OP07C中文资料

合集下载

OP07中文资料_数据手册_参数

OP07中文资料_数据手册_参数
万联芯城专注电子元器件配单服务,只售原装现货库存, 万联芯城电子元器件全国供应,专为终端生产,研发企业提供现货物料,价格 优势明显,BOM配单整单采购可享优惠价,提交BOM表报价,最快可当天发 货,解决客户采购烦恼,为客户节省采购成本,点击进入万联芯城。
绝对大额定值超过工作自由空气温度范围(除非另有说明) (1) MIN MAX单元 V CC + (2) 0 22电源电压 V V CC- (2) -22 0 差 分输入电压 (3) ±30 V V 我 输入电压范围(任一输入) (4) ±22 V 输出短路持续时间 (5)无限 T J操作虚拟结温度 150 C引线温 度距离壳体1.6毫米(1/16英寸),持续10秒 260 C (1)强调绝对大额定值以外列出的可能会导致设备永久性损坏.这些是压力评级只 有在这些或任何其他超出建议的操作条件下的条件下才能操作设备不暗示条件.暴露在绝对大额定条件下可能会影响器件的可靠性. (2) 除非另有说明,所有的电压值都是相对于V CC + 和V CC- 之间的中点 . (3)差分电压相对于IN处于IN + - . (4)输入电压的 大小决不能超过电源电压的大小或15 V,取其小者. (5)输出可能短路到地或任何一个电源. 7.2处理评级参数定义 MIN MAX单元 T STG存储温度范围 -65 150 C人体模型(HBM),根据ANSI / ESDA / JEDEC JS-001,全部 0 1000 (1)静电的 V (ESD) V卸货带电器 件型号(CDM),根据JEDEC规范JESD22- 0 1000 C101,所有引脚 (2) (1) JEDEC文件JEP??155指出,500V HBM允许采用标准 ESD控制过程进行安全制造. (2) JEDEC文件JEP??157指出,250V CDM允许使用标准ESD控制过程进行安全制造. 7.3推荐的操作条件 超过工作自由空气温度范围(除非另有说明) MIN MAX单元 V CC + 3 18电源电压 V CC- -3 -18 V V IC共模输入电压 V CC± =±15 V -13 13 T A.操作自由空气温度 0 70 C 7.4热量信息 温度计 (1) D P单元 RθJA结到环境热阻 97 85 °C / W (1)有关传统和新型散热指 标的更多信息 OP07Y精密运算放大器 SLOS099B - 1983年10月 - 修订于1996年8月五邮政信箱655303 ? 达拉斯,得克萨斯州75265 经营特色,V CC ±= ± 15 V,T A = 25°C参数测试 OP07C OP07D单元参数条件? MIN TYP MAX MIN TYP MAX单元 F = 10HZ 10.5 10.5 √ VN等效输入噪 声电压 F = 100HZ 10.2 10.3内华达州/ √HZ的 F = 1KHZ 9.8 9.8 VN(PP)峰峰值等效输入噪声电压 F = 0.1HZ至10HZ 0.38 0.38 μV F = 10HZ 0.35 0.35 √在等效输入噪声电流 F = 100HZ 0.15 0.15 PA / √HZ的 F = 1KHZ 0.13 0.13 IN(PP)峰峰值等效输入噪声电流 F = 0.1HZ 至10HZ 15 15 PA的 SR摆率 RL≥2KΩ 0.3 0.3 V /微秒 ?除非另有说明,所有特性均在开环条件下以零共模输入电压进行测量. 电气特 性,V CC ±= ± 15 V,T A = 25°C(除非另有说明)参数测试条件? OP07Y单元参数测试条件? MIN TYP MAX单元 VIO输入失调电 压 RS = 50Ω 60 150 μV输入失调电压的长期漂移见注6 0.5 μV/月偏移调整范围 RS = 20KΩ,见图1 ±4毫伏 IIO输入失调电流 0.8 6 NA 的 IIB输入偏置电流 ±2 ±12 NA的 VICR共模输入电压范围 ±13 ±14 V RL≤10KΩ ±12 ±13 VOM峰值输出电压 RL≤2KΩ ±11.5 ±12.8 V RL≤1KΩ ±12 AVD大信号L≤500KΩ 400 AVD大信号差分电压放大 VO = ±10 V, RL = 2KΩ 120 400 B1单位增益带宽 0.4 0.6兆赫 RI输入电阻 7 31中号 Ω CMRR共模输入电阻 VIC =±13 V, RS = 50Ω 94 110 D B KSVS电源电压抑制比( ΔVCC/ΔVIO) VCC ±=±3 V至±18 V, RS = 50Ω 7 32 μV/ V PD功

