(01国陶)氧化钇稳定的氧化锆流延浆料的流变性能,生料带密度,烧成密度之间的关系

(01国陶)氧化钇稳定的氧化锆流延浆料的流变性能,生料带密度,烧成密度之间的关系
(01国陶)氧化钇稳定的氧化锆流延浆料的流变性能,生料带密度,烧成密度之间的关系

Correlation between slurry rheology,green density and sintered

density of tape cast yttria stabilised zirconia

Amit Mukherjee 1,B.Maiti 2,A.Das Sharma,R.N.Basu 3,H.S.Maiti *

Electroceramics Division,Central Glass and Ceramic Research Institute,Calcutta 700032,India Received 11July 2000;received in revised form 9August 2000;accepted 19September 2000

Abstract

An attempt has been made to investigate the role of dispersant and powder dimension on the slurry rheology and the corre-sponding e ect on green as well as sintered densities of tape cast yttria stabilized zirconia (YSZ).Two commonly used dispersants,viz.menhaden ?sh oil (MFO)and phosphate ester (PE)have been used in conjunction with YSZ powders of di erent particle sizes.It has been found that for this system,PE is a much better dispersant than MFO and the best dispersion is obtained with ?ner YSZ powders.The slurry rheology has a marked e ect on the green as well as subsequent sintered densities of the tapes.#2001Elsevier Science Ltd and Techna S.r.l.All rights reserved.

Keywords:A.Tape casting;A.Suspensions;E.Fuel cells,YSZ

1.Introduction

Yttria stabilized zirconia (YSZ)is the most widely used electrolyte material for oxygen sensor and fuel cell applications.Pure zirconia,ZrO 2,cannot act as a good electrolyte owing to its poor ionic conductivity and phase transformation (monoclinic/tetragonal)on heating associated with a large volume change.Doping of ZrO 2with a small amount (3±10mol%)of a divalent or trivalent oxide can stabilize the cubic ˉuorite phase and,in the process,increases its oxygen vacancy concentration leading to an enhanced ionic conductivity.This makes stabilized zirconia suitable for use as an electrolyte material and yttria (Y 2O 3)is the most commonly used dopant for stabilizing zirconia for the aforesaid applications.

The most important criterion in the fabrication of YSZ electrolyte is the production of a highly dense structure,i.e.with no connected porosity (in order to prevent cross ˉow of gases).Moreover,it should be as thin as possible so that the ohmic loss is minimized.

Tape casting is a low cost ceramic fabrication technique that can be employed to produce wide and thin ceramic tapes having precise dimensional tolerances and very smooth surfaces [1].It has also been observed [2]that tape casting leads to a very homogeneous microstructure.It is not surprising,therefore,that many investigators [3±6]have employed this technique to fabricate YSZ electrolyte for di erent applications.

In the tape casting process,ceramic powders of su cient ?neness are dispersed in a proper liquid medium followed by the addition of organic binders and plasticizers which increase the mechanical strength and ˉexibility of the green tapes [7,8].However,a homogeneous product of uniform density can be obtained if the starting slurry has a high degree of homogeneity and stability.The alignments and packing of particles in the green tapes dictate the sintering characteristics and the ?nal properties [9,10].Hence,two basic interrelations exist:(1)between the slurry and the green tape,and (2)between the green tape and the sintered product [7].The present work aims to study the correlation between slurry rheology,green den-sity and sintered density of tape cast YSZ sheets.2.Experimental 2.1.Starting materials

In order to study the e ect of particle size on the slurry rheology and the latter's e ect on the green and

0272-8842/01/$20.00#2001Elsevier Science Ltd and Techna S.r.l.All rights reserved.P I I :S 0272-8842(00)00121-

8

Ceramics International 27(2001)731±739

/locate/ceramint

*Corresponding author.Fax:+91-033-473-0957.1

Present address:Department of Chemistry,College of Engineering and Management,Kolaghat,West Bengal,PIN 721171India.2

Present address:Department of Physics,College of Engineering and Mangement,Kolaghat,West Bengal,PIN 721171,India.3

Present address:Institut fu r Werksto e und Verfahren der Energie-technik 1,Werksto synthese und Herstellungsverfahren,Forschungs-zentrum Ju lich G mbH,Leo-Brandt-Stra?e,D52428,Ju lich,Germany.E-mail address :hsm@cscgcri.ren.nic.in (H.S.Maiti).

sintered densities,fully yttria-stabilized zirconia(8mol% yttria)from two di erent sources were used:TZ-8Y, Tosoh Corp.,Japan(designated as T)and8YSZ,ACC Ltd.,India(designated as A).Both the powders are of very high purity(>99.5%).The only di erence is in their particle size distribution;while powder T is very ?ne with a median particle size of only0.18m m,powder

A is much coarser with a median particle size of about

0.54m m.

Suspensions of YSZ were prepared using reagent grade solvents consisting of an azeotropic mixture of methyl ethyl ketone(MEK)and ethanol(EtOH).In order to see the e ect of dispersants on the slurry rheology,green as well as sintered densities of tapes, two most popular commercial dispersants[11,12]were used in the tape casting formulations:phosphate ester, PE(Emphos PS21-A,Witco Chemicals Co.,New York, USA)and Menhaden?sh oil,MFO(Sigma Chemical Co.,St.Louis,MO,USA).

For the preparation of tape casting slurry,the binder used was a polyvinyl butyral,PVB(Butvar B98,Mon-santo,St.Louis,MO,USA)and the plasticizer was a mixture of polyethylene glycol,PEG(S.d?ne Chemicals Ltd.,India)and benzyl butyl phthalate,BBP(E.Merck, Germany).

2.2.Slurry preparation

The formulations of the slurries are summarised in Table1.The powder was?rst milled in a solvent con-taining a dispersant using ZrO2as milling media for12 h.This step breaks down agglomerates which may be present in the powder.In the second step,the required amounts of binder and plasticizers were added to the suspension and milled for another24h before?nal casting or rheological measurements.

2.3.Rheology

The e ectiveness of di erent dispersants(PE and MFO)for both types of YSZ powders(T and A)was estimated from the measurement of slurry viscosity as a function of dispersant concentration.The slurry viscosities were measured using a concentric cylindrical rotational viscometer(VT500,Haake,Germany).A range of shear rates,from40to450sà1was employed.

2.4.Electrophoretic mobility measurements

For the measurement of electrophoretic mobility, suspensions containing2wt.%powder were prepared by ball milling the powder together with a solvent and a dispersant using ZrO2milling media for4h.The sus-pensions were centrifuged and the dilute supernatant suspensions containing a small number of particles were collected.These supernatant suspensions were taken in a microelectrophoresis cell(Zetameter3.0,Zetameter Inc.,USA)to note the mobility values by observing the rate of movement of the individual particles under a speci?c electric?eld using a microscope attached with the instrument.

2.5.Tape casting

Prior to casting,the slurries were vacuum deaired under constant stirring for about2min.This removes any entrapped air in the slurry during ball milling stage. The casting was performed using a laboratory model tape casting unit(Model164,Incetek USA).The slurries were cast on tempered glass plates through a Doctor blade.The cast slurries were allowed to dry overnight at room temperature before they were removed from the glass plate.

2.6.Density measurements

For green density measurements,dried tapes containing plasticizer,binder,dispersant and the ceramic powder were punched into small discs of diameter25±50mm followed by careful measurements of their thickness. The green density of the tapes was then calculated from the weight to volume ratio.

In order to measure the sintered density of the tapes, the above mentioned pieces of green tapes were?red in air at di erent temperatures ranging from1450to 1650 C for4h.Both heating and cooling rates were

Table1

Formulation particulars

Powder Median diameter(m m)Surface area m2/g I:O ratio( )a L b Dispersant Binder( )c?Plasticizer d*w.r.t binder

MFO PE

A0.547.4381%39%±0±2%9.32%136%

A0.547.4381%51%0±2.5%0±2%9.32%136%

T0.1815.7081%45%0±2.5%0±2%9.32%136%

a(a)Denotes the inorganic to(inorganic+organic)ratio,i.e.wt.of ZrO2/(wt.of ZrO2+dispersant+binder+plasticizer).

b(L)Denotes the powder loading,i.e.wt.of ZrO2/(wt.of ZrO2+solvent+dispersant+binder+plasticizer).

c(b)Denotes the wt.%of binder with respect to wt.of the powder.

d(*)The wt.ratio of BBP:binder was kept at0.26;whereas,the wt.ratio of PEG:binder was maintained at1.10respectively.

