Matlab建模教程层次分析法
MatLab层次分析法代码
>>d=eig(A)%求全部特征值所组成的向量
e=max(eig(A));%最大特征值
v=null(A-e*eye(length(A)));%e对应特征向量
>>e
>>A=[13365957;1/31134746;1/31134746;1/61/31/311/241/22;1/51/41/421412;1/91/71/71/41/411/31/2;1/51/41/421312;1/71/61/61/21/221/21];
e=max(eig(A));%最大特征值
v=null(A-e*eye(length(A)));%e对应特征向量
>>e
e=
8.4243
>>v
v=
-0.7427
-0.3893
-0.2579
-0.0985
-0.2588
-0.0519
-0.3352
-0.1966
>>A=[13365957;1/31134746;1/31134746;1/61/31/311/241/22;1/51/41/421412;1/91/71/71/41/411/31/2;1/51/41/421312;1/71/61/61/21/221/21];
0.2579-0.0614+0.3195i-0.0614-0.3195i-0.0739-0.0916i-0.0739+0.0916i-0.1506-0.0176i-0.1506+0.0176i
层次分析法判断矩阵求权值以及一致性检验程序
function [w,CR]=mycom(A,m,RI)[x,lumda]=eig(A);r=abs(sum(lumda));n=find(r==max(r));max_lumda_A=lumda(n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。
其中A为判断矩阵,不同的标度和评定A将不同。
m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。
当CR<0.1时符合一致性检验,判断矩阵构造合理。
下面是层次分析法的简介,以及判断矩阵构造方法。
一.层次分析法的含义层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
(1)层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
(完整版)层次分析法计算权重在matlab中的实现
(完整版)层次分析法计算权重在matlab中的实现信息系统分析与设计作业层次分析法确定绩效评价权重在matlab中的实现小组成员:孙高茹、王靖、李春梅、郭荣1 程序简要概述编写程序一步实现评价指标特征值lam、特征向量w以及一致性比率CR的求解。
具体的操作步骤是:首先构造评价指标,用专家评定法对指标两两打分,构建比较矩阵,继而运用编写程序实现层次分析法在MATLAB中的应用。
通过编写MATLAB程序一步实现问题求解,可以简化权重计算方法与步骤,减少工作量,从而提高人力资源管理中绩效考核的科学化电算化。
2 程序在matlab中实现的具体步骤function [w,lam,CR] = ccfx(A)%A为成对比较矩阵,返回值w为近似特征向量% lam为近似最大特征值λmax,CR为一致性比率n=length(A(:,1));a=sum(A);B=A %用B代替A做计算for j=1:n %将A的列向量归一化B(:,j)=B(:,j)./a(j);ends=B(:,1);for j=2:ns=s+B(:,j);endc=sum(s);%计算近似最大特征值λmaxw=s./c;d=A*wlam=1/n*sum((d./w));CI=(lam-n)/(n-1);%一致性指标RI=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45,1.49,1.51];%RI为随机一致性指标CR=CI/RI(n);%求一致性比率if CR>0.1disp('没有通过一致性检验');else disp('通过一致性检验');endend3 案例应用我们拟构建公司员工绩效评价分析权重,完整操作步骤如下:3.1构建的评价指标体系我们将影响员工绩效评定的指标因素分为:打卡、业绩、创新、态度与品德。
3.2专家打分,构建两两比较矩阵A =1.0000 0.5000 3.0000 4.00002.0000 1.0000 5.00003.00000.3333 0.2000 1.0000 2.00000.2500 0.3333 0.5000 1.00003.3在MATLAB中运用编写好的程序实现直接在MATLAB命令窗口中输入[w,lam,CR]=ccfx(A)继而直接得出d =1.30352.00000.51450.3926w =0.31020.46910.12420.0966lam =4.1687CR =0.0625,通过一致性检验3.4解读程序结果根据程序求解中得出的特征向量,可以得出打卡、业绩、创新以及态度品德在员工绩效评价中所占的权重分别为:0.3102、0.4691、0.1242、0.0966。
层次分析法教程matlab课件
案例二:投资决策问题
01 02 03
案例二:投资决策问题
3. 收集数据
通过尽职调查、行业报告等方式收集各风险 指标的相关数据。
4. 计算权重
根据层次分析法,计算各风险指标的权重。
5. 综合评价
根据各风险指标的权重和数据,对投资项目 的风险水平进行综合评估。
6. 结果展示
通过图表等方式展示投资项目的风险水平, 为投资者提供决策参考。
层次分析法教程 matlab课件
目 录
• 层次分析法简介 • 层次分析法的基本原理 • 层次分析法的MATLAB实现 • 层次分析法实例分析 • 层次分析法的优缺点及改进方向 • 参考文献
contents
CHAPTER
层次分析法简介
什么是层次分析法
层次分析法的发展历程
1973年由美国运筹学家T.L.Saaty提出,最初用于解决美国的能源问题。
缺点
主观性强
层次分析法中的权重赋值主要基于专家的主观 判断,因此存在一定的主观性。
不能处理动态变化
层次分析法主要用于静态决策,对于动态变化 的复杂问题处理能力较弱。
