高一数学必修二直线与圆练习题
(完整word)高中数学必修二直线与圆的综合问题.doc
直线与圆一.解答题(共10 小题)1.已知直线x﹣ y+3=0 与圆心为( 3,4)的圆 C 相交,截得的弦长为2.(1)求圆 C 的方程;(2)设 Q 点的坐标为( 2,3),且动点 M 到圆 C 的切线长与 | MQ| 的比值为常数 k(k> 0).若动点 M 的轨迹是一条直线,试确定相应的 k 值,并求出该直线的方程.2.已知直线l: y=x+2 被圆 C:(x﹣ 3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆 C 的方程;(2)已知直线 m:y=x+n 被圆 C:(x﹣3)2+( y﹣2)2=r2( r> 0)截得的弦与圆心构成三角形CDE.若△ CDE 的面积有最大值,求出直线m:y=x+n 的方程;若△ CDE的面积没有最大值,说明理由.3.已知 M (4, 0), N( 1,0),曲线 C上的任意一点P 满足:?=6||(Ⅰ)求点 P 的轨迹方程;(Ⅱ)过点 N(1,0)的直线与曲线 C 交于 A,B 两点,交 y 轴于 H 点,设=λ1,=λ2,试问λ1+λ2 是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.4.已知动圆 P 与圆 F1:(x+2)2+y2=49 相切,且与圆 F2:( x﹣ 2)2+y2=1 相内切,记圆心P 的轨迹为曲线 C.(Ⅰ)求曲线 C 的方程;(Ⅱ)设 Q 为曲线 C 上的一个不在x 轴上的动点, O 为坐标原点,过点F2作 OQ 的平行线交曲线 C 于 M,N 两个不同的点,求△QMN 面积的最大值.5.已知动圆P 过定点且与圆N:相切,记动圆圆心P 的轨迹为曲线C.(Ⅰ)求曲线 C 的方程;(Ⅱ)过点 D( 3,0)且斜率不为零的直线交曲线 C 于 A,B 两点,在 x 轴上是否存在定点 Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.6.如图所示,在△ABC中, AB 的中点为 O,且 OA=1,点 D 在 AB 的延长线上,且.固定边AB,在平面内移动顶点C,使得圆 M 与边 BC,边 AC 的延长线相切,并始终与AB 的延长线相切于点D,记顶点C 的轨迹为曲线Γ.以AB所在直线为x 轴, O 为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l 交曲线Γ于 E、 F 两点,且以EF为直径的圆经过点O,求△ OEF面积的取值范围.7.已知△ ABC的顶点 A(1, 0),点 B 在 x 轴上移动, | AB| =| AC| ,且 BC 的中点在y 轴上.(Ⅰ)求 C 点的轨迹Γ的方程;(Ⅱ)已知过 P( 0,﹣ 2)的直线 l 交轨迹Γ于不同两点 M, N,求证: Q( 1,2)与 M, N 两点连线 QM, QN 的斜率之积为定值.8.已知圆M: x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线 E 的方程;(2)点 A 是曲线 E 与 x 轴正半轴的交点,点 B、C 在曲线 E 上,若直线 AB、AC的斜率 k1,k2,满足 k1k2=4,求△ ABC面积的最大值.9.已知过点A( 0, 1)且斜率为k 的直线 l 与圆 C:(x﹣ 2)2+(y﹣3)2=1 交于点 M,N 两点.(1)求 k 的取值范围;(2)请问是否存在实数k 使得(其中O为坐标原点),如果存在请求出k 的值,并求 | MN | ;如果不存在,请说明理由.10.已知O 为坐标原点,抛物线C: y2=nx(n> 0)在第一象限内的点P(2, t)到焦点的距离为,C在点P 处的切线交 x 轴于点 Q,直线 l1经过点 Q 且垂直于 x轴.(1)求线段 OQ 的长;(2)设不经过点 P 和 Q 的动直线 l2:x=my+b 交 C 交点 A 和 B,交 l1于点 E,若直线 PA, PB 的斜率依次成等差数列,试问: l2是否过定点?请说明理由.直线与圆参考答案与试题解析一.解答题(共10 小题)1.已知直线x﹣ y+3=0 与圆心为( 3,4)的圆 C 相交,截得的弦长为2.(1)求圆 C 的方程;(2)设 Q 点的坐标为( 2,3),且动点 M 到圆 C 的切线长与 | MQ| 的比值为常数 k(k> 0).若动点 M 的轨迹是一条直线,试确定相应的 k 值,并求出该直线的方程.【分析】(1)求出圆心 C 到直线 l 的距离,利用截得的弦长为2求得半径的值,可得圆 C 的方程;(2)设动点 M( x,y),则由题意可得=k,即=k,化简可得(k2﹣1)?x2+(k2﹣1) ?y2+(6﹣ 4k2) x+(8﹣6k2)y+13k2﹣9=0,若动点 M 的轨迹方程是直线,则k2﹣1=0,即可得出结论.【解答】解:(1)圆心 C 到直线 l 的距离为= ,∵截得的弦长为 2,∴半径为 2,∴圆 C:(x﹣ 3)2+( y﹣4)2=4;(2)设动点 M (x, y),则由题意可得=k,即=k,化简可得( k2﹣ 1)?x2+( k2﹣ 1)?y2+( 6﹣4k2)x+(8﹣ 6k2) y+13k2﹣21=0,若动点 M 的轨迹方程是直线,则 k2﹣ 1=0,∴ k=1,直线的方程为 x+y﹣4=0.【点评】本小题主要考查直线与圆的位置关系,弦长公式的应用,圆的一般式方程,属于中档题.2.已知直线l: y=x+2 被圆 C:(x﹣ 3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆 C 的方程;(2)已知直线 m:y=x+n 被圆 C:(x﹣3)2+( y﹣2)2=r2( r> 0)截得的弦与圆心构成三角形CDE.若△ CDE 的面积有最大值,求出直线m:y=x+n 的方程;若△ CDE的面积没有最大值,说明理由.【分析】(1)根据直线和圆相交得到的弦长公式求出圆的半径即可求圆 C 的方程;(2)根据直线和圆相交的位置关系,结合△CDE的面积公式即可得到结论.【解答】解:(1)设直线 l 与圆 C 交于 A, B 两点.∵直线 l :y=x+2 被圆 C:(x﹣ 3)2 +(y﹣ 2)2=r2( r>0)截得的弦长等于该圆的半径,∴△ CAB为正三角形,∴三角形的高等于边长的,∴圆心 C 到直线 l 的距离等于边长的.∵直线方程为x﹣y+2=0,圆心的坐标为(3, 2),∴圆心到直线的距离d==,∴r=,∴圆C的方程为:(x﹣3)2+(y﹣2)2=6.(2)设圆心 C 到直线 m 的距离为 h, H 为 DE的中点,连结 CD,CH,CE.在△ CDE中,∵DE=,∴=∴,当且仅当 h2=6﹣h2,即 h2=3,解得h=时,△ CDE的面积最大.∵CH=,∴| n+1| =,∴n=,∴存在n的值,使得△ CDE的面积最大值为3,此时直线 m 的方程为y=x.【点评】本题主要考查直线和圆的位置关系的应用,根据弦长公式是解决本题的关键.3.已知 M (4, 0), N( 1,0),曲线 C上的任意一点P 满足:?=6||(Ⅰ)求点 P 的轨迹方程;(Ⅱ)过点 N(1,0)的直线与曲线 C 交于 A,B 两点,交 y 轴于 H 点,设=λ1,=λ2,试问λ1+λ2 是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.【分析】(Ⅰ)求出向量的坐标,利用条件化简,即可求点P 的轨迹方程;(Ⅱ)分类讨论,利用=λ1,=λ2,结合韦达定理,即可得出结论.【解答】解:(Ⅰ)设 P( x,y),则=(﹣ 3,0),=( x﹣ 4,y),=(1﹣x,﹣ y).∵?