732 A.Mukherjee et al./Ceramics International27(2001)731±739

controlled very carefully in order to avoid warpage or cracking of the sintered tapes.The densities of the sin-tered discs were then measured by Archimedes'method using water as a medium.2.7.Microstructural studies

The microstructures of the green as well as the sintered tapes were observed using a scanning electron microscope (Model 30i,Leo,UK).In order to observe the micro-structure of green tapes,small pieces of the samples were exposed to solvent vapours at room temperature for 15±30s to get etched surfaces,which were then observed under the microscope.For sintered samples,after polishing,the surfaces were etched using a mixture of 5%HF and 20%HCl (1:5v/o)for 30±60s.The etched surfaces were then observed under the microscope to see the microstructures.3.Results and discussions

3.1.E ect of dispersant on the slurry rheology

We have selected two dispersants,namely,MFO and PE and their e ectiveness in dispersing powder A with I:O ratio of 81%is shown in Fig.1.It is observed from the ?gure that the viscosity of the tape casting slurry shows a minimum for both the dispersants at a particular dispersant concentration beyond which,the slurry visc-osity increases again.However,the amount of PE (about 1wt.%)required to reach the minimal point is half of that required for MFO (about 2wt.%).It is also evident from Fig.1that the viscosity minimum is much lower and the change much sharper for the slurries containing PE as the dispersant than those containing MFO indicating the former to be a better dispersant.These observations can be explained by considering the mode of action of the two dispersants.

It is well known that the dispersion capability of MFO,which is a polyunsaturated ester molecule,is mainly due to steric stabilisation [13,14].It has been shown [15]that during the ball milling stage breakdown of large,porous hard agglomerates takes place.These agglomerates tend to occlude liquid in the interparticle pore channels resulting in a lower quantity of solvent to ˉow.However,upon breakdown of these hard agglom-erates to primary particles,more solvent is e ectively free to ˉow resulting in lower viscosity.The role of a dispersant is to keep these primary particles separated from each other thereby preventing their agglomeration due to van der Waals attraction energy.It is evident from Fig.1that MFO is most e ective to maintain the separation of these particles at a concentration of about 2g per 100g of powder resulting in viscosity minimum at that concentration.The increase in viscosity over the optimum dispersant concentration using MFO has been observed for other systems also [11,13].

PE (reaction product of phosphoric acid and ethoxylate;ethoxylate molecules contains both a hydrophilic poly-oxyethlene group and lipophillic alkyl group)on the other hand,operates by the electrosteric stabilisation mode [7].It has been proposed [7,16]that in a polar medium like MEK:EtOH,the decrease in viscosity below the optimum concentration of PE may be attributed to the ionization of PE on the particle surfaces to create charged surfaces leading to an electrostatic barrier.At the same time,the linear carbon chain extends into the polar solvent to provide steric stabilisation.It is believed [7]that for highly concentrated suspensions,using dis-persants which shows such a combination of both electro-static and steric mechanisms,the suspension stability will be much more compared to that where only either of the mechanisms operates.It is expected therefore,that the drop in the viscosity of the tape casting slurry utilising PE will be signi?cantly higher than that of MFO containing slurry.However,beyond the optimum concentration,the ionized PE molecules has a tendency to interact with each other [11]so that bridging ˉoccu-lation occurs [17]and the slurry viscosity increases sharply.A similar trend in the increase in viscosity of slurries beyond the optimum concentration of PE has also been observed for BaTiO 3based slurries [18].

It is well established that the pseudoplasticity of a slurry is dependent on the capability of the particles to align them with increasing shear rates.With increasing particle orientation the resistance to shear decreases,thereby decreasing viscosity [19].The shear thinning behaviour may also be due to particle ˉocculation [20,21].Therefore,it is expected that the pseudoplastic e ect will be lowered when there is low particle ˉoccu-lation or when the particle orientation is less in the tape casting slurry.Fig.2represents the shear thinning beha-viour of the tape casting slurries corresponding to two di erent dispersants (PE and MFO)in the

formulations

Fig.1.Variation of slurry viscosity with dispersant concentration for di erent dispersants.

A.Mukherjee et al./Ceramics International 27(2001)731±739733

utilising powder A.It should be mentioned here that these measurements were carried out at the optimum dispersion conditions (2wt.%of MFO and 1wt.%of PE in the corresponding formulations respectively).It can be observed from the plot that the viscosity of the slurries utilising MFO is higher than that corresponding to PE throughout the range of shear rates investigated (40to 450s à1).

The shear thinning behaviour of the slurries can be monitored by an estimation of the ˉow index as obtained from the following empirical power law equa-tion [22]: K n

I

where is the shear stress, is the shear rate,K ,a con-sistency factor and n is the pseduplasticity index respec-tively.For pseudoplastic suspensions,the value of n is less than 1and,the greater the divergence from Newtonian behaviour,the lower is its value.

Table 2shows the values of the pseudoplasticity index of the above two slurries calculated by Patton's method [23].The values of n clearly demonstrate that with the increase in shear rate,the pseudoplasticity of both the slurries increases (n decreases).It is obvious from Eq.(1)that to maintain a constant change in shear rate,the change in shear stress will be lower at correspondingly higher shear rates.This would naturally imply that the value of n should decrease at high shear rates,as is observed with all the slurries investigated.

It can also be seen from Table 2that the total change in the value of n (án )for the slurry containing PE (A-PE)is greater than that of the slurry containing MFO (A-MFO).For highly concentrated suspensions of tape casting pro-cess,it is expected that even after using proper dispersants in optimum concentrations,the slurries should have

agglomerated particles.Under shear conditions,as a ?rst step,the agglomerates will be broken down into smaller units or as a terminal case to primary particles.These smaller units and individual particles will then subsequently try to orient themselves under shear.As discussed previously,the e ectiveness of MFO as a dispersant is less compared to PE which results in

a

Fig.2.Viscosity vs.shear rate plots of YSZ slurries stabilized with di erent dispersants.

Table 2

Rheological parameters for the di erent tape-casting slurries

Powder system Loading (L )a Torque (N.Cm)Shear stress (Pa)Shear rate (s à1)Pseudoplasticity

index (n )A/PE

39

0.1230.3640.320.1743.0157.410.970.2768.3195.940.940.44111.32159.800.940.70177.10266.700.901.06268.18444.600.81A/PE 51

0.1947.9840.320.2666.8857.410.940.42106.4995.940.900.66168.59159.800.901.01256.03266.800.811.42360.12444.600.66A/MFO 51

0.2051.0040.320.2870.4457.410.910.44110.8195.940.880.68174.18159.800.881.05267.23266.700.831.54391.25444.600.74T/PE 45

0.2460.8840.320.3384.3957.410.920.51130.4795.940.850.75190.16159.800.851.10280.14266.700.711.54

409.12

444.60

0.65

a

L denotes the powder loading in wt.%percent.

734 A.Mukherjee et al./Ceramics International 27(2001)731±739

greater degree of agglomeration in A-MFO slurry.Thus, the corresponding resistance of these agglomerates to orient them under shear will be greater.This would automatically imply that pseudoplasticity of MFO slurries will be lower compared to that of PE slurries.The above contention is reˉected in the total changes of theˉow index value,án,which may be as low as0.17for MFO containing slurries and as high as0.28for PE containing slurries.

3.2.E ect of particle size

The same kind of measurements on slurry rheology (viscosity,pseudoplasticity)were carried out with PE as a dispersant,but taking two kinds of powderDpowder T of smaller particle size and,powder A of coarser one. Fig.3shows a comparison of the viscosities of the slurries containing powder A and T as a function of PE concentration.It is evident from the?gure that the viscosity of the slurry containing powder T is higher than that containing powder A throughout the range of dispersant concentration used.Similar viscosity depen-dence upon particle size has also been observed by several workers[24,25].Although such higher viscosities in combination with shear thinning behaviour(discussed later)is generally attributed toˉocculation of particles, electrophoretic mobility measurements show the?ner particles(powder T)to have almost threefold higher mobility(1.603m2Và1sà1)compared to coarser particles (powder A)for which the mobility value is only0.495 m2Và1sà1.This would imply that the?ner particles are better dispersed in the tape casting slurry.Thus,in order to explain such high viscosities for?ner particles other factors,such as Brownian motion and electroviscous e ect,should be operational in these slurries.These two phenomena are known to become increasingly important with decreasing particle dimensions[25].These e ects will be discussed brieˉy while comparing the pseudo-plasticity e ect of these slurries.

