2参数方程知识讲解及典型例题
参数方程] · [基础] · [知识点+典型例题]
参数方程知识讲解一、参数定义:在平面直角坐标系中,若曲线C 上的点(,)P x y 满足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数.二、参数方程与普通方程的互化1.参数方程化为普通方程代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围!2.普通方程化为参数方程注:普通方程化为参数方程需要引入参数,选择的参数不同,所得的参数方程也不一样.三、常见参数方程1.直线l 的常用参数方程为:cos sin x m t y n t θθ=+⎧⎨=+⎩,t ∈R 为参数,其中θ为直线的倾斜角,(,)m n 为直线上一点.2.圆222()()x a y b r -+-=的常用参数方程为:cos ,[0,2π)sin x a r y b r θθθ=+⎧∈⎨=+⎩为参数; 3.椭圆22221x y a b +=的常用参数方程为:cos ,[0,2π)sin x a y b θθθ=⎧∈⎨=⎩为参数. 【引申】:参数方程和之前我们讲过的还原法有一个相同的“易错点”,就是一定要注意:新引进的参数的范围!【重点】:参数方程最主要的是抓住到底“参数是谁”!典型例题一.选择题(共11小题)1.(2018•朝阳区一模)直线l的参数方程为(t为参数),则l的倾斜角大小为()A.B.C.D.2.(2018•大兴区一模)直线(t为参数)与曲线(θ为参数)相交的弦长为()A.1 B.2 C.3 D.43.(2018•奉贤区二模)已知曲线的参数方程为(0≤t≤5),则曲线为()A.线段B.双曲线的一支C.圆弧D.射线4.(2017秋•天心区校级期末)直线的参数方程为(t为参数),M0(﹣1,2)和M(x,y)是该直线上的定点和动点,则t的几何意义是()A.有向线段M0M的数量B.有向线段MM0的数量C.|M0M|D.以上都不是5.(2018春•郑州期末)若P(2,﹣1)为圆(θ为参数且0≤θ<2π)的弦的中点,则该弦所在的直线方程为()A.x﹣y﹣3=0 B.x+2y=5 C.x+y﹣1=0 D.2x﹣y﹣5=06.(2017秋•天心区校级期末)已知曲线(θ为参数,0≤θ≤π)上一点P,原点为O,直线PO的倾斜角为,则P的坐标是()A.(3,4) B., C.(﹣3,﹣4)D.,7.(2017秋•东湖区校级期末)曲线C1:(t为参数),曲线C2:(θ为参数),若C1,C2交于A、B两点,则弦长|AB|为()A.B. C.D.48.(2017秋•天心区校级期末)已知椭圆的参数方程为(θ为参数),则它的离心率为()A.B.C.D.9.(2018春•海珠区期末)若曲线C的参数方程为(t为参数),则下列说法正确的是()A.曲线C是直线且过点(﹣1,2) B.曲线C是直线且斜率为C.曲线C是圆且圆心为(﹣1,2) D.曲线C是圆且半径为|t|10.(2018春•青山区校级期末)参数方程(t为参数)表示什么曲线()A.一个圆B.一个半圆C.一条射线D.一条直线11.(2018春•桑珠孜区校级期中)点(1,2)在圆的()A.内部B.外部C.圆上D.与θ的值有关二.填空题(共5小题)12.(2017•松江区二模)直线(t为参数)对应的普通方程是.13.(2017•闵行区校级模拟)已知直线l的参数方程是(t为参数),则它的普通方程是.14.(2017•徐汇区二模)参数方程为(t为参数)的曲线的焦点坐标为.15.(2016春•淮安校级期末)参数方程(t为参数)化为普通方程为.16.(2016春•无锡期末)直线(t为参数)的倾斜角为.三.解答题(共4小题)17.(2012•天山区校级模拟)已知在直角坐标系xOy内,直线l的参数方程为(t为参数).以Ox为极轴建立极坐标系,圆C的极坐标方程为.(1)写出直线l的普通方程和圆C的直角坐标方程;(2)判断直线l和圆C的位置关系.18.求椭圆(θ为参数)的左焦点坐标.19.(1)在直角坐标系中,曲线C1:(其中θ为参数),直线C2:(其中t为参数).点F(﹣4,0),曲线C1与直线C2相交于点A、B,求|FA|•|FB|的值.(2)在极坐标系中,直线l:ρcos(θ﹣)=2,与以点M(4,π)为圆心,以5为半径的圆相交于P、Q两点,求|PQ|的值.20.已知极坐标的极点在平面直角坐标的原点O处,极轴与x轴的正半轴重合,且长度单位相同,若点P为曲线C:(θ为参数)上的动点,直线l 的极坐标方程为ρcos(θ+)=m(m>2)(1)将曲线C的参数方程化为普通方程,直线l的极坐标方程化为直角坐标方程;(2)若曲线C上有且只有一点P到直线l的距离为2,求实数m的值和点P的坐标.。
高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4
曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。
)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
专题13.2 参数方程(讲)(解析版)
专题13.2 参数方程1.了解参数方程,了解参数的意义;2.能选择适当的参数写出直线、圆和椭圆的参数方程.知识点一 曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.知识点二 参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.知识点三 常见曲线的参数方程和普通方程【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离.【知识必备】1.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.2.参数方程化普通方程常用的消参技巧:代入消元、加减消元、平方后加减消元等,经常用到公式cos 2 θ+sin 2 θ=1,1+tan 2 θ=1cos 2 θ.考点一 参数方程与普通方程的互化【典例1】(福建莆田一中2019届模拟) 将下列参数方程化为普通方程.(1)⎩⎨⎧x =1t,y =1tt 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2 θ,y =-1+cos 2θ(θ为参数). 【解析】(1)由t 2-1≥0⇒t ≥1或t ≤-1⇒0<x ≤1或-1≤x <0.由⎩⎨⎧x =1t①,y =1tt 2-1②,①式代入②式得普通方程为x 2+y 2=1.其中⎩⎪⎨⎪⎧0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)由x =2+sin 2 θ,0≤sin 2 θ≤1⇒2≤2+sin 2 θ≤3⇒2≤x ≤3,⎩⎪⎨⎪⎧x =2+sin 2 θ,y =-1+cos 2θ⇒⎩⎪⎨⎪⎧x -2=sin 2 θ,y =-1+1-2sin 2 θ ⇒⎩⎪⎨⎪⎧x -2=sin 2 θy =-2sin 2 θ⇒普通方程为2x +y -4=0(2≤x ≤3). 【方法技巧】消去参数的方法一般有三种(1)利用解方程的技巧求出参数的表示式,然后代入消去参数. (2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活地选用一些方法从整体上消去参数. 【变式1】(安徽蚌埠二中2019届模拟)(1)设x -13=cos θ,θ为参数,求椭圆(x -1)23+(y +2)25=1的参数方程.(2)将下列参数方程化为普通方程. (ⅰ)⎩⎨⎧x =12(e t +e -t ),y =12(e t -e -t )(t 为参数);(ⅱ)⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).【解析】(1)把x -13=cos θ代入椭圆方程,得到cos 2θ+(y +2)25=1,于是(y +2)2=5(1-cos 2 θ)=5sin 2 θ,即y +2=±5sin θ, 由参数θ的任意性,可取y =-2+5sin θ, 因此椭圆(x -1)23+(y +2)25=1的参数方程为⎩⎨⎧x =1+3cos θ,y =-2+5sin θ(θ为参数). (2)(ⅰ)由参数方程得e t =x +y ,e -t =x -y , 所以(x +y )(x -y )=1,得普通方程为x 2-y 2=1. (ⅱ)因为曲线的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ ①,y =2tan θ ②,由y =2tan θ, 得tan θ=y2,代入①得普通方程为y 2=2x .