=6|| ,∴﹣ 3×( x﹣ 4)+0× y=6,化简得=1 为所求点 P 的轨迹方程 .4 分(Ⅱ)设 A(x1,y1), B( x2, y2).①当直线 l 与 x 轴不重合时,设直线l 的方程为x=my+1( m≠ 0),则 H( 0,﹣).从而=( x , y +),=( 1 x , y ),由=λ得(x,y +)=λ(1x , y ),111111111 1∴ λ=1+1同理由得λ,2=1+∴ (λ1+λ2)=2+由直与方程立,可得(4+3m2) y2+6my 9=0,∴y1+y2=,y1y2=代入得∴(λ+λ) =2+=,1 2∴λ+λ1 2=②当直 l 与 x 重合, A( 2,0),B(2,0),H(0, 0),λ,1 =.λ2= 2∴λ+λ分1 2=11上,λ1+λ2定.12 分.【点】本考迹方程,考向量知的运用,考直与位置关系的运用,考分的数学思想,属于中档.4.已知P与F1:(x+2)2+y2=49相切,且与F2:( x 2)2+y2=1相内切,心P 的迹曲 C.(Ⅰ)求曲 C 的方程;(Ⅱ) Q 曲 C 上的一个不在x 上的点, O 坐原点,点F2作 OQ 的平行交曲 C 于 M,N 两个不同的点,求△QMN 面的最大.【分析】(I )由已知条件推出| PF1|+| PF2| =8> | F1F2| =6,从而得到心P 的迹以F1,F2焦点的,由此能求出心P 的迹 C 的方程.(II)由 MN∥ OQ,知△ QMN 的面 =△ OMN 的面,由此能求出△QMN 的面的最大.【解答】解:(Ⅰ) P 的半径R,心 P 的坐( x,y),由于 P 与 F1:( x+2)2+y2=49相切,且与F2:( x 2)2+y2=1相内切,所以 P 与F1只能内切.⋯( 1 分)所以 | PF1|+| PF2 | =7 R+R 1=6> | F1F2| =4.⋯(3 分)所以心心P 的迹以F1,F2焦点的,其中 2a=6,2c=4,∴ a=3, c=2, b2=a2c2=5.所以曲 C 的方程=1.⋯(4 分)(Ⅱ) M (x1, y1), N( x2, y2), Q(x3,y3),直 MN 的方程x=my+2,由可得:(5m 2+9) y2+20my 25=0,y 1+y2 =,y1y2=.⋯(5分)所以 | MN | ==⋯(7分)因 MN∥ OQ,∴△ QMN 的面 =△OMN 的面,∵O 到直 MN :x=my+2 的距离 d=.⋯(9分)所以△ QMN 的面.⋯( 10 分)令=t, m2=t21(t ≥0),S==.,.因 t≥ 1,所以.所以,在 [ 1, +∞)上增.所以当 t=1 , f( t )取得最小,其9.⋯( 11 分)所以△ QMN 的面的最大.⋯( 12 分)【点】本考的准方程、直、、与等知,考推理能力、运算求解能力,考函数与方程思想、化与化思想、数形合思想等.5.已知 P 定点且与 N:相切,心P 的迹曲C.(Ⅰ)求曲 C 的方程;(Ⅱ)点 D( 3,0)且斜率不零的直交曲 C 于 A,B 两点,在 x 上是否存在定点Q,使得直AQ, BQ的斜率之非零常数?若存在,求出定点的坐;若不存在,明理由.【分析】(Ⅰ)由意可知丨PM 丨+丨 PN 丨 =4>丨 MN 丨 =2 , P 的迹 C 是以 M ,N 焦点,2=a2 c2=1,即可求得方程;4 的, a=4, c= ,b(Ⅱ)将直线方程代入椭圆方程,考查韦达定理,直线的斜率公式,当且仅当,解得 t= ±2,代入即可求得,定点的坐标.【解答】解:(Ⅰ)设动圆 P 的半径为r,由 N:及,知点M在圆N 内,则有,从而丨 PM 丨 +丨 PN 丨=4>丨 MN 丨=2,∴P 的轨迹 C 是以 M ,N 为焦点,长轴长为 4 的椭圆,设曲线 C 的方程为:(a>b>0),则2a=4,a=4,c=,b2=a2﹣c2=1故曲线 C 的轨迹方程为;(Ⅱ)依题意可设直线AB 的方程为 x=my+3,A( x1,y1),B(x2, y2).,由,整理得:( 4+m2)y2+6my+5=0,则△ =36m2﹣4×5×( 4+m2)> 0,即 m2> 4,解得: m>2 或 m<﹣ 2,由 y 1+y2=﹣,y1y2= , x1+x2=m(y1+y2)+6=,x1x2=(my1 +3)(my2 +3) =m2y1y2+m(y 1+y2)+9=,假设存在定点Q(t ,0),使得直线AQ,BQ 的斜率之积为非零常数,则(x1﹣ t)( x2 ﹣t ) =x1 2﹣ t( x1+x2) +t2= ﹣t ×2= ,x +t∴kAQ?k BQ=?==,要使 k AQ?k BQ为非零常数,当且仅当,解得t=±2,当 t=2 时,常数为=,当 t= ﹣2 时,常数为=,∴存在两个定点Q1(2, 0)和 Q2( 2, 0),使直AQ,BQ 的斜率之常数,当定点 Q1( 2,0),常数;当定点Q2( 2, 0),常数.【点】本考准方程及几何性,的定,考直与的位置关系,达定理,直的斜率公式,考算能力,属于中档.6.如所示,在△ABC中, AB 的中点O,且 OA=1,点 D 在 AB 的延上,且.固定AB,在平面内移点C,使得 M 与 BC, AC 的延相切,并始与AB 的延相切于点D,点C 的迹曲Γ.以AB所在直x , O 坐原点如所示建立平面直角坐系.(Ⅰ)求曲Γ的方程;(Ⅱ)直l 交曲Γ于 E、 F 两点,且以EF直径的点O,求△ OEF面的取范.【分析】(Ⅰ)确定点 C 迹Γ是以 A,B 焦点, 4 的,且挖去的两个点,即可求曲Γ的方程;(Ⅱ)可直,而表示面,即可求△ OEF面的取范.【解答】解:(Ⅰ)依意得AB=2,BD=1,M 与 AC 的延相切于T1,与 BC 相切于 T2,AD=AT1, BD=BT2, CT1=CT2 所以AD+BD=AT+BT=AC+CT +BT=AC+CT+CT=AC+BC=AB+2BD=4> AB=2⋯(2 分)12121 2所以点 C 迹Γ是以A,B 焦点, 4 的,且挖去的两个点.曲Γ的方程.⋯( 4 分)(Ⅱ)由于曲Γ 要挖去两个点,所以直OE, OF 斜率存在且不0 ,所以可直⋯( 5 分)由得,,同理可得:,;所以,又 OE⊥ OF,所以⋯(8分)令t=k2+1,t>1且k 2=t1,所以=⋯(10 分)又,所以,所以,所以,所以,所以△ OEF面的取范.⋯( 12 分)【点】本考迹方程,考直与位置关系的运用,考三角形面的算,考学生分析解决的能力,属于中档.7.已知△ ABC的点 A(1, 0),点 B 在 x 上移, | AB| =| AC| ,且 BC 的中点在y 上.(Ⅰ)求 C 点的迹Γ的方程;(Ⅱ)已知 P( 0, 2)的直 l 交迹Γ于不同两点 M, N,求: Q( 1,2)与 M, N 两点 QM, QN 的斜率之定.【分析】(Ⅰ)利用直接法,求 C 点的迹Γ的方程;(Ⅱ)直 l 的方程 y=kx 2,与抛物方程立,求出斜率,即可明.【解答】解:(Ⅰ) C( x,y)( y≠ 0),因 B 在 x 上且 BC 中点在 y 上,所以 B( x,0),由| AB| =| AC| ,得( x+1)2=(x 1)2+y2,化得y2=4x,所以 C 点的迹Γ的方程y2=4x(y≠ 0).(Ⅱ)直 l 的斜率然存在且不0,直 l 的方程 y=kx 2, M (x1, y1), N( x2, y2),由得 ky24y 8=0,所以,,,同理,,所以 Q(1, 2)与 M ,N 两点的斜率之定4.【点】本考迹方程,考直与抛物位置关系的运用,考学生的算能力,属于中档.8.已知M: x2+y2+2y 7=0和点N(0,1),P点N且与M相切,心P的迹曲E.(1)求曲 E 的方程;(2)点 A 是曲 E 与 x 正半的交点,点 B、C 在曲 E 上,若直 AB、AC的斜率 k1,k2,足 k1k2=4,求△ ABC面的最大.