OP07运放实用资料

OP07运放实用资料

op07中文资料时间:2009-05-16 07:42:22 来源:资料室作者:op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

特点:超低偏移:150μV最大。

低输入偏置电流:1.8nA 。

低失调电压漂移:0.5μV/℃。

超稳定,时间:2μV/month最大高电源电压范围:±3V至±22V工作电源电压范围是±3V~±18V;OP07完全可以用单电源供电,你说的+5V,-5V绝对没有问题,用单+5V也可以供电,但是线性区间太小,单电源供电,模拟地在1/2 VCC. 建议电源最好>8V,否则线性区实在太小,放大倍数无法做大,一不小心,就充顶饱和了。

我一直用+12V,-12V双电源供电。

图1 OP07外型图片图2 OP07 管脚图OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚6为输出,7接电源+图3 OP07内部电路图ABSOLUTE MAXIMUM RATINGS 最大额定值SymParameter参数Value数值Unit 单位bol符号VCC Supply Voltage 电源电压±22V Vid Differential Input Voltage差分输入电压±30V Vi Input Voltage 输入电压±22VTope r Operating Temperature 工作温度-40 to+105℃Tstg Storage Temperature 贮藏温度-65 to+150℃电气特性虚拟通道连接= ± 15V ,T amb = 25 ℃(除非另有说明)Symbol 符号Parameter 参数及测试条件最小典型最大Unit单位Vio Input Offset Voltage 输入失调电压0℃≤T amb ≤+70℃-601525μVLong Term Input Offset Voltage Stability-(note 1)长期输入偏置电压的稳定性-0.42μV/MoDVio Input Offset Voltage Drift 输入失调电压漂移-0.51.8μV/℃Iio Input Offset Current输入失调电流0℃≤T amb≤ +70℃-0.868nADIio Input Offset Current Drift 输入失调电流漂移-155pA/℃Iib Input Bias Current输入偏置电流0℃≤T amb ≤ +70℃-1.879nADIib Input Bias Current Drift 输入偏置电流漂移-155pA/℃Ro Open Loop Output Resistance 开环输出电阻-60-ΩRid Differential Input Resistance 差分输入电阻-33-MΩRic Common Mode Input Resistance 共模输入电阻-12-GΩVicm Input Common Mode Voltage Range输入共模电压范围0℃≤ T amb ≤ +70℃±13±13±13.5-VCMR Common Mode Rejection Ratio (Vi =Vicm min)共模抑制比0℃≤ T amb ≤ +70℃10097120-dBSVR Supply Voltage Rejection Ratio 电源电压抑制比(VCC= ±3to ±18V) 0℃≤ T amb ≤ +70℃9086104-dBAvd Large SignalVoltage Gain 大信号电压增益VCC = ±15, RL =2KΩ,VO =±10V,12040-V/mV0℃≤ T amb ≤ +105℃100-VCC = ±3V, RL = 500W,VO =±0.5V10040-Vop p Output VoltageSwing 输出电压摆幅RL = 10KΩ±12±13-VRL= 2kΩ±11.5±12.8RL= 1KΩ±120℃≤ T amb ≤ +70℃RL =2KΩ±11-SR Slew Rate 转换率(RL =2KΩ,CL = 100pF)-0.17-V/μSGBP Gain Bandwidth Product 带宽增益(RL =2KΩ,CL =100pF, f = 100kHz)-0.5-MHzIcc Supply Current -(no load) 电源电流(无负载)0℃≤ T amb ≤ +70℃VCC = ±3V-2.70.67561.3mAen Equivalent InputNoise Voltage等效输入噪声电压f = 10Hz -112nV√Hzf = 100Hz-10.513.5f = 1kHz-1011.5in Equivalent InputNoise Current等效输入噪声电流f = 10Hz-0.30.9PA√Hzf = 100Hz-0.20.3f = 1kHz-0.10.2图4 输入失调电压调零电路应用电路图:图5 典型的偏置电压试验电路图6 老化电路图7 典型的低频噪声放大电路图8 高速综合放大器图9 选择偏移零电路图10 调整精度放大器图11 高稳定性的热电偶放大器图12 精密绝对值电路以上翻译自SGS-THOMSON的OP07。