对复杂问题处理能力有限
层次分析法对于复杂问题的处理能力有限,对于高维度问题可能存在局限性。
改进方向
引入新的分析方法
加强客观性
拓展应用领域
之后被广泛应用于各种领域,包括经济、管理、社会规划等。
层次分析法的应用范围
01 02 03
CHAPTER
层次分析法的基本原理
建立层次结构
目标层 准则层 指标层
构造判断矩 阵
两两比较矩阵
判断矩阵的一致性
计算权重向量
权重向量的计算方法
通过判断矩阵,计算各指标的权重向量。
层次分析法判断矩阵求权值以及一致性检验程序
function [w,CR]=mycom(A,m,RI)[x,lumda]=eig(A);r=abs(sum(lumda));n=find(r==max(r));max_lumda_A=lumda(n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。
其中A为判断矩阵,不同的标度和评定A将不同。
m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。
当CR<0.1时符合一致性检验,判断矩阵构造合理。
下面是层次分析法的简介,以及判断矩阵构造方法。
一.层次分析法的含义层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
(1)层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
matlab计算AHP层次分析法
matlab计算AHP层次分析法第一篇:matlab计算AHP层次分析法用matlab解决层次分析法AHP1、求矩阵最大特征值及特征向量用matlab求:输入:A=[1 1/2 2 1/4;2 1 1 1/3;1/2 1 1 1/3;4 3 3 1][x,y]=eig(A)得出:特征向量x=[0.2688 0.3334 0.2373 0.8720]最大特征值λmax=4.19642、一致性检验CI=(λmax-n)/(n-1)=(4.1964-4)/(4-1)=0.0655 CR=CI/RI=0.0655/0.9=0.0727(注:维数为4时,RI=0.9)CR=0.0727<0.1,矩阵一致性通过检验3、对最大特征值进行归一化处理,即可得到各指标权重(归一化:分项/分项之和)W=[0.157 0.195 0.139 0.510]第二篇:AHP层次分析法层次分析法层次分析法(The analytic hierarchy process,简称AHP),也称层级分析法什么是层次分析法层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。
层次分析法及matlab程序
层次分析法建模层次分析法(AHP-Analytic Hierachy process)---- 多目标决策方法70 年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论.吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。
传统的常用的研究自然科学和社会科学的方法有:机理分析方法:利用经典的数学工具分析观察的因果关系;统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述(自然现象、社会现象)现象的规律。
基本内容:(1)多目标决策问题举例AHP建模方法(2)AHP建模方法基本步骤(3)AHP建模方法基本算法(3)AHP建模方法理论算法应用的若干问题。
参考书:1、姜启源,数学模型(第二版,第9章;第三版,第8章),高等教育出版社2、程理民等, 运筹学模型与方法教程,(第10章),清华大学出版社3、《运筹学》编写组,运筹学(修订版),第11章,第7节,清华大学出版社一、问题举例:A.大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。
就毕业生来说选择单位的标准和要求是多方面的,例如:①能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长);②工作收入较好(待遇好);③生活环境好(大城市、气候等工作条件等);④单位名声好(声誉—Reputation);⑤工作环境好(人际关系和谐等)⑥发展晋升(promote,promotion)机会多(如新单位或单位发展有后劲)等。
问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?工作选择贡献收入发展声誉工作环境生活环境B.假期旅游地点选择暑假有3个旅游胜地可供选择.例如:1P :苏州杭州,2P 北戴河,3P 桂林,到底到哪个地方去旅游最好?要作出决策和选择。
层次分析法报告
=eig()函数其判断矩阵的特征值,利用 lamda=max(diag(y)) 求矩阵的最 大特征根,并进行一致性检验。在第一个案例当中,判断矩阵 B1、B2、B3、 C1、C2、C3、C4、C 5、C6 均为 2 维方阵,绝对符合一致性检验,所以在程序中 为节省空间,不对其进行一致性检验。最后求出方案层的总权重并输出。
if CR<0.10
disp(’C 矩阵的一致性可以接受!’);
1/3 2 1 1 3 3 5 3 5 5 5 2 4 1/2 1/3 1 4 1/2 1 6 3 3 1 1/3 1/4 1/3 1/4 1 2 1/2 2 2 1/2
1/3 1/2 1/3 1/5 2 1 1 2 1 3 1
