圆周角与圆心角的关系 优质课评选教案

合集下载

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案教案:圆周角和圆心角的关系教学目标:1.理解圆周角和圆心角的定义;2.掌握圆周角和圆心角的关系;3.运用所学知识解决实际问题。

教学准备:1.教材:《数学必修二》;2.教具:投影仪、计算器。

教学过程:Step 1:导入新知1.讲解圆周角和圆心角的概念。

圆周角:圆上的两条弧所对的角叫做圆周角。

圆心角:由圆心射出的两条弧所对的角叫做圆心角。

2.提问学生:“在圆上,两条弧所对的角是否相等?”3.引导学生发现,根据圆周角的定义,圆周角的度数等于弧所对的圆心角的一半。

Step 2:讲解圆周角和圆心角的关系1.通过投影仪展示有关圆周角和圆心角的图形,并示范解题方法。

2.教师讲解定理:“在同一个圆或等圆中,所对圆心角相等的圆周角也相等;所对圆周角相等的圆心角也相等。

”Step 3:练习1.完成教材《数学必修二》的相关习题。

2.制定小组练习题,提高学生之间的合作学习能力。

Step 4:运用1.学生进行一些实际问题的解答,如“一个园丁想在花园中心种一圈花,他决定每两株花之间的夹角是圆心角45°,他一共要种多少株花?”引导学生运用圆周角和圆心角的关系解题。

2.学生自主完成其他实际问题的解答。

Step 5:总结1.归纳总结圆周角和圆心角的关系,明确圆周角等于所对圆心角的一半。

2.提问巩固所学内容。

教学扩展:1.学生之间进行小组竞赛,比赛谁能最快解出题目中的圆周角和圆心角的关系。

2.学生利用计算器综合运用所学知识解决实际问题。

《圆周角和圆心角的关系1》优秀教案

《圆周角和圆心角的关系1》优秀教案

九年数学导学案课题3.4 圆周角和圆心角的关系(1)课型新授课课时第1课时学习目标1.经历探索圆周角和圆心角关系定理的过程,发展合情推理和演绎推理的能力。

2.能够利用圆周角和圆心角的关系定理解决计算及证明问题。

3.培养学生的合作交流意识,探究意识。

学习重点圆周角和圆心角的关系定理学习难点圆周角和圆心角的关系定理导学流程教学过程教学内容预习交流问题导学交流展示一、问题引入:(强调学生学会在同一个圆中找到同一条弧所对的圆周角)在圆上,并且角的两边都_________的角叫做圆周角.2圆周角定理:在同一圆中,一条弧所对的圆周角等于_________圆心角的_________.3圆周角定理的推论:在同圆或等圆中,____________所对的圆周角____________.二、基础训练:12021 湖南省长沙市如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB= 度;2.2021 湖南省郴州市如图,已知A、B、C三点都在⊙O上,∠AOB=60°则∠ACB=_______32021 湖北省宜昌市如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A∠ACD B ∠ADB C ∠AED三、例题展示:例:已知:∠C是弧AB所对的圆周角,∠AOB是弧AB所对的圆心角,求证:∠C=21∠AOB提示:圆周角与圆心角有几种不同的位置关系呢?四、课堂检测:12021 湖南省常德市如图,已知⊙O是△ABC的外接圆,若∠BOC=100°,则∠BAC=__第3题图第2题图A BOC第1题图评价点拨巩固延伸达标测试_22021 广西来宾市如图,点A、B、C均在⊙O上,∠C=50°,则∠OAB=.3如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于().A.64°B.48°C.32°D.76°4如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于().A.37°B.74°C.54°D.64°5如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC,∠ACB与∠BAC的大小有什么关系?为什么?教学反思第3题图第4题图第1题图第2题图第5题图OCAB。

北师大版数学九年级下册3.4.2圆周角和圆心角的关系优秀教学案例

北师大版数学九年级下册3.4.2圆周角和圆心角的关系优秀教学案例
3.鼓励学生在课后进行深入学习,如查阅相关资料、参加数学竞赛等,提高自己的数学素养。
4.教师对学生的作业完成情况进行评价,关注学生的知识掌握程度、实践能力和创新思维。
五、案例亮点
1.生活情境的创设:本案例通过生活中的圆形物体导入新课,使学生能够直观地感受到数学与生活的紧密联系,提高了学生的学习兴趣和积极性。
4.强调圆周角和圆心角在几何图形中的重要性,及其在实际生活中的应用。
(三)学生小组讨论
1.教师提出讨论话题:“圆周角和圆心角之间的关系有什么应用?你们能想到哪些实际问题需要用到这一关系?”
2.学生分组进行讨论,分享自己的观点和发现。
3.教师巡回指导,针对不同小组的特点给予个性化的指导和建议。
(四)总结归纳
北师大版数学九年级下册3.4.2圆周角和圆ቤተ መጻሕፍቲ ባይዱ角的关系优秀教学案例
一、案例背景
北师大版数学九年级下册3.4.2“圆周角和圆心角的关系”这一节内容,是在学生已经掌握了圆的基本概念、圆的周长和面积等知识的基础上进行讲解的。本节内容主要让学生了解圆周角和圆心角之间的关系,即圆周角是圆心角的两倍。这一节内容对于学生来说,既是对圆的相关知识的一个巩固,又是为后续学习圆的更复杂性质和应用打下基础。
4.结合现实问题,如圆形场地、圆形路径等,让学生思考圆周角和圆心角在实际中的应用,提高学生解决实际问题的能力。
(二)问题导向
1.引导学生提出问题:圆周角和圆心角之间有什么关系?它们在几何图形中有什么特殊性质?
2.设计具有启发性的问题,如:为什么圆周角是圆心角的两倍?这个结论在实际生活中有哪些应用?
3.鼓励学生自主探索,引导学生通过对圆的性质的观察和推理,发现圆周角和圆心角之间的关系。
2.培养学生运用圆周角和圆心角的关系解决实际问题的能力,如计算未知角度等。