考点二 参数方程的应用【典例2】【2019年高考北京卷理数】已知直线l 的参数方程为13,24x t y t=+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l 的距离是( )A .15B .25C .45D .65【答案】D【解析】由题意,可将直线l 化为普通方程:1234x y --=,即()()41320x y ---=,即4320x y -+=,所以点(1,0)到直线l 的距离65d ==,故选D . 【举一反三】(2018·全国Ⅱ卷)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ (θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 【解析】(1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α,当cos α=0时,l 的直角坐标方程为x =1. (2)将l 的参数方程代入C 的直角坐标方程, 整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.【举一反三】(浙江镇海中学2019届模拟)在平面直角坐标系中,直线l 的参数方程为⎩⎨⎧x =t +1,y =3t +1(t为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ1-cos 2 θ.(1)写出直线l 的极坐标方程与曲线C 的直角坐标方程;(2)已知与直线l 平行的直线l ′过点M (2,0),且与曲线C 交于A ,B 两点,试求|AB |. 【解析】(1)直线l 的参数方程可化为⎩⎪⎨⎪⎧x -1=t ,y -13=t (t 为参数),消去t 可得直线的普通方程为y =3(x -1)+1,又∵⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴直线l 的极坐标方程为3ρcos θ-ρsin θ-3+1=0, 由ρ=2cos θ1-cos 2θ可得ρ2(1-cos 2 θ)=2ρcos θ, ∴曲线C 的直角坐标方程为y 2=2x . (2)直线l 的倾斜角为π3,∴直线l ′的倾斜角也为π3,又直线l ′过点M (2,0),∴直线l ′的参数方程为⎩⎨⎧x =2+12t ′,y =32t ′(t ′为参数),将其代入曲线C 的直角坐标方程可得3t ′2-4t ′-16=0,设点A ,B 对应的参数分别为t ′1,t ′2, 由一元二次方程的根与系数的关系知 t ′1t ′2=-163,t ′1+t ′2=43,∴|AB |=|t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=4133. 【方法技巧】已知直线l 经过点M 0(x 0,y 0),倾斜角为α,点M (x ,y )为l 上任意一点,则直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).1.若M 1,M 2是直线l 上的两个点,对应的参数分别为t 1,t 2,则|M 0M 1→||M 0M 2→|=|t 1t 2|,|M 1M 2→|=|t 2-t 1|=(t 2+t 1)2-4t 1t 2.2.若线段M 1M 2的中点为M 3,点M 1,M 2,M 3对应的参数分别为t 1,t 2,t 3,则t 3=t 1+t 22.3.若直线l 上的线段M 1M 2的中点为M 0(x 0,y 0),则t 1+t 2=0,t 1t 2<0.【变式2】(黑龙江大庆实验中学2019届模拟)已知曲线C 的极坐标方程是ρ=2cos θ,若以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,且取相同的单位长度建立平面直角坐标系,则直线l的参数方程是⎩⎨⎧x =32t +m ,y =12t(t 为参数).(1)求曲线C 的直角坐标方程与直线l 的普通方程;(2)设点P (m ,0),若直线l 与曲线C 交于A ,B 两点,且|P A |·|PB |=1,求非负实数m 的值. 【解析】(1)由x =ρcos θ,y =ρsin θ,x 2+y 2=ρ2, 曲线C 的极坐标方程是ρ=2cos θ,即ρ2=2ρcos θ, 得x 2+y 2=2x ,即曲线C 的直角坐标方程为(x -1)2+y 2=1,由直线l 的参数方程⎩⎨⎧x =32t +m ,y =12t(t 为参数),可得其普通方程为x -3y -m =0.(2)将⎩⎨⎧x =32t +m ,y =12t(t 为参数)代入圆(x -1)2+y 2=1,可得t 2+3(m -1)t +m 2-2m =0,由Δ=3(m -1)2-4(m 2-2m )>0,可得-1<m <3, 由m 为非负数,可得0≤m <3.设t 1,t 2是方程的两根,则t 1t 2=m 2-2m , 由|P A |·|PB |=1,可得|m 2-2m |=1, 解得m =1或1±2,因为0≤m <3,所以m =1或1+ 2.考点三 参数方程与极坐标方程的综合应用【典例3】【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l的直角坐标方程为2110x ++=;(2)7.【解析】(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x +=. (2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=.当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l 距离的最小值为7.【举一反三】(2017·全国Ⅲ卷)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt(t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.【解析】(1)由l 1:⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数)消去t ,化为l 1的普通方程y =k (x -2),① 同理得直线l 2的普通方程为x +2=ky ,② 联立①,②消去k ,得x 2-y 2=4(y ≠0). 所以C 的普通方程为x 2-y 2=4(y ≠0). (2)将直线l 3化为普通方程为x +y =2, 联立⎩⎨⎧x +y =2,x 2-y 2=4得⎩⎨⎧x =322,y =-22,∴ρ2=x 2+y 2=184+24=5,∴l 3与C 的交点M 的极径为 5.【方法技巧】1.涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.2.数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.【变式3】(江苏常州高级中学2019届模拟)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin α+cos α,y =sin α-cos α(α为参数). (1)求曲线C 的普通方程;(2)在以O 为极点,x 轴正半轴为极轴的极坐标系中,直线l 的方程为2ρsin ⎝⎛⎭⎫π4-θ+12=0,已知直线l 与曲线C 相交于A ,B 两点,求|AB |.【解析】(1)由⎩⎪⎨⎪⎧x =sin α+cos α,y =sin α-cos α(α为参数)得sin α=x +y 2,cos α=x -y 2,将两式平方相加得1=⎝⎛⎭⎫x +y 22+⎝⎛⎭⎫x -y 22, 化简得x 2+y 2=2.故曲线C 的普通方程为x 2+y 2=2. (2)由2ρsin ⎝⎛⎭⎫π4-θ+12=0, 知ρ(cos θ-sin θ)+12=0,化为直角坐标方程为x-y+12=0,圆心到直线l的距离d=24,由垂径定理得|AB|=302.。
主题2参数方程第一讲曲线的参数方程精品
课标考纲解读1、通过分析抛射体运动中时间与运动物体位置的关系,了解参数方程,了解参数的意义。
2、能够进行参数方程与普通方程的互化。