1/2 1 1/3 1/5 1 2 1/2 1 2 2 1/2 1/2 1/4 1/6 1/5 1/6 1/2 1 1/2 1 1/2 2 1/2 1/5 1/4 1/5 1/3 1/2 1/3 1/2 2 1 1 1/2 1/5 1/4 1/5 1/3 2 1 2 1/2 1 1 ]; 准则层与方案层: A1=[ 1 5 1/3;1/5 1 1/7;3 7 1 ];A2=[1 1/3 3;3 1 5; 1/3 1/5 1 ]; A3=[1 1/3 3;3 1 5; 1/3 1/5 1 ];A4=[1 1/3 3;3 1 5; 1/3 1/5 1 ]; A5= [1 1/2 3;2 1 5; 1/3 1/5 1];A6= [1 1/3 3;3 1 5;1/3 1/5 1]; A7=[1 1/3 3;3 1 5;1/3 1/5 1]; A8=[1 1/3 3;3 1 5;1/3 1/5 1]; A9=[1 1/2 1/3;2 1 1/2;3 2 1]; A10=[1 2 1/3;1/2 1 1/5;3 5 1]; A11=[1 1/3 3;3 1 5;1/3 1/5 1]; 实现层次分析法的 MATLAB 程序如下: C=[1 4 1/3 1/3 1/2 1 3 2 2 2 2 ; 1/4 1 1/2 1/2 1/4 3 2 1 4 5 5 ;
MATLAB层次分析法
C11
C1
0
桥梁 D1
隧道 D2
渡船 D3
(1)过河效益层次结构
例3 横渡江 河、海峡方 案的抉择
经济代价 B1
过河的代价 A
社会代价 B2
环境代价 B3
投 操 冲冲 交 居 汽 对 对
入 作 击击 通 民 车 水 生
资 维 渡生 拥 搬 排 的 态
金 护 船活 挤 迁 放 污 的
C1 C2 业 方 C5 C6 物 染 破
关
献
入
展
誉
系
对外 贸易
位 置
供选择的岗位
例3 横渡江 河、海峡方 案的抉择
经济效益 B1
过河的效益 A
社会效益 B2
节 收岸 当 建安 交 自
省 入间 地 筑全 往 豪
时 C2 商 商 就 可 沟 感
间
业 业 业 靠 通 C8
C1
C3 C4 C5 C6 C7
环境效益 B3
舒进 美
适出 化
C9
方 便
Ci : C j aij
A
(aij )nn , aij
0,
a ji
1 aij
选 择
1 1/ 2 4 3 3
2
1
7
5
5
A~成对比较阵
旅 A 1/ 4 1/ 7
游 地
1/ 3
1/ 5
1/ 3 1/ 5
1 2
1/ 2 1
1/ 3
1
A是正互反阵
3 1 1
要由A确定C1,…, Cn对O的权向量
2
n
min
wi ( i1,,n ) i1
n j1 ln aij
ln wi wj
matlab-层次分析法一致性
用了两周左右的时间,我编写了网络分析法(The Analytic Network Process,ANP)的Matlab源代码(将在下面给出),主要针对王莲芬老师的《网络分析法(ANP)的理论与算法》中的内部依存的递阶层次结构,而且假设N = 4 的情形,所以如果要使用该程序,需要作修改,如果你不想改,我可以帮忙!ANP是美国匹兹堡大学的T.L.Saaty 教授于1996年提出了一种适应非独立的递阶层次结构的决策方法,它是在网络分析法(AHP)基础上发展而形成的一种新的实用决策方法。
其关键步骤有以下几个:1 确定因素,并建立网络层和控制层模型。
2 创建比较矩阵。
3 按照指标类型针对每列进行规范化。
4 求出每个比较矩阵的最大特征值和对应的特征向量。
5 一致性检验。
如果不满足,则调整相应的比较矩阵中的元素。
6 将各个特征向量单位化(归一化),组成判断矩阵。
7 将控制层的判断矩阵和网络层的判断矩阵相乘,得到加权超矩阵。
8 将加权超矩阵单位化(归一化),求其K次幂收敛时的矩阵。
其中第j列就是网络层中各元素对于元素j的极限排序向量。
% 第一个函数% 矩阵归一化(单位化)% Unitize 函数开始function Matrix_Unitize = Unitize(Matrix)[line,colume] = size(Matrix);for j = 1:1:columefa = 0;for i = 1:1:linefa = fa + Matrix(i,j);endsum(j) = fa;endfor j = 1:1:columefor i = 1:1:lineMatrix_Unitize(i,j) = Matrix(i,j) / sum(j);endend% Unitize 函数结束% 第二个函数% 求一个方阵的最大特征值及其对应的特征向量% MAX_EigenV 函数开始function [Max_Eigenvector,Max_Eigenvalue] = Max_EigenV(Matrix)[line,colume] = size(Matrix);if line ~= columemessage = '矩阵不是方阵,无法求解最大特征值及其对应的特征向量';disp(message);return;end[Eigenvector Eigenvalue] = eigs(Matrix);Max_Eigenvalue = Eigenvalue(1);for i=1:1:lineMax_Eigenvector(i) = Eigenvector(i,1);end% MAX_EigenV 函数结束% 第三个函数(此函数我没有用)% 根据给定的指标类型对矩阵的列进行规范化% Standardize 函数开始function Matrix_Standardize = Standardize(Matrix, IndexType)% a 是需要规范化的矩阵% IndexType 是该矩阵各列的指标类型数组% IndexType(j) = 1 a 的第j 列是效益型指标% IndexType(j) = 0 a 的第j 列是成本型指标[m n] = size(Matrix);MAX = max(Matrix);MIN = min(Matrix);d = MAX - MIN;for j=1:1:nfor i=1:1:mif IndexType(j) == 1 % 效益型指标规范化Matrix_Standardize(i,j) = (Matrix(i,j) - MIN(j)) / d(j);elseif IndexType(j) == 0 % 成本型指标规范化Matrix_Standardize(i,j) = (MAX(j) - Matrix(i,j)) / d(j);endendend% Standardize 函数结束% 第四个函数% 读取一个格式化文件中所有矩阵,连接成归一化的判断矩阵% 计算最大特征值对应的特征向量,进行一致性检验,构造判断矩阵.% version 2.0% 矩阵文件的(*.txt)格式要求(共4条)% 1 空格开头的行,回车行,注释行(见第3条)在读取时都会被忽略.