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案教案目标:1. 理解和描述圆周角和圆心角的概念;2. 掌握圆周角和圆心角之间的关系;3. 能够解决与圆周角和圆心角相关的问题。

教学步骤:I. 引入(约5分钟)- 利用生活中的例子引起学生对圆周角和圆心角的注意,例如车轮、钟表等。

- 引导学生思考圆周角和圆心角的定义和特点。

II. 讲解圆周角和圆心角的概念(约10分钟)- 通过示意图解释圆周角和圆心角的定义,并介绍角度的度量单位。

- 强调圆周角是指相邻两条弧所对应的角,圆心角是指以圆心为顶点的角。

III. 圆周角和圆心角的关系(约15分钟)- 阐述圆周角和圆心角之间的关系,即圆周角的度数是圆心角的二倍。

- 使用具体案例和图形进行说明,让学生理解这一关系。

IV. 解决问题(约15分钟)- 给学生一些练习题,让他们应用所学的知识解决问题。

- 引导学生逐步解决问题,并给予必要的提示和指导。

- 鼓励学生主动思考和讨论,提高解决问题的能力。

V. 总结(约5分钟)- 和学生一起总结本节课所学的内容,检查是否达到了教学目标。

- 强调圆周角和圆心角之间的关系对圆的几何性质的重要性。

VI. 拓展活动(约10分钟)- 给学生一些拓展问题,让他们运用所学的知识进行探究和进一步思考。

- 鼓励学生在小组内互相讨论和合作,提出自己的观点和解决方法。

VII. 课堂作业(约5分钟)- 布置一些课后作业,包括练习题和思考题,巩固和拓展所学的内容。

- 强调作业的重要性,并鼓励学生按时完成和提交。

备注:以上教案的时间安排仅供参考,请根据实际情况做适当调整。

(教案完)。

圆心角与圆周角的关系教案

圆心角与圆周角的关系教案

圆周角与圆心角的关系一、知识讲解:1.圆周角与圆心角的的概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2.在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

3.一条弧所对的圆周角等于这条弧所对的圆心角的一半。

4.直径所对的圆周角是90度,90度的圆周角所对的弦是直径。

5.圆的内接四边形对角之和是180度。

6.弧的度数就是圆心角的度数。

解题思路:1.已知圆周角,可以利用圆周角求出圆心角2.已知圆心角,可以利用圆心角求出圆周角3.已知直径和弧度,可以求出圆周角与圆心角1.圆周角与圆心角的定义顶点在圆上,并且两边都和圆相交的角叫做圆周角。

注意圆周角定义的两个基本特征:(1)顶点在圆上;(2)两边都和圆相交。

二、教学内容【1】圆心角:顶点在圆心的角。

利用两个错误的图形来强调圆周角定义的两个基本特征:练习:判断下列各图形中的是不是圆周角,并说明理由.【2】理解圆周角定理的证明一条弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半。

已知:⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC,求证:∠BAC= 1/2∠BOC.分析:通过图形的演示指导学生进一步去寻找圆心O与∠BAC的关系本题有三种情况:(1)圆心O在∠BAC的一边上 O(2)圆心O在∠BAC的内部(3)圆心O在∠BAC的外部 B D C●如果圆心O在∠BAC的边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明●如果圆心O在∠BAC的内部或外部,那么只要作出直径AD,将这个角转化为上述情况的两个角的和或差即可证明:圆心O在∠BAC的一条边上 AOA=OC==>∠C=∠BAC∠BOC=∠BAC+∠C O==>∠BAC=1/2∠BOC. B C【3】圆周角与圆心角的关系(1).在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

2024北师大版数学九年级下册3.4.1《圆周角和圆心角的关系》教案

2024北师大版数学九年级下册3.4.1《圆周角和圆心角的关系》教案

2024北师大版数学九年级下册3.4.1《圆周角和圆心角的关系》教案一. 教材分析《圆周角和圆心角的关系》是北师大版数学九年级下册第3.4.1节的内容。

本节课主要让学生了解圆周角和圆心角的关系,掌握圆周角定理,并能够运用该定理解决一些实际问题。

教材通过引入圆周角和圆心角的概念,引导学生探究它们之间的关系,从而得出圆周角定理。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积的计算方法。

他们具备一定的观察、分析和推理能力。

但是,对于圆周角和圆心角的关系,他们可能还没有直观的认识,需要通过实例和推理来理解和掌握。

三. 教学目标1.让学生了解圆周角和圆心角的概念,理解它们之间的关系。

2.让学生掌握圆周角定理,并能够运用该定理解决一些实际问题。

3.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.圆周角和圆心角的关系。

2.圆周角定理的证明和运用。

五. 教学方法1.采用问题驱动法,引导学生发现问题、分析问题和解决问题。

2.利用几何画板和实物模型,直观地展示圆周角和圆心角的关系。

3.采用小组合作学习,让学生在讨论中共同探究和解决问题。

4.通过练习题,巩固所学知识,提高解题能力。

六. 教学准备1.准备几何画板和实物模型,用于展示圆周角和圆心角的关系。

2.准备相关的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用几何画板或实物模型,展示一个圆和一些圆周角、圆心角,让学生观察它们之间的关系。