【分析】(1)利用与的位置关系,得出曲 E 是 M, N 焦点,的,即可求曲 E 的方程;(2)立方程得(1+2t2)y2+4mty +2m22=0,利用达定理,合k1k2=4,得出直BC 定点( 3, 0),表示出面,即可求△ABC面的最大.【解答】解:(1) M : x2+y2+2y 7=0 的心 M( 0, 1),半径点 N( 0, 1)在 M内,因 P 点 N 且与 M 相切,所以 P 与 M 内切. P 半径 r,r=| PM| .因 P 点 N,所以 r=| PN| ,>| MN| ,所以曲 E 是 M, N 焦点,的.2=2 1=1,由,得 b所以曲 E 的方程⋯(4分)(Ⅱ)直 BC斜率 0 ,不合意B(x1,y1), C( x2, y2),直 BC:x=ty+m,立方程得( 1+2t 2) y2+4mty +2m22=0,又k 1k2=4,知y1y2=4(x1 1)(x2 1)=4(ty1 +m 1)( ty2+m 1)=.代入得又 m≠ 1,化得( m+1)( 1 4t2)=2( 4mt 2)+2(m 1)( 1+2t 2),解得 m=3,故直 BC 定点( 3, 0)⋯(8 分)由△ >,解得t2> 4 ,=(当且 当取等号).上,△ ABC 面 的最大⋯( 12 分)【点 】 本 考 与 的位置关系,考 的定 与方程,考 直 与 位置关系的运用,考 达定理,属于中档 .9.已知 点 A ( 0, 1)且斜率 k 的直 l 与 C :(x2)2+(y3) 2=1 交于点 M ,N 两点.(1)求 k 的取 范 ;(2) 是否存在 数k 使得 (其中 O 坐 原点),如果存在 求出k 的 ,并求 | MN | ;如果不存在, 明理由.【分析】(1) 出直 方程,利用直 与 的位置关系,列出不等式求解即可.(2) 出 M ,N 的坐 , 利用直 与 的方程 立,通 达定理, 合向量的数量 , 求出直 的斜率,然后判断直 与 的位置关系求解 | MN| 即可.【解答】 解:(1)由 ,可知直 l 的方程 y=kx+1,因 直l 与 C 交于两点,由已知可得C 的 心 C 的坐 ( 2,3),半径 R=1.故由< 1,解得: <k <所以 k 的取 范 得(, )(2) M (x 1 ,y 1),N (x 2,y 2).将 y=kx+1 代入方程:(x 2)2+(y 3) 2=1,整理得( 1+k 2)x 24(1+k ) x+7=0.所以 x 1+x 2=,x 1x 2 =,? =x 1x 2 +y1y 2 =(1+k 2)( x1x 2)+k ( x +x ) +1==12,1 2解得 k=1,所以直l 的方程 y=x+1.故 心 C 在直 l 上,所以 | MN | =2.【点 】 本 主要考 直 和 的位置关系的 用,以及直 和 相交的弦 公式的 算,考 学生的 算能力,是中档 .10.已知 O 坐 原点,抛物C : y 2=nx (n > 0)在第一象限内的点P (2, t )到焦点的距离 ,C 在点 P 的切 交 x 于点 Q ,直 l 1 点 Q 且垂直于 x .(1)求 段 OQ 的 ;(2)不点 P 和 Q 的直 l2:x=my+b 交 C 交点 A 和 B,交 l1于点 E,若直 PA, PB 的斜率依次成等差数列,: l2是否定点?明理由.【分析】(1)先求出 p 的,然后求出在第一象限的函数,合函数的数的几何意求出N 的坐即可求段 OQ 的;(2)立直和抛物方程行消元,化关于y 的一元二次方程,根据根与系数之的关系合直斜率的关系建立方程行求解即可.【解答】解:(Ⅰ)由抛物 y2=nx(n>0)在第一象限内的点P(2, t)到焦点的距离,得 2+ = ,∴ n=2,抛物 C 的方程 y 2=2x,P(2,2).⋯(2 分)C 在第一象限的象的函数解析式y= , y′=,故 C 在点 P 的切斜率,切的方程y 2= ( x 2),令 y=0 得 x= 2,所以点 Q 的坐( 2,0).故段 OQ 的 2.⋯( 5 分)(Ⅱ)l2恒定点( 2, 0),理由如下:由意可知 l 1的方程 x= 2,因 l2与 l1相交,故 m≠ 0.由 l 2: x=my+b,令 x= 2,得 y= ,故 E( 2,)A( x1,y1),B(x2,y2)由消去 x 得: y22my2b=0y 1+y2 =2m,y1y2= 2b ⋯( 7 分)直 PA的斜率,同理直 PB 的斜率,直 PE的斜率.因直 PA,PE,PB 的斜率依次成等差数列,所以+=2×⋯(10分)整理得:=,因 l2不点 Q,所以 b≠ 2,所以 2m b+2=2m,即 b=2.故 l 2的方程x=my+2,即 l2恒定点( 2, 0).⋯(12 分)【点】本主要考直和抛物的位置关系,利用直和抛物方程,化一元二次方程,合达定理,利用而不求的思想是解决本的关.。
人教A版高一数学 必修二 4.2 直线与圆练习题(解析版)
人教A版高一数学必修二4.2 直线与圆练习一、选择题:1.1.直线x-y+6=0的倾斜角是()A. 600B. 1200C. 300D. 1500【答案】C【解析】【分析】求出直线的斜率,然后求解直线的倾斜角.【详解】∵直线的斜率为设直线的倾斜角为,则.∴故选C.【点睛】根据直线的方程求直线的倾斜角,一般写通过直线方程求出直线的斜率,再由斜率是倾斜角的正切值求出直线的倾斜角.2.2.经过点且在轴上的截距为3的直线方程是()A. B.C. D.【答案】C【解析】试题分析:直线过,,代入选项验证可知C正确.考点:直线方程.3.3.直线(2m2+m-3)x+(m2-m)y=4m-1与直线2x-3y=5平行,则的值为()A. -或1B. 1C. -D. -或1【答案】C【解析】【分析】直接求出直线的斜率,利用直线平行的充要条件判断的值即可.【详解】∵直线与直线平行∴∴,满足∴时,两条直线平行故选C.【点睛】本题主要考查两直线平行的充要条件,两条直线平行与斜率的关系.对直线文职关系的考查是热点命题方向之一,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1)∥;(2),这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况.4.4.若直线l1:ax+(1-a)y=3与l2:(a-1)x+(2a+3)y=2互相垂直,则a的值为( )A. -3B. 1C. 0或D. 1或-3【答案】D【解析】依题意,两直线垂直,故,解得或.5.5.圆(x-3)2+(y+4)2=2关于直线x+y=0对称的圆的方程是()A. (x+3)2+(y-4)2=2B. (x-4)2+(y+3)2=2C. (x+4)2+(y-3)2=2D. (x-3)2+(y-4)2=2【答案】B【解析】【分析】求出圆心关于直线对称的点坐标,即可得到圆关于直线对称的圆的方程.【详解】∵圆的圆心坐标为∴关于直线对称的点的坐标为∴圆关于直线对称的圆的方程是故选B.【点睛】本题考查圆的对称性,圆关于某点或某直线对称,关键是求出圆心的对称点即新圆心坐标,而半径保持不变.6.6.若实数x、y满足,则的最大值为()A. B. C. D.【答案】A 【解析】 【分析】求出圆心与半径,令,将转化为直线,利用圆心到直线的距离小于等于半径,求出的取值范围,即可求出最大值.【详解】∵实数、满足∴圆心为,半径为令,即.∴圆心到直线的距离为∴∴的最大值为 故选A.【点睛】本题考查了代数式的最值问题,通过函数与方程的思想求出表达式的最值,也可以利用数形结合法解答,考查计算能力,转化思想. 7.7.圆的切线方程中有一个是( ) A.B.C.D.【答案】C 【解析】试题分析:已知圆的圆心为,半径为1,圆心只有到直线的距离为1,即此直线与圆相切.故选C .考点:直线与圆的位置关系. 8.8.若直线与直线互相垂直,那么的值等于 ( )A. 1B.C.D.【答案】D 【解析】 试题分析:由得,故选D .考点:平面内两直线垂直与平行的判定.9.9.设直线过点其斜率为1,且与圆相切,则的值为()A. B. C. D.【答案】C【解析】试题分析:设切线方程为,由圆心(0,0)直线的距离,即,解得,,所以选C.考点:1.直线与圆相切的性质.2.点到直线的距离公式.10.10.如果直线的斜率分别为二次方程的两个根,那么与的夹角为()A. B. C. D.【答案】A【解析】【分析】设出两直线的斜率,由一元二次方程根与系数关系得到两直线斜率的和与积,代入夹角公式求得与的夹角.【详解】设直线与的斜率分别为,,与夹角为.∵直线的斜率分别为二次方程的两个根∴,∴∵∴故选A.【点睛】本题考查两条直线的夹角公式,根据三角函数的值求角,解题的关键是运用两条直线的夹角公式.11.11.已知,,若,则()A. B. C. D.【答案】C【解析】解:因为,,若,说明了直线与圆有公共点,则只要满足圆心到直线的距离小于等于半径即可。