%% 2 每个矩阵要有维数(Dimension)和序号(Sequence),其次序可以颠倒,但是不能缺项,% 且关键字及其取值要各占一行(共4行,中间可以有空格行或空行),但关键字行尾不能有空格.%% 3 竖线"|"是注释标记,要独自占一行,但是不要在有效的矩阵元素行之后加竖线.%% 4 矩阵的元素只能用空格分开,每个元素后都可以跟空格,且空格的数量可以是任意多个. % 但是,需要强调的是,每一行第一个元素的前面不能有空格(参照第1条)!% JudgementMatrix 函数开始function [judge_matrix_unitize,flag] = JudgementMatrix(fid)judge_matrix = 0;judge_matrix_unitize = 0;flag = 0; % 判断矩阵构造成功的标志LineData = IgnoreLine(fid); % 跳到第一行有效的数据Count = 0; % 矩阵计数器Flag1 = 0; % 是否读取矩阵序号的开关Flag2 = 0; % 是否读取矩阵列数的开关Flag3 = 0; % 是否读取矩阵行数的开关Sequence = 0; % 矩阵的序号Dimension = 0; % 矩阵的阶DCount = 0; % 同一文件中每个矩阵的阶数下标LastCount = 0; % 同一文件中上一个矩阵的阶数下标while( feof(fid) == 0 )if strcmp(LineData, 'Sequence')LineData = IgnoreLine(fid);if LineData == -1warning('已经到了文件末尾,无数据可读取!');flag = -1;return;endSequence = str2num(LineData);Flag1 = Flag1 + 1;elseif strcmp(LineData, 'Dimension')LineData = IgnoreLine(fid);if LineData == -1warning('已经到了文件末尾,无数据可读取!');flag = -1;return;endDCount = DCount + 1;Dimension(DCount) = str2num(LineData);LastCount = DCount-1;if LastCount > 0 && Dimension(DCount) ~= Dimension(LastCount) flag = -1;warning('矩阵的维数不等,比较矩阵弄错了吧!');endFlag2 = Flag2 + 1;endif ( Flag1 > 1 || Flag2 > 1 )if Flag1 > 1c = num2str(Sequence);c = strcat('第',c);message = strcat(c, '个矩阵的上一个矩阵没有设置维数关键字"Dimension"!');flag = -1;warning(message);return;elseif Flag2 > 1c = num2str(Sequence);c = strcat('第',c);message = strcat(c, '个矩阵的上一个矩阵没有设置序号关键字"Sequence"!');warning(message);flag = -1;return;endelseif ( Flag1 == 0 && Flag2 ==0 )warning('没有发现矩阵的序号或行数或列数关键字!请参考文件格式要求!');flag = -1;return;elseif ( Flag1 == 1 && Flag2 == 1 )Matrix = 0;% 为了读分数矩阵,逐行读取再变为数值类型for i = 1:1:Dimension(DCount)LineData = IgnoreLine(fid);if LineData == -1warning('已经到了文件末尾,无数据可读取!');flag = -1;judge_matrix_unitize = Unitize(Matrix);return;endDoubleLine = str2num(LineData);[line_DoubleLine,colume_DoubleLine] = size(DoubleLine);if colume_DoubleLine ~= Dimension(DCount)flag = -1;endfor j = 1:1:colume_DoubleLineMatrix(i,j) = DoubleLine(j);endendif flag == -1judge_matrix_unitize = Unitize(Matrix);return;endif isreal(Matrix)Count = Count + 1;if Sequence ~= Countc = num2str(Sequence);c = strcat('文件中编号为',c);message = strcat(c,'的矩阵的序号没有按照顺序排列!');warning(message);end% 最大特征值及其对应的特征向量[vector_lmd_max,lmd_max(Count)] = MaxEV(Matrix);for j = 1:1:Dimension(DCount)judge_matrix(Count,j) = vector_lmd_max(j);end% 一致性检验CI(Count) = 0; % 一致性指标% 当矩阵的阶数n < 3 时,判断矩阵永远具有完全一致性。
Matlab建模教程层次分析法
第八章 层次分析法层次分析法(Analytic Hierarchy Process ,简称AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。
它是美国运筹学家T. L. Saaty 教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。
§1 层次分析法的基本原理与步骤人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。
层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。
