT89C51单片机矩阵键盘设计是嵌入式系统中一个重要的技术,它的
作用是以矩阵形式把外部按键与MCU相连,使得系统可以对外部的按键进
行检测和响应。

矩阵键盘设计在可编程嵌入式系统的设计中占有重要的地位,如智能交通系统、智能家居系统、航空电子系统等。

本文主要介绍了矩阵键盘设计中硬件电路的设计,包括按键、拉电阻、和矩阵编码等,同时给出系统的控制算法,使得系统可以实现有效的按键
检测和响应。

二、矩阵键盘概述
矩阵键盘是将多个按键排布成列行形式进行连接,一般来说,矩阵键
盘是由按键、拉电阻、矩阵编码器和控制器组成,按键是系统中重要的部件,其作用是将外部输入信号传递给控制器。

拉电阻起到的作用是防止按
键耦合,一般可以使用4.7KΩ拉电阻来防止按键耦合。

矩阵编码器用来
识别按键的状态,通常通过硬件把按键信号编码为数字信号,输入到处理
器或控制器。

控制器用来实现按键信号的检测,通过定义硬件定时器和软
件定时器,实现按键检测和处理。

1、硬件电路设计
应用AT89C51单片机矩阵键盘。

51单片机键盘数码管显示(带程序)

51单片机键盘数码管显示(带程序)

期中大作业学院:物理与电子信息工程学院课题:【利用8255和51单片机实现数码管显示按键数值的程序】要求:【4*4矩阵键盘,按0到15,数码管上分别显示0~9,A~F】芯片资料:8255:8255是Intel公司生产的可编程并行I/O接口芯片,有3个8位并行I/O口。

具有3个通道3种工作方式的可编程并行接口芯片(40引脚)。

其各口功能可由软件选择,使用灵活,通用性强。

8255可作为单片机与多种外设连接时的中间接口电路。

8255作为主机与外设的连接芯片,必须提供与主机相连的3个总线接口,即数据线、地址线、控制线接口。

同时必须具有与外设连接的接口A、B、C口。

由于8255可编程,所以必须具有逻辑控制部分,因而8255内部结构分为3个部分:与CPU连接部分、与外设连接部分、控制部分。

8255特性:1.一个并行输入/输出的LSI芯片,多功能的I/O器件,可作为CPU总线与外围的接口。

2.具有24个可编程设置的I/O口,即3组8位的I/O口,分别为PA口、PB口和PC 口。

它们又可分为两组12位的I/O口:A组包括A口及C口(高4位,PC4~PC7),B组包括B口及C口(低4位,PC0~PC3)。

A组可设置为基本的I/O口,闪控(STROBE)的I/O闪控式,双向I/O三种模式;B组只能设置为基本I/O或闪控式I/O两种模式,而这些操作模式完全由控制寄存器的控制字决定.引脚说明RESET:复位输入线,当该输入端处于高电平时,所有内部寄存器(包括控制寄存器)均被清除,所有I/O口均被置成输入方式。

CS:芯片选择信号线,当这个输入引脚为低电平时,即CS=0时,表示芯片被选中,允许8255与CPU进行通讯;CS=1时,8255无法与CPU做数据传输。

RD:读信号线,当这个输入引脚为低电平时,即CS=0且RD=0时,允许8255通过数据总线向CPU发送数据或状态信息,即CPU从8255读取信息或数据。

WR:写入信号,当这个输入引脚为低电平时,即CS=0且WR=0时,允许CPU将数据或控制字写入8255。

矩阵式键盘实验报告

矩阵式键盘实验报告

矩阵式键盘实验报告矩阵键盘设计实验报告南京林业大学实验报告基于AT89C51单片机4x4矩阵键盘接口电路设计课程院系班级学号姓名指导老师机电一体化设计基础机械电子工程学院杨雨图2013年9月26日一、实验目的1、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。

2、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。

3、掌握利用Keil51软件对程序进行编译。

4、用Proteus软件绘制“矩阵键盘扫描”电路,并用测试程序进行仿真。

5、会根据实际功能,正确选择单片机功能接线,编制正确程序。

对实验结果能做出分析和解释,能写出符合规格的实验报告。

二、实验要求通过实训,学生应达到以下几方面的要求:素质要求1.以积极认真的态度对待本次实训,遵章守纪、团结协作。

2.善于发现数字电路中存在的问题、分析问题、解决问题,努力培养独立工作能力。

能力要求1.模拟电路的理论知识2.脉冲与数字电路的理念知识3.通过模拟、数字电路实验有一定的动手能力4.能熟练的编写8951单片机汇编程序5.能够熟练的运用仿真软件进行仿真三、实验工具1、软件:Proteus软件、keil51。