提问:你们觉得圆周角和圆心角有什么关系呢?2.呈现(10分钟)引导学生通过观察和推理,发现圆周角和圆心角的关系。

呈现圆周角定理:圆周角等于它所对圆心角的一半。

让学生理解并记住这个定理。

3.操练(10分钟)让学生分组讨论,每组设计一个实例,验证圆周角定理。

每组选取一个代表进行汇报,其他组进行评价。

通过这个过程,让学生加深对圆周角定理的理解。

4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固所学知识。

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1一. 教材分析北师大版数学九年级下册 3.4《圆周角和圆心角的关系》是本节课的主要内容。

通过本节课的学习,让学生理解圆周角和圆心角的关系,掌握圆周角定理,并能运用圆周角定理解决实际问题。

教材通过引入圆周角和圆心角的概念,引导学生探究它们之间的关系,从而发现圆周角定理。

二. 学情分析学生在学习本节课之前,已经学习了圆的基本概念,如圆的半径、直径等,对圆有一定的认识。

但学生对圆周角和圆心角的概念可能比较陌生,需要通过实例和探究活动来理解和掌握。

此外,学生需要具备一定的观察和推理能力,通过观察图形和逻辑推理来发现圆周角定理。

三. 教学目标1.知识与技能目标:让学生掌握圆周角定理,能运用圆周角定理解决实际问题。

2.过程与方法目标:通过观察、操作、推理等过程,培养学生的观察能力和推理能力。

3.情感态度与价值观目标:让学生体验数学学习的乐趣,培养学生的探究精神和合作意识。

四. 教学重难点1.教学重点:圆周角定理的掌握和运用。

2.教学难点:圆周角定理的证明和理解。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。

2.问题驱动法:通过提出问题,引导学生观察、思考和推理,培养学生的问题解决能力。

3.合作学习法:引导学生分组讨论和合作,培养学生的团队合作意识和交流能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示圆周角和圆心角的图形和实例。

2.教学素材:准备一些相关的实例和习题,用于引导学生进行探究和练习。

3.教学工具:准备圆规、直尺等绘图工具,方便学生进行绘图和操作。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,如自行车轮子的转动、钟表的指针运动等,引导学生观察和思考这些现象与圆周角和圆心角的关系。

2.呈现(10分钟)呈现圆周角和圆心角的定义,引导学生理解它们的概念。

通过PPT展示一些实例,让学生观察和思考圆周角和圆心角之间的关系。

九年级数学上册《圆心角和圆周角的关系》教案、教学设计

九年级数学上册《圆心角和圆周角的关系》教案、教学设计
3.数学证明:在学生自主探究的基础上,给出严谨的数学证明,让学生理解圆心角和圆周角关系的数学原理。
4.应用举例:通过具体例题,展示圆心角和圆周角关系在实际问题中的应用,使学生认识到数学知识在实际生活中的价值。
(三)学生小组讨论
1.分组:将学生分成若干小组,确保每个小组内成员的数学水平相对均衡。
2.讨论主题:以圆心角和圆周角的关系为主题,让学生在小组内分享自己的发现,互相交流,共同完善圆心角和圆周角的关系。
二、学情分析
九年级的学生已经具备了一定的数学基础和逻辑思维能力,他们在之前的课程中学习了角度、三角形等基本概念,为本章节的学习奠定了基础。但在圆的相关知识方面,学生们的认识可能还不够深入,对圆心角和圆周角的关系理解可能存在困难。因此,在教学过程中,要注意以下几点:
1.充分发挥学生已有的知识经验,引导他们主动发现圆心角和圆周角的关系。
五、作业布置
为了巩固学生对圆心角和圆周角知识的掌握,提高他们的实际应用能力,特布置以下作业:
1.基础巩固题:根据课堂所学,完成课本相关练习题,加深对圆心角和圆周角概念的理解。
(1)画出一个圆,并在圆内画出两个圆心角相等、圆周角相等的两组角,比较它们之间的关系。
(2)画出一个圆,并在圆内画出两个圆心角相等、圆周角不相等的两组角,分析原因。
2.提高拓展题:结合圆心角和圆周角的关系,解决以下实际问题。
(1)一块圆形的披萨,被切成八等份,每份的圆心角是多少度?如果切成十二等份呢?
(2)一个圆形的花坛,要将其分割成若干个扇形区域,每个区域圆心角相等,且总面积为花坛面积的一半。请问需要分割成几个区域?
3.创新研究题:以小组为单位,选择以下课题进行研究,并将研究结果以报告形式提交。
c.组织小组讨论,让学生分享自己的发现,互相交流,共同完善圆心角和圆周角的关系。

2021年公开课大赛《圆周角和圆心角的关系》一等奖教案 (1)

2021年公开课大赛《圆周角和圆心角的关系》一等奖教案 (1)