OP07资料

OP07资料

OP07中文资料op07的功能介绍:高精度单片运算放大器OP07是一种高精度单片运算放大器,具有很低的输入失调电压和漂移。

OP07的优良特性使它特别适合作前级放大器,放大微弱信号。

使用OP07一般不用考虑调零和频率问题就能满足要求。

主要特点:◆低输入失调电压:75uV(最大)◆低失调电压温漂:℃(最大)◆低失调电压时漂:月(最大)◆低噪声: P-P(最大)◆宽输入电压范围:±14V◆宽电源电压范围:3V~18VOp07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

特点:超低偏移:150μV最大。

低输入偏置电流:。

低失调电压漂移:μV/℃ 。

超稳定,时间: 2μV/month最大高电源电压范围:±3V至±22V图1 OP07外型图片图2 OP07 管脚图OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+图3 OP07内部电路图ABSOLUTE MAXIMUM RATINGS 最大额定值SymbolParameter参数Value数值符号VCC Supply Voltage 电源电压±22Vid Differential Input Voltage差分输入电压±30Vi Input Voltage 输入电压±22电气特性虚拟通道连接= ± 15V ,Tamb = 25 ℃(除非另有说明)inEquivalent Input NoiseCurrent 等效输入噪声电流f = 10Hz-PA√Hzf = 100Hz-f = 1kHz-图4 输入失调电压调零电路应用电路图:图5 典型的偏置电压试验电路图6 老化电路图7 典型的低频噪声放大电路图8 高速综合放大器图9 选择偏移零电路图10 调整精度放大器图11 高稳定性的热电偶放大器图12 精密绝对值电路。

OP07C中文资料

OP07C中文资料

OP07C中文资料一、Op07芯片是一种低噪声,非斩波稳零的单运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

二、OP07特点:超低偏移: 150μV最大。

低输入偏置电流: 1.8nA 。

低失调电压漂移: 0.5μV/℃。

超稳定,时间: 2μV/month最大高电源电压范围:±3V至±22V三、OP07内部结构原理图四、OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+ABSOLUTE MAXIMUM RATINGS 最大额定值五、OP07典型应用电路图4 输入失调电压调零电路图5 典型的偏置电压试验电路图6 老化电路图7 典型的低频噪声放大电路图8 高速综合放大器图9 选择偏移零电路图10 调整精度放大器图11高稳定性的热电偶放大器图12 精密绝对值电路op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A 最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

特点:超低偏移: 150μV最大。

低输入偏置电流: 1.8nA 。

低失调电压漂移: 0.5μV/℃。

超稳定,时间: 2μV/month最大高电源电压范围:±3V至±22V工作电源电压范围是±3V~±18V;OP07完全可以用单电源供电,你说的+5V,-5V绝对没有问题,用单+5V也可以供电,但是线性区间太小,单电源供电,模拟地在1/2 VCC. 建议电源最好>8V,否则线性区实在太小,放大倍数无法做大,一不小心,就充顶饱和了。

op07集成电路资料

op07集成电路资料

op07集成电路资料op07的功能介绍Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A 为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

特点:超低偏移:150μV最大。

低输入偏置电流:1.8nA 。

低失调电压漂移:0.5μV/℃。

超稳定,时间:2μV/month最大高电源电压范围:±3V至±22V工作电源电压范围是±3V~±18V;OP07完全可以用单电源供电,你说的+5V,-5V绝对没有问题,用单+5V也可以供电,但是线性区间太小,单电源供电,模拟地在1/2 VCC. 建议电源最好>8V,否则线性区实在太小,放大倍数无法做大,一不小心,就充顶饱和了。