高一数学必修二直线与圆练习题
一、选择题1.若直线x =1的倾斜角为α,则α( )A .等于0B .等于4πC .等于2πD .不存在2.原点到直线x +2y -5=0的距离为( )A .1B .3C .2D .53.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线方程是( )A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=0 ?4.圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( )A .相交B .外切C .相离D .内切5.若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为( )A .]3,3[-B .)3,3(-C .]33,33[-D .)33,33(- 6.曲线0222222=-++y x y x 关于( )A .直线2=x 轴对称B .直线y =-x 轴对称C .点)2,2(-中心对称D .点)0,2(-中心对称 7.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴相切,则该圆的标准方程是( ),A .(x -2)2+(y -1)2=1B .1)37()3(22=-+-y x C .(x -1)2+(y -3)2=1 D .1)1()23(22=-+-y x8.设A 、B 是x 轴上的两点,点P 的横坐标为2,且||||PB PA =,若直线PA 的方程为01=+-y x ,则直线PB 的方程是 ( )A .05=-+y xB .012=--y xC .042=--y xD .072=-+y x9.直线1y x =-上的点到圆C :224240x y x y ++-+=的最近距离为( )A. 1 -1 -1100y m -+=与圆22220x y x +--=相切,则实数m 等于( )\A 或B .C .-D .-11.若圆22680x y x y +--=的过点(3 5),的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .B .C .D .12.若圆C 且与直线0x y -=和40x y --=都相切,圆心在直线0x y +=,则圆C 的方程为A .()22(1)12x y ++-= B .22(1)(1)2x y -++= C .22(1)(1)2x y -+-= D .()221(1)2x y +++= 二、填空题13.在空间直角坐标系中,点A (1,2,-3)关于yOz 平面对称的点坐标是____________. —14.圆心为(1,1)且与直线x +y =4相切的圆的方程是________________.15.若经过两点A (-1,0)、B (0,2)的直线l 与圆(x -1)2+(y -a )2=1相切,则a =________.16.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则C 上各点到l 的距离的最小值为____________.三、解答题17.设直线l 过点A (-1,3),且和直线3x +4y -12=0平行.(1)求直线l 的方程;(2)若点B (a ,1)到直线l 的距离小于2,求实数a 的取值范围.-18.如图所示,已知两条直线l 1:x -3y +12=0,l 2:3x +y -4=0,过定点P (-1,2)作一条直线l ,分别与直线l 1、l 2 交于M 、N 两点,若点P 恰好是MN 的中点,求直线l 的方程.<19.已知直线0323:=-+y x l 与圆C :x 2+y 2=4相交于A ,B 两点.(1)求|AB |;(2)求弦AB 所对圆心角的大小.#20.已知圆C :()()x y -+-=122522,直线l :()()21174m x m y m +++--=0(m R ∈).(1)证明:无论m 取什么实数,直线l 与圆C 恒交于两点;(2)求直线l 被圆C 截得的弦长最小时的方程.¥21.已知圆C :012822=+-+y y x ,直线l :02=++a y ax .(I) 当a 为何值时,直线l 与圆C 相切;(Ⅱ) 当直线l 与圆C 相交于A 、B 两点,且22=AB 时,求直线l 的方程.—,22.已知圆C :(x -1)2+(y -2)2=2,P 点坐标为(2,-1),过点P 作圆C 的切线,切点为A 、B .(1)求直线PA 、PB 的方程;(2)求过P 点的圆的切线长;(3)求直线 AB 的方程.。
高中数学-人教版-必修二-直线与圆的方程综合复习题(含答案)
直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D ) A -1或2 B23C 2D -1 4.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点(a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m= 12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件 7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x 10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )22222211.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C ) A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k的取值范围是 ( A )A.⎥⎦⎤ ⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,017.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c 的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫ ⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x +2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .323.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。
高中数学必修二直线和圆的位置关系课后练习一(含解析)新人教A版必修2
题2 答案: C.