按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。

2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。

从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。

本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。

圆周角和圆心角的关系一、教学目标1.理解圆周角定义,掌握圆周角定理. 2.会熟练运用定理解决问题. 二、教学重点和难点重点:圆周角定理及其应用难点:圆周角定理证明过程中的“分类讨论”思想的渗透. 三、教学过程 (一)复习回顾:1.圆心角的定义?——顶点在圆心的角叫圆心角2.圆心角的度数和它所对的弧的度数有何关系?如图:∠AOB 弧AB 的度数 3.在同圆或等圆中,如果两个圆心角、两条 、两条 中有一组量相等,那么它们所对应的其余各组量都分别相等. (二)探究新知: 【探究一】问题:我们已经知道,顶点在圆心的角叫圆心角,那当角的顶点位置发生变化时, 我们得到几种情况?类比圆心角定义,得出圆周角定义: 顶点在 ,并且两边分别与圆还有 的角叫做圆周角.练习如图,指出图中的圆心角和圆周角解:圆心角有 , 圆周角有识别图形:判断下列各图中的角是否是圆周角?并说明理由.A 点A 在圆内点A 在圆外点A 在圆上.O BC A.O B C A O B C 顶点在圆心.A O B C . 圆心角 圆周角【探究二】观察与思考1.如图,AB为⊙O的直径,∠BOC、∠BAC分别是BC所对的圆心角、圆周角,求出图(1)、(2)、(3)中∠BAC的度数.OCBA(4)图(1)中∠BAC的度数是_____ 图(2)中∠BAC的度数是_____图(3)中∠BAC的度数是_____.通过计算发现:∠BAC=_____∠BOC.由图(4)试证明这个结论:证明:【探究三】如图, BC所对的圆心角有多少个?_______ BC所对的圆周角有多少个?_______请在图中画出BC所对的圆心角和圆周角,并与同学们交流。

34圆周角和圆心角的关系(教案)

34圆周角和圆心角的关系(教案)

课题 3.4 圆周角和圆心角的关系教学目标知识技能:1.理解圆周角概念和圆周角与圆心角的关系定理及推论;2.会用定理进行简单的说明或推理.过程方法:1.经历观察、猜想、推理论证等探索圆周角定理的过程,掌握从特殊情况入手,通过转化来解决一般性问题的方法;2.感悟分类讨论、转化的数学思想.德育目标:通过观察、实验、类比、猜想、论证、反思,使学生树立运动变化和对立统一的辩证唯物主义观点和严谨的科学态度.教学重、难点重点:对圆周角与圆心角关系的剖析与论证. 难点:定理证明中的分类化归思想.教法学法分析为了更好地突出重点、突破难点,圆满完成教学任务,采用探究式教学方法,着眼引导学生通过动手实践、自主探索、合作交流的学习方式,着重于探索、发现、归纳能力的培养.教学过程教学环节教学内容设计意图温故知新教师提出问题:问题1:点和圆有哪几种位置关系?问题2:什么叫圆心角?学生回答问题,并进行画图展示,从而得到圆周角.由点和圆的位置关系及圆心角概念,通过画图得到圆周角,实现了知识的整体性,又为学习新知做好铺垫.概念引领1.教师引导学生说出圆周角的定义.教师进行板书:顶点在圆上,两边分别与圆还有另一个交点的角叫做圆周角.教师引导学生分析圆周角所具备的两个条件:①顶点;②两边.2.辨一辨:判别下列各图形中的角是不是圆周角,并说明理由.此环节是为了让学生根据角的特征归纳圆周角的定义.同时进一步加强学生对圆周角定义中“角的顶点在圆上”“角的两边与圆还有一个交点”两个要素的理解.探究活动问题:1.在⊙O中,弧AB所对的圆心角有几个?所对的圆周角呢?一是为了让学生动手通过画图感受同弧所对的圆周角有无数多个,并用几何画板演示移动一个圆周角的顶点,让同学们从动态感受相同的结论;二是为引导学生观察圆心与圆周角的位置关系作铺垫.2.在上图中,你认为圆周角和圆心的位置关系有几种情况?为了让学生在合作学习和教师的演示中经历观察、发现、归纳总结的过程,并巧妙地化解“分类讨论”这个难点.3.如图所示,你知道∠C和∠AOB的数量关系吗?让学生运用多种方法得到同弧所对的圆周角与圆心角之间的数量关系,为根据图形写出已知、求证、证明打好基础.探究活动根据同弧所对的圆周角与圆心的三种位置关系,学生分三种情况进行证明.教师提出:问题1:三类图形中,应从哪一个着手证明,为什么?问题2:如何证明特殊情况?并总结其中用到的几何知识.问题3:另外两个图形是否能通过作适当的辅助线转化为特殊情况?学生自主思考,小组合作完成证明过程.教师巡视,深入小组内适时点拨.指导一名学生板演证明过程,集体评价.让学生体会推理的严谨性,感悟从特殊到一般的数学思想,并体会用此种数学方法去解决问题的妙处,同时领会辅助线的数学价值和分类化归的数学方法.。