我一直用+12V,-12V双电源供电。

图1 OP07外型图片图2 OP07 管脚图OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚6为输出,7接电源+图3 OP07内部电路图最大额定值符号参数数值单位VCC电源电压±22VVid差分输入电压±30VVi输入电压±22VTope r 工作温度-40 to+105℃Tstg贮藏温度-65 to+150℃电气特性虚拟通道连接= ± 15V ,Tamb = 25 ℃(除非另有说明)符号参数及测试条件最小典型最大单Vio输入失调电压0℃≤ T amb ≤ +70℃-601525μV长期输入偏置电压的稳定性-0.42μV/ oDVio输入失调电压漂移-0.51.8μV/Iio输入失调电流0℃≤T amb≤ +70℃-0.868nADIio输入失调电流漂移-155pA/Iib输入偏置电流0℃≤T amb ≤ +70℃-1.879nADIib输入偏置电流漂移-155pA/Ro开环输出电阻-60-ΩRid差分输入电阻-33-MΩRic共模输入电阻-12-GΩVicm e输入共模电压范围0℃≤ T amb ≤ +70℃±13±13±13.5-VCMR共模抑制比0℃≤ T amb ≤ +70℃10097120-dBSVR电源电压抑制比(VCC = ±3to ±18V) 0℃≤T amb ≤+70℃9086104-dBAvd大信号电压增益VCC = ±15, RL =2KΩ,VO =±10V,12040-V/mV 0℃≤ T amb ≤ +105℃100-VCC = ±3V, RL = 500W,VO =±0.5V10040-Vop p 输出电压摆幅RL = 10KΩ±12±13-V RL= 2kΩ±11.5±12.8RL= 1KΩ±120℃≤ T amb ≤ +70℃RL =2KΩ±11-SR转换率(RL =2KΩ,CL = 100pF)-0.17-V/μSGBP带宽增益(RL =2KΩ,CL = 100pF, f = 100kHz)-0.5-MHzIcc电源电流(无负载)0℃≤ T amb ≤ +70℃VCC =±3V-2.70.67561.3mAen等效输入噪声电压f = 10Hz -112nV√Hz f = 100Hz-10.513.5f = 1kHz-1011.5in等效输入噪声电流f = 10Hz-0.30.9 PA√Hzf = 100Hz-0.20.3f = 1kHz-0.10. 2图4 输入失调电压调零电路应用电路图:图5 典型的偏置电压试验电路图6 老化电路图7 典型的低频噪声放大电路图8 高速综合放大器图9 选择偏移零电路图10 调整精度放大器图11 高稳定性的热电偶放大器图12 精密绝对值电路以上翻译自SGS-THOMSON的OP07。

OP07中文资料

OP07中文资料

op07中文资料op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

特点:超低偏移:150μV最大。

低输入偏置电流:1.8nA 。

低失调电压漂移:0.5μV/℃。

超稳定,时间:2μV/month最大高电源电压范围:±3V至±22V工作电源电压范围是±3V~±18V;OP07完全可以用单电源供电,你说的+5V,-5V绝对没有问题,用单+5V也可以供电,但是线性区间太小,单电源供电,模拟地在1/2 VCC. 建议电源最好>8V,否则线性区实在太小,放大倍数无法做大,一不小心,就充顶饱和了。