考点知识清单1、参数方程的概念⑴在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数{:兗)),并且对于t的每一个允许值,由方程组所确定的点M(x,y)都在这条曲线上,那么方程就叫这条曲线的_______ ,联系变数x,y的变数t叫做_______ ,简称 _____ 。
相对于参数方程而言,直接给出点的坐标间关系的方程叫做 _____ 。
⑵_____ 联系变数x,y的桥梁,可以是一个有______ 义或______ 意义的变数,也可以是 ______ 的变数。
2、参数方程和普通方程的互化⑴曲线的_____ 和 ____ 是曲线方程的不同形式。
⑵在参数方程与普通方程的互化中必须使 ______保持一致。
例题及母题迁移[例1]设质点沿原点为圆心,半径为2的圆做匀角速度运动,角速度为n rad/s试以时间t为参数,建立质点运动轨迹的参数方程。
60[解析]显然点M的坐标x,y随着/ AOM的变化而变化,直接写出x 与y的关系式有困难,选一个新的变数0 = AOM,用B将坐标x,y 表示出来,再找0与t的关系。
[答案]解:如图2- 1-1所示,在运动开始时质点位于点A处,此时t=0.设动点M(x,y)对应时刻t,由图可知{:舊鳥,又0青t (t以s为单位),得参数方程{心卞旨_0)y Jsin —t—60[母题迁移]1、当方程是()0变化时,由点P(2cos 0 ,3sir所确定的曲线的参数A{ x =2cos VA{y :3sin 'ix z3cos 71 C{y =2sin 二B{ x =3sin JB{y =2cos '1x -」sin ■'D{y=J2cos ■'[例2]设飞机一匀速v=150m/s做水平飞行,若在飞行高度h=588m处投弹(设投弹的初速度等于飞机的速度)⑴求炸弹离开飞机后的轨迹方程;⑵飞机在离目标多远(水平距离)处投弹才能命中目标[答案]解:⑴如图2- 1-2所示,A为投弹点,坐标为(0,588), B 为目标,坐标为(x0, 0).记炸弹飞行的时间为t,在A点t=0.设M(X,Y)为飞行曲线上任意一点,它对应时刻t.炸弹初速度V。
高中数学选修4-4(人教A版)第二讲参数方程2.1知识点总结含同步练习及答案
描述:例题:高中数学选修4-4(人教A版)知识点总结含同步练习题及答案第二讲 参数方程 一 曲线的参数方程一、知识清单参数方程二、知识讲解1.参数方程曲线的参数方程定义设平面上取定了一个直角坐标系,把坐标系,表示为第三个变量的函数如果对于的每一个值(),式所确定的点都是在一条曲线上;而这条曲线上的任一点,都可由的某个值通过式得到,则称式为该曲线的参数方程,其中变量称为参数.直线的参数方程直线的参数方程的一般形式是.圆的参数方程若圆心在点,半径为,则圆的参数方程为 . 圆锥曲线的参数方程若椭圆的中心不在原点,而在点,相应的椭圆的参数方程为.抛物线的参数方程抛物线的参数方程为.双曲线的参数方程双曲线的参数方程为.摆线的参数方程一圆沿一直线作无滑动滚动式,圆周上的一定点的轨迹称为摆线.设半径为的圆在轴上滚动,开始时定点在原点处.取圆滚动时转过的角度(以弧度为单位)为参数.当圆滚过角时,圆心为,圆与轴的切点为,.所摆线的参数方程为.xOy x y t {a ≤t ≤b .(2−3)x =f (t )y =g (t )t a ≤t ≤b (2−3)M (x ,y )M (x ,y )t (2−3)(2−3)t {t ∈R x =+lt x 0y =+mty 0(,)M 0x 0y 0R {0≤θ≤2πx =+R cos θx 0y =+R sin θy 0(,)M 0x 0y 0{0≤t ≤2πx =+a cos t x 0y =+b sin ty 0{x =2p t 2y =2pt{x =a sec θy =b tan θM a x M O t t B x A ∠ABM =t {x =a (t −sin t )y =a (1−cos t )下列方程中可以看成参数方程的是( )A. B. C.x −y −t =0+−2ax −9=0x 2y 2{=x 2t 2y =2t −1。
高三数学参数方程知识点
高三数学参数方程知识点数学是一门抽象而又具有普适性的学科,它的应用广泛,对于高三学生来说,数学的学习变得更加重要和密集。
本文将着重介绍高三数学中的参数方程知识点,帮助学生全面理解并有效记忆这一概念。
一、参数方程的定义与特点参数方程是指用一个参数表示所有的自变量和因变量之间的函数关系。
通常用t作为参数,表示自变量的取值范围。
在参数方程中,将自变量和因变量用参数表示,使得函数的自变量和因变量之间的关系更为灵活。
二、参数方程的表示方法参数方程的表示方法有多种形式,常见的有向量表示法和分量表示法。
1. 向量表示法在向量表示法中,自变量和因变量都用向量表示。
例如,对于平面上的一个点P,其参数方程可表示为:P(t) = (x(t), y(t))其中,x(t)和y(t)分别表示点P的x坐标和y坐标,t为参数。
2. 分量表示法在分量表示法中,将自变量和因变量都分别表示为关于参数t的函数。
例如,对于平面上的一个点P,其参数方程可以表示为:x = f(t)y = g(t)其中,f(t)和g(t)分别表示x和y的函数,t为参数。
三、参数方程应用领域参数方程在数学中有广泛的应用,特别是在曲线的研究中起到重要作用。
下面分别介绍参数方程在平面曲线和空间曲线中的应用。
1. 平面曲线参数方程在平面曲线中的应用非常广泛,常见的曲线方程如圆、椭圆、抛物线、双曲线等都可以用参数方程表示。
通过参数方程,可以对曲线的形状和性质进行更深入的研究。
例如,对于圆的参数方程为:x = a*cos(t)y = a*sin(t)其中,a为半径,t为参数。
通过改变参数t的取值范围,可以绘制出一条圆的完整轨迹。
2. 空间曲线参数方程在空间曲线的研究中也起到重要作用,例如,直线、曲线、螺旋线等都可以通过参数方程来表示。
通过参数方程,可以描述物体在空间中的运动轨迹,从而研究物体的运动方式和变化规律。
四、参数方程的解法当给定一个参数方程时,我们需要求解参数方程对应的曲线方程或图形。
高中数学函数参数方程解析
高中数学函数参数方程解析一、引言在高中数学学习中,函数参数方程是一个重要的知识点。
本文将从基础概念出发,通过具体题目的举例,分析解题思路和考点,并给出一些解题技巧,帮助读者更好地理解和应用函数参数方程。
二、函数参数方程的基本概念函数参数方程是指用参数表示的函数方程。
一般形式为:y = f(x, a),其中a为参数。
参数可以是任意实数,通过改变参数的取值,可以得到不同的函数图像。
三、函数参数方程的应用举例1. 例题一:求参数方程y = a^2 - x^2的图像。
解析:将参数方程转化为直角坐标系下的函数方程。
令y = f(x, a) = a^2 - x^2,其中a为参数。
通过改变参数a的取值,可以得到不同的图像。
当a = 1时,函数图像为一个单位圆;当a = 2时,函数图像为一个半径为2的圆。
可以通过改变参数a的取值,观察图像的变化规律。
2. 例题二:求参数方程x = a + t,y = a - t的图像。
解析:将参数方程转化为直角坐标系下的函数方程。
令x = f(t, a) = a + t,y = g(t, a) = a - t,其中a为参数。
通过改变参数a的取值,可以得到不同的图像。
当a = 0时,函数图像为直线y = -x;当a = 1时,函数图像为直线y = 1 - x。
可以通过改变参数a的取值,观察图像的变化规律。
四、函数参数方程的考点分析1. 参数的取值范围:在解题过程中,需要注意参数的取值范围,以保证函数有意义。
例如,在例题一中,参数a不能取负值,否则函数图像将不存在。
2. 函数图像的特点:通过观察函数图像的特点,可以发现一些规律。
例如,在例题一中,当参数a取不同的值时,函数图像的形状和大小都会发生变化。
这表明参数a对函数图像具有一定的控制作用。
3. 函数图像的对称性:在解题过程中,可以通过观察函数图像的对称性来简化问题。
例如,在例题一中,函数图像y = a^2 - x^2关于y轴对称,这可以帮助我们更好地理解和绘制函数图像。
13.2 参数方程
1 (2)若把曲线 C1 上各点的横坐标压缩为原来的 倍,纵坐 2
3 标压缩为原来的 倍得到曲线 C2,设点 P 是曲线 C2 上的一 2
个动点,求它到直线 l 的距离的最小值. 思维导引:(1)先把直线和圆的参数方程化为普通方程,然 后利用直线被圆所截弦长公式求解;(2)先根据伸缩变换 写出曲线 C2 的参数方程,从而写出点 P 的坐标,然后根据点 到直线的距离公式求出目标函数,最后求最值.