《圆周角和圆心角的关系1》教案 (公开课)2022年北师大版数学

《圆周角和圆心角的关系1》教案 (公开课)2022年北师大版数学

3.4 圆周角和圆心角的关系 第1课时 圆周角和圆心角的关系1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(重点) 2.能运用圆周角定理及其推论进行简单的证明计算.(难点)一、情境导入在以下图中,当球员在B, D, E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC, ∠ADC ,∠AEC .这三个角的大小有什么关系?二、合作探究探究点:圆周角定理及其推论【类型一】 利用圆周角定理求角的度数如图,CD 是⊙O 的直径,过点D的弦DE 平行于半径OA ,假设∠D 的度数是50°,那么∠C 的度数是( )A .25°B .30°C .40°D .50°解析:∵OA ∥DE ,∠D =50°,∴∠AOD =50°.∵∠C =12∠AOD ,∴∠C =12×50°=25°.应选A.方法总结:解决问题的关键是熟练掌握圆周角定理. 变式训练:见《学练优》本课时练习“课堂达标训练〞第2题【类型二】 利用圆周角定理的推论求角的度数如图,在⊙O 中,AB ︵=AC ︵,∠A=30°,那么∠B =( )A .150°B .75°C .60°D .15°解析:因为AB ︵=AC ︵,根据“同弧或等弧所对的圆周角相等〞得到∠B =∠C ,因为∠A +∠B +∠C =180°,所以∠A +2∠B =180°,又因为∠A =30°,所以30°+2∠B =180°,解得∠B =75°.应选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意方程思想的应用.变式训练:见《学练优》本课时练习“课堂达标训练〞第8题【类型三】 圆周角定理与垂径定理的综合如以下图,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为点C ,交⊙O 于点D ,E 在⊙O 上.(1)∠AOD =52°,求∠DEB 的度数; (2)假设AC =7,CD =1,求⊙O 的半径.解析:(1)由OD ⊥AB ,根据垂径定理的推论可求得AD ︵=BD ︵,再由圆周角定理及其推论求∠DEB 的度数;(2)首先设⊙O 的半径为x ,然后由勾股定理得到方程解答.解:(1)∵AB 是⊙O 的一条弦,OD ⊥AB ,∴AD ︵=BD ︵,∴∠DEB =12∠AOD =12×52°=26°;(2)设⊙O 的半径为x ,那么OC =OD -CD =x -1.∵OC 2+AC 2=OA 2,∴(x -1)2+(7)2=x 2,解得x =4,∴⊙O 的半径为4.方法总结:此题综合考查了圆周角定理及其推论、垂径定理以及勾股定理.注意掌握数形结合思想与方程思想的应用. 变式训练:见《学练优》本课时练习“课堂达标训练〞第3题【类型四】 圆周角定理的推论与圆心角、弧、弦之间的关系的综合如图,△ABC 内接于⊙O ,AB =AC ,点D 在弧AB 上,连接CD 交AB 于点E ,点B 是CD ︵的中点,求证:∠B =∠BEC .解析:由点B 是CD ︵的中点,得∠BCE =∠BAC ,即可得∠BEC =∠ACB ,然后由等腰三角形的性质,证得结论.证明:∵B 是CD ︵的中点,∴BC ︵=BD ︵,∴∠BCE =∠BAC .∵∠BEC =180°-∠B -∠BCE ,∠ACB =180°-∠BAC -∠B ,∴∠BEC =∠ACB .∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠BEC .方法总结:此题考查了圆周角定理的推论以及等腰三角形的性质.解答时一定要结合图形.变式训练:见《学练优》本课时练习“课后稳固提升〞第7题【类型五】 圆周角定理的推论与三角形知识的综合如图,A 、P 、B 、C 是⊙O 上四点,且∠APC =∠CPB =60°.连接AB 、BC 、AC .(1)试判断△ABC 的形状,并给予证明;(2)求证:CP =BP +AP .解析:(1)利用圆周角定理可得∠BAC =∠CPB ,∠ABC =∠APC ,而∠APC =∠CPB =60°,所以∠BAC =∠ABC =60°,从而可判断△ABC 的形状;(2)在PC 上截取PD =AP ,那么△APD 是等边三角形,然后证明△APB ≌△ADC ,证明BP =CD ,即可证得.(1)解:△ABC 是等边三角形.证明如下:在⊙O 中,∵∠BAC 与∠CPB 是BC ︵所对的圆周角,∠ABC 与∠APC 是AC ︵所对的圆周角,∴∠BAC =∠CPB ,∠ABC =∠APC .又∵∠APC =∠CPB =60°,∴∠ABC =∠BAC =60°,∴△ABC 为等边三角形;(2)证明:在PC 上截取PD =AP ,连接AD .又∵∠APC =60°,∴△APD 是等边三角形,∴AD =AP =PD ,∠ADP =60°,即∠ADC =120°.又∵∠APB =∠APC +∠BPC =120°,∴∠ADC =∠APB .在△APB 和△ADC 中,⎩⎪⎨⎪⎧∠APB =∠ADC ,∠ABP =∠ACD ,AP =AD ,∴△APB≌△ADC (AAS),∴BP =CD .又∵PD =AP ,∴CP =BP +AP .方法总结:此题考查了圆周角定理的理论以及三角形的全等的判定与性质,正确作出辅助线是解决问题的关键. 【类型六】 圆周角定理的推论与相似三角形的综合如图,点E 是BC ︵的中点,点A 在⊙O 上,AE 交BC 于D .求证:BE 2=AE ·DE .解析:点E 是BC ︵的中点,根据圆周角定理的推论可得∠BAE =∠CBE ,可证得△BDE ∽△ABE ,然后由相似三角形的对应边成比例得结论.证明:∵点E 是BC ︵的中点,即BE ︵=CE ︵,∴∠BAE =∠角),∴△BDE ∽△DE ∶BE ,∴BE 2=AE 方法总结:角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等〞这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来那么相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.第2课 伟大的历史转折1 教学分析【教学目标】教学重点:中共十一届三中全会教学难点:中共十一届三中全会在政治上、思想上、组织上的转变以及历史意义2教学过程一、导入新课“文化大革命〞时期,我国教育遭到了很大破坏,高考中断了十年。