我一直用+12V,-12V双电源供电。

图1 OP07外型图片图2 OP07 管脚图OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚6为输出,7接电源+图3 OP07内部电路图ABSOLUTE MAXIMUM RATINGS 最大额定值SymParameter参数Value数值Unit 单位bol符号VCC Supply Voltage 电源电压±22V Vid Differential Input Voltage差分输入电压±30V Vi Input Voltage 输入电压±22VTope r Operating Temperature 工作温度-40 to+105℃Tstg Storage Temperature 贮藏温度-65 to+150℃电气特性虚拟通道连接= ± 15V ,T amb = 25 ℃(除非另有说明)Symbol 符号Parameter 参数及测试条件最小典型最大Unit单位Vio Input Offset Voltage 输入失调电压0℃≤T amb ≤+70℃-601525μVLong Term Input Offset Voltage Stability-(note 1)长期输入偏置电压的稳定性-0.42μV/MoDVio Input Offset Voltage Drift 输入失调电压漂移-0.51.8μV/℃Iio Input Offset Current输入失调电流0℃≤T amb≤ +70℃-0.868nADIio Input Offset Current Drift 输入失调电流漂移-155pA/℃Iib Input Bias Current输入偏置电流0℃≤T amb ≤ +70℃-1.879nADIib Input Bias Current Drift 输入偏置电流漂移-155pA/℃Ro Open Loop Output Resistance 开环输出电阻-60-ΩRid Differential Input Resistance 差分输入电阻-33-MΩRic Common Mode Input Resistance 共模输入电阻-12-GΩVicm Input Common Mode Voltage Range输入共模电压范围0℃≤ T amb ≤ +70℃±13±13±13.5-VCMR Common Mode Rejection Ratio (Vi =Vicm min)共模抑制比0℃≤ T amb ≤ +70℃10097120-dBSVR Supply Voltage Rejection Ratio 电源电压抑制比(VCC= ±3to ±18V) 0℃≤ T amb ≤ +70℃9086104-dBAvd Large SignalVoltage Gain 大信号电压增益VCC = ±15, RL =2KΩ,VO =±10V,12040-V/mV0℃≤ T amb ≤ +105℃100-VCC = ±3V, RL = 500W,VO =±0.5V10040-Vop p Output VoltageSwing 输出电压摆幅RL = 10KΩ±12±13-VRL= 2kΩ±11.5±12.8RL= 1KΩ±120℃≤ T amb ≤ +70℃RL =2KΩ±11-SR Slew Rate 转换率(RL =2KΩ,CL = 100pF)-0.17-V/μSGBP Gain Bandwidth Product 带宽增益(RL =2KΩ,CL =100pF, f = 100kHz)-0.5-MHzIcc Supply Current -(no load) 电源电流(无负载)0℃≤ T amb ≤ +70℃VCC = ±3V-2.70.67561.3mAen Equivalent InputNoise Voltage等效输入噪声电压f = 10Hz -112nV√Hzf = 100Hz-10.513.5f = 1kHz-1011.5in Equivalent InputNoise Current等效输入噪声电流f = 10Hz-0.30.9PA√Hzf = 100Hz-0.20.3f = 1kHz-0.10.2图4 输入失调电压调零电路应用电路图:图5 典型的偏置电压试验电路图6 老化电路图7 典型的低频噪声放大电路图8 高速综合放大器图9 选择偏移零电路图10 调整精度放大器图11 高稳定性的热电偶放大器图12 精密绝对值电路以上翻译自SGS-THOMSON的OP07。