详解:∵圆 x2+y2 =r 2 的圆心 O( 0, 0)到直线 l : 2x+3y+1=0 的距离 m= 13 , 13
又直线 l :2x+3y+1=0 被圆 C:x2 +y2 =r 2 所截得的弦长为 d,
∴弦心距 13 ,弦长之半 d 与圆半径 r 组成的直角三角形,
13
2
即 r 2 ( d )2 ( 13 )2 ,∵圆心 O( 0, 0)到直线 2x+4y-1=0 的距离
-2 ,
题3
11
1
答案:最大值为 5 ,最小值为 5.
详解:圆心 C( - 2,0) 到直线 3x+ 4y+12= 0 的距离为
|3 × ( -2) +4×0+ 12| 6
d=
32+ 42
=5.
6
11
∴P 点到直线 3x+ 4y+ 12= 0 的距离的最大值为 d+ r = 5+ 1= 5 ,
6
1
最小值为 d- r = 5-1= 5.
题4
求与圆
x
2
+(
y-2
)
2
=
4
相切且在两坐标轴上截距相等的直线方程.
题5
从直线 x- y+3=0 上的点向圆( x+2) 2 +( y+2) 2 =1 引切线,则切线长的最小值是
.
题6 若⊙ O: x2+ y2=5 与⊙ O1: ( x-m) 2+ y2= 20( m∈ R) 相交于 A、B 两点,且两圆在点 线互相垂直,则线段 AB的长度是 __________ .
当△> 0 时, ( m+1) 2-5 <0,∴ 1 5 <m< 1 5 ;
高中数学必修二直线和圆的方程复习练习试题及答案
1、已知圆2522=+y x ,求:(1)过点A (4,-3)的切线方程(2)过点B (-5,2)的切线方程。
2、求直线01543=-+y x 被圆2522=+y x 所截得的弦长。
3、实数y x ,满足)0(422≥=+y y x ,试求y x m +=3的取值范围。
4、已知实数y x ,满足01422=+-+x y x(1)求xy的最大值和最小值;(2)求x y -的最大值和最小值; (3)求22y x +的最大值和最小值。
1、在直角坐标系中,直线033=-+y x 的倾斜角是()A .6πB .3π C .65π D .32π2、若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是()A .1)1()2(22=++-y x B .1)1()2(22=-+-y x C .1)2()1(22=++-y x D .1)2()1(22=-++y x3、直线0=++c by ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0<>bc abC .0,0>>bc abD .0,0<<bc ab 5、不等式062>--y x 表示的平面区域在直线062=--y x 的( )A .左上方B .右上方C .左下方D .左下方6、直线0943=--y x 与圆422=+y x 的位置关系是() A .相交且过圆心B .相切C .相离D .相交但不过圆心7、已知直线)0(0≠=++abc c by ax 与圆122=+y x 相切,则三条边长分别为cb a 、、的三角形()A .是锐角三角形 B .是直角三角形C .是钝角三角形D .不存在8、过两点)9,3()1,1(和-的直线在x 轴上的截距是() A .23-B .32-C .52 D .29、点)5,0(到直线x y 2=的距离为()A .25 B .5C .23D .2511、由点)3,1(P 引圆922=+y x的切线的长是 ()A .2B .19 C .1 D .412、三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )A .2-B .1-C .0D .113、已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为60,则k 的值是 ()A .03或B .03或-C .3D .3-14、如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于( )A .1B .31-C .32-D .2-16、由422=+=y x x y 和圆所围成的较小图形的面积是( )A .4πB .πC .43πD .23π17、动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是( )A .4)3(22=++y x B .1)3(22=+-y x C .14)32(22=+-y x D .21)23(22=++y x19、以点)1,5()3,1(-和为端点的线段的中垂线的方程是 20、过点023)4,3(=+-y x 且与直线平行的直线的方程是 21、直线y x y x 、在0623=+-轴上的截距分别为22、三点)2,5()3,4(32k及),,(-在同一条直线上,则k 的值等于23、若方程014222=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是 25、求到两个定点)0,1(),0,2(B A -的距离之比等于2的点的轨迹方程。
最新人教版高中数学必修二《直线与圆的位置关系》(含答案解析)
最新人教版高中数学必修二《直线与圆的位置关系》(含答案解析)一、选择题(每小题5分,共40分)1.如果a2+b2=c2,那么直线ax+by+c=0与圆x2+y2=1的位置关系是( )A.相交B.相切C.相离D.相交或相切2.设直线过点(a,0),其斜率为-1,且与圆x2+y2=2相切,则a的值为( )A.±B.±2C.±2D.±43.直线x+2y-5+=0被圆x2+y2-2x-4y=0截得的弦长为( )A.1B.2C.4D.44.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m间的距离为( )A.4B.2C.D.5.过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是( )A.y=xB.y=-xC.y=xD.y=-x6.已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0,当直线l被圆C 截得的弦长为2时,a等于( )A. B.2-C.-1D.+17.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为( )A.1B.2C.D.38.过点P(-,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角α的取值范围是( )A.0°<α<30°B.0°<α≤60°C.0°≤α≤30°D.0°≤α≤60°二、填空题(每小题5分,共10分)9.过点A(1,)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=________.10.已知直线l:mx+y+3m-=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|= .三、解答题(每小题10分,共20分)11.已知圆的方程为(x-1)2+(y-1)2=1,P点坐标为(2,3),求圆的过P 点的切线方程以及切线长.12.已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ的中点,l与直线m:x+3y+6=0相交于N.(1)求证:当l与m垂直时,l必过圆心C.(2)当|PQ|=2时,求直线l的方程.参考答案与解析1选C.圆的半径r=1,圆心(0,0)到直线ax+by+c=0的距离d===>1.2选B.因为切线的方程是y=-(x-a),即x+y-a=0,所以=,a=±2.3选C.由(x-1)2+(y-2)2=5得圆心(1,2),半径r=,圆心到直线x+2y-5+=0的距离d==1,在半径、弦心距、半弦长组成的直角三角形中,弦长l=2=2=4.4选A.根据题意,知点P在圆上,所以切线l的斜率k=-=-=.所以直线l的方程为y-4=(x+2).