圆周角和圆心角的关系 优秀教案

圆周角和圆心角的关系 优秀教案

圆周角和圆心角的关系【教学目标】一、教学知识点1.掌握圆周角定理几个推论的内容。

2.会熟练运用推论解决问题。

二、能力训练要求1.培养学生观察、分析及理解问题的能力。

2.在学生自主探索推论的过程中,经历猜想、推理、验证等环节,获得正确的学习方式。

三、情感与价值观要求培养学生的探索精神和解决问题的能力。

【教学重点】圆周角定理的几个推论的应用。

【教学难点】理解几个推论的“题设”和“结论”。

【教学方法】指导探索法。

【教学过程】一、创设问题情境,引入新课[师]请同学们回忆一下我们前几节课学习了哪些和圆有关系的角?它们之间有什么关系?[生]学习了圆心角和圆周角、一条弧所对的圆周角等于它所对的圆心角的一半。

即圆周角定理。

[师]我们在分析、证明上述定理证明过程中,用到了些什么数学思想方法?[生]分类讨论、化归、转化思想方法。

[师]同学们请看下面这个问题:已知弦AB和CD交于⊙O内一点P,如下图。

求证:PA·PB=PC·PD[师生共析]要证PA·PB=PC·PD,可证PA PCPD PB。

由此考虑证明以PA、PC为边的三角形与以PD、PB为边的三角形相似。

由于图中没有这两个三角形,所以考虑作辅助线AC和BD.要证△PAC∽△PDB.由已知条件可得∠APC与∠DPB相等,如能再找到一对角相等。

如∠A=∠D 或∠C=∠B.便可证得所求结论。

如何寻找∠A=∠D或∠C=∠B.要想解决这个问题。

我们需先进行下面的学习。

二、讲授新课[师]请同学们画一个圆,以A、C为端点的弧所对的圆周角有多少个?(至少画三个)它们的大小有什么关系?你是如何得到的?[生] 弧AC所对的圆周角有无数个,它们的大小相等,我是通过度量得到的。

[师]大家想一想,我们能否用验证的方法得到上图中的∠ABC=∠ADC=∠AEC?(同学们互相交流、讨论)[生]由图可以看出,∠ABC、∠ADC和∠AEC是同弧(弧AC)所对的圆周角,根据上节课我们所学的圆周角定理可知,它们都等于圆心角∠AOC的一半,所以这几个圆周角相等。

3.4.2圆周角和圆心角的关系(教案)

3.4.2圆周角和圆心角的关系(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆周角和圆心角的基本概念。圆周角是圆上任意两条弧所对的角,圆心角是以圆心为顶点的角。它们在几何图形中具有重要的地位,可以帮助我们解决圆中的角度问题。
2.案例分析:接下来,我们来看一个具体的案例。通过分析圆中不同角度的关系,展示圆周角和圆心角在实际中的应用,以及如何利用它们解决问题。
-求解圆中未知角度;
-分析圆中角度关系。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生的几何直观能力,通过观察和操作,让学生理解圆周角和圆心角的概念,并能运用它们描述和解决几何问题;
2.发展学生的逻辑推理能力,通过探究圆周角和圆心角的关系,引导学生发现并掌握圆周角定理及其推论,培养严谨的数学思维;
-圆周角和圆心角的关系:掌握同弧所对的圆周角等于它所对圆心角的一半的定理,并能应用于解题;
-定理的推论:了解圆周角定理的推论,并能应用于求解圆中未知角度;
-实际问题的解决:能够运用圆周角和圆心角的关系解决实际问题。
举例解释:
-通过直观的图形展示,让学生理解圆周角和圆心角的概念,并强调它们在几何图形中的重要性;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角和圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《圆周角和圆心角的关系》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解圆中角度的情况?”(如自行车轮辐的角度分配)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆周角和圆心角的奥秘。

北师大版数学九年级下册3.4圆周角和圆心角的关系优秀教学案例

北师大版数学九年级下册3.4圆周角和圆心角的关系优秀教学案例
3. 小组合作促进学生互动
小组合作是本案例的又一亮点。通过小组讨论、交流,学生相互启发、取长补短,共同探讨圆周角和圆心角的关系。这种合作学习方式不仅提高了学生的沟通与协作能力,还培养了他们的团队合作意识。
4. 反思与评价促进师生共同成长
案例中,我注重引导学生进行反思与评价,帮助他们总结学习过程中的收获和不足。同时,开展自评、互评和教师评价,全面了解学生在知识掌握、思考能力、合作意识等方面的表现。这种反思与评价机制有助于促进师生共同成长,提高教学质量。
四、教学内容与过程
(一)导入新课
在导入新课环节,我会以一个简单的提问开始:“同学们,你们在生活中见过圆形吗?圆形有哪些特点?”通过这个问题,引导学生回顾圆的基本概念,为新课的学习做好铺垫。接着,我会展示一张自行车的图片,并提出问题:“当自行车轮子转动时,轮子上的点是如何运动的?这些点形成的角有什么特点?”由此引出本节课的主题——圆周角和圆心角。
本案例以教材内容为蓝本,结合学生实际,运用教育心理学原理,采用启发式教学策略,鼓励学生动手实践、积极思考。通过引入生活中的实例,让学生感受到数学与生活的紧密联系,激发他们的学习兴趣。同时,注重培养学生的团队合作意识,提高他们的表达交流能力。
在教学过程中,我将重点关注学生对圆周角和圆心角概念的理解,以及他们对定理的推导和应用。通过师生互动、生生互动,引导学生从特殊到一般,发现规律,总结结论,使他们在轻松愉快的氛围中掌握知识,提高能力。在此基础上,我还将适时进行拓展延伸,培养学生的创新思维和解决问题的能力。
小组合作是本节课的重要教学策略。我会将学生分成若干小组,每组4-6人,让他们在小组内进行讨论、交流、合作。在小组活动中,学生们可以相互启发、取长补短,共同探讨圆周角和圆心角的关系。此外,小组合作还可以培养学生的团队合作意识,提高他们的沟通与协作能力。