半导体传感器OP07CSZ中文规格书

半导体传感器OP07CSZ中文规格书

ADuM1400/ADuM1401/ADuM1402Data Sheet Rev. L | Page 18 of 31 ParameterSymbol Min Typ Max Unit Test Conditions ADuM1400WTRWZ /ADuM1401WTRWZ /ADuM1402WTRWZMinimum Pulse Width 3PW 100 ns C L = 15 pF, CMOS signal levels Maximum Data Rate 410 Mbps C L = 15 pF, CMOS signal levels Propagation Delay 5t PHL , t PLH 20 30 40 ns C L = 15 pF, CMOS signal levels Pulse Width Distortion, |t PLH − t PHL |5PWD 3 ns C L = 15 pF, CMOS signal levels Change vs. Temperature5 ps/°C C L = 15 pF, CMOS signal levels Propagation Delay Skew 6t PSK 22 ns C L = 15 pF, CMOS signal levels Channel-to-Channel Matching, Codirectional Channels 7t PSKCD 3 ns C L = 15 pF, CMOS signal levels Channel-to-Channel Matching, Opposing-Directional Channels 7t PSKOD 6 ns C L = 15 pF, CMOS signal levels For All ModelsOutput Disable Propagation Delay(High/Low to High Impedance)t PHZ , t PLH 6 8 ns C L = 15 pF, CMOS signal levels Output Enable Propagation Delay (HighImpedance to High/Low)t PZH , t PZL 6 8 ns C L = 15 pF, CMOS signal levels Output Rise/Fall Time (10% to 90%)t R /t F 2.5 ns C L = 15 pF, CMOS signal levels Common-Mode Transient Immunity at Logic High Output 8|CM H | 25 35 kV/µs V Ix = V DD1/V DD2, V CM = 1000 V, transient magnitude = 800 V Common-Mode Transient Immunity at Logic Low Output 8|CM L | 25 35 kV/µs V Ix = 0 V, V CM = 1000 V, transient magnitude = 800 V Refresh Ratef r 1.1 Mbps Input Dynamic Supply Current per Channel 9I DDI (D) 0.10 mA/Mbps Output Dynamic Supply Current per Channel 9I DDO (D) 0.05 mA/Mbps 1All voltages are relative to their respective ground. 2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total V DD1 and V DD2 supply currents as a function of data rate for ADuM1400W /ADuM1401W /ADuM1402W channel configurations. 3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.5 t PHL propagation delay is measured from the 50% level of the falling edge of the V Ix signal to the 50% level of the falling edge of the V Ox signal. t PLH propagation delay is measured from the 50% level of the rising edge of the V Ix signal to the 50% level of the rising edge of the V Ox signal.6 t PSK is the magnitude of the worst-case difference in t PHL or t PLH that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.8 CM H is the maximum common-mode voltage slew rate that can be sustained while maintaining V O > 0.8 V DD2. CM L is the maximum common-mode voltage slew rate that can be sustained while maintaining V O < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.ADuM1400/ADuM1401/ADuM1402Data SheetRev. L | Page 20 of 31DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval. Table 11.DescriptionConditions Symbol Characteristic Unit Installation Classification per DIN VDE 0110For Rated Mains Voltage ≤ 150 V rmsI to IV For Rated Mains Voltage ≤ 300 V rmsI to III For Rated Mains Voltage ≤ 400 V rmsI to II Climatic Classification 40/105/21 Pollution Degree per DIN VDE 0110, Table 12 Maximum Working Insulation VoltageV IORM 560 V peak Input to Output Test Voltage, Method B1V IORM × 1.875 = V PR , 100% production test, t m = 1 sec, partial discharge < 5 pC V PR 1050 V peak Input to Output Test Voltage, Method AV IORM × 1.6 = V PR , t m = 60 sec, partial discharge < 5 pC V PR After Environmental Tests Subgroup 1896 V peak After Input and/or Safety Test Subgroup 2and Subgroup 3V IORM × 1.2 = V PR , t m = 60 sec, partial discharge < 5 pC 672 V peak Highest Allowable OvervoltageTransient overvoltage, t TR = 10 seconds V TR 4000 V peak Safety Limiting ValuesMaximum value allowed in the event of a failure (see Figure 4) Case TemperatureT S 150 °C Side 1 CurrentI S1 265 mA Side 2 CurrentI S2 335 mA Insulation Resistance at T SV IO = 500 V R S >109Ω CASE TEMPERATURE (°C)S A F E T Y -L I M I T I N G C U R R E N T (m A )003503002502001501005050100150200SIDE #1SIDE #203786-004Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN V VDE V 0884-10 RECOMMENDED OPERATING CONDITIONS Table 12.Parameter Rating Operating Temperature (T A )1 −40°C to +105°C Operating Temperature (T A )2 −40°C to +125°C Supply Voltages (V DD1, V DD2)1, 3 2.7 V to 5.5 V Supply Voltages (V DD1, V DD2)2, 3 3.0 V to 5.5 V Input Signal Rise and Fall Times 1.0 ms 1 Does not apply to ADuM1400W , ADuM1401W , and ADuM1402W automotive grade versions. 2 Applies to ADuM1400W , ADuM1401W , and ADuM1402W automotive grade versions. 3 All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.。

OP07全中文资料

OP07全中文资料

光:
天话
水电
天系

封装外形图(管脚朝下)
天水天光半导体有限责任公司(八七一厂) 2008.1 版
电路原理图:
OP07 型低噪声高精度运算放大器
国营第:八09七38一-8厂21)1440 司( 真 绝对最大额定值:(TA=25℃)
公 传 电源电压: …………………………………………..±22V 任 6 内部功耗(注1):……………………. ………. 500mW 限责 447 差模输入电压 :………………………………… …±30 V 有 22 输入电压(注3): ………………………………….±22V 体 8-8 输出短路持续时间 :………………………………….不限 半导 093 工作温度范围(OP07A、OP07):……. -55℃~+125℃ 天光 话: 储存温度范围:…………………………. -65℃~+150℃ 水 电 引线温度范围(焊接,60s):……………………. 300℃ 天 系 注1:见最大环境温度额定值和降低系数表
0.2 0.8 5 ±1 8
传0.6
0.6 4 25
±4 25
0.3 1.3 μV/℃
0.3 1.3 1.2 5.6 nA
8
50 pA/℃
±2 ±6 nA
13
50 pA/℃
天 话 输入电压范围
水 电 共模抑制比 天 系 电源电压抑制比 联 大信号电压增益
VCM = ±13V Vs = ±3V~±18V RL≥2kΩ, Vo=±10V
输入噪声 电压密度
输入噪声电流
0.1Hz~10Hz(注 3) fo = 10Hz(注 3) fo = 100Hz(注 3) fo = 1000Hz(注 3) 0.1Hz~10Hz(注 3)