即4x-3y+20=0.又直线m与l平行,所以直线m的方程为4x-3y=0.故直线l与m间的距离为d==4.5选C.设切线方程为y=kx,圆的方程化为(x+2)2+y2=1,而圆心(-2,0)到直线y=kx 的距离为1,所以=1.所以k=±.又因为切点在第三象限,所以k=.6选C.因为圆的半径为2,且截得弦长的一半为,所以圆心到直线的距离为1,即=1,解得a=±-1,因为a>0,所以a=-1.7选C.设圆心为C(3,0),P为直线上一动点,过P向圆引切线,切点设为N,所以(PN)min=()min=,又(PC)min==2,所以(PN)min=.8选D.设过点P与圆相切的直线方程为y+1=k(x+),则圆心到该直线的距离d= =1,解得k1=0,k2=,画出图形可得直线l的倾斜角的取值范围是0°≤α≤60°.9点A(1,)在圆(x-2)2+y2=4内,当劣弧所对的圆心角最小时,l垂直于过点A(1,)和圆心M(2,0)的直线.所以k=-=-=.答案:10取AB的中点E,连接OE,过点C作BD的垂线,垂足为F,圆心到直线的距离d= ,所以在Rt△OBE中,BE2=OB2-d2=3,所以d==3,得m=-,又在△CDF中,△FCD=30°,所以CD==4.答案:411如图,此圆的圆心C为(1,1),CA=CB=1,则切线长|PA|===2.(1)若切线的斜率存在,可设切线的方程为y-3=k(x-2),即kx-y-2k+3=0,则圆心到切线的距离d==1,解得k=,故切线的方程为3x-4y+6=0.(2)若切线的斜率不存在,切线方程为x=2,此时直线也与圆相切.综上所述,过P点的切线的方程为3x-4y+6=0和x=2.12(1)因为l与m垂直,且k m=-,所以k l=3,故直线l的方程为y=3(x+1),即3x-y+3=0.因为圆心坐标为(0,3)满足直线l的方程,所以当l与m垂直时,l必过圆心C.(2)当直线l与x轴垂直时,易知x=-1符合题意.当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),即kx-y+k=0,因为|PQ|=2,所以|CM|==1,则由|CM|==1,得k=,所以直线l:4x-3y+4=0.故直线l的方程为x=-1或4x-3y+4=0.。
高中数学必修二直线与圆、圆与圆的位置关系检测题(解析版)
高中数学必修二直线与圆、圆与圆的位置关系检测题(解析版)1.圆(x+2)+y=4与圆(x-2)+(y-1)=9的位置关系为(。
)A。
内切 B。
相交 C。
外切 D。
相离2.若直线l:mx+ny-m-n=(n≠0)将圆C:(x-3)+(y-2)=4的周长分为2:1两部分,则直线l的斜率为()A。
2/3 B。
-2/3 C。
-3/2 D。
3/23.已知直线l:y=x+a将圆x+y=4所分成的两段圆弧的长度之比为1:2,则实数a=A。
2 B。
-2 C。
±2 D。
±14.已知直线l:x-ky-5=0与圆O:x+y=10交于A、B两点且OA×OB=1/2.则k^2=A。
2 B。
±2 C。
±√2 D。
2/√55.已知圆(x+1)+y=4的圆心为C,点P是直线l:mx-y-5m+4=0上的点,若该圆上存在点Q使得∠CPQ=30,则实数m的取值范围为()A。
[0.√3] B。
[-2.2] C。
[3-√3.3+√3] D。
[4/√7.-4/√7]6.已知圆的方程为(x-2)^2+(y+3)^2=16,则圆心坐标为(2.-3),半径为4.7.过点P(-3,1)的直线l与圆x^2+y^2=1有公共点,则直线l的倾斜角的取值范围是(-π/2,π/2]。
8.已知圆x^2+y^2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值为()A。
-2 B。
-4 C。
-6 D。
-89.设点M(x,1),若在圆O:x+y=1上存在点N,使得∠OMN=45°,则x的取值范围是[-1.1]。
10.已知直线2x-y+1=0与圆(x+1)+y=4相交于两点;且它们构成等腰直角三角形,则实数x与圆心的距离为2/√5.11.圆x+y+2x-4y+1=0关于直线2ax-by+2=0(a,b∈R)对称,则ab的取值范围是(-∞。
4/5]。
12.定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离。
高中数学必修二直线与圆、圆与圆的位置关系练习题
1.已知直线和圆有两个交点,则的取值范围是() A. B.C. D.2.圆x2+y2-2acos x-2bsin y-a2sin=0在x轴上截得的弦长是()A.2a B.2|a| C.|a| D.4|a|3.过圆x2+y2-2x+4y- 4=0内一点M(3,0)作圆的割线,使它被该圆截得的线段最短,则直线的方程是()A.x+y-3=0 B.x-y-3=0C.x+4y-3=0 D.x-4y-3=04.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为()A.1或-1 B.2或-2 C.1 D.-1 5.若直线3x+4y+c=0与圆(x+1)2+y2=4相切,则c的值为()A.17或-23 B.23或-17 C.7或-13 D.-7或13 6.若P(x,y)在圆 (x+3)2+(y-3)2=6上运动,则的最大值等于()A.-3+2 B.-3+ C.-3-2 D.3-2 7.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是()A.相切 B.相交 C.相离 D.内含8.若圆x2+y2=4和圆x2+y2+4x-4y+4=0关于直线对称,则直线的方程是()A.x+y=0 B.x+y-2=0 C.x-y-2=0 D.x-y+2=01.9.圆的方程x2+y2+2kx+k2-1=0与x2+y2+2(k+1)y+k2+2k=0的圆心之间的最短距离是()A. B.2 C.1 D.10.已知圆x2+y2+x+2y=和圆(x-sin)2+(y-1)2=, 其中0900, 则两圆的位置关系是()A.相交B.外切 C.内切 D.相交或外切11.与圆(x-2)2+(y+1)2=1关于直线x-y+3=0成轴对称的曲线的方程是()A.(x-4)2+(y+5)2=1 B.(x-4)2+(y-5)2=1C.(x+4)2+(y+5)2=1 D.(x+4)2+(y-5)2=112.圆x2+y2-ax+2y+1=0关于直线x-y=1对称的圆的方程为x2+y2=1, 则实数a 的值为()A.0 B.1 C. 2 D.213.已知圆方程C1:f(x,y)=0,点P1(x1,y1)在圆C1上,点P2(x2,y2)不在圆C1上,则方程:f(x,y)- f(x1,y1)-f(x2,y2)=0表示的圆C2与圆C1的关系是()A.与圆C1重合 B.与圆C1同心圆C.过P1且与圆C1同心相同的圆 D.过P2且与圆C1同心相同的圆14.自直线y=x上一点向圆x2+y2-6x+7=0作切线,则切线的最小值为___________.15.如果把直线x-2y+=0向左平移1个单位,再向下平移2个单位,便与圆x2+y2+2x-4y=0相切,则实数的值等于__________.16.若a2+b2=4, 则两圆(x-a)2+y2=1和x2+(y-b)2=1的位置关系是____________.17.过点(0,6)且与圆C: x2+y2+10x+10y=0切于原点的圆的方程是____________.18.已知圆C:(x-1)2+(y-2)2=25, 直线:(2m+1)x+(m+1)y-7m-4=0(m R),证明直线与圆相交;(2) 求直线被圆C截得的弦长最小时,求直线的方程.19.求过直线x+3y-7=0与已知圆x2+y2+2x-2y-3=0的交点,且在两坐标轴上的四个截距之和为-8的圆的方程.20.已知圆满足:(1)截y轴所得弦长为2,(2)被x轴分成两段弧,其弧长的比为3:1,(3)圆心到直线:x-2y=0的距离为,求这个圆方程.21.求与已知圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0且过点(-2,3),(1,4)的圆的方程.