考点二 参数方程及其应用
【例 2】 (2013 内蒙古包头市模拟)已知直线
1 x 1 t, x cos , 2 l: (t 为参数),曲线 C1: y sin y 3t 2
(θ 为参数). (1)设 l 与 C1 相交于 A、B 两点,求|AB|;
3 d 取得最小值,最小值为 (- 2 +2)= 4
反思归纳
一般地 ,如果题目中涉及圆、椭圆
上的动点或求最值范围问题时可考虑用参数方 程,设曲线上点的坐标,将问题转化为三角恒等 变换问题解决,使解题过程简单明了.
即时突破 2 已知点 P(x,y)是圆 x +y =2y 上的动点 .
(1)求 2x+y 的取值范围; (2)若 x+y+a ≥0 恒成立,求实数 a 的范围.
π ρ cos =t,若两曲线有公共点,则 t 的取值范 3
围是 .
解析:将曲线 C1 的参数方程化为普通方程得 (x-2)2+y2=4, 即曲线 C1 是以(2,0)为圆心,2 为半径的圆, 将曲线 C2 的极坐标方程化成直角坐标方程得 x- 3 y-2t=0.
∵两曲线有公共点, ∴圆心(2,0)到直线 x- 3 y-2t=0 的距离
参数方程
设M(x,y),由上面两直线方程可求得: 18a x 2 , 2 2 x y a 9 (a为参数), 消去参数a, 得 1( x 0). 2 9 4 y 2a 18 a2 9
点M的轨迹是长轴长为6,短轴长为4的椭圆(除去B,B).
23
参数方程及其应用 例 (2015· 内蒙古包头市模拟)已知直线 x=1+1t, 2 l: 3 y= t 2 参数). (1)设 l 与 C1 相交于 A、B 两点,求|AB|;
A
12
x 5cos (5).二次曲线 ( 是参数) y 3sin 的左焦点的坐标为() (-4,0)
t t
x e e (6).参数方程 ( t 为参数 ) 表示的曲线( t t y e e A.双曲线B.双曲线的下支C.双曲线的上支D.圆
若x y a恒成立,求实数 a的取值范围
x2 y 2 x= 3 cos , (1)由椭圆 + =1的参数方程为 ( 为参数), 3 4 y 2sin 可设点P的坐标为( 3 cos , 2sin ) 3 1 则2x+y=2 3 cos 2sin 4 cos sin 2 2
P ( x, y ) t 的几何意义:表示有向线段 P0 P 的数量,
直线上两点P1,P2对应的参数分别是t1,t2,则 | P1P2|=| t1-t2 |
4
●两个要点 x=x0+tcosα, (1)在直线的参数方程 (t 为参数)中 t 的几何 y=y0+tsinα 意义是表示在直线上从定点 P0(x0,y0)到直线上的任一点 P(x,y) 构成的有向线段 P0P 的数量且在直线上任意两点 P1、P2 的距离为 |P1P2|=|t1-t2|= t1+t22-4t1t2.
高中数学参数方程知识点详解(讲义+过关检测+详细答案)
5.【答案】D
【解析】 x2 t, y2 1 t 1 x2, x2 y2 1,而t 0, 0 1 t 1,得0 y 2 .
4
4
6.【答案】D
【解析】圆
x=2 cos,
的圆心为原点,半径为
y =2 sin
2,
则圆心到直线 3x-4y-9=0 的距离为 9 ,小于半径 2,故直线与圆相交. 5
D.(1, 3)
2.已知某曲线的参数方程为 xy==ccooss2, +1,则该曲线是(
)
A.直线
B.圆
C.双曲线
3.若一直线的参数方程为
x
x0
1 2
t
(t 为参数),则此直线的倾斜Байду номын сангаас为(
y
y0
3t 2
A.30º
B. 60º
C.120º
4.若点
P(4,a)在曲线
x=
t 2
(t 为参数)上,点 F(2,0),则|PF|等于(
)
y=2 t
A.4
B.5
C.6
D.抛物线 ) D.150º
D.7
5.与参数方程为
x
t
(t为参数) 等价的普通方程为( )
y 2 1 t
A. x2 y2 1 4
B. x2 y2 1(0 x 1) 4
C. x2 y2 1(0 y 2) 4
D. x2 y2 1(0 x 1, 0 y 2) 4
y2 b2
1( a
0 , b 0 )的参数方程为:
x a sec
y
b
tan
(
为参数,
[0, 2 ) 且
, 2
3 2
人教版高二数学2-2第二章参数方程
4-4第二章 参数方程【知识点梳理】一、参数方程的概念:一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t )①,并且对于t 取的每一个允许值,由方程组①所确定的点P (x ,y )都在这条曲线上,那么方程组①就叫作这条曲线的参数方程,联系x ,y 之间关系的变数t 叫作参变数,简称 参数 . 相对于参数方程,我们把直接用坐标(x ,y )表示的曲线方程f (x ,y )=0叫作曲线的普通方程.说明:(1)一般来说,参数的变化范围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
二、几种常见的参数方程1.直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 0≤α<π.2.圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).3.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数,0≤θ≤2π).(2)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =btan θ(θ为参数,0≤θ≤2π且2π3θ,2πθ≠≠).,则{,有sec 2θ-tan 2θ=1(3)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).三、参数方程与普通方程的互化将参数方程化成普通方程的常用方法有: (1)代数法消去参数①代入法:从参数方程中选出一个方程,解出参数,然后把参数的表达式代入另一个方程,消去参数,得到曲线的普通方程.②代数运算法:通过乘、除、乘方等运算把参数方程中的方程适当地变形,然后把参数方程中的两个方程进行代数运算,消去参数,得到曲线的普通方程. (2)利用三角恒等式消去参数如果参数方程中的x ,y 都表示为参数的三角函数,那么可以考虑用三角函数公式中的恒等式消去参数,得到曲线的普通方程. (3)注意事项① 互化中必须使,x y 的取值范围保持一致. ② 同一个普通方程可以有不同形式的参数方程.几种常见的参数方程例1:(1)过点(0,0)且倾斜角为60°的直线的参数方程是________.【答案】 (1)⎩⎨⎧x =12t ,y =32t【解析】⎩⎪⎨⎪⎧x =t cos 60°,y =t sin 60°,即⎩⎨⎧x =12t ,y =32t(t 为参数).(2)过点P (-4,0),倾斜角为5π6的直线的参数方程为________.【答案】 ⎩⎨⎧x =-4-32t ,y =t2【解析】∵直线l 过点P (-4,0),倾斜角α=5π6,所以直线的参数方程为⎩⎨⎧x =-4+t cos 5π6,y =0+t sin 5π6,即(t 为参数)⎩⎨⎧x =-4-32t ,y =t2.(3)参数方程⎩⎪⎨⎪⎧x =1+t cos 20°,y =2+t sin 20°(t 为参数)表示的直线的倾斜角是________. 【解析】方程符合直线参数方程的标准形式,易知倾斜角为20°.(4)直线⎩⎪⎨⎪⎧x =-2+t cos 50°,y =3-t sin 40°(t 为参数)的倾斜角α等于( ) A.40° B.50° C.-45° D.135°【答案】 D 【解析】 根据tan α=-sin 40°cos 50°=-1,因此倾斜角为135°.例2:(1)圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),则圆的圆心坐标为( )A.(0,2)B.(0,-2)C.(-2,0)D.(2,0)【答案】 D 【解析】 由圆的参数方程知,圆心为(2,0). (2)圆心在点(-1,2),半径为5的圆的参数方程为( )A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π) B.⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π) C.⎩⎪⎨⎪⎧ x =-1+5cos θ,y =2+5sin θ(0≤θ<π) D.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π) 【答案】 D 圆心在点C (a ,b ),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).例3:(1)椭圆⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ的长轴长和短轴长分别为( )A.3 2B.6 2C.3 4D.6 4【答案】 D 【解析】 由方程可知a =3,b =2,∴2a =6,2b =4.