四通道触摸IC数据手册
四通道触摸IC数据手册
数据手册DATASHEET产品名称四键触摸开关IC一、概述产品名称是是一款使用电容式感应原理设计的触摸 IC,其稳定的感应方式可以应用到各种不同电子类产品,面板介质可以是完全绝缘的材料,专为取代传统的机械结构开关或者普通按键而设计。
提供4个触摸输入引脚及4个直接输出引脚。
该IC采用CMOS工艺制造,结构简单,性能稳定。
该IC通过引脚可配置成多种模式,可广泛应用于灯光控制、玩具、家用电器等产品。
二、特点1、工作电压:2.0V~5.5V2、工作电流@VDD=3V 无负载时,低功耗模式下典型值小于 4.0uA3、各触摸按键灵敏度可以由外部电容进行调节(0~50pF)4、提供同步输出模式,保持输出模式,开漏输出,CMOS 高电平有效或低电平有效输出,经由 TOG/AHLB/OD 引脚选择5、上电后约有 0.5 Sec 的系统稳定时间,在此期间内不要触摸 Touch PAD,且触摸功能无效6、有自动校准功能,当无按键被触摸时,系统重新校准周期约为 4.0 Sec三、应用范围:1、家用电器2、安防产品3、数码产品4、消费类电子产品5、LED 照明6、玩具四、封装示意图产品名称采用SOP14封装,原理封装示意图如下所示图1 封装示意图五、引脚描述表 1 引脚功能描述注:引脚类型,I => CMOS 输入,I/PH => 带上拉电阻的 CMOS 输入,I/PL =>带下拉电阻的CMOS 输入;O/OD=>CMOS/开漏输出,P =>电源/地。
六、功能描述6.1 灵敏度调节PCB 板上感应焊盘尺寸大小及走线会直接影响灵敏度,因此灵敏度调节需要根据实际应用的PCB 应进行调节,ASC0104 提供一些外部调节灵敏度的方法。
6.1.1 改变感应焊盘尺寸大小若其他条件固定不变,使用一个较大的感应焊盘将会增大其灵敏度,反之灵敏度将下降,但是感应焊盘的尺寸大小也必须是在其有效范围值内。
6.1.2 改变面板厚度若其他条件固定不变,使用一个较薄的面板也会将灵敏度提高,反之灵敏度则下降,但是面板的厚度必须低于其最大值。
四通道说明书(中英文混合)
四通道功放说明书内装物品:必须保证下面所示所有附件全都提供并未被损坏。
整机说明手册保修卡合格证非常感谢您对产品的信赖。
为了您更好的使用产品,请详细阅读说明书,以便获得最理想的使用效果。
警告:为防止火灾或触电危险,切勿将本设备放置雨淋或潮湿环境中。
使用安全●电源:本装置只能使用说明上所标注的电源种类。
●电源线保护:要注意电源线不要被重物压挤,特别要注意电源线的插头。
装置上的出线处及方便插座处,切忌拉、抽电源线,不要把电源设在人员来往频繁的地方,以免造成因插头破损而发生触电或火灾事故。
●通风:本装置必须置于通风良好的场所,离墙距离不能小于10CM,不要将本装置置于床上、沙发、地毯,或类似的东西的表面上使用,以免拦住通风口。
●水/湿气:不能在离水很近的地方使用,例如:浴缸、洗漱池、洗手盆、潮湿的地下室及游泳池附近等使用。
●温度:本装置必须远离热源。
例如:散热器、加热电阻、各种炉子及其他发热装置等。
●电击:必须防止物品或水掉进机内。
如果掉进金属或其他导电物品,会使装置内部产生电击短路的。
●清洁:不要使用腐蚀性溶液,避免损坏设备。
●异常气味:当发现有异常气味或冒烟等现象,应立即切断电源并拔出逝者插头,与供货商或最近的维修部门联系、寻求维修服务。
●长期闲置时:为安全起见,请切断电源开头,拔掉电源插头,以防火灾发生。
●安全接地:本产品通过电源线的接地导线接地,为了避免电击,为了您和他人的人身安全,使用过程,请将产品可靠接地。
注意:因机内存有高压,非电子专业人员切勿白拆卸机壳,如果内部电子零件被非正常接触,可能发生严重电击事故。
若发生此类事故,本公司概不负责。
1机身高度 Height Of Frame 2RU生产工艺 Manufacturing Processes SMD频率响应Frequency Response : 20 Hz –20 kHz总谐波失真THD <0.05%信噪比Signal To Noise Ratio >80 dB阻尼系数Damping Coefficient>200 >200分离度Degree Of Separation >60 dB转换速率Slew Rate >12V/μs输入灵敏度Input Sensitivity 0.775Vrms输入阻抗(不平衡/平衡) Input Impedance(Unbalance/Balance) 10kΩ/20 kΩ电压增益(8Ω时)V oltage Gain( @8 Ω) 834.3dB 36.0dB功放拓扑类别Output Circuit Type 3-tier Class H风路从后板吸风向前后吹The air flow is from the rear panel to the front panel面板介绍Voltage Switch On/Off背板介绍:Air Vent3Ch1 Ch2立体声与桥接开关Limiter Switch简介:Brief Introdution●非常感谢您购买本公司的音频功率放大器。
触摸芯片说明书
上海国芯TS04TS04 4通道自校准电容式触摸传感器1、规格1.1特性1.2.3.4.5.6.7. 4 通道的电容式传感器与自动灵敏度校准并行输出接口独立可调的灵敏度与外部电容通过外部电阻可调节内部频率嵌入式高频率的噪音消除电路低电流消耗16QFN, 14SOP 封装1.2应用1. 移动应用(移动电话/ PDA / PMP / MP3 播放等)2.3.4. 薄膜开关替代密封式的控制面板,键盘门禁锁矩阵应用1.3封装13 14 上海国芯2. 引脚定义2.1 16QFN 封装TS043 极限参数操作温度0~70闩锁特性参数值单位电池电压 5.0每个引脚的最大电压VDD+0.3每个PAD 的最大电流100 mA5 电特性注1: 低Cs 可提高灵敏度,The recommended value oF Cs is 10pF When using 3T PC(Poly Carbonate)cover and 10mm*7mm touch pattern注2:在噪声大的环境下推荐使用低Rs。
6 TS04实现6.1 Rbias & Srbias实现Rbias 连接到决定振荡器及内部偏置电流的电阻,感应频率、内部时钟频率和电流损耗能够通过RB进行调节。
一个纹波电压能造成内部严重错误。
故CB 推荐连接到VDD(而非GND),(CB 的典型值是820pF,最大值为1nF)Normal Operation Current Consumption CurveTS04 电流消费曲线是按照RB 的值如上表示。
虽然低Rb 需要更多的电流消耗,但推荐在噪声大的环境下使用,例如:冰箱、空调等6.2 CS实现(TS04 有四个可感应通道。
并联电容 C S1 加到 CS1,C S4 加到 CS4 来调整优良的灵敏度,小的 Cs 能 够提高灵敏度。
参考下面的灵敏度图), 详细灵敏度调解的情况下它可能是有用的.触摸内部每个通道之 间是彼此隔离的。
四通道调光模块使用说明书
触摸ic,中文,ds_cp2680_v13_ch
CP2680 数据手册
4 通道电容性触摸检测芯片 2 通道电容性触摸检测芯片
2013-7-1 CP2680 数来自手册 V1.31 概述
CP2680 是一款 4 通道/2 通道电容检测芯片,具有高效的 RF 噪音抑制功能,能够准确识别手 指触摸引起的微小电容变化,适用于用触摸按键替代机械按键等应用场合;具有实时的自校准和基 线跟踪算法,能有效避免因环境因素变化而引起按键误触等情况;可以通过 PWM 信号获得按键触 发状态;CP2680 DSP 中内置先进的检测算法,能够有效防止水膜引起的误触及抑制干扰噪音。
Confidential Page 3 of 15
2 引脚 2.1 引脚排列
CP2680 数据手册 V1.3
ST2_D ST1_D VCC
K1
8
7
6
5
CP2680SP8-A1
1
2
3
4
RSTN CS
GND
K2
图 1 CP2680SP8-A1 SOP8
ST2_T ST1_T VCC
K1
8
7
6
5
CP2680SP8-A2
目录 ......................................................................................................................................................... 3
4
12
5
13
CS
2
2
14
VCC
VKD104CC可电池供电多种输出方式4键4通道触摸检测芯片技术资料
VKD104CC可电池供电多种输出方式4键4通道触摸检测芯片技术资料型号:VKD104CC品牌:VINKA/永嘉微电封装形式:SOP16年份:新年份KPP1667概述VKD104CC具有4个触摸按键,可用来检测外部触摸按键上人手的触摸动作。
该芯片具有较高的集成度,仅需极少的外部组件便可实现触摸按键的检测。
提供了4路输出功能,可通过IO脚选择输出电平,输出模式,输出脚结构,单键/多键和最长输出时间。
芯片内部采用特殊的集成电路,具有高电源电压抑制比,可减少按键检测错误的发生,此特性保证在不利环境条件的应用中芯片仍具有很高的可靠性。
此触摸芯片具有自动校准功能,低待机电流,抗电压波动等特性,为各种触摸按键+IO输出的应用提供了一种简单而又有效的实现方法。
特点:· 工作电压 2.4-5.5V· 待机电流2.5uA/3V,5.5uA/5V· 触摸输出响应时间:工作模式 60mS ,待机模式160mS· 通过AHLB脚选择输出电平:高电平有效或者低电平有效· 通过TOG脚选择输出模式:直接输出或者锁存输出· 通过LPMB脚选择工作模式:正常模式或者待机模式· 通过MOT0脚有效键最长输出时间:无穷大或者16S· 通过OD脚选择开漏输出:开漏输出或者CMOS输出· 通过SM脚选择输出:多键有效或者单键有效· 各触摸通道单独接对地小电容微调灵敏度(0-50pF)· 上电0.5S内为稳定时间,禁止触摸· 上电后8S内自校准周期为1S,上电后8S内有触摸或8s后仍未触摸自校准周期切换为4S· 封装SOP16(150mil)(9.9mm x 3.9mm PP=1.27mm)。
四位数码管显示模块使用手册
四位数码管显示模块使用说明书简要说明:一、尺寸:57mm X32mm X20mm 长X宽X高二、主要器件:共阳数码管三、工作电压:直流5伏四、特点:1、四位独立数码管显示。
2、内部有三极管驱动电路。
3、段码串有限流电阻。
4、TTL电平控制,可以直接由单片机IO口控制。
5、八位段码输入,四位位码输入。
6、动态扫描显示。
五、应用:适用制作计数器、频率计、秒表、电压表等等数码管显示的场合。
六、适用于:单片机学习、电子竞赛、产品开发、毕业设计。
【标注说明】【原理图】【PCB截图】【测试程序】/********************************************************实现功能:四位数码管显示模块测试程序使用芯片:AT89S52晶振:11.0592MHZ编译环境:Keil*********************************************************************/#include<reg52.h> //库文件#define uchar unsigned char//宏定义无符号字符型#define uint unsigned int //宏定义无符号整型#define DUAN P0 //P0口控制段#define WEI P2 //P2口控制位sbit k_shi=P1^0;// 更改小时按键sbit k_fen=P1^1;// 更改分钟按键sbit k_miao=P1^2;// 更改秒按键/********************************************************************初始定义*********************************************************************/code uchar seg7code[11]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0XBF}; //显示段码数码管字跟uchar wei[8]={0XFE,0XFD,0XFB,0XF7,0XEf,0XDf,0XBf,0X7f}; //位的控制端uchar numb[8]; //定义字符串uint miao=0,fen,shi;/********************************************************************延时函数*********************************************************************/void delay(uchar t){uchar i,j;for(i=0;i<t;i++){for(j=13;j>0;j--);{ ;}}}/********************************************************************求值函数*********************************************************************/void t_to_dis(){numb[0]=shi/10; //显示小时十位numb[1]=shi%10; //显示小时个位numb[2]=10; //显示横杠numb[3]=fen/10; //显示分十位numb[4]=fen%10; //显示分个位numb[5]=10; //显示横杠numb[6]=miao/10;//显示秒十位numb[7]=miao%10;//显示秒个位}/********************************************************************显示函数*********************************************************************/void display()//显示函数{/*****************数据转换*****************************/P2=0XFF;P0=seg7code[numb[0]];P2=wei[0];delay(80);P2=0XFF;P0=seg7code[numb[1]];P2=wei[1];delay(80);P2=0XFF;P0=seg7code[numb[2]];P2=wei[2];delay(80);P2=0XFF;P0=seg7code[numb[3]];P2=wei[3];delay(80);P2=0XFF;P0=seg7code[numb[4]];P2=wei[4];delay(80);P2=0XFF;P0=seg7code[numb[5]];P2=wei[5];delay(80);P2=0XFF;P0=seg7code[numb[6]];P2=wei[6];delay(80);P2=0XFF;P0=seg7code[numb[7]];P2=wei[7];delay(80);P2=0XFF;}/********************************************************************按键函数*********************************************************************/ void key()//函数{if(k_shi==0){shi++;while(!k_shi);if(shi>=24)shi=0;}if(k_fen==0){fen++;while(!k_fen);if(fen>=60)fen=0;}if(k_miao==0){miao++;while(!k_miao);if(miao>=60)miao=0;}}/********************************************************************定时器中断函数*********************************************************************/ {uchar i;TH1=0X3c;//定时初值TL1=0Xaf;//定时初值i++;if(i>=20){i=0;miao++;//秒加1if(miao>=60){miao=0;//秒清零fen++;//60秒后分加1if(fen>=60){fen=0;//分清零shi++;//60分后时加1if(shi>=24)shi=0;//时清零}}}}/********************************************************************中断初始化*********************************************************************/ void cshh(){TMOD=0X10;//定义定时器工作方式TH1=0X3c;TL1=0Xaf;ET1=1;TR1=1;//开定时器EA=1;//开中断}/********************************************************************主函数*********************************************************************/main(){cshh(); //中断初始化while(1){key();//按键函数t_to_dis();//确定秒分时值display(); //显示秒分时值}}/********************************************************************结束*********************************************************************/【图片展示】。