It can also be seen from Fig.3that the optimum dis-persant concentration for the viscosity minimum for powder T is higher by around25%.This is expected as with the decrease in particle size there is an increase in surface area of the powders in the composition.This would imply a higher amount of dispersant required to cover the surface area for e ective particle separation [9,26].

The change in particle dimension also shows a reˉection on the shear thinning behaviour of the slurries(Fig.4). It is evident from Fig.4that the nature of the viscosity plot with shear rate for powder T di ers widely from that of powder A.As a rough estimation,the ratio between the terminal viscosities for powder T is1.71 whereas for the powder A the corresponding value is only around1.47.Such higher changes in viscosity with shear for?ner particles has been observed for other systems too[27±32]and the results indicate that the shear thinning behaviour of?ner particles is a combi-nation of the phenomena of Brownian motion and electroviscous e ect[28±32].The electroviscous e ect becomes increasingly important with higher electro-phoretic mobility,higher surface charge density and decrease in particle size respectively.

Theˉow index value(n)for the system T/PE,com-pared with the same for A/PE,(Table2)also shows that the slurry corresponding to T/PE is more pseudoplastic. However,the total change in theˉow index for T/PE is almost the same when compared to A/PE(án=0.28). Apparently,these results may appear to be contra-dictory.However,considering the powder loading to be much lower in the case of T/PE slurry,the total change in theˉow index is relatively higher compared to that of A/PE slurry.The powder loading was deliberately kept low in the case of powder T so as to keep its

viscosity Fig.3.Viscosities of YSZ slurries as a function of PE concentration for di erent powders.

A.Mukherjee et al./Ceramics International27(2001)731±739735

within manageable limits for the casting operation.It is evident,therefore,that in the case of ?ne powders,several factors have a contribution in determining the slurry rheology as discussed above.3.3.Green density of tapes

It is well known that the state of dispersion has an important inˉuence on the green microstructure,which develops during powder consolidation upon evapora-tion of the solvent.Well-dispersed suspensions tend to produce highly dense,homogeneous compacts.Figs.5,6and 7show the variation of green density as a function of the dispersant concentration.While Figs.5and 6is the comparison of the changes that occur while sub-stituting PE by MFO in the tape casting slurry;Figs.6

and 7show such variation by replacing powder A with powder T.It is worth mentioning that all the results reported here are taken over a large number of samples involving ?ve di erent batches.

It is evident from Fig.5that with variation in MFO concentration,the mean values of green density do not change appreciably ($53%of theoretical value).How-ever,it is more signi?cant to note the values of standard deviation (being an index to measure the uniformity of the tapes)of these green densities with changes in MFO concentration.It is observed from Fig.5that the slurry corresponding to a MFO concentration of 2wt.%per 100g of powder is more homogeneous (as reˉected from the standard deviation values)compared to other green compacts.Such variation in green density is in line with the viscosity measurements which showed that at this concentration of dispersant the degree of agglomeration is lowest.

A somewhat di erent trend is obtained for the slurry containing PE (Fig.6).In this case,with changes in the dispersant concentration the mean grain density shows a gradual rise from a value of $53%(of theoretical value)at zero dispersant concentration to a value of $56%at a dispersant concentration of 1wt.%.Further increase in dispersion concentration showed a negative e ect on the green density.Fig.6also shows that the standard deviation values are lower compared to those for the MFO containing slurries,with a minimum occurring at 1wt.%of ester.Thus,these results reˉects similar trends as obtained from the rheological measurements which showed PE to be a more e ective dispersant compared to MFO both in terms of maintaining particle separation and its low requirement in the slurry.

A similar trend is also observed while changing the powder dimension from A to the ?ner variety T with PE as a dispersant.However,in this case,the mean

green

Fig.4.Viscosity vs.shear rate plots of slurries prepared with YSZ powders of di erent particle

sizes.

Fig.5.Density of green tapes as a function of MFO concentration in the corresponding slurry prepared with powder A.

736 A.Mukherjee et al./Ceramics International 27(2001)731±739

density reaches a maximum ($57%of theoretical value)at a dispersant concentration of 1.25wt.%(Fig.7).Also the standard deviation of these compacts are appreci-ably lower compared to the deviation observed with powder A.These observations are in line with the elec-trophoretic mobility and rheological measurements which showed that powder T produces a more stable suspension compared to powder A under identical conditions.

Fig.8shows a representative micrograph of the green tape as obtained from T-PE system.However,by trying to view the microstructure of as obtained green tapes nothing signi?cant was observed.This is primarily due to the binder phase at the surface.However,when these tapes are solvent etched selectively at the surface it opens up windows to view the microstructure of the underlying powders (Fig.8a).A magni?ed look through the etched portion shows the particles are almost homogeneously distributed implying a high packing density with intermittent ?ne pores (Fig.8b).3.4.Sintering of tapes

Table 3shows the shrinkage vis-a-vis the sintered density for the tapes obtained from the formulations representing the optimum dispersion conditions.It is observed that the trend in shrinkage is parallel to the densi?cation process and follows the trend T-PE>A-PE>A-MFO.

It is well known [33],that the di erences in the green microstructures have a profound e ect on subsequent sintering behaviour;a highly ordered compact sinters to near theoretical density,whereas for suspensions invol-ving ˉocs,under similar conditions of sintering,the resultant sintered density has a much lower value.Such di erences in sintering are primarily due to the fact that for ˉocculated systems only local densi?cation (of tightly packed particle clusters)occurs,whereas for ordered compacts,due to a large number of nearest neighbour contacts per particle and uniform small pore size,sintering is enhanced.Moreover,rearrangement and di erential microdensi?cation processes,which produce larger pores and lower shrinkage rates are minimized in ordered compacts [34].Representative microstructures of the sintered tapes of A-PE and T-PE are shown in Fig.9.Both the samples show existence of pores although,as expected,the porosity of the sintered substrates corresponding to powder T (Fig.9a)is appreciably lower compared to that of the substrates prepared with powder A (Fig.9b).Moreover,as expected [35],the sintering temperature of the ?ne particles are appreciably lower (1500 C)compared to that of powder A (1650

C).

Fig.6.Density of green tapes as a function of PE concentration in the corresponding slurry prepared with powder

A.

Fig.7.Density of green tapes as a function of PE concentration in the corresponding slurry prepared with powder T.

A.Mukherjee et al./Ceramics International 27(2001)731±739737

4.Conclusions

Detailed investigations were carried out to ?nd out the e ect of the dispersant and powder dimension on the slurry rheology and the corresponding e ect on green as well as sintered densities of cast YSZ tapes.The results of these experiments have revealed that in the present case,phosphate ester is a much more e ective dispersant compared to menhaden ?sh oil as manifested in the corresponding viscosity and ˉow index values for the suspensions of the powders investigated.Moreover,the results point out that the degree of agglomeration is higher for slurries involving MFO,and the best dispersion

was obtained with ?ner powders in conjunction with PE as the dispersant.It has been shown that the suspension rheology has also a profound e ect on the green density and the subsequent sintered density of the tapes.Acknowledgements

Financial support from Board of Research in Nuclear Sciences (BRNS),Govt.of India,is gratefully acknowl-edged.One of the authors (BM)acknowledges ?nancial assistance from the EMR Division of CSIR,Govt.of

India.

Fig.8.Scanning electron micrograph of green tapes.(a)Solvent etched surface and (b)magni?ed view of the same.

Table 3

Shrinkage and sintered density of YSZ tapes System

(sintering temperature)Comparative state of dispersion Degree of agglomeration Green density (%theoretical)Shrinkage (%)Sintered density (%theoretical)T-PE (1500 C)Best Lowest 572796A-PE (1650 C)Better Higher 563094A-MFO (1650 C)

Poor

Highest

53

32

91

Fig.9.Scanning electron micrograph of sintered tapes.(a)Prepared with powder T and (b)prepared with powder A.

738 A.Mukherjee et al./Ceramics International 27(2001)731±739

References

[1]J.J.Thompson,Forming thin ceramics,Am.Ceram.Soc.Bull.42

(1963)480±481.

[2]T.Chartier,J.L.Benson,P.Boch,Mechanical properties of

ZrO2±Al2O3laminated composites,in:S.Somiya,N.Yamamoto,

H.Hanagida(Eds.),Advances in Ceramics,Vol.24(B),Science

and Technology of Zirconia III,American Ceramic Society,1988, pp.1131±1138.