运用层次分析法建模,大体上可按下面四个步骤进行:(i )建立递阶层次结构模型;(ii )构造出各层次中的所有判断矩阵;(iii )层次单排序及一致性检验;(iv )层次总排序及一致性检验。
下面分别说明这四个步骤的实现过程。
1.1 递阶层次结构的建立与特点应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。
在这个模型下,复杂问题被分解为元素的组成部分。
这些元素又按其属性及关系形成若干层次。
上一层次的元素作为准则对下一层次有关元素起支配作用。
这些层次可以分为三类:(i )最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
(ii )中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。
(iii )最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。
每一层次中各元素所支配的元素一般不要超过9个。
这是因为支配的元素过多会给两两比较判断带来困难。
下面结合一个实例来说明递阶层次结构的建立。
例1 假期旅游有1P 、2P 、3P 3个旅游胜地供你选择,试确定一个最佳地点。
基于MATLAB的AHP(层次分析法)的ppt课件
最新版整理ppt
3
案例简介
某市一十字路口常常因行人过街拥挤,存在安全隐患,市 政部门欲对该路口进行改造,现提出了 3套改造方案: 方案 1(S1):建地下通道; 方案 2(S2):建人行天桥; 方案 3(S3):拆除周围的旧建筑,拓宽街面。
市政部门认为,该改造工程需考虑如下几个方面的指标: 指标 1(P1):通车能力的大小; 指标 2(P2):交通安全系数的高低; 指标 3(P3):建筑费用的高低; 指标 4(P4):群众出行方便度的大小; 指标 5(P5):市容整洁程度的高低。
各方案对因素一的权向量为 W B 1 (0 .0,8 0 .2 2,3 0 .6 6)82
各方案对因素二的权向量为 W B 2(0 .5,9 0 .2 5,7 0 .1 6)28 各方案对因素三的权向量为 W B 3(0.5,90.2 5,70.1 6)28 各方案对因素四的权向量为 W B 4(0 .5,9 0 .2 5,7 0 .1 6)28 各方案对因素五的权向量为 W B 5(0.5,90.2 5,70.1 6)28
程序流程图如右图所示
开始
输入判断矩阵
计算权重向量 和最大特征值
输出权重向量 和最大特征值
计算CR
CR<0.1 N
Y 一致性接受 输出CI、CR
结束
一致性不接受
最新版整理ppt
9
程序代码
disp('请输入判断矩阵A(n阶)');
A=input('A=');
[n,n]=size(A);
x=ones(n,100);
最新版整理ppt
12
计算-结论
根据以上所得的数据计算得出三套方案对于目标的权重向量
层次分析法建模举例
其中:maxN为单注封顶金额;minN为单注保底 金额;Qij为第 i 种方案得第 j 等奖的单项奖比例; M为当期销售总额;n为低项奖总额; Q为总奖金 比例。
三、层次分析
3.1层次分析模型分为四层:
目标层:即决策目标,在本问题中取彩票的销售规则 及其相应的奖金设置方案的合理性作为决策目标。 中间层:作为目标层的衡量准则,我们取彩票的高项 奖金,低项固定奖金,和中奖面三方面来衡量目标层。 指标层:其中包括高项奖金的3个评价标准(即一, 二,三等奖)和低项固定奖金的4个评价指标(即四, 五,六,七等奖),而位于中间层的中奖面衡量准则 可以单独作为目标层的一个评价指标(即中奖面)。 方案层: 需进行评估的各种分配方案
一、 问题的提出与概率计算
已给的29种方案分为两种类型 1、“传统型”采用“10选6+1”方案: 投注者从0~9十个号码中任选6个基本号码(可 重复),从0~4中选一个特别号码,构成一注 。根 据单注号码与中奖号码相符的个数多少及顺序确定 中奖等级;
表1: “传统型” 中奖办法
中 奖 等 级 10 选 6+1(6+1/10) 基本号码 特别号码 选7中
Roots: 多项式的零点可用命令roots求的。
例: >> r=roots(p) 得到 r= 0.2500 + 1.5612i 0.2500 - 1.5612i -1.0000 所有零点由一个列向量给出。
Poly: 由零点可得原始多项式的各系数,但可能相差一 个常数倍。 例: >> poly(r)
如“33选7”的方案:投注者从01~33个号码 中任选7个组成一注(不可重复),根据单注号 码与中奖号码相符的个数多少确定相应的中奖等 级,不考虑号码顺序。
层次分析法——精选推荐
层次分析法title: 层次分析法date: 2020-02-25 19:14:41categories: 数学建模tags: [MATLAB, 评价模型]mathjax: true定义层次分析法(The Analytic Hierarchy Process即AHP)是由美国运筹学家、 匹兹堡⼤学教授T . L. Saaty于20世纪70年代创⽴的⼀种系统分析与决策的综合 评价⽅法,是在充分研究了⼈类思维过程的基础上提出来的,它较合理地解 决了定性问题定量化的处理过程。
AHP的主要特点是通过建⽴递阶层次结构,把⼈类的判断转化到若⼲因 素两两之间重要度的⽐较上,从⽽把难于量化的定性判断转化为可操作的重 要度的⽐较上⾯。
在许多情况下,决策者可以直接使⽤AHP进⾏决策,极⼤ 地提⾼了决策的有效性、可靠性和可⾏性,但其本质是⼀种思维⽅式,它把 复杂问题分解成多个组成因素,⼜将这些因素按⽀配关系分别形成递阶层次 结构,通过两两⽐较的⽅法确定决策⽅案相对重要度的总排序。
整个过程体 现了⼈类决策思维的基本特征,即分解、判断、综合,克服了其他⽅法回避 决策者主观判断的缺点。
步骤第⼀步递阶层次结构分析系统中各因素之间的关系,建⽴系统的递阶层次结构。
第⼆步构造判断矩阵{1,2,3,...,9}:代表重要程度,逐渐递增得到⼀个⽅阵,我们记为A,对应的元素为a ij.(1)a ij表⽰的意义是,与指标j相⽐,i的重要程度。