四通道、161412位nanoDAC+,内置2ppm°C基准电压源和SPI接口
Rev. 0Information furnished by Analog Devices is believed to be accurate and reliable. However , no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Speci cations subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 Fax: 781.461.3113 ©2012 Analog Devices, Inc. All rights reserved.功能框图图1表1. 四通道nanoDAC+器件接口基准电压源 16位 14位 12位SPI AD5686R AD5685R AD5684R I 2CAD5696RAD5695R AD5694RSCLKV LOGIC SYNCSDINSDOINPUT REGISTERDAC REGISTERSTRING DAC ABUFFERV OUT AINPUT REGISTERDAC REGISTERSTRING DAC BBUFFERV OUT BINPUT REGISTER DAC REGISTER STRING DAC CBUFFERV OUT CINPUT REGISTER DAC REGISTER STRING DAC DBUFFERV OUT DV REFGNDV DD2.5VREFERENCEPOWER-DOWN LOGICPOWER-ON RESETGAIN ×1/×2I N T E R F A C E L O G I CRSTSEL GAINLDAC RESET AD5686R/AD5685R/AD5684R10485-001四通道、16/14/12位nanoDAC+,内置2 ppm/°C 基准电压源和SPI 接口AD5686R/AD5685R/AD5684R产品特性高相对精度(INL):16位时最大±2 LSB低漂移2.5 V 基准电压源:2 ppm/°C (典型值) 小型封装:3 mm × 3 mm 、16引脚LFCSP总不可调整误差(TUE):±0.1% FSR (最大值) 失调误差:±1.5 mV (最大值) 增益误差:±0.1% FSR (最大值)高驱动能力:20 mA ,0.5 V (供电轨) 用户可选增益:1或2(GAIN 引脚)复位到零电平或中间电平(RSTSEL 引脚) 1.8 V 逻辑兼容带回读或菊花链的50 MHz SPI 低毛刺:0.5 nV-s鲁棒的HBM (额定值为4 kV )和FICDM ESD (额定值为1.5 kV )性能 低功耗:3.3 mW (3 V) 2.7 V 至5.5 V 电源供电温度范围:-40℃至+105°C应用光收发器基站功率放大器 过程控制(PLC I/O 卡) 工业自动化 数据采集系统概述AD5686R /AD5685R /AD5684R 均属于nanoDAC+®系列,分别是低功耗、四通道、16/14/12位缓冲电压输出DAC ,内置2.5 V 、2 ppm/˚C 内部基准电压源(默认使能)和增益选择引脚,满量程输出为2.5 V (增益=1)或5 V (增益=2)。
KVIEW10 四通道控制器数据表 DS KVIEW10-EN Rev. F说明书
KVIEW10Field Indicator and ControllerQuad channel controller with MODBUS RTU communicationsK-TEK ProductsIntroductionThe KVIEW10 can accept and power four 4-20 mA DC signals and four pulse inputs. The KVIEW10 offers the ability to display four channels in engineering units with their corresponding bargraphs. The bargraphs can be independently scaled to engineering units.–The nine relay outputs can be assigned in any combination to either input channel. The relay outputs can be used foralarms, pump control, and /or electric actuator control.–Four 4-20 mA DC outputs can be scaled to any four inputs.–The “override” feature allows the unit to automatically switch between two process variables as the control input.–The nine 10 amp rated contacts can be setup to vary the pulse width and time between pulses. Any relay may beprogrammed for a scaled pulse output from the pulse input. Features–MODBUS RTU communications–Ability to read and power 4 ea. 4-20 mA DC input signals & 4 ea. pulse inputs–Relays with adjustable DB and 4 ea. 4-20 mA DC outputs–10 amp rated relays @ 120 vac–Output relays may be setup for variations in pulse width & time between pulses–Large transflective display makes it easy to read indoors or indirect sunlight–Large bar graphs–Easy to configure & use: digital sensor calibration, menu driven setup, PC configurable, tag IDs–View page showing : mA Frequency, channel name, engineering–Scale, sensor input, (mA or Hz) contact setpoints & status –Displays in feet & inches, psi, mA, gpm, or custom units –Universal supply voltage: 8-30 vdc or 120 vac–Password protectionApplications–Digital readouts for tank level, pressure & flow rates–Suction & discharge pressure display and control–Timed pulsed outputs for injection choke control–Output to throttle valves to regulate tank level & pipeline pressure–Tank level indication and pump control–Temperature display & control–Flow rate display & controller–General purpose indication with alarming capabilityNoteWe reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreedparticulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents - in whole or in parts – is forbidden without prior written consent of ABB.Copyright© 2012 ABB All rights reservedFor more information, please contact: ABB Inc.18321 Swamp RoadPrairieville, LA 70769 USA Phone: +1 225 673 6100Service: +1 225 677 5836Fax: +1 225 673 2525Servicee-mail:**************.com /levelKVIEW10 SPECIFICATIONSPOWER: 102-140 VAC @ 60Hz or 8-30 VDC (10 Watts min.)ANALOG INPUTS: ( 4 ) 4-20 mA Inputs, The DV-10 can supply the loop current for 2-wire loops PULSE INPUTS: ( 4 ) ea amplitude, 100 mV to 15 V ,frequency range: 0.1 Hz to 50 kHzANALOG OUTPUTS: (4) 4-20 mA, Non-Isolated; OutputLoop Impedence 0- 300 ohms (assuming + 12 vdc is the minimum voltage of transmitter)RELAYS:–OUTPUTS: (9) total w/ 100% adjustable deadband–SETTINGS: May be set normally open or closed with anycombination of lows or highs–ASSIGNMENTS: Any number of contacts can be assignedto any channel–PULSE RELAYS: Any relay can be setup for a scaled –Pulse Output from the Pulse Input ; Relays areprogrammable with adjustable pulse width/ time between pulses and time delay–CONTACT RATING: 10 AMPS @ 120 vac DATA DISPLAY: (6) Full digitsCHANNEL DISPLAY: Full graphics—BacklitPROGRAMMABLE RELAYS: Adjustable pulse width/ time between pulses and time delayENGINEERING UNITS: Feet, Inches, Ounces, PSI,GPM, LBS, Barrels, Meters, Cubic Meters, Gallons, deg F , deg C, PPM, % Level, % Volume & user definable unitsBARGRAPHS: (1) per ChannelOPERATING TEMP: -20 to 120°F / -29 to 49°CSHORT CIRCUIT PROTECTION: Analog inputs are individually fusedLIGHTING PROTECTION: Analog inputs have chokes & TVS’s, Power inputs have MOV’s and are fused TERMINALS: 5.08 mm (0.2”) Plug onPRESSURE/RATE OVERRIDE: Programmed in the setup procedureDIMENSIONS: 8.0”W x 7¼”L x 3.0”D Panel MountMODELS AVAILABLE KVIEW10 Panel Mount KVIEW10E Mounted in NEMA 4X Fiberglass enclosure with clear viewing windowVIEW SCREEN FOR EACH CHANNELSAMPLE SCREEN FORRELAY SETUPKVIEW10E Optional HousingFront ViewKVIEW10E Side ViewKVIEW10 Dimensions Panel Mount15 IN / 381 MM14.75 I N / 375 M M7.3 IN / 185 MM7.25 IN 184 MM0.75 IN 19 MM8.75 IN 222 MM0.75 IN 19 MM 3 IN 76 MM4 Holes 0.25 in / 6.35 mm Dia.8.75 IN 222 MM 8.03 IN 203 MM7.25 IN 184 MM8 IN 203 MMD S /K V IE W 10-E N R e v .F 06.2012。
VK36W4D 4键4通道检水 1对1输出水位检测触摸芯片中文资料
February 2020Rev. 1.11/11特点•工作电压 2.2-5.5V •待机电流10uA/3.0V •上电复位功能(POR)•低压复位功能(LVR)•4S自动校准功能•可靠的触摸按键检测•4S检测无水进入待机模式•上电前有水也可以可靠的检测•4点水位检测•1对1直接输出•任意通道有水W _FLAG输出信号•上电时OPT脚选择输出高有效还是低有效•专用管脚外接电容(1nF-47nF)调整灵敏度•极少的外围组件•具备抗电压波动功能•可用金属探针接触水检测,也可在水箱外面不接触水检测封装•封装SOP16(150mil)(9.9mm x 3.9m m PP=1.27mm)•KPP2346VK36W 4D 具有4个触摸检测通道,可用来检测4个点的水位。
该芯片具有较高的集成度,仅需极少的外部组件便可实现触摸按键的检测。
提供了4路输出功能。
芯片内部采用特殊的集成电路,具有高电源电压抑制比,可减少按键检测错误的发生,此特性保证在不利环境条件的应用中芯片仍具有很高的可靠性。
此触摸芯片具有自动校准功能,低待机电流,抗电压波动等特性,为检测4点水位的应用提供了一种简单而又有效的实现方法。
February 2020Rev. 1.12/111概述February 2020Rev. 1.13/112 管脚定义2.1 V K36W4D SOP16管脚图2.2 VK36W 4D SOP16管脚列表February 2020Rev. 1.14/11输入/输出功能描述输入触摸输入,接对地小电容微调灵敏度(1-50pf),不接最灵敏1-TP 0输入触摸输入,接对地小电容微调灵敏度(1-50pf),不接最灵敏2-TP 1输入触摸输入,接对地小电容微调灵敏度(1-50pf),不接最灵敏3-TP 2-----悬空5-NC 输入灵敏度调节,接对地电容(1-47nF)7-CS 输入触摸输入,接对地小电容微调灵敏度(1-50pf),不接最灵敏4-TP 3----悬空11-NC 电源正电源正12-VDD 电源负电源负8-VSS 输出10-W_FLAG输出输入触摸输出选择输出电平:悬空->低电平有效,VSS->高电平有效13-Q3SOP16输入基准电容有水标志,直接输出,上电输出高(默认),OPT 脚选择输出触摸输出14-Q2输出触摸输出15-Q1输出触摸输出16-Q0管脚名称6-CR 9-OPTFebruary 2020Rev. 1.15/113 功能说明3.1 功能框图TP03CS Q 0 Q 3VDD VSS上电后,芯片会进行初始化,取得第1次基准值,接下来无触摸时,触摸芯片将自动校准基准值,使得基准值可以根据外界环境进行动态的变化。
TM1814 IC规格书
Tstg
-50~+150
℃
静电 ESD
人体模式(HBM) 机器模式(MM)
3000 200
V V
(1)以上表中这些等级,芯片在长时间使用条件下,可能造成器件永久性伤害,降低器件的可靠性。我们不建议在其
它任何条件下,芯片超过这些极限参数工作;
(2)所有电压值均相对于系统地测试。
推荐工作条件
在-40~+85℃下测试,除非另有说明
©Titan Micro Electronics
V1.0
5
5、数据接收和转发
4 通道 LED 恒流驱动专用电路 TM1814
S1
OUTPUT
DIN
S2
DO
DIN
S3
DO
DIN
S4 DO
控制器
芯片1
芯片2
芯片3
图5
其中S1为控制器Di端口发送的数据,S2、S3、S4为级联TM1814转发的数据。 。
VDD=5.0V,TA=+25℃,除非另有说明
参数名称
参数符号
测试条件
数据速率
Fin
OUT PWM 输出频率
Fout
OUTR,OUTG,OUTB
外控切换至内控时间