九年级数学下册《圆周角和圆心角的关系》教案、教学设计

九年级数学下册《圆周角和圆心角的关系》教案、教学设计
(二)过程与方法
在本章节的教学过程中,学生将通过以下过程与方法提升自身能力:
1.通过观察、猜想、验证、总结等环节,培养学生的逻辑思维能力。
2.以小组合作的形式,进行讨论、交流、分享,提高学生的合作意识和沟通能力。
3.运用数形结合的思想,将抽象的数学问题具体化,培养学生的空间想象能力。
4.引导学生运用已学知识解决新问题,提高学生的知识迁移能力和问题解决能力。
2.定理推导:教师通过几何画板等工具,动态展示圆周角和圆心角之间的关系,引导学生发现圆周角定理。
3.例题解析:教师针对圆周角定理,给出典型例题,讲解解题思路和方法。
4.知识拓展:教师介绍圆周角和圆心角在其他学科领域的应用,如圆周率在物理学、天文学等方面的运用。
(三)学生小组讨论,500字
在学生小组讨论环节,教师组织学生进行以下活动:
1.基础题:针对圆周角和圆心角的基本概念,设计一些填空题、选择题,让学生巩固所学。
2.提高题:设计一些需要运用圆周角定理的题目,让学生在解决问题中提高自己的能力。
3.实践题:结合生活实际,设计一些应用题,让学生将所学知识运用到实际问题中。
(五)总结归纳,500字
在总结归纳环节,教师引导学生进行以下活动:
4.实践应用,巩固提高
(1)教师设计具有梯度的问题,让学生运用所学知识解决,巩固所学。
(2)学生进行课堂练习,教师巡回指导,及时发现问题,进行针对性辅导。
(3)课后作业布置,注重知识拓展和实际应用,提高学生的解决问题的能力。
5.总结反思,评价反馈
(1)教师引导学生总结本节课所学内容,强化重点知识。
(2)学生自我评价,反思学习过程中的优点和不足。
(一)教学重难点
1.重点:圆周角和圆心角的概念及其关系,圆周角定理及其推论。

圆周角和圆心角的关系教案1北师大版(优秀教案)

圆周角和圆心角的关系教案1北师大版(优秀教案)

《圆周角和圆心角的关系》教课设计知识目标:经历探究圆周角和圆心角的关系的过程,理解圆周角的观点及其有关性质德育目标:领会分类、概括等数学思想方法能力目标:提高分类、概括的数学能力教课要点和难点要点:圆周角和圆心角的关系难点:圆周角和圆心角的关系教课过程设计一、从学生原有的认知构造提出问题上一节课,我们学习了:在同圆或等圆中,相等的弧所对的圆心角相等。

那么,在同圆或等圆中,相等的弧所对的圆周角有什么关系?这节课,我们研究圆周角和圆心角的关系。

二、师生共同研究形成观点1、圆心角与弧的关系我们把极点在圆心的周角平分红份时,每一份的圆心角是°的角。

由于同圆中相等的圆心角所对的弧相等,所以整个圆也被平分红份。

我们把每一份这样的弧叫做°的弧。

所以,圆心角的度数和它所对的弧的度数相等。

☆稳固练习:若一条弧是°,则它所对的圆心角是°;若一个圆周角等于°,则它所对的弧等于°。

2、圆周角与圆心角经过射门游戏引入圆周角的观点。

提出这一问题意在惹起学生思虑,C为本节活动埋下伏笔。

圆周角:角的极点在圆上,两边是圆的两条弦OOA圆心角:角的极点是圆心,两边是圆的两条半径B AB3、解说例题例 1以下图形中的角是否是圆周角。

剖析:经过此例,让学生理解好圆周角的定义。

4、解说例题例 2 以下图形中,哪些图形中的圆心角∠和圆周角∠是同对一条弧。

AA AA AOOOODOBCDBCB CBCBC剖析:经过此例,让学生理解好什么是同一条弧所对的圆心角和圆周角。

AC5 、同弧或等弧所对的圆周角和圆心角的关系☆ 议一议 书本 议一议OBE可松手让学生自己察看着手操作考证思虑,老师作适合提点。

一条弧所对的圆周角等于它所对的圆心角的一半D圆周角定理的几个推论学生着手绘图考证在同圆或等圆中,同弧或等弧所对的圆周角相等。

C直径所对的圆周角是直角;°的圆周角所对的弦是直径6 、总结方法AB在这里要帮学生方法,以利于学生解决圆的一些证明的题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011 -2012学年第2 学期
圆周角与圆心角(第一课时)