(2)当i=j时,两个指标相同,因此同等重要记为1,这就解释了主对⾓线元素为1。
(3)a ij>0且满⾜a ij∗a ji=1(我们称满⾜这⼀条件的矩阵为正互反矩阵)第三步⼀致性检验判断矩阵各⾏(各列)之间成倍数关系a ij>0且满⾜a ij∗a ji=1(我们称满⾜这⼀条件的矩阵为正互反矩阵)在层次分析法中,我们构造的判断矩阵均是正互反矩阵若正互反矩阵满⾜a ij∗a jk=a ik,则我们称其为⼀致矩阵注意:在使⽤判断矩阵求权重之前,必须对其进⾏⼀致性检验。
(完整版)层次分析法计算权重在matlab中的实现
信息系统分析与设计作业层次分析法确定绩效评价权重在matlab中的实现小组成员:孙高茹、王靖、李春梅、郭荣1 程序简要概述编写程序一步实现评价指标特征值lam、特征向量w以及一致性比率CR的求解。
具体的操作步骤是:首先构造评价指标,用专家评定法对指标两两打分,构建比较矩阵,继而运用编写程序实现层次分析法在MATLAB中的应用。
通过编写MATLAB程序一步实现问题求解,可以简化权重计算方法与步骤,减少工作量,从而提高人力资源管理中绩效考核的科学化电算化。
2 程序在matlab中实现的具体步骤function [w,lam,CR] = ccfx(A)%A为成对比较矩阵,返回值w为近似特征向量% lam为近似最大特征值λmax,CR为一致性比率n=length(A(:,1));a=sum(A);B=A %用B代替A做计算for j=1:n %将A的列向量归一化B(:,j)=B(:,j)./a(j);ends=B(:,1);for j=2:ns=s+B(:,j);endc=sum(s);%计算近似最大特征值λmaxw=s./c;d=A*wlam=1/n*sum((d./w));CI=(lam-n)/(n-1);%一致性指标RI=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45,1.49,1.51];%RI为随机一致性指标CR=CI/RI(n);%求一致性比率if CR>0.1disp('没有通过一致性检验');else disp('通过一致性检验');endend3 案例应用我们拟构建公司员工绩效评价分析权重,完整操作步骤如下:3.1构建的评价指标体系我们将影响员工绩效评定的指标因素分为:打卡、业绩、创新、态度与品德。
3.2专家打分,构建两两比较矩阵A =1.0000 0.5000 3.0000 4.00002.0000 1.0000 5.00003.00000.3333 0.2000 1.0000 2.00000.2500 0.3333 0.5000 1.00003.3在MATLAB中运用编写好的程序实现直接在MATLAB命令窗口中输入[w,lam,CR]=ccfx(A)继而直接得出d =1.30352.00000.51450.3926w =0.31020.46910.12420.0966lam =4.1687CR =0.0625,通过一致性检验3.4解读程序结果根据程序求解中得出的特征向量,可以得出打卡、业绩、创新以及态度品德在员工绩效评价中所占的权重分别为:0.3102、0.4691、0.1242、0.0966。
matlab数学建模30个案例分析
案例4:基于微分方程的最优捕鱼策略
为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度,一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。考虑对某种鱼的最优捕鱼策略:假设这种鱼分4个年龄组:称1龄鱼,…,4龄组,各年龄组每条鱼的平均重量分别为5.07,11.55,17.86,22.99(克)各年龄组鱼的自然死亡率均为0.8(1/年)这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109× 个,3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵 产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22 × /1.22× +n)
案例12:基于主成分分析的长江水质的评价和预测模型
运用主成分分析法对长江流域主要城市水质检测报告进行分析,选取主成分,并把主成分得分按方差贡献率加权求和,得出每个地区的污染综合评价指数,进而可以计算每个月长江流域的污染综合评价指数。
第三部分 优化问题
案例13:基于线性规划求解飞行管理模型
第二部分 评价问题
案例7:基于层次分析法的高考志愿选择策略
一年一度的高考结束后,许多考生面临估分后填写志愿的决策过程。这个决策关系重大,请你建立一个数学模型,帮考生考虑到各种决策因素使之能轻松应对这一重大决策。成都丙、重庆丁四所大学。
现有某市直属单位因工作需要,拟向社会公开招聘8名公务员。该单位拟将录用的8名公务员安排到所属的7个部门,并且要求每个部门至少安排一名公务员。这7个部门按工作性质可分为四类:(1)行政管理、 (2)技术管理、(3)行政执法、(4)公共事业。
招聘领导小组在确定录用名单的过程中,本着公平、公开的原则,同时考虑录用人员的合理分配和使用,有利于发挥个人的特长和能力。招聘领导小组将7个用人单位的基本情况(包括福利待遇、工作条件、劳动强度、晋升机会和学习深造机会等)和四类工作对聘用公务员的具体条件的希望达到的要求都向所有应聘人员公布。每一位参加面试人员都可以申报两个自己的工作类别志愿。
基于Matlab的层次分析法及其运用浅析
度 )具体标度 方法如表 1所示。 ,
表 1 T..a t LS ay教授 的 1 9标度方法 -
底层 指 标 相 对 于 准 则 层 的 权 重 系数 , 而 有助 于 选 择 最 优 方案 , 序 从 程 流程如图 1 所示 , 其中的平行 四边形表示输入数据 , 菱形表示判断 , 根据 判 断结 果 的不 同 出现 2个 分 支 。 程 序 中 , 于 生成 判 断矩 阵 的部 分 程 序 如 下 : 用
表 2 平均 随机一致性指标 ,