参考答案:经典例题:解:设圆C圆心为C(x, y), 半径为r,由条件圆C1圆心为C1(0, 0);圆C2圆心为C2(1, 0);两圆半径分别为r1=1, r2=4,∵圆心与圆C1外切∴|CC1|=r+r1,又∵圆C与圆C2内切,∴|CC2|=r2-r (由题意r2>r),∴|CC1|+|CC2|=r1+r2,即 , 化简得24x2+25y2-24x-144=0, 即为动圆圆心轨迹方程.当堂练习:1.D;2.B;3.A;4.D;5.D;6.A;7.B;8.D;9.A; 10.D; 11.D; 12.D; 13.D; 14.; 15. 13或3; 16. 外切; 17. (x-3)2+(y-3)3=18;18. 证明:(1)将直线的方程整理为(x+y-4)+m(2x+y-7)=0,由,直线过定点A(3,1),(3-1)2+(1-2)2=5<25,点A在圆C的内部,故直线恒与圆相交.(2)圆心O(1,2),当截得的弦长最小时,AO,由kAO= -, 得直线的方程为y-1=2(x-3),即2x-y-5=0.19. 解:过直线与圆的交点的圆方程可设为x2+y2+2x-2y-3+(x+3y-7)=0,整理得x2+y2+(2+)x+(3-2)y-3-7=0,令y=0,得x2+y2+(2+)x -3-7 =0圆在x轴上的两截距之和为x1+x2= -2-,同理,圆在y轴上的两截距之和为2-3,故有-2-+2-3=-8,=2,所求圆的方程为x2+y2+4x+4y-17=0.20. 解:设所求圆圆心为P(a,b),半径为r,则点P到x轴、y轴的距离分别为|b|、|a|,由题设知圆P截x轴所对劣弧对的圆心角为900,知圆P截x轴所得弦长为r,故r2=2b2, 又圆P被 y轴所截提的弦长为2,所以有r2=a2+1,从而2b2-a2=1. 又因为P(a,b)到直线x-2y=0的距离为,所以d==,即|a-2b|=1, 解得a-2b=1,由此得,于是r2=2b2=2, 所求圆的方程是(x+1)2+(y+1)2=2或(x-1)2+(y-1)2=2.21. 解:公共弦所在直线斜率为,已知圆的圆心坐标为(0,),故两圆连心线所在直线方程为y-=-x, 即3x+2y-7=0,设所求圆的方程为x2+y2+Dx+Ey+F=0,由, 所求圆的方程为x2+y2+2x-10y+21=0.。
高中数学必修二直线和圆练习(含答案)
高中数学必修二直线和圆练习一、选择题1.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x2.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .103.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 4.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为 (1,1)M -,则直线l 的斜率为( )A .23B .32C .32-D . 23-. 5. 圆C 1:x 2+y 2+4x-4y+7=0和圆C 2:x 2+y 2-4x-10y+13=0的公切线有( )6. 已知空间两点A(1,3,5)、B(-3,1,3),则线段AB 的中点坐标为( )A.(-1,2,4)B.(2,1,1)C.(1,0,4)D.(3,3,-1)7.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为( )A.1、-1B.2、-2C.18.已知圆C :(x-a)2+(y-2)2=4(a>0)及直线l :x-y+3=0,当直线l 被圆C 截得的弦长为32时,则a 等于( ) A.2 B.22-C.12-D.12+二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.经过点P(1,2)与圆x 2+y 2=1相切的直线方程为______________.3. 与两平行直线x+3y-5=0和x+3y-3=0相切,圆心在直线2x+y+3=0上的圆的方程是________.4. 已知圆x 2+y 2-4x+6y-12=0的内部有一点A(4,-2),则以A 为中点的弦所在的直线方程为______________________.三、解答题1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。
高中数学必修二直线和圆的方程复习练习试题及答案
一、 选择题(每题3分,共54分) 1、在直角坐标系中,直线033=-+y x 的倾斜角是()A .6πB .3π C .65π D .32π2、若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是()A .1)1()2(22=++-y x B .1)1()2(22=-+-y x C .1)2()1(22=++-y xD .1)2()1(22=-++y x3、直线0=++cby ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0<>bc abC .0,0>>bc abD .0,0<<bc ab4、已知直线221:1+=x y l ,直线2l 过点)1,2(-P ,且1l 到2l 的夹角为 45,则直线2l 的方程是( )A .1-=x yB .5331+=x y C .73+-=x y D .73+=x y5、不等式062>--y x 表示的平面区域在直线062=--y x 的( )A .左上方B .右上方C .左下方D .左下方6、直线0943=--y x 与圆422=+y x 的位置关系是()A .相交且过圆心B .相切C .相离D .相交但不过圆心7、已知直线)0(0≠=++abc cby ax 与圆122=+y x 相切,则三条边长分别为c b a 、、的三角形()A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在8、过两点)9,3()1,1(和-的直线在x 轴上的截距是()A .23-B .32-C .52 D .29、点)5,0(到直线x y 2=的距离为()A .25 B .5C .23 D .2510、下列命题中,正确的是( )A .点)0,0(在区域0≥+y x 内B .点)0,0(在区域01<++y x 内C .点)0,1(在区域x y 2>内D .点)1,0(在区域01<+-y x 内二、填空题(每题3分,共15分)19、以点)1,5()3,1(-和为端点的线段的中垂线的方程是20、过点023)4,3(=+-y x 且与直线平行的直线的方程是21、直线y x y x 、在0623=+-轴上的截距分别为22、三点)2,5()3,4(32k及),,(-在同一条直线上,则k 的值等于 23、若方程014222=+++-+a y x y x表示的曲线是一个圆,则a 的取值范围是三、解答题(第24、25两题每题7分,第26题8分,第27题9分,共31分) 24、若圆经过点)2,0(),0,4(),0,2(C B A ,求这个圆的方程。
高中数学必修二--直线与方程及圆与方程测试题