所在学校:棉湖二中
授课教师:王琼纯
使用教材:北师大版义务教育课程标准实验教材
圆周角与圆心角的关系(第一课时)
授课人:王琼纯
教材:北师大版义务教育课程标准实验教材
一.教学目标:
1.知识与技能
理解掌握圆周角的概念及圆周角与圆心角的关系
2.过程与方法
经历对圆周角定理的探索、证明的过程,养成自主探究,合作交流的学习习惯。

学会以特殊情况为基础,通过转化来解决一般性问题的方法,体会归纳、类比、分类讨论的数学思想。

3.情感与价值观
让学生在主动探索、合作交流的过程中获得成功的愉悦,培养学生独立思考,善于总结的学习习惯。

二.教学重、难点:
重点:理解掌握圆周角的概念及圆周角定理
难点:圆周角定理的证明及证明时分类讨论的必要性
三.教学方法:(教法、学法)
以探究式教学法为主,发现法、分组交流合作法、启发式教学法等多种方法相结合,四.教具准备
教师:多媒体课件、圆规、三角板等
学生:探究活动纸。

直尺、圆规、量角器等
五.教学过程设计
(一)创设情境,导入新课
展示多媒体课件:以一段足球赛视频导入新课
思考:单从数学角度分析,进球跟什么有关?运动员甲应该自己射门还是把球传给运动员乙射门(单从角度考虑)?O、B两个位置的张角相同吗?
过渡:两个位置的张角大小有什么关系?我们带着这个问题进入今天的学习。

(板书):圆周角与圆心角的关系
(二)教授新课:
1.圆周角的定义
(从情景图中抽象出几何图形,根据图形回答下列问题)
思考:①什么是圆心角?图中哪些是圆心角?你能类比圆心角给出圆周角定义吗?
②顶点在图上的角是圆周角吗?两边与圆相交的角是圆周角吗?
总结:顶点在圆心上且两边与圆相交的角是圆心角。

圆周角定义:顶点在圆上,两边与圆相交的角就是圆周角。

(板书)练习一:判断下列哪些角是圆周角?哪些不是?为什么?
A B C D
E E G H
2.圆周角与圆心角的关系
(1)探究活动一:大胆猜想
A
O C
动手操作:a )作所对的圆心角∠AOC与圆周角∠ABC
b)各人借助手中量角器,完成对图形中圆心角、圆周角的度量
c) 对同一图形中两个角的度数进行比较,寻找数量关系。

讨论一:同弧所对的圆周角与圆心角之间有怎样的数量关系
分小组操作、讨论,由小组长汇报探究结果,教师用投影仪投影学生讨论结果并用“几何画板”中的度量工具进行操作,通过改变圆周角顶点的位置,再次猜想圆中同弧所对的圆周角与圆心角的数量关系?
总结:猜想:同弧所对圆周角等于圆心角的一半
思考:①对于有限次度量得到的结论,能否作为定理运用?
②对猜想进行证明验证时,若有多种情况出现,应该怎么办?
(2)探究活动二:细心验证
动手操作:各人借助手中道具探索同弧所对圆周角与圆心角不同的位置关系讨论二:一段弧所对圆心角有几个?所对圆周角有几个?所对的圆心角与圆周角之间有几种不同的位置关系?你根据什么划分的?
分小组操作、讨论,由小组长汇报探究结果老师给予指导归纳,并用动画演示给予验证。

(1)(2)(3)
根据三种不同的图形,同小组同学充分交流思考,寻找三种图形的证明方法。

讨论三:三种不同图形中,哪一种最特殊,它特殊在什么地方?如何证明?另外两种能否转化成这种特殊的情况?
老师巡回给予指导。

多媒体展示图(1)的证明,由一位学生上黑板写出图(2)的证明,由一名学生口述图(3)的证明思路
证明:∵∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO。

∵OA=OB ∴∠ABO=∠BAO。

∴∠AOC=2∠ABO,
C
B
O A
B
A
C
O A B
D
O
∴ ∠ABC=
2
1
∠AOC 。

图(1)
总结:通过证明,我们可以得到圆周角与圆心角之间的关系
圆周角定理:同弧所对圆周角等于圆心角的一半。

3.巩固性质,课外延伸
例题:如图,在⊙O 中,∠AOC=50°,求∠ABC 的大小
变化题1:如图,点A ,B ,C 是⊙O 上的三点,
∠ABC=40°,则∠AOC= 。

变化题2:如图2,∠ABC=40°,则∠OAC= 。

(2), 如图,A ,B ,C ,D 是⊙O 上的四点,且∠BCD=100° ,
求∠BOD (BCD 所对的圆心角)和∠BAD 的大小
(三)课堂小结,
活动一:同组同学从以下三个方面讨论,谈谈本节课的收获
①学到了哪些知识 ②学到了哪些数学方法 ③你还有哪些发现与猜想 以多媒体展示课堂小结
1.学习了圆周角概念;圆周角与圆心角之间的关系 2.学习了类比、转化、分类讨论、归纳等数学思想方法 活动二:布置作业:
1.书面作业:课本135页习题3.4中第1、3题 2.阅读作业:阅读课本本节内容,从132页到136页
板书设计:
圆周角与圆心角的关系
本节课主要概念及定理一.圆周角的概念:顶点在圆上,两边分别与
圆有另一个交点的
角.
二.圆周角定理:同弧所对圆周角等于圆心角
的一半.圆周角的分类:
圆心在的边上
圆心在角的内部
圆心在角的外部
图形:
证明:
课件展示区。

相关文档
最新文档