在当前信息化 、 全球化 的大背景下 , 传统的手工计 算已不能满足 素, 因此在判断矩 阵不能通过一致性检 验时, 需要对 各指标问相互重 人们高效 率、 高准确度 的决策需求。 因此计算机辅助决策当仁不让地 要性程度重新进行赋值 , 直至其通过矩阵一致性检验。 其最大特征值 成为 了管理决策 的新工具、 方法。基于 此, 新 本文在充分发挥计算机 对应 的特征 向量 即为该指标相对于上一级指标的重要性排序。 强大运算功能的基础上 ,选用美国 Mah rs公司的集成数学建 tWok
基于 Malb的层次分析 法及 其运 用浅析 t a
郭 东硕 程 正敏 彭茜 ( 西南大学 经济管理学院)
满足同一层 次中各指标对 所有的下级指标均产生影响 的假定条件下 ,实现 了层次分析法的分析运算。 本程序允许 用户自由设定指标层次结构内的层次数以及各层次 内的指标数 , 通过程序的循环 , 用户只需输入 判断矩 阵的部 分数据 , 程序可依据层 次分析 法的计算流程 进行计算并作 出判断。 本程序可以方便地处理层 次分析法下较 大的运算量 , 解决层次分析法的效率问题 , 提高计算机辅助决策的时效性。 关键词 : t b层 次分析法 判断矩阵 决策 Mal a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 层次分析法层次分析法(Analytic Hierarchy Process ,简称AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。
它是美国运筹学家T. L. Saaty 教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。
§1 层次分析法的基本原理与步骤人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。
层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。
运用层次分析法建模,大体上可按下面四个步骤进行:(i )建立递阶层次结构模型;(ii )构造出各层次中的所有判断矩阵;(iii )层次单排序及一致性检验;(iv )层次总排序及一致性检验。
下面分别说明这四个步骤的实现过程。
1.1 递阶层次结构的建立与特点应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。
在这个模型下,复杂问题被分解为元素的组成部分。
这些元素又按其属性及关系形成若干层次。
上一层次的元素作为准则对下一层次有关元素起支配作用。
这些层次可以分为三类:(i )最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
(ii )中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。
(iii )最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。
每一层次中各元素所支配的元素一般不要超过9个。
这是因为支配的元素过多会给两两比较判断带来困难。
下面结合一个实例来说明递阶层次结构的建立。
例1 假期旅游有1P 、2P 、3P 3个旅游胜地供你选择,试确定一个最佳地点。
在此问题中,你会根据诸如景色、费用、居住、饮食和旅途条件等一些准则去反复比较3个侯选地点。
可以建立如下的层次结构模型。
目标层O 选择旅游地准则层C 景色 费用 居住 饮食 旅途措施层P 1P 2P 3P1.2 构造判断矩阵层次结构反映了因素之间的关系,但准则层中的各准则在目标衡量中所占的比重并不一定相同,在决策者的心目中,它们各占有一定的比例。
在确定影响某因素的诸因子在该因素中所占的比重时,遇到的主要困难是这些比重常常不易定量化。
此外,当影响某因素的因子较多时,直接考虑各因子对该因素有多大程度的影响时,常常会因考虑不周全、顾此失彼而使决策者提出与他实际认为的重要性程度不相一致的数据,甚至有可能提出一组隐含矛盾的数据。
为看清这一点,可作如下假设:将一块重为1千克的石块砸成n 小块,你可以精确称出它们的重量,设为n w w ,,1 ,现在,请人估计这n 小块的重量占总重量的比例(不能让他知道各小石块的重量),此人不仅很难给出精确的比值,而且完全可能因顾此失彼而提供彼此矛盾的数据。
设现在要比较n 个因子},,{1n x x X =对某因素Z 的影响大小,怎样比较才能提供可信的数据呢?Saaty 等人建议可以采取对因子进行两两比较建立成对比较矩阵的办法。
即每次取两个因子i x 和j x ,以ij a 表示i x 和j x 对Z 的影响大小之比,全部比较结果用矩阵n n ij a A ⨯=)(表示,称A 为X Z -之间的成对比较判断矩阵(简称判断矩阵)。
容易看出,若i x 与j x 对Z 的影响之比为ij a ,则j x 与i x 对Z 的影响之比应为ijji a a 1=。
定义1 若矩阵n n ij a A ⨯=)(满足 (i )0>ij a ,(ii )ij ji a a 1=(n j i ,,2,1, =) 则称之为正互反矩阵(易见1=ii a ,n i ,,1 =)。
关于如何确定ij a 的值,Saaty 等建议引用数字1~9及其倒数作为标度。
下表列出了1~9标度的含义:从心理学观点来看,分级太多会超越人们的判断能力,既增加了作判断的难度,又容易因此而提供虚假数据。
Saaty 等人还用实验方法比较了在各种不同标度下人们判断结果的正确性,实验结果也表明,采用1~9标度最为合适。
最后,应该指出,一般地作2)1(-n n 次两两判断是必要的。
有人认为把所有元素都和某个元素比较,即只作1-n 个比较就可以了。
这种作法的弊病在于,任何一个判断的失误均可导致不合理的排序,而个别判断的失误对于难以定量的系统往往是难以避免的。
进行2)1(-n n 次比较可以提供更多的信息,通过各种不同角度的反复比较,从而导出一个合理的排序。
1.3 层次单排序及一致性检验判断矩阵A 对应于最大特征值m ax λ的特征向量W ,经归一化后即为同一层次相应因素对于上一层次某因素相对重要性的排序权值,这一过程称为层次单排序。
上述构造成对比较判断矩阵的办法虽能减少其它因素的干扰,较客观地反映出一对因子影响力的差别。