(2)曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为________.【答案】 23 【解析】由曲线C 的参数方程可以看出a =3,b =5,得a 2=9,b 2=5,⇒c 2=4,所以e=c a =23. 例4:双曲线C :⎩⎪⎨⎪⎧x =3sec φ,y =4tan φ(φ为参数)的焦点坐标为________.【答案】 (-5,0),(5,0)【解析】 曲线C 的普通方程为x 29-y 216=1,得焦点坐标为F 1(-5,0),F 2(5,0)参数方程与普通方程的互化例1:(1)将参数方程⎩⎪⎨⎪⎧x =t ,y =2t(t 为参数)化为普通方程是________.【解析】 把t =x 代入②得y =2x 即普通方程为y =2x .(2)将参数方程⎩⎪⎨⎪⎧x =2t 2,y =t +1(t 为参数)化为普通方程是________.【解析】由②得t =y -1,代入①得x =2(y -1)2.(3)将参数方程⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)化为普通方程是________.【解析】由sin 2 θ+cos 2 θ=1得x 2+y 2=1.(4)将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数)化为普通方程是________【解析】由y =-1+cos 2θ,可得y =-2sin 2θ, 把sin 2θ=x -2代入y =-2sin 2θ,可得y =-2(x -2), 即2x +y -4=0. 又∵2≤x =2+sin 2θ≤3,∴所求的方程是2x +y -4=0(2≤x ≤3),它表示的是一条线段. (5)将(x -2)2+y 2=1化为参数方程是 【解析】令x -2=cos α,y =sin α,∴C 1的一个参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数,α∈R ).【练一练】1.曲线⎩⎪⎨⎪⎧x =2cos θ-1,y =2sin θ+2(θ为参数)的一条对称轴的方程为( )A.y =0B.x +y =0C.x -y =0D.2x +y =0【答案】 D 【解析】 曲线⎩⎪⎨⎪⎧x =2cos θ-1,y =2sin θ+2(θ为参数)的普通方程为(x +1)2+(y -2)2=4,圆心C的坐标为(-1,2),过圆心的直线都是圆的对称轴,故选D.2.与普通方程x 2+y -1=0等价的参数方程为( )A.⎩⎪⎨⎪⎧x =sin t ,y =cos 2t (t 为参数) B.⎩⎪⎨⎪⎧ x =cos t ,y =sin 2t (t 为参数) C.⎩⎨⎧x =1-t ,y =t(t 为参数) D.⎩⎪⎨⎪⎧x =tan t ,y =1-tan 2t (t 为参数) 【答案】 D【解析】 A 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1]. B 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1]. C 化为普通方程为x 2+y -1=0,x ∈[0,+∞),y ∈(-∞,1]. D 化为普通方程为x 2+y -1=0,x ∈R ,y ∈(-∞,1].参数方程的应用【例1】(1)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________. 【答案】 (1,1) 【解析】 C 1的普通方程为y 2=x (x ≥0,y ≥0),C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧ y 2=x ,(x ≥0,y ≥0),x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1.∴C 1与C 2的交点坐标为(1,1).(2)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a ,(t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.【答案】 3 【解析】 直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1.又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.【例2】已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上.(1)求常数a ;(2)求曲线C 的普通方程.【解】 (1)由题意,可知⎩⎪⎨⎪⎧1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1,所以a =1. (2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2,由第一个方程,得t =x -12,代入第二个方程,得y =⎝⎛⎭⎫x -122,即(x -1)2=4y 为所求.【例3】已知直线l 的参数方程:⎩⎪⎨⎪⎧x =t ,y =1+2t (t 为参数)和圆C 的极坐标方程:ρ=22sin ⎝⎛⎭⎫θ+π4(θ为参数). (1)将直线l 的参数方程和圆C 的极坐标方程化为直角坐标方程; (2)判断直线l 和圆C 的位置关系.解:(1)消去参数t ,得直线l 的直角坐标方程为y =2x +1;ρ=22sin ⎝⎛⎭⎫θ+π4即ρ=2(sin θ+cos θ).两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ), 消去参数θ,得圆C 的直角坐标方程为:(x -1)2+(y -1)2=2. (2)圆心C 到直线l 的距离d =|2-1+1|22+12=255<2,所以直线l 和圆C 相交.【例4】在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 1:ρ2-4ρcos θ+3=0,θ∈[0,2π],曲线C 2:ρ=34sin ⎝⎛⎭⎫π6-θ,θ∈[0,2π].(1)求曲线C 1的一个参数方程;(2)若曲线C 1和曲线C 2相交于A ,B 两点,求|AB |的值. 解 (1)由ρ2-4ρcos θ+3=0,可得x 2+y 2-4x +3=0. ∴(x -2)2+y 2=1.令x -2=cos α,y =sin α,∴C 1的一个参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数,α∈R ).(2)C 2:4ρ⎝⎛⎭⎫sin π6cos θ-cos π6sin θ=3, ∴4⎝⎛⎭⎫12x -32y =3,即2x -23y -3=0.∵直线2x -23y -3=0与圆(x -2)2+y 2=1相交于A ,B 两点,且圆心到直线的距离d =14,∴|AB |=2× 1-⎝⎛⎭⎫142=2×154=152.。
参数方程知识加例题(原创)
参数方程(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 îíì==)()(t f y t f x并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:(二)常见曲线的参数方程如下: 1.过定点(x 0,y 0),倾角为α的直线:的直线: aa sin cos 00t y y t x x +=+= (t 为参数)为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.间的有向距离.根据t 的几何意义,有以下结论.的几何意义,有以下结论. ○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ×--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +.2.中心在(x 0,y 0),半径等于r 的圆:的圆: qq sin cos 00r y y r x x +=+= (q 为参数)为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:轴)上的椭圆: qq sin cos b y a x == (q 为参数)为参数) (或(或qq sin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)a a a (.sin ,cos 00îíì+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:轴)上的双曲线:qq tg sec b y a x == (q 为参数)为参数) (或(或qq ec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为a 的直线的参数方程是的直线的参数方程是 îíì+=+=aasin cos 00t y y t x x (t 为参数). 参数方程例题例1.讨论下列问题:讨论下列问题:1、已知一条直线上两点()111,yxM、()222,y xM ,以分点M (x ,y )分21MM 所成的比l 为参数,写出参数方程。