OP07资料

OP07资料

OP07中文资料op07的功能介绍:高精度单片运算放大器OP07是一种高精度单片运算放大器,具有很低的输入失调电压和漂移。

OP07的优良特性使它特别适合作前级放大器,放大微弱信号。

使用OP07一般不用考虑调零和频率问题就能满足要求.主要特点:◆低输入失调电压:75uV(最大)◆低失调电压温漂:1。

3uV/℃(最大)◆低失调电压时漂:1。

5uV/月(最大)◆低噪声:0。

6uV P-P(最大)◆宽输入电压范围:±14V◆宽电源电压范围:3V~18VOp07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

特点:超低偏移:150μV最大 .低输入偏置电流: 1.8nA .低失调电压漂移: 0。

5μV/℃ 。

超稳定,时间:2μV/month最大高电源电压范围:±3V至±22V图1 OP07外型图片图2 OP07 管脚图OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+图3 OP07内部电路图ABSOLUTE MAXIMUM RATINGS 最大额定值电气特性虚拟通道连接= ± 15V ,Tamb = 25 ℃(除非另有说明)Vopp Output Voltage Swing输出电压摆幅RL = 10KΩ±12 ±13-VRL= 2kΩ ±11。

5 ±12。

8RL= 1KΩ±120℃ ≤ Tamb ≤ +70℃ RL =2KΩ±11 —SR Slew Rate 转换率(RL =2KΩ,CL = 100pF) -0.17 —V/μSGBP Gain Bandwidth Product 带宽增益(RL =2KΩ,CL = 100pF, f =100kHz)-0.5 -MHzIcc Supply Current —(no load) 电源电流(无负载)0℃ ≤Tamb ≤ +70℃ VCC = ±3V-2。

OP07资料知识讲解

OP07资料知识讲解

O P07资料OP07中文资料op07的功能介绍:高精度单片运算放大器OP07是一种高精度单片运算放大器,具有很低的输入失调电压和漂移。

OP07的优良特性使它特别适合作前级器,放大微弱信号。

使用OP07一般不用考虑调零和频率问题就能满足要求。

主要特点:◆低输入失调电压:75uV(最大)◆低失调电压温漂:1.3uV/℃(最大)◆低失调电压时漂:1.5uV/月(最大)◆低噪声:0.6uV P-P(最大)◆宽输入电压范围:±14V◆宽电源电压范围:3V~18VOp07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量放大传感器的微弱信号等方面。

特点:超低偏移:150μV最大。

低输入偏置电流: 1.8nA 。

低失调电压漂移:0.5μV/℃ 。

超稳定,时间:2μV/month最大高电源电压范围:±3V至±22V图1 OP07外型图片2 OP07 管脚图OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+图3 OP0路图ABSOLUTE MAXIMUM RATINGS 最大额定值Symbol 符号Parameter参数Value数值Unit单位VCC Supply Voltage 电源电压±22 V Vid Differential Input Voltage差分输入电压±30 V Vi Input Voltage 输入电压±22 V Toper Operating Temperature 工作温度-40 to +105 ℃ Tstg Storage Temperature 贮藏温度-65 to +150 ℃电气特性虚拟通道连接= ± 15V ,Tamb = 25 ℃(除非另有说明)Symbol 符号Parameter 参数及测试条件最小典型最大Unit单位Vio Input Offset Voltage 输入失调电压0℃ ≤ Tamb ≤ +70℃ -60 150250μVLong Term Input Offset Voltage Stability-(note 1) 长期输入偏置电压的稳定性-0.4 2 μV/Mo图4 输入失调电压调零电路应用电路图:图5 典型的偏置电压试验电路图6 老化电路图7 典型的低频噪声放大电路图8 高速综合放大器图9 选择偏移零电路图10 调整精度放大器图11 高稳定性的热电偶放大器图12 精密绝对值电路。