Tos
DIN 无脉冲输入
传输延迟时间
Tplz
DIN → DO
输入电容
Ci
最小值
900 450
TM1814
典型值
800 1000 500 178
数据刷新周期1
数据刷新周期2
S1 C1 C2 D1 D2 D3 D4 ... Dn Reset C1 C2 D1 D2 D3 D4 ... Dn Reset
触摸芯片ADS7843 datasheet 数据手册
©1997 Burr-Brown Corporation PDS-1441C Printed in U.S.A. June, 1998®2ADS7843PARAMETER CONDITIONSMIN TYPMAX UNITSANALOG INPUTFull-Scale Input Span Positive Input - Negative Input0V REF V Absolute Input Range Positive Input –0.2+V CC +0.2V Negative Input–0.2+0.2V Capacitance 25pF Leakage Current0.1µA SYSTEM PERFORMANCE Resolution12Bits No Missing Codes 11Bits Integral Linearity Error ±2LSB (1)Offset Error±6LSB Offset Error Match 0.1 1.0LSB Gain Error±4LSB Gain Error Match 0.1 1.0LSB Noise30µVrms Power Supply Rejection 70dB SAMPLING DYNAMICS Conversion Time 12Clk Cycles Acquisition Time 3Clk CyclesThroughput Rate125kHz Multiplexer Settling Time 500ns Aperture Delay 30ns Aperture Jitter100ps Channel-to-Channel Isolation V IN = 2.5Vp-p at 50kHz100dBSWITCH DRIVERS On-Resistance Y+, X+5ΩY–, X–6ΩREFERENCE INPUT Range1.0+V CC V Resistance CS = GND or +V CC 5G ΩInput Current1340µA f SAMPLE = 12.5kHz2.5µA CS = +V CC0.0013µADIGITAL INPUT/OUTPUT Logic FamilyCMOSLogic Levels, Except PENIRQ V IH | I IH | ≤ +5µA +V CC • 0.7+V CC +0.3V IL | I IL | ≤ +5µA –0.3+0.8V V OH I OH = –250µA +V CC • 0.8V V OL I OL = 250µA0.4V PENIRQ V OLT A = 0°C to +85°C, 100k Ω Pull-Up0.8VData FormatStraight BinaryPOWER SUPPLY REQUIREMENTS +V CCSpecified Performance 2.73.6V Quiescent Current280650µA f SAMPLE = 12.5kHz 220µA Shut Down Mode with 3µA DCLK = DIN = +V CCPower Dissipation +V CC = +2.7V1.8mW TEMPERATURE RANGE Specified Performance–40+85°CSPECIFICATIONSAt T A =–40°C to +85°C, +V CC = +2.7V, V REF = +2.5V, f SAMPLE = 125kHz, f CLK = 16 • f SAMPLE = 2MHz, 12-bit mode, and digital inputs = GND or +V CC , unless otherwise noted.The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.ADS7843ENOTE: (1) LSB means Least Significant Bit. With V REF equal to +2.5V, one LSB is 610µV.®3ADS784312345678+V CC X+Y+X–Y–GND IN3IN4DCLK CS DIN BUSY DOUT PENIRQ +V CC V REF161514131211109ADS7843PIN CONFIGURATIONTop ViewSSOPPIN DESCRIPTIONPIN NAME DESCRIPTION1+V CC Power Supply, 2.7V to 5V.2X+X+ Position Input. ADC input Channel 1.3Y+Y+ Position Input. ADC input Channel 2.4X–X– Position Input.5Y–Y– Position Input.6GND Ground7IN3Auxiliary Input 1. ADC input Channel 3.8IN4Auxiliary Input 2. ADC input Channel 4.9V REF Voltage Reference Input 10+V CC Power Supply, 2.7V to 5V.11PENIRQ Pen Interrupt. Open anode output (requires 10k Ωto 100k Ω pull-up resistor externally).12DOUTSerial Data Output. Data is shifted on the falling edge of DCLK. This output is high impedance when CS is HIGH.13BUSY Busy Output. This output is high impedance when CS is HIGH.14DIN Serial Data Input. If CS is LOW, data is latched on rising edge of DCLK.15CS Chip Select Input. Controls conversion timing and enables the serial input/output register.16DCLKExternal Clock Input. This clock runs the SAR con-version process and synchronizes serial data I/O.ABSOLUTE MAXIMUM RATINGS (1)+V CC to GND ........................................................................–0.3V to +6V Analog Inputs to GND ............................................–0.3V to +V CC + 0.3V Digital Inputs to GND .............................................–0.3V to +V CC + 0.3V Power Dissipation..........................................................................250mW Maximum Junction Temperature...................................................+150°C Operating Temperature Range ........................................–40°C to +85°C Storage Temperature Range .........................................–65°C to +150°C Lead Temperature (soldering, 10s)...............................................+300°C NOTE: (1) Stresses above those listed under “Absolute Maximum Ratings”may cause permanent damage to the device. Exposure to absolute maximumconditions for extended periods may affect device reliability.This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifi-cations.MAXIMUM INTEGRAL PACKAGE SPECIFICATION LINEARITY DRAWING TEMPERATUREORDERING TRANSPORTPRODUCT ERROR (LSB)PACKAGE NUMBER (1)RANGE NUMBER (2)MEDIA ADS7843E±216-Lead SSOP322–40°C to +85°CADS7843E Rails"""""ADS7843E/2K5Tape and ReelNOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of “ADS7843E/2K5” will get a single 2500-piece Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book.PACKAGE/ORDERING INFORMATION®4ADS7843TYPICAL PERFORMANCE CURVESAt T A = +25°C, +V CC = +2.7V, V REF = +2.5V, f SAMPLE = 125kHz, and f CLK = 16 • f SAMPLE= 2MHz, unless otherwise noted.SUPPLY CURRENT vs TEMPERATURE20–40100–2040Temperature (˚C)S u p p l y C u r r e n t (µA )4003503002502001501006080POWER DOWN SUPPLY CURRENTvs TEMPERATURE20–40100–2040Temperature (˚C)S u p p l y C u r r e n t (n A )140120100806040206080SUPPLY CURRENT vs +V CC3.5252.54+V CC (V)S u p p l y C u r r e n t (µA )3203002802602402202001804.53MAXIMUM SAMPLE RATE vs +V CC3.5252.54+V CC (V)S a m p l e R a t e (H z )1M100k10k1k4.53CHANGE IN GAIN vs TEMPERATURE20–40100–2040Temperature (˚C)D e l t a f r o m +25˚C (L S B )0.150.100.050.00–0.05–0.10–0.156080CHANGE IN OFFSET vs TEMPERATURE20–40100–2040Temperature (˚C)D e l t a f r o m +25˚C (L S B )0.60.40.20.0–0.2–0.4–0.66080®5ADS7843TYPICAL PERFORMANCE CURVES (CONT)At T A = +25°C, +V CC = +2.7V, V REF = +2.5V, f SAMPLE = 125kHz, and f CLK = 16 • f SAMPLE= 2MHz, unless otherwise noted.REFERENCE CURRENT vs SAMPLE RATE751252550100Sample Rate (kHz)R e f e r e n c e C u r r e n t (µA )14121086420REFERENCE CURRENT vs TEMPERATURE20–40100–2040Temperature (˚C)R e f e r e n c e C u r r e n t (µA )1816141210866080SWITCH ON RESISTANCE vs +V CC (X+, Y+: +V CC to Pin; X–, Y–: Pin to GND)3.5252.54+V CC (V)R O N (Ω)18765432 4.53SWITCH ON RESISTANCE vs TEMPERATURE (X+, Y+: +V CC to Pin; X–, Y–: Pin to GND)20–40100–2040Temperature (˚C)R O N (Ω)187654326080021.81.61.41.210.80.60.40.20L S B E r r o r20406080100120140160180200Sampling Rate (kHz)MAXIMUM SAMPLING RATE vs RIN®6ADS7843THEORY OF OPERATIONThe ADS7843 is a classic successive approximation register (SAR) analog-to-digital (A/D) converter. The architecture is based on capacitive redistribution which inherently includes a sample/hold function. The converter is fabricated on a 0.6µs CMOS process.The basic operation of the ADS7843 is shown in Figure 1.The device requires an external reference and an external clock. It operates from a single supply of 2.7V to 5.25V. The external reference can be any voltage between 1V and +V CC .The value of the reference voltage directly sets the input range of the converter. The average reference input current depends on the conversion rate of the ADS7843.The analog input to the converter is provided via a four-channel multiplexer. A unique configuration of low on-resistance switches allows an unselected ADC input channel to provide power and an accompanying pin to provide ground for an external device. By maintaining a differenital input to the converter and a differential reference architecture, it is possible to negate the switch’s on-resistance error (should this be a source of error for the particular measurement).ANALOG INPUTFigure 2 shows a block diagram of the input multiplexer on the ADS7843, the differential input of the A/D converter, and the converter’s differential reference. Table I and Table II control bits and the configuration of the ADS7843. The control bits are provided serially via the DIN pin—see the Digital Interface section of this data sheet for more details.When the converter enters the hold mode, the voltage differ-ence between the +IN and –IN inputs (see Figure 2) is captured on the internal capacitor array. The input current on the analog inputs depends on the conversion rate of the device. During the sample period, the source must charge the internal sampling capacitor (typically 25pF). After the ca-pacitor has been fully charged, there is no further input current. The rate of charge transfer from the analog source to the converter is a function of conversion rate.FIGURE 1. Basic Operation of the ADS7843.