[3]H.Takagi,H.Taira,S.Kobayashi,S.Sakamoto,K.Tomono,

Development of co?red type planar SOFC,in:Proceedings of the 4th International Symposium on Solid Oxide Fuel Cells,1995, The Electrochemical Society,NJ,USA,pp.120±128.

[4]S.Majumdar,T.Claar,B.Flaudermeyer,Stress fracture beha-

vior of monolithic fuel cell tapes,J.Am.Ceram.Soc.69(1986) 628±633.

[5]T.Ishii,R.Chiba,SOFC using cubic stabilized zirconia in a

ZrO2±Sc2O3±Al2O3system as an electrolyte,in:Proceedings of the4th International Symposium on Solid Oxide Fuel Cells, 1995,The Electrochemical Society,NJ,USA,pp.295±300. [6]F.L.Lowrie,R.D.Rawlings,B.C.H.Steele,W.Kleinlein,Com-

parison of strength and microstructure of thin fully stabilized zirconia at room temperature and950 C,in:Proceedings of the 4th International Symposium on Solid Oxide Fuel Cells,The Electrochemical Society,NJ,USA,pp.318±325.

[7]R.Moreno,The role of slip additives in tape casting technology:

Part IDsolvents and dispersants,Am.Ceram.Soc.Bull.71 (1992)1521±1531.

[8]R.Moreno,The role of slip additives in tape casting technology:

Part IIDbinders and plasticizers,Am.Ceram.Soc.Bull.71 (1992)1647±1657.

[9]A.Roosen,Basic requirements for tape casting of ceramic pow-

ders,in:G.L.Messing,E.R.Fuller,H.Hausner(Eds.),Ceramic Transactions,Vol.1,Ceramic Powder Science II B,American Ceramic Society,1988,pp.675±692.

[10]T.Ueyama,N.Kaneko,E ect of agglomerated particles on

properties of ceramic green sheets,in:P.Vincenzini(Ed.),High Tech Ceramics,Elsevier,Amsterdam,1987,pp.1451±1458. [11]K.P.Plucknett,C.H.Caceres,D.S.Wilkinson,Tape casting of

?ne alumina/zirconia powders for composite fabrication,J.Am.

Ceram.Soc.77(1994)2137±2144.

[12]K.Mikeska,W.R.Cannon,Dispersants for tape casting pure

barium titanate,in:G.L Messing(Ed.),Advances in Ceramics, Vol.9,American Ceramic Society,1984,pp.164±183.

[13]D.Calvert,E.S.Tormey,R.S.Pober,Fish oil and triglycerides as

dispersants for alumina,Am.Ceram.Soc.Bull.65(1986)669±672.

[14]R.E.Mistler,D.J.Shane?eld,R.B.Runk,Tape casting of cera-

mics,in:G.Y.Onada,L.L.Hench(Eds.),Ceramic Processing Before Firing,Wiley,New York,1978,pp.411±488.

[15]M.D.Sacks,C.S.Khadilkar,Milling and suspension behavior of

Al2O3in methanol and methyl isobutyl ketone,J.Am.Ceram.

Soc.66(1983)488±494.

[16]T.Chartier,E.Streicher,P.Boch,Phosphate esters as dispersants

for the tape casting of alumina,Am.Ceram.Soc.Bull.66(1987) 1653±1655.[17]H.Raeder,C.Simon,T.Chartier,H.L.Toftegaard,Tape casting

of zirconia for ion conducting membranes:a study of dispersants, J.Eur.Ceram.Soc.13(1994)485±491.

[18]T.Chartier,E.Streicher,P.Boch,Dispersion properties of

BaTiO3tape casting slurries,J.Eur.Ceram.Soc.11(1993)387±393.

[19]M.Wu,G.L.Messing,Fabrication of oriented SiC-whisker-rein-

forced mullite matrix composites by tape casting,J.Am.Ceram.

Soc.77(1994)2586±2592.

[20]M.D.Sacks,Rheological science in ceramic processing,

in:L.L.Hench,D.R.Ulrich(Eds.),Science of Ceramic Chemical Processing,Wiley,New York,1986,pp.522±538.

[21]M.D.Sacks,C.S.Khadilkar,G.W.Schei ele,A.V.Shanoy,

J.H.Dow,R.S.Dow,Dispersion and rheology in ceramic pro-cessing,in:G.L.Messing,K.S.Mazdiyasni,J.W.McCauley, R.A.Haber(Eds.),Advances in Ceramics,Vol.21,Ceramic Powder Science,Am.Ceram.Soc.,Westerville,OH.

[22]J.S.Reed,Rheology of saturated systems(slurries and pastes),in:

Principles of Ceramic Processing,John Wiley and Sons,New York,1995,pp.277±309.

[23]T.C.Patton,Paintˉow relationships,in:Paint Flow and Pigment

Dispersion,Interscience Publishers,NY,1966,pp.417±42. [24]B.V.Velamakanni,nge,E ect of interparticle potentials

and sedimentation on particle packing density of bimodal particle distribution during pressure?ltration,J.Am.Ceram.Soc.74 (1991)166±172.

[25]T.S.Yeh,M.S.Sacks,Low temperature sintering of aluminium

oxide,J.Am.Ceram.Soc.71(1988)841±844.

[26]D.J.Shane?eld,Competing adsorptions in tape casting,

in:J.B.Blum,W.R.Cannon(Eds.),Advances in Ceramics,Vol.

19,Multilayer Ceramic Devises,Am.Ceram.Soc,Westerville, OH,1988,pp.155±160.

[27]M.E.Woods,I.M.Krieger,Rheological studies on dispersion of

uniform colloidal spheres:I.Aqueous dispersions in steady shear ˉow,J.Colloid Interface Sci.34(1970)91±99.

[28]Y.S.Papir,I.M.Krieger,Rheological studies on dispersion of

uniform colloidal spheres:II.Dispersions in nonaqueous media, J.Colloid Interface Sci.34(1970)126±130.

[29]I.M.Krieger,Rheology of monodisperse lattices,Adv.Colloid

Interface Sci.3(1972)111±136.

[30]J.Stone-Masui,A.Watillon,Electroviscous e ects in dispersions

of monodisperse polystyrene lattices,J.Colloid Interface Sci.28 (1968)187±202.

[31]J.G.Brodnyan,E.L.Kelly,The e ect of electrolyte content of

synthetic latexˉow behavior,J.Colloid Sci.20(1965)7±19. [32]I.M.Krieger,M.Equiluz,The second electroviscous e ect in

polymer lattices,Trans.Soc.Rheol.20(1976)29±45.

[33]M.D.Sacks,T.Y.Tseng,Preparation of SiO2glass from modal

powder compacts:II,sintering,J.Am.Ceram Soc.67(1984)532±537.

[34]J.Zheng,J.S.Reed,E ects of particle packing characteristics on

solid state sintering,J.Am.Ceram.Soc.72(1989)810±817. [35]M.Kumagai,G.L.Messing,Controlled transformation and sin-

tering of a boehmite sol±gel by a-alumina seeding,J.Am.Ceram.

Soc.68(1985)500±505.

A.Mukherjee et al./Ceramics International27(2001)731±739739

氧化钇稳定四方氧化锆多晶陶瓷在牙科领域的研究现状

氧化钇稳定四方氧化锆多晶陶瓷在牙科领域的研究现状氧化钇稳定四方氧化锆多晶陶瓷在牙科领域的研究现状/高燕等 ??51?? 高 燕12,张富强12 1上海交通大学医学院附属第九人民医院,上海200011;2上海 市口腔医学研究所,上海200011 与传统牙科陶瓷材料相比,以氧化钇Y2O3为稳 定剂的四方氧化锆t- ZrO2多晶陶瓷Y-TZP由于存在介稳的四方氧化锆向单斜氧化锆m- ZrO2 的应力诱导相变增韧作用,具有较高的韧性,而受到了普遍关注。主 要从材料性能、加工性、美学性能等方面对Y-TZP在牙科领域的研究现状作一综述。氧化锆 Y-TZP 挠曲强度 CAD-CAM Application Status and Development Tendency of Yttria-stabilized Tetragonal Zirconia PolycrystalsY-TZP GAOYan ZHANG Fuqiang 1 Department of Prosthetic Dentistry Shanghai 9th People’Hospital Shanghai 200011;2.Shanghai Jiaotong University and Shanghai Institute of Stomotology Shanghai 200011 Abstract Compared with traditional dental ceramic Y-TZP is becoming more and more popular between dentists and patients due to its stress induced t–m ZrO2 transformation. This paper introduces the mechanical propertymachinable and aesthetic property of Y-TZP. Key words zirconiaY-TZPflexture strengthCAD-CAMt 0 与传统的金瓷修复体比较,全瓷冠桥修复体因其在美学和生物相容性方面性能的改善而受到普遍的关注13。不论是玻璃陶瓷,高铝含量的玻璃渗透陶瓷都不能满足后牙固定局