2、硬件:PC机,串口线,并口线,单片机开发板四、实验内容1、掌握并理解“矩阵键盘扫描”的原理及制作,了解各元器件的参数及格元器件的作用。

2、用keil51测试软件编写AT89C51单片机汇编程序3、用Proteus软件绘制“矩阵键盘扫描”电路原理图。

4、运用仿真软件对电路进行仿真。

五.实验基本步骤1、用Proteus绘制“矩阵键盘扫描”电路原理图。

2、编写程序使数码管显示当前闭合按键的键值。

3、利用Proteus软件的仿真功能对其进行仿真测试,观察数码管的显示状态和按键开关的对应关系。

4、用keil51软件编写程序,并生成HEX文件。

5、根据绘制“矩阵键盘扫描”电路原理图,搭建相关硬件电路。

6、用通用编程器或ISP下载HEX程序到MCU。

单片机经典长短按程序

单片机经典长短按程序

新型的按键扫描程序不过我在网上游逛了很久,也看过不少源程序了,没有发现这种按键处理办法的踪迹,所以,我将他共享出来,和广大同僚们共勉。

我非常坚信这种按键处理办法的便捷和高效,你可以移植到任何一种嵌入式处理器上面,因为C语言强大的可移植性。

同时,这里面用到了一些分层的思想,在单片机当中也是相当有用的,也是本文的另外一个重点。

对于老鸟,我建议直接看那两个表达式,然后自己想想就会懂的了,也不需要听我后面的自吹自擂了,我可没有班门弄斧的意思,hoho~~但是对于新手,我建议将全文看完。

因为这是实际项目中总结出来的经验,学校里面学不到的东西。

以下假设你懂C语言,因为纯粹的C语言描述,所以和处理器平台无关,你可以在MCS-51,AVR,PIC,甚至是ARM平台上面测试这个程序性能。

当然,我自己也是在多个项目用过,效果非常好的。

好了,工程人员的习惯,废话就应该少说,开始吧。

以下我以AVR的MEGA8作为平台讲解,没有其它原因,因为我手头上只有AVR的板子而已没有51的。

用51也可以,只是芯片初始化部分不同,还有寄存器名字不同而已。

核心算法:unsigned char Trg;unsigned char Cont;void KeyRead( void ){unsigned char ReadData = PINB^0xff; // 1Trg = ReadData & (ReadData ^ Cont); // 2Cont = ReadData; // 3}完了。

有没有一种不可思议的感觉?当然,没有想懂之前会那样,想懂之后就会惊叹于这算法的精妙!!下面是程序解释:Trg(triger)代表的是触发,Cont(continue)代表的是连续按下。

1:读PORTB的端口数据,取反,然后送到ReadData 临时变量里面保存起来。

2:算法1,用来计算触发变量的。

一个位与操作,一个异或操作,我想学过C 语言都应该懂吧?Trg为全局变量,其它程序可以直接引用。

51单片机的矩阵按键扫描的设计C语言程序

51单片机的矩阵按键扫描的设计C语言程序

51单片机的矩阵按键扫描的设计C语言程序以下为一个基于51单片机的矩阵按键扫描的设计C语言程序:```c#include <reg51.h>//定义端口连接到矩阵键盘sbit col1 = P2^0;sbit col2 = P2^1;sbit col3 = P2^2;sbit row1 = P2^3;sbit row2 = P2^4;sbit row3 = P2^5;sbit row4 = P2^6;//声明按键函数char read_keypad(;void maiwhile (1)char key = read_keypad(; // 读取按键值//根据按键值进行相应操作switch(key)case '1'://第一行第一列按键逻辑//在此处添加相应的代码break;case '2'://第一行第二列按键逻辑//在此处添加相应的代码break;//继续处理其他按键//...default://未识别到按键break;}}//按键扫描函数char read_keypacol1 = 0; col2 = 1; col3 = 1; // 激活第一列if (row1 == 0) { // 第一行第一列按键被按下while (row1 == 0); //等待按键释放return '1'; // 返回按键值}if (row2 == 0) { // 第二行第一列按键被按下while (row2 == 0); //等待按键释放return '4'; // 返回按键值}if (row3 == 0) { // 第三行第一列按键被按下while (row3 == 0); //等待按键释放return '7'; // 返回按键值}if (row4 == 0) { // 第四行第一列按键被按下while (row4 == 0); //等待按键释放return '*'; // 返回按键值}col1 = 1; col2 = 0; col3 = 1; // 激活第二列//处理第二列的按键逻辑//...col1 = 1; col2 = 1; col3 = 0; // 激活第三列//处理第三列的按键逻辑//...return '\0'; // 返回空字符表示未检测到按键```以上代码中,我们使用51单片机的P2端口连接到矩阵键盘的列和行,通过扫描不同的列和检测行的状态来判断按键是否被按下。

单片机 矩阵键盘实验 实验报告

单片机 矩阵键盘实验 实验报告

实验五矩阵键盘实验一、实验内容1、编写程序,做到在键盘上每按一个数字键(0-F)用发光二极管将该代码显示出来。

按其它键退出。

2、加法设计计算器,实验板上有12个按键,编写程序,实现一位整数加法运算功能。

可定义“A”键为“+”键,“B”键为“=”键。

二、实验目的1、学习独立式按键的查询识别方法。

2、非编码矩阵键盘的行反转法识别方法。

三、实验说明1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。

2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。

3、识别键的闭合,通常采用行扫描法和行反转法。

行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。

行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。

然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。

这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。

由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。

行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档