®7ADS7843FIGURE 2. Simplified Diagram of Analog Input.REFERENCE INPUTThe voltage difference between +REF and –REF (see Figure 2) sets the analog input range. The ADS7843 will operate with a reference in the range of 1V to +V CC . There are several critical items concerning the reference input and its wide voltage range. As the reference voltage is reduced, the analog voltage weight of each digital output code is also reduced.This is often referred to as the LSB (least significant bit) size and is equal to the reference voltage divided by 4096. Any offset or gain error inherent in the A/D converter will appear to increase, in terms of LSB size, as the reference voltage is reduced. For example, if the offset of a given converter is 2LSBs with a 2.5V reference, it will typically be 5 LSBs with a 1V reference. In each case, the actual offset of the device is the same, 1.22mV. With a lower reference voltage, more care must be taken to provide a clean layout including adequate bypassing, a clean (low noise, low ripple) power supply, a low-noise reference, and a low-noise input signal.The voltage into the V REF input is not buffered and directly drives the capacitor digital-to-analog converter (CDAC) por-tion of the ADS7843. Typically, the input current is 13µA with V REF = 2.7V and f SAMPLE = 125kHz. This value will vary by a few microamps depending on the result of the conver-sion. The reference current diminishes directly with both conversion rate and reference voltage. As the current from the reference is drawn on each bit decision, clocking the con-verter more quickly during a given conversion period will not reduce overall current drain from the reference.There is also a critical item regarding the reference when making measurements where the switch drivers are on. For this discussion, it’s useful to consider the basic operation ofthe ADS7843 as shown in Figure 1. This particular appli-cation shows the device being used to digitize a resistive touch screen. A measurement of the current Y position of the pointing device is made by connecting the X+ input to the A/D converter, turning on the Y+ and Y– drivers, and digitizing the voltage on X+ (see Figure 3 for a block diagram). For this measurement, the resistance in the X+lead does not affect the conversion (it does affect the settling time, but the resistance is usually small enough that this is not a concern).FIGURE 3.Simplified Diagram of Single-Ended Reference(SER/DFR HIGH, Y Switches Enabled, X+ is Analog Input).®8ADS7843However, since the resistance between Y+ and Y– is fairly low, the on-resistance of the Y drivers does make a small difference. Under the situation outlined so far, it would not be possible to achieve a zero volt input or a full-scale input regardless of where the pointing device is on the touch screen because some voltage is lost across the internal switches. In addition, the internal switch resistance is un-likely to track the resistance of the touch screen, providing an additional source of error.complete conversion can be accomplished with three serial communications, for a total of 24 clock cycles on the DCLK input.The first eight clock cycles are used to provide the control byte via the DIN pin. When the converter has enough information about the following conversion to set the input multiplexer, switches, and reference inputs appropriately,the converter enters the acquisition (sample) mode and, if needed, the internal switches are turned on. After three more basic serial interface. Each communication between the pro-cessor and the converter consists of eight clock cycles. OneTABLE IV.Descriptions of the Control Bits within theControl Byte.®9ADS78431DCLKCS8111DOUT BUSYSDIN CONTROL BITSSCONTROL BITS109876543210111098118single-ended mode, the converter’s reference voltage is always the difference between the V REF and GND pins. In differential mode, the reference voltage is the difference between the currently enabled switches. See Tables I and II and Figures 2 through 4 for more information. The last two bits (PD1 - PD0) select the power- down mode as shown in Table V. If both inputs are HIGH, the device is always powered up. If both inputs are LOW, the device enters a power-down mode between conversions. When a new con-version is initiated, the device will resume normal operation instantly—no delay is needed to allow the device to power up and the very first conversion will be valid. There are two power-down modes: one where PENIRQ is disabled and one where it is enabled.PD1PD0PENIRQ DESCRIPTIONEnabledPower-down between conversions. When each conversion is finished, the converter enters a low power mode. At the start of the next conversion,the device instantly powers up to full power.There is no need for additional delays to assure full operation and the very first conversion is valid. The Y– switch is on while in power-down.01Disabled Same as mode 00, except PENIRQ is disabled.The Y– switch is off while in power-down mode.10Disabled Reserved for future use.11DisabledNo power-down between conversions, device is always powered.FIGURE 5. Conversion Timing, 24-Clocks per Conversion, 8-bit Bus Interface. No DCLK Delay Required with DedicatedSerial Port.TABLE V. Power-Down Selection.FIGURE 6. Conversion Timing, 16-Clocks per Conversion, 8-bit Bus Interface. No DCLK Delay Required with DedicatedSerial Port.®10ADS784316-Clocks per ConversionThe control bits for conversion n+1 can be overlapped with conversion ‘n’ to allow for a conversion every 16 clock cycles, as shown in Figure 6. This figure also shows pos-sible serial communication occurring with other serial pe-programmable gate arrays (FPGAs) or application specific integrated circuits (ASICs). Note that this effectively in-creases the maximum conversion rate of the converter be-yond the values given in the specification tables, which assume 16 clock cycles per conversion.FIGURE 8. Maximum Conversion Rate, 15-Clocks per Conversion.®11ADS7843Data FormatThe ADS7843 output data is in Straight Binary format asshown in Figure 9. This figure shows the ideal output codefor the given input voltage and does not include the effectsof offset, gain, or noise.FIGURE 9. Ideal Input Voltages and Output Codes.8-Bit ConversionThe ADS7843 provides an 8-bit conversion mode that canbe used when faster throughput is needed and the digitalresult is not as critical. By switching to the 8-bit mode, aconversion is complete four clock cycles earlier. This couldbe used in conjunction with serial interfaces that provide 12-bit transfers or two conversions could be accomplished withthree 8-bit transfers. Not only does this shorten each conver-sion by four bits (25% faster throughput), but each conver-sion can actually occur at a faster clock rate. This is becausethe internal settling time of the ADS7843 is not as critical—settling to better than 8 bits is all that is needed. The clockrate can be as much as 50% faster. The faster clock rate andfewer clock cycles combine to provide a 2x increase inconversion rate.POWER DISSIPATIONThere are two major power modes for the ADS7843: full power(PD1 - PD0 = 11B ) and