氧化锆陶瓷

112 40 氧化锆陶瓷 编辑 白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。在常压下纯ZrO2共有三种晶态。氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多,氧化锆的提纯主要有氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。 目录 1简介 2种类特点 3粉体制备 4生产工艺 5应用 6增韧方法 1简介

氧化锆陶瓷,ZrO2陶瓷,Zirconia Ceramic 2种类特点 纯ZrO2为白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。世界上已探明的锆资源约为1900万吨,氧化锆通常是由锆矿石提纯制得。在常压下纯ZrO2共有三种晶态:单斜(Monoclinic)氧化锆(m-ZrO2)、四方(Tetragonal)氧化锆 (t-ZrO2)和立方(Cubic)氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化: 温度密度 单斜(Monoclinic)氧化锆(m-ZrO2) <950℃ 5.65g/cc 四方(Tetragonal)氧化锆(t-ZrO2) 1200-2370℃ 6.10g/cc 立方(Cubic)氧化锆(c-ZrO2) >2370℃ 6.27g/cc 上述三种晶态具有不同的理化特性,在实际应用为获得所需要的晶形和使用性能,通常加入不同类型的稳定剂制成不同类型的氧化锆陶瓷,如部分稳定氧化锆(partially stabilized zirconia,PSZ),当稳定剂为CaO、 MgO、Y2O3时,分别表示为Ca-PSZ、 Mg-PSZ、 Y-PSZ等。由亚稳的t- ZrO2组成的四方氧化锆称之为四方氧化锆多晶体陶瓷(tetragonal zirconia polycrysta,TZP)。当加入的稳定剂是Y2O3 、CeO2,则分别表示为Y-TZP、Ce-TZP等。 3粉体制备 氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多,氧化锆的提纯主要有氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。粉体加工方法有共沉淀法、溶胶一凝胶法、蒸发法、超临界合成法、微乳液法、水热合成法网及气相沉积法等。 4生产工艺

钇稳定氧化锆纳米粉体制备技术

第25卷第6期 硅 酸 盐 通 报 Vol .25 No .6 2006年12月 BULLETI N OF THE CH I N ESE CERAM I C S OC I ETY December,2006  钇稳定氧化锆纳米粉体制备技术研究进展 王洪升1,王 贵2,张景德1,徐廷鸿1 (1.山东大学材料液态结构及其遗传性教育部重点实验室,济南 250061;2.济南大学泉城学院,济南 250061) 摘要:纳米YSZ 是一种新型的高科技材料,有着广泛而重要的用途。本文根据国内外最新研究现状及其发展趋势,综述了纳米级YSZ 的制备技术,特别就目前研究比较多的水热法和反胶团法给予了重点阐述,并就目前制备过程中存在的问题,解决方法及发展方向作了介绍。 关键词:YSZ;纳米粉体;团聚;制备 The Prepara ti on Progresses of Y SZ Nanom eter Powder WAN G Hong 2sheng 1,WAN G Gui 2,ZHAN G J ing 2de 1,XU Ting 2hong 1(Keb Lab .of L iquid Structure and Heredity of MaterialsM inisity of Educati on,Shandong University,J inan 250061,China; 2.Quancheng College of J inan University,J inan 250061,China )Abstract:U ltrafine YSZ particles are a ne w type of advanced material,which has wide and significant uses .Varieties of p reparati on and drying methods of YSZ powder were revie wed in this paper on the basis of ne w p r ogress and devel op ing trends,es pecially the hydr other mal method and the reverse m icelles were described in detail .The p r omble m s that need t o be s olvoed and the directi on in the future were given . Key words:YSZ;nanometer powder;aggregati on;p reparati on 作者简介:王洪升(19822)男,硕士.主要从事氧化锆气敏陶瓷的研究.E 2mail:wanghongsheng@mail .sdu .edu .cn Y 2O 3稳定的Zr O 2(YSZ )固体电解质,具有较高的氧离子导电性,良好的机械性能,优秀的耐氧化和耐腐蚀性[1]以及不与电极材料反应[2]等优点而成为制作氧传感器、高温固体燃料电池、压电陶瓷、铁电陶瓷以及氧泵等的主要材料,而氧化钇稳定氧化锆粉体超细的晶粒粒度、颗粒的均匀性和合理的成分配比是获得高离子电导性能和良好机械强度YSZ 固体电解质的关键。因此纳米YSZ 微粒的制备一直是纳米材料制备科学中的一个热点,目前人们研究、使用了共沉淀法,s ol 2gel 法、水热法、共沉淀-凝胶法、醇-水溶液法、共沸蒸馏技术、微波辅助法、反胶团法或微乳液法等多种制备氧化锆粉体的方法。 1 粉体的制备方法 1.1 共沉淀法 图1 化学共沉淀法工艺流程Fig .1 Flow chart of the chem ical co 2precip itation method 含有多种阳离子的溶液中加入沉淀剂后,所有离子同时沉 淀的方法称为共沉淀法[3]。一般在可溶性锆盐和钇盐的混合 水溶液中,加入氨水、苛性钠、(NH 4)2CO 3或尿素等碱性物质, 从而生成锆和钇的氢氧化物沉淀,然后对沉淀物经洗涤、干燥、 热处理、粉碎即得超细粉末,该法不仅工艺简单(如图1),对设备要求不高,成本低,重复性好,而且可制得各种晶型的氧化物

氧化锆陶瓷(材料科学概论论文)

氧化锆陶瓷 摘要:本文介绍了氧化锆的基本性质、氧化锆超细粉体的制备方法、高性能氧化锆陶瓷材料的成型工艺以及其在各领域的应用情况。 关键词:氧化锆;高性能陶瓷;制备;应用 材料所处的环境极为复杂,材料损坏引起事故的危险性不断增加,研究与开发对损坏能自行诊断并具有自修复能力的材料是十分重要而急迫的任务,氧化锆就是具有这种功能的智能材料! 一、名称:氧化锆陶瓷,ZrO2陶瓷,Zirconia Ceramic 二、种类及特点 纯ZrO2为白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。世界上已探明的锆资源约为1900万吨,氧化锆通常是由锆矿石提纯制得。在常压下纯ZrO2共有三种晶态:单斜氧化锆(m-ZrO2)、四方氧化锆(t-ZrO2)和立方氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化: 单斜(Monoclinic)氧化锆(m-ZrO2)<950℃ 5.65g/cc 四方(Tetragonal)氧化锆(t-ZrO2)1200-2370℃ 6.10g/cc 立方(Cubic)氧化锆(c-ZrO2)>2370℃ 6.27g/cc 三、增韧原理 氧化锆增韧的方法,主要是利用氧化锆的相变才能达到的!. 部分稳定ZrO2陶瓷在烧结冷却过程中,t-ZrO2晶粒会自发相变成m-ZrO2,引起体积膨胀,在基体中产生微裂纹,相变诱导的微裂纹会使主裂纹扩展时分叉或改变方向而吸收能量,使主裂纹扩展阻力增大,从而使断裂韧性提高。这种机理称微裂纹增韧。主要增韧方法有:应力诱导相变增韧、微裂纹增韧、残余应力增韧、表面增韧以及复合增韧等。 其中t-ZrO2转化为m-ZrO2相变具有马氏体相变的特征,并且相变伴随有3%~5%的体积膨胀。不加稳定剂的ZrO2陶瓷在烧结温度冷却的过程中,就会由于发生相变而严重开裂。解决的办法是添加离子半径比Zr小的Ca、Mg、Y等金属的氧化物。 材料中的t-ZrO2晶粒在烧成后冷却至室温的过程中仍保持四方相形态,当材料受到外应力的作用时,受应力诱导发生相变,由t相转变为m相。由于ZrO2晶粒相变吸收能量而阻碍裂纹的继续扩展,从而提高了材料的强度和韧性。相转变发生之处的材料组成一般不均匀,因结晶结构的变化,导热和导电率等性能随之而变,这种变化就是材料受到外应力的信号,从而实现了材料的自诊断。 对氧化锆材料压裂而产生裂纹,在300℃热处理50h后,因为t相转变为m 相过程中产生的体积膨胀补偿了裂纹空隙,可以再弥合,实现了材料的自修复。 四、氧化锆粉体的制备 ZrO2超细粉体的制备技术 锆英石的主要成分是ZrSiO4,一般均采用各种火法冶金与湿化学法相结合的工艺,即先采用火法冶金工艺将ZrSiO4破坏,然后用湿化学法将锆浸出,其中间