2参数方程知识讲解及典型例题
2参数方程知识讲解及典型例题参数方程一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个参数⎧x =f (t ) ⎧t 的函数,即⎧y =f (t ) ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数t 叫做参变数,简称参数.1x y Eg1(1 Eg2(1总结:参数方程化为普通方程步骤:(1)消参(2)求定义域 2、椭圆的参数方程:中心在原点,焦点在x 轴上的椭圆:x =a cos θy =b sin θ(θ为参数,θ的几何意义是离心角,如图角AON 是离心角)注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆,M 点的轨迹是椭圆,中心在(x 0,y 0x =x 0+a cos θy =y 0+b sin θEg 3,4x =2pt 2y =2pt (t 为参数,p >0,t 的几何意义为过圆点的直线的斜率的倒数)直线方程与抛物线方程联立即可得到。
三、一次曲线(直线)的参数方程过定点P 0(x 0,y 0),倾角为α的直线, P 是直线上任意一点,设P 0P=t,P0P 叫点P 到定点P 0的有向距离,在P 0两侧t 的符号相反,直线的参数方程x =x 0+t cos αy =y 0+t sin α(t 为参数,t 的几何意义为有向距离)说明:①t 的符号相对于点P 0,正负在P 0点两侧②|P 0P |=|t |x =x 0+at y =y 0+bt,但此时t 的几何意义不是有向距离,只有当t 得xy Eg123≤y ≤1) 4A .x +y =0或y =1 B .x =1 C .x +y =0或x =1 D .y =1 5.点M 的直角坐标是(-1,则点M 的极坐标为()A .(2,2222ππ2ππ) B .(2,-) C .(2,) D .(2,2k π+),(k ∈Z )33336.极坐标方程ρcos θ=2sin 2θ表示的曲线为()A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线⎧⎧x =3+4t(t 为参数) 的斜率为______________________。
高中数学第二讲参数方程本讲高考热点解读与高频考点例析学案含解析新人教A版选修429
(t 为参数 ),消去参数得 y= x·tan α.
y= tsin α
设直线 l 的斜率为 k,则直线 l 的方程为 kx- y= 0. 由圆 C 的方程 (x+6)2+ y2=25 知,圆心坐标为 (- 6,0),半径为 5.
又 | AB | = 10,由垂径定理及点到直线的距离公式得 36k2 90 1+ k2= 4 ,
马鸣风萧萧整理
(2)由题意,可设点 P 的直角坐标为 ( 3cos α, sin α).
因为 C2 是直线,所以 | PQ| 的最小值即为 P 到 C2 的距离 d(α)的最小值,
| 3cosα+ sin α- 4|
π
d(α)=
2
= 2 sin α+ 3 - 2 ,
π
31
当且仅当 α= 2kπ+6(k∈ Z) 时,d(α)取得最小值, 最小值为 2,此时 P 的直角坐标为 2, 2 .
x2 y2
x=2+ t,
3. (全国卷Ⅰ )已知曲线 C: 4 + 9 = 1,直线 l: y= 2- 2t (t 为参数 ).
(1)写出曲线 C 的参数方程,直线 l 的普通方程; (2)过曲线 C 上任意一点 P 作与 l 夹角为 30°的直线,交 l 于点 A,求 | PA| 的最大值与 最小值.
x= 2cos θ,
解: (1)曲线 C 的参数方程为
(θ为参数 ).
y=3sin θ
直线 l 的普通方程为 2x+ y- 6= 0.
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
5 (2)曲线 C 上任意一点 P(2cos θ, 3sin θ)到 l 的距离为 d= 5 |4cos θ+ 3sin θ- 6| ,
参数方程与极坐标方程例题和知识点总结
参数方程与极坐标方程例题和知识点总结一、参数方程参数方程是在数学中常用的一种表示曲线的方式,它通过引入一个参数来描述曲线上点的坐标。
(一)参数方程的定义一般地,在平面直角坐标系中,如果曲线上任意一点的坐标$x$、$y$都是某个变数$t$的函数:\\begin{cases}x = f(t) \\y = g(t)\end{cases}\并且对于$t$的每一个允许的取值,由方程组所确定的点$(x,y)$都在这条曲线上,那么这个方程组就叫做曲线的参数方程,联系变数$x$、$y$的变数$t$叫做参变数,简称参数。
(二)参数方程的常见形式1、直线的参数方程若直线经过点$M(x_0,y_0)$,倾斜角为$\alpha$,则直线的参数方程为:\\begin{cases}x = x_0 + t\cos\alpha \\y = y_0 + t\sin\alpha\end{cases}\($t$为参数)2、圆的参数方程圆心在点$(a,b)$,半径为$r$的圆的参数方程为:\\begin{cases}x = a + r\cos\theta \\y = b + r\sin\theta\end{cases}\($\theta$为参数)3、椭圆的参数方程焦点在$x$轴上的椭圆:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$ ($a > b > 0$)的参数方程为:\\begin{cases}x = a\cos\varphi \\y = b\sin\varphi\end{cases}\($\varphi$为参数)(三)参数方程的应用1、求曲线的轨迹方程例:已知点$M(x,y)$在圆$x^2 + y^2 = 4$上运动,求点$N(2x 3, 2y + 4)$的轨迹方程。
设点$M(2\cos\theta, 2\sin\theta)$,则点$N(4\cos\theta 3, 4\sin\theta + 4)$所以$x = 4\cos\theta 3$,$y = 4\sin\theta + 4$消去参数$\theta$可得:$(x + 3)^2 +(y 4)^2 = 16$2、参数方程在物理中的应用在研究物体的运动时,常常使用参数方程来描述物体的位置、速度等随时间的变化关系。
高考数学专题复习:参数方程知识与习题
专题突破:参数方程一.常见直曲线的参数方程1、直线参数方程的标准式是2、圆心在点(a,b),半径为r 的圆的参数方程是3、4、双曲线12222=-b y a x 的参数方程是5、抛物线y 2=2px 的参数方程是备注:参数t 的几何意义:Tips:判断参数方程表示的是什么曲线题中,关键是“消参”。
常用方法:平方法——三角函数、t t 1+型。
注意观察是否规定参数的范围 练习1:将参数方程化为普通方程(1) (2)练习2:已知椭圆16410022=+y x 有一内接矩形ABCD ,求矩形ABCD 的最大面积。
练习3:如图,已知点P 是圆x 2+y 2=16上的一个懂点,点A 坐标为(12,0)。
当点P 在圆上运动时,线段PA 中点M 的轨迹是什么?一、直线参数方程中的参数的几何意义1、已知直线l 经过点(1,1)P ,倾斜角6πα=,①写出直线l 的参数方程;②设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积.2、已知直线).3cos(2.32),2,1(πθρπ+=-圆方程的直线倾斜角为是过点P l(I )求直线l 的参数方程;(II )设直线l 与圆相交于M 、N 两点,求|PM|·|PN|的值。
二、巧用参数方程解最值题 1、在椭圆2211612x y +=上找一点,使这一点到直线2120x y --=的距离的最小值。
2、已知点(,)P x y 是圆222x y y +=上的动点,(1)求2x y +的取值范围; (2)若0x y a ++≥恒成立,求实数a 的取值范围。