auto power-down (PD1 - PD0 = 00B ).When operating at full speed and 16-clocks per conversion (asshown in Figure 6), the ADS7843 spends most of its timeacquiring or converting. There is little time for auto power-down, assuming that this mode is active. Therefore, the differ-ence between full power mode and auto power-down is negli-gible. If the conversion rate is decreased by simply slowing thefrequency of the DCLK input, the two modes remain approxi-mately equal. However, if the DCLK frequency is kept at themaximum rate during a conversion but conversions are simplydone less often, the difference between the two modes isdramatic.Figure 10 shows the difference between reducing the DCLK frequency (“scaling” DCLK to match the conversion rate) or maintaining DCLK at the highest frequency and reducing the number of conversions per second. In the later case, the converter spends an increasing percentage of its time inpower-down mode (assuming the auto power-down mode isactive).Another important consideration for power dissipation is the reference mode of the converter. In the single-ended refer-ence mode, the converter’s internal switches are on only when the analog input voltage is being acquired (see Figure 5). Thus, the external device, such as a resistive touch screen, is only powered during the acquisition period. In the differential reference mode, the external device must be powered throughout the acquisition and conversion periods (see Figure 5). If the conversion rate is high, this could substantially increase power YOUT The following layout suggestions should provide the most optimum performance from the ADS7843. However, many portable applications have conflicting requirements con-cerning power, cost, size, and weight. In general, most portable devices have fairly “clean” power and grounds because most of the internal components are very low power. This situation would mean less bypassing for the converter’s power and less concern regarding grounding.Still, each situation is unique and the following suggestions should be reviewed carefully.For optimum performance, care should be taken with the physical layout of the ADS7843 circuitry. The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground connections, and digital inputs that occur just prior to latching the output of the analog comparator. Thus, during any single conversion foran ‘n-bit’ SAR converter, there are n ‘windows’ in whichFIGURE 10.Supply Current vs Directly Scaling the Fre-quency of DCLK with Sample Rate or Keeping DCLK at the Maximum Possible Frequency.®12ADS7843large external transient voltages can easily affect the conver-sion result. Such glitches might originate from switchingpower supplies, nearby digital logic, and high power de-vices. The degree of error in the digital output depends onthe reference voltage, layout, and the exact timing of theexternal event. The error can change if the external eventchanges in time with respect to the DCLK input.With this in mind, power to the ADS7843 should be cleanand well bypassed. A 0.1µF ceramic bypass capacitor shouldbe placed as close to the device as possible. A 1µF to 10µFcapacitor may also be needed if the impedance of theconnection between +V CC and the power supply is high.The reference should be similarly bypassed with a 0.1µFcapacitor. If the reference voltage originates from an opamp, make sure that it can drive the bypass capacitor withoutoscillation. The ADS7843 draws very little current from thereference on average, but it does place larger demands on thereference circuitry over short periods of time (on each risingedge of DCLK during a conversion).The ADS7843 architecture offers no inherent rejection of noise or voltage variation in regards to the reference input.This is of particular concern when the reference input is tied to the power supply. Any noise and ripple from the supply will appear directly in the digital results. While high fre-quency noise can be filtered out, voltage variation due to line frequency (50Hz or 60Hz) can be difficult to remove.The GND pin should be connected to a clean ground point.In many cases, this will be the “analog” ground. Avoid connections which are too near the grounding point of a microcontroller or digital signal processor. If needed, run a ground trace directly from the converter to the power supply entry or battery connection point. The ideal layout will include an analog ground plane dedicated to the converter and associated analog circuitry.In the specific case of use with a resistive touch screen, care should be taken with the connection between the converter and the touch screen. Since resistive touch screens have fairly low resistance, the interconnection should be as shortand robust as possible. Longer connections will be a sourceof error, much like the on-resistance of the internal switches.Likewise, loose connections can be a source of error whenthe contact resistance changes with flexing or vibrations.。
Modicon Premium自动化平台4通道计数器模块TSXCTY4A产品数据手册说明书
D i s c l a i m er : T h i s d o c u m e n t a t i o n i s n o t i n t e n d e d a s a s u b s t i t u t e f o r a n d i s n o t t o b e u s e d f o r d e t e r m i n i n g s u i t a b i l i t y o r r e l i a b i l i t y o f t h e s e p r o d u c t s f o r s p e c i f i c u s e r a p p l i c a t i o n sProduct data sheetCharacteristicsTSXCTY4A4 channels counter modules - 40 kHz - 36 mA at 24 V DC, 330 mA at5 V DCProduct availability : Stock - Normally stocked in distribution facilityPrice* : 3567.30 USDMainRange of productModicon Premium Automation platform Product or component type Counter modules I/O modularity 4 channelsElectrical circuit typeAuxiliary output conforming to EN/IEC 61131ComplementaryCounting frequency 40 kHz Power dissipation in W 8...11.5 W Cycle time 10 msDiscrete input logicCurrent sink auxiliary input (preset, enable and read) conforming to IEC 1131 Type 2Resistive 2/3-wire proximity sensors PNP/NPN conforming to IEC 1131 Type 2Resistive encoder input Input logic PositiveInput compatibility Incremental encoder 10...30 V totem pole Incremental encoder 5 V DC RS422Input voltage24 V 18 mA 2/3-wire proximity sensors PNP/NPN 24 V 7 mA auxiliary input (preset, enable and read)5 V 18 mA encoder inputInput voltage limits<= 5.5 V encoder input19...30 V 2/3-wire proximity sensors PNP/NPN 19...30 V auxiliary input (preset, enable and read)Voltage state 1 guaranteed>= 11 V 2/3-wire proximity sensors PNP/NPN >= 11 V auxiliary input (preset, enable and read)>= 2.4 V encoder inputCurrent state 1 guaranteed>= 3.7 mA encoder input>= 6 mA 2/3-wire proximity sensors PNP/NPN >= 6 mA auxiliary input (preset, enable and read)Voltage state 0 guaranteed<= 1.2 V encoder input<= 5 V 2/3-wire proximity sensors PNP/NPN <= 5 V auxiliary input (preset, enable and read)Current state 0 guaranteed<= 1 mA encoder input<= 2 mA 2/3-wire proximity sensors PNP/NPN<= 2 mA auxiliary input (preset, enable and read)Response time< 2.5 ms sensor voltage at loss of 24 V auxiliary input (preset, enable and read) Input impedance> 270 Ohm at U = 2.4 V encoder input1400 Ohm at Un 2/3-wire proximity sensors PNP/NPN3400 Ohm at Un auxiliary input (preset, enable and read)400 Ohm at Un encoder inputOutput voltage24 V DCNominal output current0.5 AOutput voltage limits19...30 VVoltage drop< 0.5 V at state 1Output compatibility Positive logic DC inputs (resistance <= 15 kOhm) auxiliary outputLeakage current< 0.1 mASwitching frequency< 0.6/LI² Hz on inductive loadOutput overload protection Current limiterThermal tripping via program or automaticallyOutput short-circuit protection