(01国陶)氧化钇稳定的氧化锆流延浆料的流变性能,生料带密度,烧成密度之间的关系

Correlation between slurry rheology,green density and sintered density of tape cast yttria stabilised zirconia Amit Mukherjee 1,B.Maiti 2,A.Das Sharma,R.N.Basu 3,H.S.Maiti * Electroceramics Division,Central Glass and Ceramic Research Institute,Calcutta 700032,India Received 11July 2000;received in revised form 9August 2000;accepted 19September 2000 Abstract An attempt has been made to investigate the role of dispersant and powder dimension on the slurry rheology and the corre-sponding e ect on green as well as sintered densities of tape cast yttria stabilized zirconia (YSZ).Two commonly used dispersants,viz.menhaden ?sh oil (MFO)and phosphate ester (PE)have been used in conjunction with YSZ powders of di erent particle sizes.It has been found that for this system,PE is a much better dispersant than MFO and the best dispersion is obtained with ?ner YSZ powders.The slurry rheology has a marked e ect on the green as well as subsequent sintered densities of the tapes.#2001Elsevier Science Ltd and Techna S.r.l.All rights reserved. Keywords:A.Tape casting;A.Suspensions;E.Fuel cells,YSZ 1.Introduction Yttria stabilized zirconia (YSZ)is the most widely used electrolyte material for oxygen sensor and fuel cell applications.Pure zirconia,ZrO 2,cannot act as a good electrolyte owing to its poor ionic conductivity and phase transformation (monoclinic/tetragonal)on heating associated with a large volume change.Doping of ZrO 2with a small amount (3±10mol%)of a divalent or trivalent oxide can stabilize the cubic ˉuorite phase and,in the process,increases its oxygen vacancy concentration leading to an enhanced ionic conductivity.This makes stabilized zirconia suitable for use as an electrolyte material and yttria (Y 2O 3)is the most commonly used dopant for stabilizing zirconia for the aforesaid applications. The most important criterion in the fabrication of YSZ electrolyte is the production of a highly dense structure,i.e.with no connected porosity (in order to prevent cross ˉow of gases).Moreover,it should be as thin as possible so that the ohmic loss is minimized. Tape casting is a low cost ceramic fabrication technique that can be employed to produce wide and thin ceramic tapes having precise dimensional tolerances and very smooth surfaces [1].It has also been observed [2]that tape casting leads to a very homogeneous microstructure.It is not surprising,therefore,that many investigators [3±6]have employed this technique to fabricate YSZ electrolyte for di erent applications. In the tape casting process,ceramic powders of su cient ?neness are dispersed in a proper liquid medium followed by the addition of organic binders and plasticizers which increase the mechanical strength and ˉexibility of the green tapes [7,8].However,a homogeneous product of uniform density can be obtained if the starting slurry has a high degree of homogeneity and stability.The alignments and packing of particles in the green tapes dictate the sintering characteristics and the ?nal properties [9,10].Hence,two basic interrelations exist:(1)between the slurry and the green tape,and (2)between the green tape and the sintered product [7].The present work aims to study the correlation between slurry rheology,green den-sity and sintered density of tape cast YSZ sheets.2.Experimental 2.1.Starting materials In order to study the e ect of particle size on the slurry rheology and the latter's e ect on the green and 0272-8842/01/$20.00#2001Elsevier Science Ltd and Techna S.r.l.All rights reserved.P I I :S 0272-8842(00)00121- 8 Ceramics International 27(2001)731±739 /locate/ceramint *Corresponding author.Fax:+91-033-473-0957.1 Present address:Department of Chemistry,College of Engineering and Management,Kolaghat,West Bengal,PIN 721171India.2 Present address:Department of Physics,College of Engineering and Mangement,Kolaghat,West Bengal,PIN 721171,India.3 Present address:Institut fu r Werksto e und Verfahren der Energie-technik 1,Werksto synthese und Herstellungsverfahren,Forschungs-zentrum Ju lich G mbH,Leo-Brandt-Stra?e,D52428,Ju lich,Germany.E-mail address :hsm@cscgcri.ren.nic.in (H.S.Maiti).

外科植入物氧化钇稳定四方氧化锆Y-TZP陶瓷材料

《外科植入物---氧化钇稳定四方氧化锆(Y-TZP)陶瓷材料》 行业标准编制说明 一、工作简况 任务来源:根据食药监办械管〔2017〕94号《总局办公厅关于印发2017年医疗器械行业标准制修订项目的通知》,确定由天津市医疗器械质量监督检验中心(以下简称天津中心)负责起草“外科植入物---氧化钇稳定四方氧化锆(Y-TZP)陶瓷材料”(项目编号: N2017012-T-TJ)行业标准。 任务下达后,天津中心对此项工作给予了高度重视,及时于2017年3月28日在武汉召开2017年标准制订工作启动会,并公开征集标准制定工作参与单位。启动会上责成标准项目负责人就《外科植入物---氧化钇稳定四方氧化锆(Y-TZP)陶瓷材料》标准的立项背景、现有工作基础、项目工作安排做了详细介绍,并成立了标准起草工作组。工作组成立后,迅速开展工作,通过查阅相关国际标准、美国标准、国家标准、行业标准等相关资料,基本确定了标准的制定思路。工作组于2017年4月至5月编写标准草案,于2017年6月19日至21日在天津组织召开标准修订中期会议,针对标准草案进行深入讨论,会后形成标准的征求意见稿。 二、编制原则和确定标准主要内容的依据 本标准按照GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》及GB/T 20000.2-2009《标准化工作指南第2部分:采用国际标准》的要求进行编写。 本标准使用重新起草法修改采用ISO 13356-2015: Implants for surgery-Ceramic materials based on yttria-stabilized tetragonal zirconia(Y-TZP) 本标准的主要内容包括: 1)范围 2)规范性引用文件 3)物理及化学性能 4)试验方法 三、主要实验(或验证)的分析、综述报告、技术经济论证、预期的经济效果 详见验证报告。 四、采用国际标准和国外先进标准的程度,以及与国际、国外同类标准水平的对比情况,或与测试的国外样品、样机的有关数据对比的情况。

氧化锆陶瓷

氧化锆陶瓷 一.简介 1.氧化锆的性质: (1)含锆的矿石:斜锆石(ZrO2),锆英石(ZrO2 ·SiO2); (2)颜色:白色(高纯ZrO2);黄色或灰色(含少量杂质的ZrO2),常含二氧化铪杂质;(3)密度:5.65~6.27g/cm3; (4)熔点:2715℃。 (5)氧化锆具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。 2.氧化锆晶型转化和稳定化处理: 在常压下纯ZrO2共有三种晶态:单斜(Monoclinic)氧化锆(m-ZrO2)、四方(Tetragonal)氧化锆(t-ZrO2)和立方(Cubic)氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化,如表1。ZrO2四方相与单斜相之间的转变是马氏体相变,由于四方相转变为单斜相时有3~5%的体积膨胀和7~8%的切应变。因此,纯ZrO2制品往往在生产过程(从高温到室温的冷却过程)中会发生t-ZrO2 转变为m-ZrO2的相变并伴随着体积变化而产生裂纹,甚至碎裂,因此无多大的工程价值。但是,当加入适当的稳定剂(如Y2O3,MgO2,CaO,CeO2等)后,可以降低c-ZrO2 t-ZrO2→m-ZrO2的相变温度,使高温稳定的c-ZrO2 和t-ZrO2相也能在室温下稳定或亚稳定存在。当加入的稳定剂足够多时,高温稳定的c-ZrO2可以一直保持到室温不发生相变。进一步研究发现氧化锆发生马氏体相变时伴随着体积和形状的变化,能吸收能量,减缓裂纹尖端应力集中,阻止裂纹的扩展,提高陶瓷韧性。因此氧化锆相变增韧陶瓷的研究和应用得到迅速发展,氧化锆相变增韧陶瓷有三种类型,分别为部分稳定氧化锆陶瓷;四方氧化锆多晶体陶瓷及氧化锆增韧陶瓷。 晶态温度密度 <950℃ 5.65g/cc 单斜(Monoclinic)氧化锆 (m-ZrO2) 四方(Tetragonal)氧化锆 1200-2370℃ 6.10g/cc (t-ZrO2) 立方(Cubic)氧化锆(c-ZrO2) >2370℃ 6.27g/cc 表1 在常压下纯ZrO2三种晶态 (1)当ZrO2中稳定剂加入量在某一范围时,高温稳定的c-ZrO2通过适当温度下时效处理使c-ZrO2大晶粒(c相)中析出许多细小纺锤状的t-ZrO2(t相)晶粒,形成c相和t 相组成的双相组织结构。其中c相是稳定的而t相是亚稳定的并一直保存到室温。在外力诱导下有可能诱发t相到m相的马氏体相变并伴随体积膨胀,耗散部分能量、抵消了部分外力从而起到增韧作用,称为应力诱导相变增韧。这种陶瓷称之为部分稳定氧化锆,当稳定剂为CaO、MgO、Y2O3时,分别表示为Ca-PSZ、Mg-PSZ、Y-PSZ等。 (2)当ZrO2中稳定剂加入量控制在适当量时可以使t-ZrO2以亚稳状态稳定保存到室温,那么块体氧化锆陶瓷的组织结构是亚稳的t- ZrO2细晶组成的四方氧化锆多晶体称之为四方氧化锆多晶体陶瓷(。在外力作用下可相变t-ZrO2发生相变,增韧不可相变的ZrO2基