一选择题(共55分,每题5分)1. 已知直线经过点A(0,4)和点B (1,2),则直线的斜率为( )A.3 2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A .072=+-y xB .012=-+y xC .250x y --=D .052=-+y x3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyOA B C D 4.若直线2=0和231=0互相垂直,则( ) A .32- B .32 C .23- D .23 5.过(x 1,y 1)和(x 2,y 2)两点的直线的方程是( )112121112112211211211211...()()()()0.()()()()0y y x x A y y x x y y x x B y y x x C y y x x x x y y D x x x x y y y y --=----=-------=-----=6、若图中的直线L 1、L 2、L 3)A 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1xoD 、K 1﹤K 3﹤K 27、直线235=0关于直线对称的直线方程为( ) A 、325=0 B 、235=0 C 、325=0 D 、325=08、与直线236=0关于点(11)对称的直线是( ) A.326=0 B.237=0 C. 3212=0 D. 238=09、直线5210=0在x 轴上的截距为a,在y 轴上的截距为b,则( ) 25; 25-; 2-5; 2-5-.10、直线27与直线327=0的交点是( ) A (31) B (-1,3) C (-31) D (3,1)11、过点P(41)且与直线346=0垂直的直线方程是( ) A 4313=0 B 4319=0 C 3416=0 D 348=0二填空题(共20分,每题5分)12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _ ;13两直线23y -0和x -12=0的交点在y 轴上,则k 的值是L 114、两平行直线0962043=-+=-+y x y x 与的距离是 。
高一下数学 必修2直线与圆综合小练
教学过程:直线与圆综合小练【综合练习】1.已知过点()2,2P 的直线与圆()2251x y +=-相切,且与直线10ax y -+=垂直,则a =() A .12- B .1C .2D .122.直线3y kx =+与圆()()22243x y -+=-相交M ,N 两点,若MN …k 的取值范围是()A .3,04⎡⎤⎢⎥⎣⎦B .[)3,0,4⎛⎤- ⎥⎝⎦∞-⋃+∞C .⎡⎢⎣⎦D .2,03⎡⎤-⎢⎥⎣⎦3.若圆2211:C x y +=与圆2226:80C x y m x y +--+=相切,则m 的值为_________.4.直线3150x y ++=被圆226850x y x y t +---=截得的弦长为t =___________.5.已知两点()()0,3,4,0A B -,若点P 是圆220:2y y C x +-=上的动点,则ABP 面积的最小值为_________.6.已知圆C 的圆心在第一象限,与x 轴相切于点),且与直线y 也相切,则该圆的方程为_______. 7.已知点()2,1P -,求(1)过点P 与原点距离为2的直线l 的方程;(2)过点P 与原点距离最大的直线l 的方程,最大距离是多少?8.已知圆()()22:344C x y +-=-,(1)若直线1l 过定点()1,0A ,且与圆C 相节,求1l 的方程;(2)若圆D 的半径为3,圆心在直线2:20l x y +-=且,且与圆C 外切,求圆D 的方程.9.直线:3150l x y ++=上的动点P ,作圆226850:C x y x y +---=的两条切线,若切点分别为A ,B ,则在直线AB 上是否存在一个定点?若存在,请求出该定点的坐标,若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.若直线x =1的倾斜角为α,则α( )
A .等于0
B .等于4π
C .等于2π
D .不存在
2.原点到直线x +2y -5=0的距离为( )
A .1
B .3
C .2
D .5
3.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线方程是( )
A .x +y +1=0
B .x +y -1=0
C .x -y +1=0
D .x -y -1=0 ?
4.圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( )
A .相交
B .外切
C .相离
D .内切
5.若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为
( )
A .]3,3[-
B .)3,3(-
C .]33,33[-
D .)3
3,33(- 6.曲线0222222=-++y x y x 关于( )
A .直线2=x 轴对称
B .直线y =-x 轴对称
C .点)2,2(-中心对称
D .点)0,2(-中心对称 7.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴相切,则该圆的标准
方程是( )
,
A .(x -2)2+(y -1)2=1
B .1)37
()3(2
2=-+-y x C .(x -1)2+(y -3)2=1 D .1)1()23(22=-+-y x
8.设A 、B 是x 轴上的两点,点P 的横坐标为2,且||||PB PA =,若直线PA 的方程为01=+-y x ,则直线PB 的方程是 ( )
A .05=-+y x
B .012=--y x
C .042=--y x
D .072=-+y x
9.直线1y x =-上的点到圆C :224240x y x y ++-+=的最近距离为( )
A. 1 -1 -1
100y m -+=与圆22220x y x +--=相切,则实数m 等于( )
\
A 或
B .
C .-
D .-11.若圆22680x y x y +--=的过点(3 5),的最长弦和最短弦分别为AC 和BD ,则四边
形ABCD 的面积为( )
A .
B .
C .
D .12.若圆C 且与直线0x y -=和40x y --=都相切,圆心在直线0x y +=,则圆C 的方程为
A .()2
2(1)12x y ++-= B .22(1)(1)2x y -++= C .22(1)(1)2x y -+-= D .()2
21(1)2x y +++= 二、填空题
13.在空间直角坐标系中,点A (1,2,-3)关于yOz 平面对称的点坐标是____________. —
14.圆心为(1,1)且与直线x +y =4相切的圆的方程是________________.
15.若经过两点A (-1,0)、B (0,2)的直线l 与圆(x -1)2+(y -a )2=1相切,则a =________.
16.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则C 上各点到l 的距离的最小值
为____________.
三、解答题
17.设直线l 过点A (-1,3),且和直线3x +4y -12=0平行.
(1)求直线l 的方程;
(2)若点B (a ,1)到直线l 的距离小于2,求实数a 的取值范围.
-
18.如图所示,已知两条直线l 1:x -3y +12=0,l 2:3x +y -4=0,过定点P (-1,2)作一条直线l ,分别与直线l 1、l 2 交于M 、N 两点,若点P 恰好是MN 的中点,求直线l 的方程.
<
19.已知直线0323:=-+y x l 与圆C :x 2+y 2=4相交于A ,B 两点.
(1)求|AB |;
(2)求弦AB 所对圆心角的大小.
#
20.已知圆C :
()()x y -+-=122522,直线l :()()21174m x m y m +++--=0
(m R ∈).
(1)证明:无论m 取什么实数,直线l 与圆C 恒交于两点;
(2)求直线l 被圆C 截得的弦长最小时的方程.
¥
21.已知圆C :01282
2=+-+y y x ,直线l :02=++a y ax .
(I) 当a 为何值时,直线l 与圆C 相切;
(Ⅱ) 当直线l 与圆C 相交于A 、B 两点,且22=AB 时,求直线l 的方程.
—
,
22.已知圆C :(x -1)2+(y -2)2=2,P 点坐标为(2,-1),过点P 作圆C 的切线,切点为A 、
B .
(1)求直线PA 、PB 的方程;
(2)求过P 点的圆的切线长;
(3)求直线 AB 的方程.。