Current limiterThermal tripping via program or automaticallyOutput overvoltage protection Zener diodeReverse polarity protection Reverse diode on supplyChecks Sensor power supplyCurrent consumption330 mA 5 V DC36 mA 24 V DCModule format StandardLocal signalling 4 LEDs green axis diagnostics available (CH.)1 LED green module operating (RUN)1 LED red external fault (I/O)1 LED red internal fault, module failure (ERR)Electrical connection 2 connectors HE-10 20 pins4 connectors SUB-D 15Product weight0.95 lb(US) (0.43 kg)EnvironmentProtective treatment TCAmbient air temperature for operation32...140 °F (0...60 °C)Ambient air temperature for storage-13...158 °F (-25...70 °C)Relative humidity 5...95 % without condensationOperating altitude<= 6561.68 ft (2000 m)Ordering and shipping detailsCategory22558 - TSX PREMIUM, ATRIUM & PL7 PRODiscount Schedule PC22GTIN00785901756989Nbr. of units in pkg.1Package weight(Lbs) 2.21Returnability NCountry of origin FROffer SustainabilitySustainable offer status Not Green Premium productRoHS (date code: YYWW)Compliant - since 0849 - Schneider Electric declaration of conformitySchneider Electric declaration of conformityREACh Reference not containing SVHC above the thresholdReference not containing SVHC above the thresholdProduct end of life instructions Need no specific recycling operations Contractual warrantyWarranty period18 monthsDimensions DrawingsStandard and Extendable Racks for Modules MountingDimensions of Modules and Racks(1) With screw terminal block modules.(2) Maximum depth for all types of modules and their associated connectors.15-pin SUB-D Connectors of the Counting ModulePinout ConfigurationHE10 20-pin Connector of the Counting ModuleWiring Diagram。
微讯VSC8484数据手册:四通道WAN LAN 背板XAUI到SFP+ KR接收器说明书
VSC8484 Datasheet Quad Channel WAN/LAN/Backplane XAUI to SFP+/KRTransceiverMicrosemi HeadquartersOne Enterprise, Aliso Viejo,CA 92656 USAWithin the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136Fax: +1 (949) 215-4996Email: *************************** ©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.About MicrosemiMicrosemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs andmidspans; as well as custom design capabilities and services. Learn more at .Contents1Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.1Revision4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2Revision4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3Revision4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4Revision4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5Revision 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6Revision2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Product Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32.1Major Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2Features and Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63.1Transmit Operation for XAUI to SFI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.2Receive Operation for SFI to XAUI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.3PMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.3.1Supported Data Rates and Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.3.2Rate Auto-Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.3.3Receiver (Rx) Subsection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.3.4Variable Gain Amplifier Input Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.3.5Rx Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.3.6Rx Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.3.7Rx Data Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.3.8Rx Data Path Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.3.9External Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.3.10VScope Input Signal Monitoring Integrated Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.3.11Unity Gain Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.3.12Link Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.3.13Transmitter (Tx) Subsection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.3.14Tx Data Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.3.15Tx Data Path Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.3.1610BASE-KR Output Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.3.17PMA Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.3.18PMA Linetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.3.19External Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.3.20Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.3.21Reference Clock Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.3.22Clock Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.3.23Synchronous Ethernet Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.3.24 1.25Gbps Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.3.25Power Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.3.26Clock Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.3.27Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.4WAN Interface Sublayer (WIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.4.1Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.4.2Section Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.4.3A1, A2 (Frame Alignment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.4.4Loss of Signal (LOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.4.5Loss of Optical Carrier (LOPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.4.6Severely Errored Frame (SEF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.4.7Loss of Frame (LOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.4.9Z0 (Reserved for Section Growth) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.4.10Scrambling/Descrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.4.11B1 (Section Error Monitoring) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.4.12E1 (Section Orderwire) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.4.13F1 (Section User Channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.4.14DCC-S (Section Data Communication Channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.4.15Reserved, National, and Unused Octets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.4.16Line Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343.4.17B2 (Line Error Monitoring) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.4.18K1, K2 (APS Channel and Line Remote Defect Identifier) . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.4.19D4 to D12 (Line Data Communications Channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.4.20M0 and M1 (STS-1/N Line Remote Error Indication) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.4.21S1 (Synchronization Messaging) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.4.22Z1 and Z2 (Reserved for Line Growth) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.4.23E2 (Orderwire) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.4.24SPE Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.4.25Bit Designations within Payload Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.4.26Pointer Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393.4.27Pointer Adjustment Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393.4.28Pointer Increment/Decrement Majority Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393.4.29Pointer Interpretation States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.4.30Valid Pointer Definition for Interpreter State Diagram Transitions . . . . . . . . . . . . . . . . . . . . . . 