钇稳定氧化锆纳米粉体制备技术解析

第25卷第6期硅酸盐通报 Vol . 25No . 62006年12月BULLETI N OF THE CH I N ESE CERAM I C S OC I ETY December, 2006 钇稳定氧化锆纳米粉体制备技术研究进展 王洪升, 王贵, 张景德, 徐廷鸿1211 (1. 山东大学材料液态结构及其遗传性教育部重点实验室, 济南250061; 2. 济南大学泉城学院, 济南250061 摘要:纳米YSZ 是一种新型的高科技材料, 有着广泛而重要的用途。本文根据国内外最新研究现状及其发展趋势, 综述了纳米级YSZ 的制备技术, 特别就目前研究比较多的水热法和反胶团法给予了重点阐述, 并就目前制备过程中存在的问题, 解决方法及发展方向作了介绍。 关键词:YSZ; 纳米粉体; 团聚; 制备 The Prepara ti on Progresses of Y SZ Nanom WAN G Hong 2sheng , WAN G Gui , J , XU 2. Quancheng College of J China 1211(Keb Lab . of L iquid Structure and Heredity of MaterialsM J inan 250061, China; Abstract:U ltrafine ne advanced material, which has wide and significant uses . methods of YSZ powder were revie wed in this paper on the basis of ne w op trends, es pecially the hydr other mal method and the reverse m icelles were described in The p r omble m s that need t o be s olvoed and the directi on in the future were given . Key words:YSZ; nanometer powder; aggregati on; p reparati on

氧化锆陶瓷材料的抗热震性能分析

氧化锆陶瓷材料的抗热震性能分析 摘要:文章通过对氧化锆陶瓷材料的热膨胀性以及相变的特征进行分析,着重探讨有效利用氧化锆的相变提高氧化锆材料实际抗热震性能的具体方法,以及如何提高材料抗热震性的可行性办法。 关键词:氧化锆陶瓷材料抗热震性能 材料具有的热学性能以及力学性能决定了陶瓷材料当中热应力的大小,另外构件的几何形状以及环境的介质等也会影响陶瓷材料的热应力的大小。因此,抗热震性代表着陶瓷材料抵抗温度变化能力的大小,也肯定是它热学性能以及力学性能相对应各种受热条件时一个全面的反映。关于陶瓷材料在抗热震能力方面的研究开始于上个世纪五十年代,到目前形成了很多关于抗震性的相关评价理论,不过都在一定程度上有着片面性和局限性。 一、陶瓷材料的抗热震性具体理论分析 陶瓷材料热震破坏包括:在热冲击的循环直接作用下发生的开裂和剥落;在热冲击的作用下瞬间的断裂。基于此,有关脆性的陶瓷材料具体的抗热震性相关的评价理论也涵盖了两个观点。首先是基于热弹性的理论。其说的是材料原本的强度无法抵抗热震温差导致的热应力的时候,就造成了材料的“热震断裂”。通过这个理论,陶瓷材料需要同时具备热导率、高强度和低热膨胀系数、泊松比、杨氏弹性模量、黏度以及热辐射的系数,这样方能够具备较高的抗热震断裂能力。另外,想要提高陶瓷材料实际的抗热震能力,还可以通过对材料的热容以及密度进行适当的降低。 另一理论基于断裂力学的具体概念,也就是材料当中热弹性的应变能完全能够裂纹成核以及扩展而新生的表面需要的能量的时候,裂纹形成并且开始扩展,进而造成了材料热震的损伤。按照该理论,在抗热震损伤性能方面比较好的材料应当符合越高越好的弹性模量以及越低越好的强度。以此能够发现,以上要求和高抗热震断裂的能力具体的要求完全对立。另外,将陶瓷材料实际的断裂能提高以及对材料的实际断裂韧性进行改善,很明显有助于提高材料的抗热震的损伤能力。另外,存在一定量的微裂纹也对提高抗热震的损伤性能有很大的帮助,比如:在气孔率是10%到20%之间的非致密的陶瓷当中,热扩展裂纹的形成通常会遭受来自气孔的抵制,存在的气孔能够帮助钝化裂纹以及减小应力的集中。 作为氧化锆陶瓷材料,有着极为鲜明的常温力学的性能,熔点比较高、在化学稳定性以及热稳定性上都比较好。所以,其的使用经常处于高温的条件之下,因而其抗热震性的性能也是判断其性能的关键指标。氧化锆的许多性质都非常的特殊,比如:氧化锆能够以单料以及四方、立方这三种具体晶型共同存在,还有它特殊的相变特性,这么多特性都可以被我们所利用,用来提高其热膨胀的行为,加强其的抗热震方面的性能。

氧化锆陶瓷行业现状

氧化锆陶瓷行业现状 氧化锆陶瓷作为陶瓷中应用最广的一种材料,其计算机技术和数字化控制技术的发展促进了先进陶瓷材料工业的技术进步和快速发展,诸如自动控制连续烧结窑炉、大功率大容量研磨设备、高性能制粉粒设备等净压成型设备等先进的成套设备有利地推动了行业整体水平的提高,同时在生产效率、产品质量等方面也都明显改善,其中山东金澳科技为其行业之最。 微晶氧化锆陶瓷制品作为其它行业或的基础材料,受着其它行业发展水平的影响和限制。从目前氧化锆陶瓷的应用情况看,应用范围越来越宽,用量越来越大,特别是在防磨工程和建筑陶瓷生产方面的用量增加将更为显著。 作为结构陶瓷用的氧化锆是一个非常复杂的体系,其应用不仅取决于化学性能(纯度和组成)、而且还取决于相结构和氧化锆粉末的物理特性。其中金澳科技在这方面体现的尤为突出,其化学组成容易控制,相结构也是较容易调节的。而氧化锆来控制。在低温下存在四方相可能是受多个因素的影响(包括化学反应的阴离子杂技的影响),在四方相和母体无定型相之间的结构是类似的。在晶体中晶格应变和缺陷中心存在,没有考虑t -m转变发生是低于一个给定的颗粒尺寸。这些晶格应变和缺陷中心可能由于化学杂质存在,引起ZrO从无定型状态变成四方相的结晶体。 目前制备亚微氧化锆粉体的方法很多,常见的有共沉淀法、醇盐水解法、氧氯化锆水解法、水热法(高温水解法)、溶胶-凝胶法等, 这些方法各有特点,但也存在很多不足。如共常常法制务粉末存在严重的团聚现象,制备粉末都不能达到很细,分散性能很差,粒度分布不均匀,即使方法恰当,工艺操作合理,也不能区得最理想的粉末。在制造陶瓷时,由于粉末的流动性差,所以压制坯块均匀性差,烧结密度不高。