3、在平面直角坐标系xOy 中,动圆2228cos 6sin 7cos 80x y x y θθθ+--++=的圆心为(,)P x y , 求2x y -的取值范围参考答案:专题:参数方程练习1:(1) y=1-x 2(x ∈[-1,1]) (2) 12222=-b y a x练习2:设椭圆的参数方程为 θθsin 8cos 10==y x ,设点A 坐标为(10cos θ,8sin θ),θ∈[0,2π] 则由椭圆的对称性知:B(10cos θ, - 8sin θ),D(-10cos θ,8sin θ)|AB|=16sin θ , |AD|= 20cos θS 矩形ABCD=|AB|·|AD|=320 sin θ cos θ=160sin2θ ∵θ∈[0,2π], sin 2θ∈[-1,1]∴当2θ=π/2时sin2θ取得最大值1,此时矩形面积最大值为S max =160练习3设圆的参数方程为θθsin 4cos 4==y x ,设点P 坐标为(4cos θ,4sin θ),θ∈[0,2π] 则PA 中点M(2cos θ+6,2sin θ),即θθsin 26cos 2=+=y x (移项、平方、相加) 得(x-6)2+y 2=4∴M 轨迹为圆巩固练习一、1解 (1)直线的参数方程为,31112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩ 运用 快速写出(2)则点P 到,A B 两点的距离之积为22解:(Ⅰ)l 的参数方程为,11,2()32.2x t t y t ⎧=--⎪⎪⎨⎪=+⎪⎩为参数 (Ⅱ)12||||||623PM PN t t ==+g)3/cos(π+θ∈[-1,1]当cos()13πθ+=时,min 5d =,此时所求点为(2,3)-。
高考数学大一轮复习 坐标系与参数方程 第2讲 参数方程分层演练 理(含解析)新人教A版选修4-4-新
第2讲 参数方程1.在平面直角坐标系中,以原点为极点,x 轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C 的极坐标方程为ρ=2cos θ,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos α,y =t sin α(t 为参数,α为直线的倾斜角). (1)写出直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 有唯一的公共点,求角α的大小. 解:(1)当α=π2时,直线l 的普通方程为x =-1;当α≠π2时,直线l 的普通方程为y =(x +1)tan α.由ρ=2cos θ,得ρ2=2ρcos θ, 所以x 2+y 2=2x ,即为曲线C 的直角坐标方程.(2)把x =-1+t cos α,y =t sin α代入x 2+y 2=2x ,整理得t 2-4t cos α+3=0. 由Δ=16cos 2α-12=0,得cos 2α=34,所以cos α=32或cos α=-32, 故直线l 的倾斜角α为π6或5π6.2.以极点为原点,以极轴为x 轴正半轴建立平面直角坐标系,已知曲线C 的极坐标方程为ρ=10,曲线C ′的参数方程为⎩⎪⎨⎪⎧x =3+5cos α,y =-4+5sin α,(α为参数).(1)判断两曲线C 和C ′的位置关系;(2)若直线l 与曲线C 和C ′均相切,求直线l 的极坐标方程. 解:(1)由ρ=10得曲线C 的直角坐标方程为x 2+y 2=100,由⎩⎪⎨⎪⎧x =3+5cos α,y =-4+5sin α得曲线C ′的普通方程为(x -3)2+(y +4)2=25. 曲线C 表示以(0,0)为圆心,10为半径的圆; 曲线C ′表示以(3,-4)为圆心,5为半径的圆.因为两圆心间的距离5等于两圆半径的差,所以圆C 和圆C ′的位置关系是内切.(2)由(1)建立方程组⎩⎪⎨⎪⎧x 2+y 2=100,(x -3)2+(y +4)2=25, 解得⎩⎪⎨⎪⎧x =6,y =-8;可知两圆的切点坐标为(6,-8),且公切线的斜率为34,所以直线l 的直角坐标方程为y +8=34(x -6),即3x -4y -50=0,所以极坐标方程为3ρcos θ-4ρsin θ-50=0.3.(2018·高考全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点. (1)求α的取值X 围;(2)求AB 中点P 的轨迹的参数方程. 解:(1)⊙O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点当且仅当⎪⎪⎪⎪⎪⎪21+k 2<1,解得k <-1或k >1,即α∈⎝ ⎛⎭⎪⎫π4,π2或α∈⎝ ⎛⎭⎪⎫π2,3π4.综上,α的取值X 围是⎝ ⎛⎭⎪⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α(t 为参数,π4<α<3π4).设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎪⎨⎪⎧x =22sin 2α,y =-22-22cos 2α(α为参数,π4<α<3π4). 4.(2019·某某省高三教学质量检测试题(一))已知在平面直角坐标系xOy 中,直线l 的参数方程是⎩⎪⎨⎪⎧x =22t y =22t +42(t 是参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos ⎝ ⎛⎭⎪⎫θ+π4.(1)判断直线l 与曲线C 的位置关系;(2)设M (x ,y )为曲线C 上任意一点,求x +y 的取值X 围. 解:(1)直线l 的普通方程为x -y +42=0. 曲线C 的直角坐标方程为⎝ ⎛⎭⎪⎫x -222+⎝ ⎛⎭⎪⎫y +222=1.圆心⎝⎛⎭⎪⎫22,-22到直线x -y +42=0的距离d =|52|2=5>1, 所以直线l 与曲线C 的位置关系是相离. (2)设M ⎝⎛⎭⎪⎫22+cos θ,-22+sin θ,(θ为MC 与x 轴正半轴所成的角)则x +y =2sin ⎝ ⎛⎭⎪⎫θ+π4. 因为0≤θ<2π,所以x +y ∈[-2,2].5.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M ,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 的极坐标方程为ρ=2cos θ. 直线l 的直角坐标方程为y =x .联立方程组⎩⎪⎨⎪⎧y =x ,x 2-2x +y 2=0, 解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1.所以点M ,N 的极坐标分别为(0,0),⎝⎛⎭⎪⎫2,π4.(2)由(1)易得|MN |= 2.因为P 是椭圆x 23+y 2=1上的动点,设P 点坐标为(3cos θ1,sin θ1). 则P 到直线y =x 的距离d =|3cos θ1-sin θ1|2,所以S △PMN =12|MN |d =12×2×|3cos θ1-sin θ1|2=⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫θ1+π62≤1,当θ1=k π-π6,k ∈Z 时,S △PMN 取得最大值1.1.(2017·高考全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解:(1)消去参数t 得l 1的普通方程l 1:y =k (x -2);消去参数m 得l 2的普通方程l 2:y =1k(x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k(x +2).消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ-sin θ)-2=0得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110,代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5,所以交点M 的极径为 5.2.(2019·某某省两校阶段性测试)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos ty =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos(θ+π4)=- 2.(1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△PAB 面积的最小值.解:(1)由⎩⎨⎧x =-5+2cos t y =3+2sin t,消去参数t ,得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2.由ρcos (θ+π4)=-2,得ρcos θ-ρsin θ=-2,所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝⎛⎭⎪⎫2,π2,设点P 的坐标为(-5+2cos t ,3+2sin t ),则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2=|-6+2cos (t +π4)|2.