403.4.31Path Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.4.32J1 (Overhead Octet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.4.33B3 (STS Path Error Monitoring) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.4.34C2 (STS Path Signal Label and Path Label Mismatch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.4.35G1 (Remote Path Error Indication) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.4.36G1 (Path Status) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.4.37F2 (Path User Channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.4.38H4 (Multiframe Indicator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.4.39Z3-Z4 (Reserved for Path Growth) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.4.40N1 (Tandem Connection Maintenance/Path Data Channel) . . . . . . . . . . . . . . . . . . . . . . . . . . 453.4.41Loss of Code Group Delineation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.4.42Reading Statistical Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.4.43Defects and Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.4.44Interrupt Pins and Interrupt Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483.4.45Overhead Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.4.46Transmit Overhead Serial Interface (TOSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.4.47Receive Overhead Serial Interface (ROSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.4.48Pattern Generator and Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5Physical Coding Sublayer (64B/66B PCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533.5.1Control Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.5.2Transmit Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.5.3Receive Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.5.4PCS Standard Test Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.5.5PCS XGMII BIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.6Client/Host Interface (XAUI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.6.1XGMII Extender Sublayer (PHY XS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.6.2XAUI Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.6.3XAUI Receiver Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.6.4XAUI Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.6.5XAUI Code Group Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.6.6XAUI Lane Deskew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603.6.710B/8B Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613.6.88b/10b Encoder and Serializer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613.6.9XAUI Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613.6.10XAUI Transmitter Pre-Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613.6.12XAUI Failover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623.710GBASE-KR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623.7.1Auto-negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623.7.2Technology Ability Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653.7.3Transmitted Nonce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663.7.4Role of Firmware during Auto-negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663.7.5Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673.7.6Advertised Ability Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673.7.7Link Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683.7.8Next Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683.7.9Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683.7.10Coefficient Update Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693.7.11Status Report Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703.7.12Training Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713.7.13Role of Hardware and Firmware during Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713.7.14Training Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733.7.15Coefficient Update and Status Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743.7.16BER Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753.7.17Forward Error Correction (FEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753.8Loopback and Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763.8.1Loopback Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763.8.2Loopback A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763.8.3Loopback B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763.8.4Loopback F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763.8.5Loopback G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773.8.6Loopback J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773.8.7Loopback K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773.9Low-Speed Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783.9.1MDIO Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793.9.2Two-Wire Serial (Master) for Loading Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813.9.3Two-Wire Serial Slave Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823.9.4UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833.9.5JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833.10Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843.10.1Firmware Load Mode, EEPROM Address Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843.10.2Default Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853.11Loading Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853.11.1EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853.11.2MDIO and Two-Wire Serial Slave Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863.12Microcontroller Activity Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873.13Interrupt Pending Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873.14Multipurpose GPIO Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883.15PCS Activity Monitor LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913.16Temperature Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .944.1Global Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944.1.1GPIO Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974.2Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1724.3EDC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2864.3.1Hardware DC Offset Correction Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2935Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3035.1DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3035.1.1Low-Speed Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3035.1.3MDIO Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3045.2AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3045.2.1Receiver Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3045.2.2Transmitter Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3085.2.3Timing and Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3145.2.4Two-Wire Serial (Slave) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3145.2.5MDIO Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3155.3Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3165.4Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3186Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3206.1Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3206.2Pins by Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3206.2.1General Purpose Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3216.2.2JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3216.2.3Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3226.2.4Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3236.2.5Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3236.2.6Receive Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3246.2.7Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3246.2.8Clock Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3256.2.9Test and Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3256.2.10Transmit Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3266.2.11XAUI Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3266.2.12Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3297Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3307.1Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3307.2Thermal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3317.3Moisture Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3328Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3338.1Sync-E in LAN Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3338.2Sync-E in WAN Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 9Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335。