氧化钇稳定氧化锆涂层的研究现状

第47卷第13期2019年7月广 州 化 工 Guangzhou Chemical Industry Vol.47No.13Jul.2019 氧化钇稳定氧化锆涂层的研究现状 彭春玉 (国家知识产权局专利局专利审查协作广东中心,广东 广州 511356) 摘 要:由于氧化钇稳定氧化锆(YSZ)陶瓷材料在作为热障涂层的使用过程中存在因抗烧结性能差二应力裂纹二涂层脱落 等导致涂层失效的问题,本文主要从热障涂层的制备工艺,抗烧结性能二控制TGO 的生长二抗CMAS 腐蚀及YSZ 面层应变容限等方面的改善方法进行论述,通过提高涂层纯度二改变粘接层及涂层成分二涂层结构及制备柱状结构YSZ 陶瓷面层释放热失配应力等可有效改善涂层在使用过程中的失效问题三 关键词:氧化钇稳定氧化锆;热障涂层;等离子喷涂;电子束物理气相沉积;失效机理  中图分类号:O343.6  文献标志码:A 文章编号:1001-9677(2019)13-0044-03 作者简介:彭春玉(1980-),女,助理研究员,主要从事表面镀覆领域的发明专利实质审查工作三 Research Progress on Failure Mechanism of Thermal Barrier Coating PENG Chun -yu (Patent Examination Cooperation Guangdong Center of the Patent Office,CNIPA, Guangdong Guangzhou 511356,China) Abstract :Due to poor sintering resistance,stress crack,coating shedding and other problems that lead to coating failure in the application of Yttria -stabilized zirconia (YSZ )ceramic materials as thermal barrier coatings,the improvement method of thermal barrier coatings was mainly discussed in terms of sintering resistance,TGO growth control,CMAS corrosion resistance and YSZ surface layer tolerance,which can effectively improve coating failure in application by improving coating purity,changing adhesive layer and coating composition,coating structure and preparing columnar YSZ ceramic surface to release thermal mismatch stress. Key words :Yttria-stabilized zirconia;thermal barrier coating;plasma spray;EB-PVD;failure mechanism 热障涂层(thermal barrier coatings,简称TBCs)可以降低金属基底的温度,提高油料的燃烧温度和燃烧效率,而且还可以防止金属基底的高温腐蚀,应用于金属表面,如涡轮叶片和航空发动机三TBCs 的功能是为流经前述叶片的热铸件提供隔热三氧化钇稳定氧化锆(YSZ)陶瓷材料由于具有高热膨胀系数二低热导率及良好的抗氧化性和稳定性等优异性能,已经被广泛应用于制备热障涂层,热障涂层对于进一步提高合金材料的使用温度发挥着重要的作用,可以提高使用温度70~150℃[1] 三 YSZ 具有低的热导率和相对较高的热膨胀系数,但是它在使用 过程中存在如下问题[2-7]: (1)抗烧结性能差; (2)热生长氧化物(TGO)内部应力诱发裂纹导致涂层脱落; (3)高温作用下形成一种玻璃态沉积物CMAS 与YSZ 中的 Y 2O 3反应,在热化学与热机械的相互作用下,导致YSZ 涂层内部产生裂纹; (4)热膨胀系数存在的差异导致YSZ 面层脱落三 为了改善YSZ 涂层性能,人们对影响YSZ 涂层服役寿命的常见问题及改善需求二改善方法进行了大量的探索和研究三 1 氧化钇稳定氧化锆涂层的制备 氧化钇稳定氧化锆涂层的制备可以通过多种方法实现:如高速火焰喷涂二爆炸喷涂二磁控溅射二离子镀二电弧蒸镀二激光熔覆二化学气相沉积二离子束辅助沉积二等离子喷涂和电子束物理气相沉积等,但是从热障涂层技术的发展及应用来看,涂层的制备技术以等离子喷涂和电子束物理气相沉积[8-12]为主三 1.1 等离子喷涂 等离子喷涂法是一种最突出和最广泛使用的涂层技术,用于涂覆顶涂层和粘结涂层三在该方法中,在阴极附近通过的等离子体气体在到达阳极喷嘴时被加热至等离子体温度,在该等离子体温度下,等离子体气体与载有原料粉末的载气混合,并且熔融粉末颗粒的混合物被制成高速撞击基底,以形成所需的涂层[13]三 用于氧化钇稳定氧化锆涂层制备的等离子喷涂包括大气等 离子喷涂(APS)二高能等离子喷涂(HEPS)和低压等离子喷涂(LPPS)三等离子喷涂的工艺特点是操作简单,加热温度高,对涂层材料的要求宽松,沉积率高,制备成本低三等离子喷涂制

非水解溶胶_凝胶法制备氧化钇稳定氧化锆粉体

第28卷 第1期Vo l 128 No 11材 料 科 学 与 工 程 学 报Journal of M aterials Science &Engineering 总第123期Feb.2010 文章编号:1673-2812(2010)01-0049-05 非水解溶胶-凝胶法制备氧化钇稳定氧化锆粉体 陶 桥1,林 健1,2,陈江翠1,魏恒勇1 (1.同济大学材料科学与工程学院,上海 200092;2.同济大学先进土木工程材料教育部重点实验室,上海 200092) =摘 要> 非水解溶胶-凝胶法(N on -hydr olytic so-l g el,NH SG)作为一种新的合成方法,融合了溶胶-凝胶法和溶剂热两者的优势。本文分别采用回流和容弹两种NH SG 工艺制备了纯ZrO 2和氧化钇稳定的氧化锆(YSZ)粉体。DT A 和XRD 分析结果表明:容弹工艺制备的纯ZrO 2和YSZ 粉体在凝胶 阶段就已具有较高的结晶度,且YSZ 粉体经330e 热处理后具有较完整的四方晶相结构;回流工艺制备的产物在凝胶阶段其无定形程度较高,经500e 左右热处理析出晶体。两种NH SG 工艺制备粉体中单个颗粒尺寸绝大部分都在100nm 以下。 =关键词> 非水解溶胶-凝胶法;容弹;回流;YSZ 中图分类号:T M192 文献标识码:A Preparation of Yttria -Stabilized Zirconia Powders by Non -hydrolytic So-l gel Method TAO Qiao 1 ,LIN Jian 1,2 ,CHEN Jiang -cui 1 ,WEI Heng -yong 1 (1.School of Materials Science and Engineering,Tongji University,Shanghai 200092,China; 2.Key Laboratory of Advanced C ivil Engineering Materials,Ministry of Education,Shanghai 20092,China) =Abstract > Non -hydroly tic so-l g el metho d (NH SG)is a novel synthetic process,w hich co mbines the advantages of both so-l g el and so lvother mal synthesis methods.Tw o kinds of NH SG processes i.e.,autoclave and reflux pro cesses,w ere used to prepare pure ZrO 2and yttria -stabilized zirconia (YSZ)pow der s.T he r esults of DTA and XRD analy sis show that the pure ZrO 2and YSZ po w ders prepared via autoclave pro cess have better cry stallinity during g el stage,and YSZ pow der s fo rms perfect crystalline t -ZrO 2phase after heating at 330e .Pure ZrO 2and YSZ pow der s obtained by reflux process w ere am orpho us,they begin to crystallize by heating at 500e .YSZ po w ders w ith an average particle size of abo ut 100nm w as obtained by both autoclave and reflux pro cesses. =Key words > NH SG;autoclav e;reflux ;YSZ 收稿日期:2009-05-31;修订日期:2009-09-03 作者简介:陶 桥(1986-),男,江西南昌人,硕士,从事氧传感器研究,E -mail:qiaotao222@ 。通讯作者:林 健(1964-),男,浙江杭州人,教授、博士生导师,E -mail:lin_jian@ 。 1 前 言 ZrO 2陶瓷因具有良好的光学、热学和电学性能[1~3]而备受关注。当四方ZrO 2转变为单斜结构时会产生5%左右的体积变化,容易引起陶瓷开裂,因此往往需掺入Y 2O 3或CaO 等来抑制这种转变[4] 。氧化 钇稳定的氧化锆(Yttria -Stabilized Zir conia,YSZ),具 有很高的氧离子电导率,而且在氧化还原气氛中的稳定性也非常好,因而在高温结构材料、高温或常温光学元件、氧敏元件,高温燃料电池等领域 [5~8] 有着广泛 的应用。 液相法合成超细粉体的方法通常有溶胶-凝胶法[9]、共沉淀法[10]等。传统溶胶-凝胶法即水解溶胶-

相关文档
最新文档