所以d min =42=22,又|AB |=2 2.所以△PAB 面积的最小值是S =12×22×22=4.3.(2019·某某市第一次模拟)在平面直角坐标系xOy 中,曲线C 1过点P (a ,1),其参数方程为⎩⎨⎧x =a +2ty =1+2t(t 为参数,a ∈R ).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|PA |=2|PB |,某某数a 的值.解:(1)因为曲线C 1的参数方程为⎩⎨⎧x =a +2ty =1+2t,所以其普通方程为x -y -a +1=0.因为曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, 所以ρ2cos 2θ+4ρcos θ-ρ2=0, 所以x 2+4x -x 2-y 2=0,即曲线C 2的直角坐标方程为y 2=4x .(2)设A ,B 两点所对应的参数分别为t 1,t 2,由⎩⎨⎧y 2=4x ,x =a +2t y =1+2t, 得2t 2-22t +1-4a =0.Δ=(22)2-4×2(1-4a )>0,即a >0,由根与系数的关系得⎩⎪⎨⎪⎧t 1+t 2=2t 1·t 2=1-4a 2.根据参数方程的几何意义可知|PA |=2|t 1|,|PB |=2|t 2|, 又|PA |=2|PB |可得2|t 1|=2×2|t 2|, 即t 1=2t 2或t 1=-2t 2.所以当t 1=2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=3t 2=2t 1·t 2=2t 22=1-4a 2, 解得a =136>0,符合题意.当t 1=-2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=-t 2=2t 1·t 2=-2t 22=1-4a 2, 解得a =94>0,符合题意.综上所述,实数a 的值为136或94.。
2 参数方程
第一节参数方程【知识重温】一、必记4个知识点1.直线的参数方程过定点P 0(x 0,y 0)且倾斜角为α的直线的参数方程为⑤__________________(t 为参数),则参数t 的几何意义是⑥__________________.2.圆的参数方程圆心为(a ,b ),半径为r ,以圆心为顶点且与x 轴同向的射线,按逆时针方向旋转到圆上一点所在半径成的角α为参数的圆的参数方程为⑦____________α∈[0,2π).3.椭圆的参数方程以椭圆的离心角θ为参数,椭圆x 2a 2+y 2b2=1(a >b >0)的参数方程为⑧____________θ∈[0,2π).4.抛物线的参数方程(不常用)例:⎩⎨⎧==232ty t x 2)2(3x y =⇒参数方程与普通方程的互化1.把下列参数方程化为普通方程.(1)⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235121(t 为参数).x =sin θ,y =cos 2θ(θ为参数,θ∈[0,2π)).2.设R a ∈,直线02=+-y ax 和圆⎩⎨⎧+=+=θθsin 21cos 22y x ,(θ为参数)相切,则a 的值为。
3.在平面直角坐标系中,直线的参数方程为⎩⎨⎧=+=t y t x 21(t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),则直线普通方程,曲线C 的普通方程为。
4.在平面直角坐标系中,直线的参数方程为⎩⎨⎧+=+=a t y a t x sin 21cos (t 为参数),曲线C 的参数方程为⎩⎨⎧==θθsin 4cos 2y x (θ为参数),则直线普通方程,曲线C 的普通方程为。
5.在平面直角坐标系中,C 1的参数方程为⎩⎨⎧+=+-=t y t x sin 3cos 4(t 为参数),曲线C 2的参数方程为⎩⎨⎧==θθsin 3cos 8y x (θ为参数),则C 1普通方程,曲线C 2的普通方程为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数方程
一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个参数
t 的函数,即 ⎩⎨
⎧==)()(t f y t f x ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数t 叫做参变数,简称参数.
1
y x Eg1(1 Eg2(1总结:参数方程化为普通方程步骤:(1)消参(2)求定义域 2、椭圆的参数方程:
中心在原点,焦点在x 轴上的椭圆:
θ
θsin cos b y a x == (θ为参数,θ的几何意义是离心角,如图角AON 是离心角)
注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆,M 点的轨迹是椭圆,中心在(x 0,y 0
θ
θ
sin cos 00b y y a x x +=+=
Eg 3,
4
pt y pt x 222
== (t 为参数,p >0,t 的几何意义为过圆点的直线的斜率的倒数) 直线方程与抛物线方程联立即可得到。
三、一次曲线(直线)的参数方程
过定点P 0(x 0,y 0),倾角为α的直线, P 是直线上任意一点,设P 0P=t ,P 0P 叫点P 到定点P 0的有向距离,在P 0两侧t 的符号相反,直线的参数方程
αα
sin cos 00t y y t x x +=+= (t 为参数,t 的几何意义为有向距离) 说明:①t 的符号相对于点P 0,正负在P 0点两侧
②|P 0P |=|t | 直线参数方程的变式:
bt
y y at x x +=+=00,但此时t 的几何意义不是有向距离,只有当
t 得
y x
Eg
1231)y ≤≤ 4A .2
01y y +==2
x 或 B .1x = C .2
01y +==2
x 或x D .1y =
5.点M 的直角坐标是(1-,则点M 的极坐标为( )
A .(2,
)3
π
B .(2,)3π-
C .2(2,)3π
D .(2,2),()3k k Z π
π+∈
6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )
A .一条射线和一个圆
B .两条直线
C .一条直线和一个圆
D .一个圆
二、填空题
1.直线34()45x t
t y t
=+⎧⎨
=-⎩为参数的斜率为______________________。
2.参数方程()2()
t t
t t
x e e
t y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。
3.已知直线113:()24x t
l t y t
=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则
AB =_______________。
4
1(1
(2
2.及点P 与
3.在椭圆
22
11612
x y +=上找一点,使这一点到直线2120x y --=的距离的最小值。
[综合训练B 组]
1.(,)
P a b
234A .4(5,)3π--
B .(5,)3π-
C .(5,)3π
D .5(5,)3
π
- 5.与参数方程为)x t y ⎧=⎪⎨
=⎪⎩为参数等价的普通方程为( ) A .214y +=2
x B .21(01)4
y x +=≤≤2x C .21(02)4y y +=≤≤2
x D .21(01,02)4
y x y +=≤≤≤≤2
x
6.直线2()1x t
t y t
=-+⎧⎨
=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为( )
A
B .1
404
C
D
二、填空题
1.曲线的参数方程是211()1x t t y t ⎧=-⎪
≠⎨⎪=-⎩
为参数,t 0,
则它的普通方程为__________________。
2
3。
4。
5。
1 2(1
(2)设l 与圆42
2
=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积。
1.1.
1 2.1.1.2
(2)(1)(1)
x x y x x -=
≠- 2.(3,1)- 3 4.2
x y = 5.22
24141t x t t
y t ⎧=⎪⎪+⎨⎪=⎪+⎩
22
()40x tx tx +-=,当0x =时,0y =;当0x ≠时,241t x t =+;
而y tx =,即2241t y t =+,得2
2
24141t x t t
y t ⎧=⎪⎪+⎨⎪=⎪+⎩
三、解答题
1.当c o s ()14
π
θ+=-
时,max 12(25d =
+;当c o s ()14πθ+=
时,min 12
(25
d =。
2.解:(1
)1x ⎧=+⎪⎪⎨ (2)2。