但综合全部比较结果时,其中难免包含一定程度的非一致性。
如果比较结果是前后完全一致的,则矩阵A 的元素还应当满足:ik jk ij a a a =,n k j i ,,2,1,, =∀ (1)定义2 满足关系式(1)的正互反矩阵称为一致矩阵。
需要检验构造出来的(正互反)判断矩阵A 是否严重地非一致,以便确定是否接受A 。
定理1 正互反矩阵A 的最大特征根m ax λ必为正实数,其对应特征向量的所有分量均为正实数。
A 的其余特征值的模均严格小于m ax λ。
定理2 若A 为一致矩阵,则(i )A 必为正互反矩阵。
(ii )A 的转置矩阵T A 也是一致矩阵。
(iii )A 的任意两行成比例,比例因子大于零,从而1)(rank =A (同样,A 的任意两列也成比例)。
(iv )A 的最大特征值n =max λ,其中n 为矩阵A 的阶。
A 的其余特征根均为零。
(v )若A 的最大特征值m ax λ对应的特征向量为T n w w W ),,(1 =,则ji ij w w a =,n j i ,,2,1, =∀,即⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=n n n n n n w w w w w w w w w w w w w w w w w w A 212221212111定理3 n 阶正互反矩阵A 为一致矩阵当且仅当其最大特征根n =max λ,且当正互反矩阵A 非一致时,必有n >max λ。
根据定理3,我们可以由m ax λ是否等于n 来检验判断矩阵A 是否为一致矩阵。
由于特征根连续地依赖于ij a ,故m ax λ比n 大得越多,A 的非一致性程度也就越严重,m ax λ对应的标准化特征向量也就越不能真实地反映出},,{1n x x X = 在对因素Z 的影响中所占的比重。
因此,对决策者提供的判断矩阵有必要作一次一致性检验,以决定是否能接受它。
对判断矩阵的一致性检验的步骤如下:(i )计算一致性指标CI1m a x --=n nCI λ(ii )查找相应的平均随机一致性指标RI 。
对9,,1 =n ,Saaty 给出了RI 的值,RI 的值是这样得到的,用随机方法构造500个样本矩阵:随机地从1~9及其倒数中抽取数字构造正互反矩阵,求得最大特征根的平均值max 'λ,并定义1'max --=n n RI λ。
(ⅲ)计算一致性比例CRRICI CR = 当10.0<CR 时,认为判断矩阵的一致性是可以接受的,否则应对判断矩阵作适当修正。
1.4 层次总排序及一致性检验上面我们得到的是一组元素对其上一层中某元素的权重向量。
我们最终要得到各元素,特别是最低层中各方案对于目标的排序权重,从而进行方案选择。
总排序权重要自上而下地将单准则下的权重进行合成。
设上一层次(A 层)包含m A A ,,1 共m 个因素,它们的层次总排序权重分别为m a a ,,1 。
又设其后的下一层次(B 层)包含n 个因素n B B ,,1 ,它们关于j A 的层次单排序权重分别为nj j b b ,,1 (当i B 与j A 无关联时,0=ij b )。
现求B 层中各因素关于总目标的权重,即求B 层各因素的层次总排序权重n b b ,,1 ,计算按下表所示方式进行,即∑==m j j iji a b b 1,n i ,,1 =。
对层次总排序也需作一致性检验,检验仍象层次总排序那样由高层到低层逐层进行。
这是因为虽然各层次均已经过层次单排序的一致性检验,各成对比较判断矩阵都已具有较为满意的一致性。
但当综合考察时,各层次的非一致性仍有可能积累起来,引起最终分析结果较严重的非一致性。
设B 层中与j A 相关的因素的成对比较判断矩阵在单排序中经一致性检验,求得单排序一致性指标为)(j CI ,(m j ,,1 =),相应的平均随机一致性指标为)(j RI ()()(j RI j CI 、已在层次单排序时求得),则B 层总排序随机一致性比例为∑∑===m j jm j jaj RI aj CI CR 11)()( 当10.0<CR 时,认为层次总排序结果具有较满意的一致性并接受该分析结果。
§2 层次分析法的应用在应用层次分析法研究问题时,遇到的主要困难有两个:(i )如何根据实际情况抽象出较为贴切的层次结构;(ii )如何将某些定性的量作比较接近实际定量化处理。
层次分析法对人们的思维过程进行了加工整理,提出了一套系统分析问题的方法,为科学管理和决策提供了较有说服力的依据。
但层次分析法也有其局限性,主要表现在:(i )它在很大程度上依赖于人们的经验,主观因素的影响很大,它至多只能排除思维过程中的严重非一致性,却无法排除决策者个人可能存在的严重片面性。
(ii )比较、判断过程较为粗糙,不能用于精度要求较高的决策问题。
AHP 至多只能算是一种半定量(或定性与定量结合)的方法。
AHP 方法经过几十年的发展,许多学者针对AHP 的缺点进行了改进和完善,形成了一些新理论和新方法,像群组决策、模糊决策和反馈系统理论近几年成为该领域的一个新热点。
在应用层次分析法时,建立层次结构模型是十分关键的一步。
现再分析一个实例,以便说明如何从实际问题中抽象出相应的层次结构。
例2 挑选合适的工作。
经双方恳谈,已有三个单位表示愿意录用某毕业生。
该生根据已有信息建立了一个层次结构模型,如下图所示。
A 1B 2B 3B 4B 5B 6B1B 1 1 1 4 1 1/22B 1 1 2 4 1 1/23B 1 1/2 1 5 3 1/24B 1/4 1/4 1/5 1 1/3 1/35B 1 1 1/3 3 1 16B 2 2 2 3 3 1(方案层)1B 1C 2C 3C 2B 1C 2C 3C1C 1 1/4 1/2 1C 1 1/4 1/52C 4 1 3 2C 4 1 1/23C 2 1/3 1 3C 5 2 13B 1C 2C 3C 4B 1C 2C 3C1C 1 3 1/3 1C 1 1/3 52C 1/3 1 7 2C 3 1 73C 3 1/7 1 3C 1/5 1/7 15B 1C 2C 3C 6B 1C 2C 3C1C 1 1 7 1C 1 7 92C 1 1 7 2C 1/7 1 13C 1/7 1/7 1 3C 1/9 1 1根据层次总排序权值,该生最满意的工作为工作1。