AR401 单键电容式触摸IC_规格书_V2.3
规格说明书4通道电容式触摸感应I CA R401V2.3全国客服中心电话:4006-992-661直线电话:0755-8369-30488297-78578297-7641自动传真:0755-2263-4057E-mail: sinoada@企业QQ: 800-000-251官方网站: 资料在公司官方网站上会随时更新,恕不另行通知,敬请留意!目录1. 概述 (3)2. 特性 (3)3. 功能描述 (3)4. 应用领域 (3)5. IC 封装形式 (4)5.1 DICE P AD (4)5.2 SOP8封装 (5)5.3 SSOP16L封装 (7)5.4 SSOP20封装 (8)6 电气特性 (9)6.1 最大绝对额定值 (9)6.2 DC电气参数 (9)7. 应用电路 (10)7.1 裸片的标准应用电路(4键触摸,一对一输出,高电平有效,CMOS输出) (10)7.2 SOP8封装,2键触摸应用电路图 (15)7.3 SOP16封装,4键触摸应用电路图(CMOS输出和OC门输出) (15)7.4 SSOP20封装,4键触摸应用电路图 (16)8 关于触摸介质厚度的应用说明 (17)8.1 触摸介质厚度与铺地、感应电极大小对应关系 (17)8.2 触摸介质厚度与触摸引脚并联电容对应关系 (17)9. 修改记录 (18)1. 概述AR401是一款专门针对小体积、低功耗、宽电压、高性价比而设计的电容式触摸感应IC,可直接取代传统的机械式的轻触按键:自锁式按键和非自锁式按键。
该技术已获得广泛使用,成熟度、稳定性、可靠性都已获消费电子、小家电、智能面板控制等应用领域内的大批量生产验证,是新产品、新概念等创新产品设计的优选之必备器件。
2. 特性工作电压:2.4V~5.5V工作电流:max=10uA@3V,待机电流:max=2.5uA@3V采用低功耗的CMOS技术内置去抖动电路,可有效防止外部噪声干扰而引起的误动作内置LDO外围电路简单,使用方便,成本低廉封装形式:DICE(裸片)、SOP8、SSOP16L、SSOP203. 功能描述通过对不同的功能选秀脚做不同的设置,可实现如下不同的功能输出:3.1AHLB=VSS(或悬空)时,OUT输出为高电平有效;AHLB=VDD时,OUT输出为低电平有效3.2LPMB=VDD,快速模式3.3TOG=VSS(或悬空)时,OUT输出为同步模式(Button)(类似于不带锁的轻触键),有触摸则有电平输出,无触摸即无电平输出;TOG=VDD时,OUT输出为保持模式(Switch)(类似于带锁的轻触键),有触摸即有有效电平输出,无触摸后,输出保持不变,再次触摸,输出变化一次3.4SMK=VDD(或悬空)时,多键使能;=VSS,单键使能3.5SENS=VDD(或悬空)时,高灵敏度;=VSS,低灵敏度3.6REGEN=VDD(或悬空)时,开启内部LDO;=VSS,禁止内部LDO3.7MOT1=VDD(或悬空) MOT0=VDD(或悬空) 触摸按键开启时间:不受限制MOT1=VDD MOT0=VSS 触摸按键开启时间:16秒MOT1=VSS MOT0=VDD 触摸按键开启时间:64秒MOT1=VSS MOT0=VSS 触摸按键开启时间:120秒4. 应用领域取代传统的机械式按键:自锁式按键、非自锁式按键消费电子产品——电子秤、电子表、电子礼品、电子保健品、电子影音、电子书、电子数码产品等液面传感器——空气加湿器、水位检测、热水器、马桶水位检测等人体感知传感器——坐便器、工业保护装置等电脑设备——电脑、显示器、传真机、复印机、碎纸机、门禁系统、电灯控制、遥控器、玩具、游戏机等 触摸开关——墙壁开关、台灯开关、设备电源开关、电灯开关、启动开关、制动开关等各种开关应用5. IC 封装形式5.1 DICE PAD6 电气特性6.1 最大绝对额定值7. 应用电路1键的绑定图2键的绑定图3键的绑定图4键的绑定图说明:1:注意21脚必须连接VDD。
HLS024C触摸4键单总线输出规格书V2.0
4键触摸芯片V2.01.简介HLS024C是一款支持4通道触摸输入、单总线键值输出电容式触摸按键芯片,可以替代传统的机械式开关。
该芯片采用CMOS工艺制造,结构简单,性能稳定。
应用范围:消费、安防、数码产品。
如:按摩器,电动牙刷,LED灯具,加湿器,玩具,美容仪,遥控器,86开关,桌面音箱。
2.特点●宽电压工作范围:2.2~5.5V。
●超低待机功耗,7uA@3V,14uA@5V(待机状态下可触发)。
●单总线按键值输出,响应速度快,4键值状态输出最多需7ms。
●应用简单,加工方便,低成本。
●可在有介质(如玻璃、亚克力、塑料、陶瓷等)隔离保护的情况下实现触摸功能。
●内置稳压源、上电复位/低压复位及环境自适应算法等多种措施,可靠性高。
●强抗电源干扰;近距离、多角度手机干扰情况下触摸响应灵敏度及可靠性不受影响。
●HBM ESD可以达到±4KV以上。
3.引脚说明HLS024C-SOP8NO.管脚名称I/O描述1TP1I/O触摸输入通道12CMOD I/O触摸灵敏度采样,接10nf-47nf电容到地3VDD P电源输入脚4VSS P电源地5TP4I/O触摸输入通道46TP3I/O触摸输入通道37DT_OUT OD按键数据输出(开漏输出)需要外部上拉8TP2I/O触摸输入通道24.数据协议无触摸:DT_OUT开漏输出高电平(主控IO内部上拉或外加4.7K上拉电阻)。
多键触摸模式:有按键触摸1次输出4个波形(4个键KEY1、KEY2、KEY3、KEY4)无触摸时,DT_OUT脚输出逻辑“0”波形图:有触摸时,DT_OUT脚输出逻辑“1”波形图:例如:KEY1、KEY3有触摸,KEY2、KEY4无触摸,DT_OUT脚输出波形图:注:*键值变化,DT_OUT发变化后的4键波形。
*键值变化的两组4键波形之间,开漏输出持续高电平时间≥1.5ms;*触摸键释放,将发一组4位都是逻辑“0”的波形。
*任何时候检测到高电平大于1.5ms,重置检测到第一个低电平为第一个键。
飞思卡尔半导体公司MC33797四通道点火驱动器IC技术数据说明书
飞思卡尔半导体公司 文档编号:MC33797技术数据第6.0版,2014年2月©飞思卡尔半导体公司,2006 - 2014。
保留所有权利。
四通道点火驱动器IC四通道点火驱动器IC 是一款用于汽车安全气囊模块的完整点火诊断和部署接口。
拥有全面的诊断和系统控制功能,可实现故障安全操作。
该器件包含一个兼容串行外设接口(SPI)的8位接口,支持微处理器控制。
该器件可用于标准的四通道点火驱动器IC ,或用于高边和低边点火驱动器位于不同点火驱动器IC 时的交叉耦合状态。
高边和低边的输出驱动器均受到保护,不会受对电池或对地临时短路的影响。
限流阈值由外部电阻设置。
该器件采用SMARTMOS 技术。
特性 • 四通道高边和低边2.0 A FET 开关 • 外部可调的FET 限流功能 • 可调限流范围:0.8至2.0 A • 通过与SPI 通信实现单个通道限流检测以及定时持续时间测量 • 用于诊断和FET 开关激活的8位SPI • 高边安全传感器状态诊断 • 点火装置的电阻和电压诊断 • 点火驱动器IC 可用于交叉耦合驱动器点火应用(将高边和低边FET 开关置于不同的点火驱动器IC 上)EW 后缀(无铅) 98ARH99137A 32引脚SOICW应用 • 汽车安全气囊展开 • 安全带自动锁止• 计算机控制模型火箭点火器 • 远程发射烟花焰火表演• 采矿和建筑施工中计算机控制的雷管点火 •军用或警用武器系统图1. 33797简化应用电路图337972 模拟集成电路器件数据飞思卡尔半导体公司1 可订购部件表1. 可订购部件版本注1. 要订购以带/卷形式提供的零件,请在部件编号后面添加R2后缀。
内部功能框图33797模拟集成电路器件数据飞思卡尔半导体公司3内部功能框图图2.33797简化内部功能框图引脚连接337974 模拟集成电路器件数据飞思卡尔半导体公司引脚连接图3. 引脚功能说明表2. 引脚功能说明引脚连接33797模拟集成电路器件数据飞思卡尔半导体公司5表2. 引脚功能说明(续)电气特性最大额定值337976 模拟集成电路器件数据飞思卡尔半导体公司电气特性最大额定值表3. 最大额定值所有电压都是相对于地而言,除非另有说明。
四通道、16位、内置基准电压源和SPI接口 数据手册说明书
和
范围内测得。
和 输入的输入滤波可抑制小于 的噪声尖峰。
条件 注释 周期时间 , 高电平时间 , 低电平时间 ,起始 重复起始条件保持时间 ,数据建立时间 ,数据保持时间 ,重复起始建立时间 ,停止条件建立时间 ,一个停止条件与一个起始条件之间的总线空闲时间
,接收时 和 的上升时间 ,发送 接收时 和 的下降时间
图 基准电压输出温度漂移直方图
图 内部基准电压与负载电流的关系
数据手册
图 内部基准电压与电源电压的关系
图
图
图
图
图
数据手册
图
图
误差和 误差与电源电压的关系
ቤተ መጻሕፍቲ ባይዱ
图
误差和 误差与温度的关系
图 增益误差和满量程误差与温度的关系
图
误差和 误差与 的关系
图 零点误差和偏臵误差与温度的关系
数据手册
图 增益误差和满量程误差与电源的关系
外部
计保证单调性,并具有小于 调误差性能。提供
的增益误差和
的失 产品聚焦
和
封装。
高相对精度
。
还内臵一个上电复位电路和一
( 位):
(最大值)。
个
引脚,确保 输出上电至零电平或中间电平,直
到执行一次有效的写操作为止。此外所有器件均具有各通道
独立关断特性,在掉电模式下,器件在 时的功耗降至 。
( 位):
(最大值)。
( 位):
(最大值)。
低漂移 片内基准电压源。
温度系数:
(典型值)。
采用多功能双线式串行接口,时
温度系数:
(最大值)。
钟速率最高达 备的 引脚。
,包含一个为
逻辑电平准
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据手册DATASHEET
产品名称四键触摸开关IC
概述
产品名称是是一款使用电容式感应原理设计的触摸IC,其稳定的感应方式可以应用到各种不同电子类产品,面板介质可以是完全绝缘的材料,专为取代传统的机械结构开关或者普通按键而设计。
提供4个触摸输入引脚及4个直接输出引脚。
该IC采用CMOSC艺制造,结构简单,性能稳定。
该IC通过引脚可配置成多种模式,
可广泛应用于灯光控制、玩具、家用电器等产品。
—、特点
1、工作电压:2.0V~5.5V
2、工作电流VDD=3V无负载时,低功耗模式下典型值小于 4.0uA
3、各触摸按键灵敏度可以由外部电容进行调节(0~50pF)
4、提供同步输出模式,保持输出模式,开漏输出,CMOS高电平有效或低电平有效输出,经由
TOG/AHLB/OD引脚选择
5、上电后约有0.5 Sec的系统稳定时间,在此期间不要触摸Touch PAD且触摸功能无效
6、有自动校准功能,当无按键被触摸时,系统重新校准周期约为 4.0 Sec
三、应用围:
1、家用电器
2、安防产品
3、数码产品
4、消费类电子产品
5、LED照明
6、玩具
四、圭寸装示意图
产品名称采用SOP14封装,原理封装示意图如下所示
图1封装示意图
五、引脚描述
注:引脚类型,1 => CMOS输入,1/PH => 带上拉电阻的CMOS输入,1/PL =>带下拉电阻的CMOS俞入;O/OD=>CMO开漏输出,P =>电源/地。
六、功能描述
6.1灵敏度调节
PCB板上感应焊盘尺寸大小及走线会直接影响灵敏度,因此灵敏度调节需要根据实际应用的PCB应进行调节,ASC0104提供一些外部调节灵敏度的方法。
6.1.1 改变感应焊盘尺寸大小
若其他条件固定不变,使用一个较大的感应焊盘将会增大其灵敏度,反之灵敏度将下降,但是感应焊盘的尺寸大小也必须是在其有效围值。
6.1.2 改变面板厚度
若其他条件固定不变,使用一个较薄的面板也会将灵敏度提高,反之灵敏度则下降,但是面板的厚度必须低于其最大值。
6.1.3 通过调节外接电容CsO~Cs3 (参见图2)
若其他条件固定不变,可以根据各键的实际情况通过调节Cs电容值使其达到最佳的灵敏度,同时以使各键的灵敏度达到一致。
当Cs电容不接时其灵敏度为最高。
Cs0~Cs3的
容值越大其灵敏度越低,Cs可调节围为:O W CsO~Cs3W 50pF。
图3调节外接电容原理图
6.2 输出模式选择(由TOG, OD AHLB引脚选择)
产品名称其输出引脚(TPQ0~TPQ)可由AHLB引脚来设定其输出高电平或低电平有效,同时也可由TOG引脚来设定为同步/保持模式或通过OD引脚来设定为开漏输出模式
产品名称可通过外部配置引脚设置为多种模式。
外部配置引脚悬空时,配置位自动设置
为默认值(Default)。
6.2.1 保持/同步模式(TOG)
当PIN脚TOG悬空时,默认下拉为低电平,置为同步模式。
设置TOG=0,则选择同步模式,此时TPQ0~3输出状态与触摸响应同步;只有检测到触
摸时有输出响应;当触摸消失时,TPQ0~3输出状态恢复为初始状态,如下图所示。
注:TCH OUT分别为触摸输入引脚及相应TPQ0~3^输出10的电平变化。
图3同步模式示意图
设置T0G=1,则选择保持模式,此时TPQ0~3B出状态受在触摸响应控制下保持,当触摸消失后仍保持为响应状态;再次触摸并响应后恢复为初始状态,如下图所示。
图4异步模式示意图
注:Td1为TOUCH响应延迟时间,Td2为TOUCH撤销延迟。
622 输出模式选择(AHLB
产品名称可设置多种输出模式,当PIN脚(AHLB)悬空时,默认下拉为低电平,置为高
电平有效模式。
表
6.2.3 有效键输出选择(SM)
产品名称可通过SM弓I脚来选择单键和多键输出模式。
表4有效键输岀模式菜单
多键模式:TP0-TP3
单键模式:TP0-TP3只能有一个键输出,当某一个键被检测到并输出时,另外3个键触摸
将无效。
七、绝对最大值
八、电气参数
表6电气参数表数值有待商榷
若无特别说明,VDD为3.0V,环境温度为25 ,芯片输出无负载
九、应用电路图
9.1 参考电路
图5参考电路图
以下说明可供应用时参考:
1、CS0~CS3指调节灵敏度的电容,电容值大小OpF〜50pF,其值越小,则灵敏度越高。
灵敏度的选
择需要根据PCB的实际应用进行调节。
2、VDD与GND间需并联滤波电容CO以消除噪声,建议值1OuF或更大。
供电电源必须稳
定,如果电源电压漂移或者快速变化,可能引起灵敏度漂移或者检测错误。
3、T OUCHPAD的形状与面积、以及与TCH引脚间导线长度,均会对触摸感应灵敏度产生影响。
4、从TOUCH PAD到IC触摸输入引脚不要与其他快速跳变的信号线并行或者与其他线交叉。
TOUCH
PAD需用GROUND保护,请参考图6。
图6 TOUCH PAD参考画法
5、灵敏度调节电容(CS0~CS3)必须是使用温度变化其稳定性佳的电容,比如X7R NPO对
于触摸应用,推荐使用NP材质电容,以减少因温度变化对灵敏度造成的影响。
6、触摸电极和触摸输入脚之间串联电阻,可提高触摸的抗干扰能力。
如果使用环境干扰不大,电阻可以不
接。
7、以上功能选项脚若选择默认值,建议接到固定电平,如需选择输出同步模式,TOG脚建议
接到GND。
十、穿透力应用说明
1、此表仅供参考,具体焊盘大小应根据实际模具外壳厚度来调整。
2、触摸焊盘面积越大,可穿透介质材料越厚。
3、P C B铺地比例越小,P C B点触焊盘与地之间的寄生电容越小,人体触摸后新生的手指电
容相对PCB寄生电容变化越大,触摸灵敏度越高,可穿透介质越厚。
4、PCB铺地比例越小,越易受到外界干扰。
5、建议实际应用时兼顾灵敏度和抗干扰设计PCB的铺地形式。
如对穿透介质厚度要求不高, 建议增加铺地比例以提高抗干扰性能。
1、以上规格如有更新,恕不另行通知。
请在使用前更新该芯片规格书至最新版本。
2、对于错误或不恰当操作所导致的后果,我们将不承担责任。