OP07资料知识讲解

OP07资料知识讲解

O P07资料OP07中文资料op07的功能介绍:高精度单片运算放大器OP07是一种高精度单片运算放大器,具有很低的输入失调电压和漂移。

OP07的优良特性使它特别适合作前级器,放大微弱信号。

使用OP07一般不用考虑调零和频率问题就能满足要求。

主要特点:◆低输入失调电压:75uV(最大)◆低失调电压温漂:1.3uV/℃(最大)◆低失调电压时漂:1.5uV/月(最大)◆低噪声:0.6uV P-P(最大)◆宽输入电压范围:±14V◆宽电源电压范围:3V~18VOp07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量放大传感器的微弱信号等方面。

特点:超低偏移:150μV最大。

低输入偏置电流: 1.8nA 。

低失调电压漂移:0.5μV/℃ 。

超稳定,时间:2μV/month最大高电源电压范围:±3V至±22V图1 OP07外型图片2 OP07 管脚图OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+图3 OP0路图ABSOLUTE MAXIMUM RATINGS 最大额定值Symbol 符号Parameter参数Value数值Unit单位VCC Supply Voltage 电源电压±22 V Vid Differential Input Voltage差分输入电压±30 V Vi Input Voltage 输入电压±22 V Toper Operating Temperature 工作温度-40 to +105 ℃ Tstg Storage Temperature 贮藏温度-65 to +150 ℃电气特性虚拟通道连接= ± 15V ,Tamb = 25 ℃(除非另有说明)Symbol 符号Parameter 参数及测试条件最小典型最大Unit单位Vio Input Offset Voltage 输入失调电压0℃ ≤ Tamb ≤ +70℃ -60 150250μVLong Term Input Offset Voltage Stability-(note 1) 长期输入偏置电压的稳定性-0.4 2 μV/Mo图4 输入失调电压调零电路应用电路图:图5 典型的偏置电压试验电路图6 老化电路图7 典型的低频噪声放大电路图8 高速综合放大器图9 选择偏移零电路图10 调整精度放大器图11 高稳定性的热电偶放大器图12 精密绝对值电路。

op07cdr中文资料

op07cdr中文资料

op07cdr中⽂资料OUT+OFFSET N2IN?IN+OFFSET N1132861Features3DescriptionThese devices offer low offset and long-term stability ?Low Noiseby means of a low-noise,chopperless,?No External Components Requiredbipolar-input-transistor amplifier circuit.For most ?Replace Chopper Amplifiers at a Lower Cost applications,external components are not required for offset nulling and frequency compensation.The ? Wide Input-Voltage Range:0to ±14V (Typ)true differential input,with a wide input-voltage range ?Wide Supply-Voltage Range:±3V to ±18Vand outstanding common-mode rejection,provides maximum flexibility and performance in high-noise 2Applicationsenvironments and in noninverting applications.Low bias currents and extremely high input impedances ?Wireless Base Station Control Circuits are maintained over the entire temperature range. Optical Network Control Circuits InstrumentationDevice Information (1)Sensors and Controls PART NUMBER PACKAGE (PIN)BODY SIZEPrecision FiltersSO (8) 6.20mm ×5.30mm OP07xSOIC (8) 4.90mm ×3.91mm PDIP (8)9.81mm ×6.35mm(1)For all available packages,see the orderable addendum atthe end of the data sheet.4Simplified SchematicAn IMPORTANT NOTICE at the end of this data sheet addresses availability,warranty,changes,use in safety-critical applications,intellectual property matters and other important disclaimers.PRODUCTION DATA.找电⼦元器件上宇航军⼯OP07C,OP07DSLOS099G–OCTOBER1983–REVISED NOVEMBER2014Table of Contents9.2Functional Block Diagram (7)1Features (1)9.3Feature Description (7)2Applications (1)9.4Device Functional Modes (7)3Description (1)10Application and Implementation (8)4Simplified Schematic (1)10.1General Application (8)5Revision History (2)10.2Typical Application (8)6Pin Functions (3)11Power Supply Recommendations (10)7Specifications (4)12Layout (11)7.1Absolute Maximum Ratings (4)12.1Layout Guidelines (11)7.2Handling Ratings (4)12.2Layout Example (11)7.3Recommended Operating Conditions (4)13Device and Documentation Support (12)7.4Thermal Information (4)13.1Related Links (12)7.5Electrical Characteristics (5)13.2Trademarks (12)7.6Operating Characteristics (6)13.3Electrostatic Discharge Caution (12)8Typical Characteristics (6)13.4Glossary (12)9Detailed Description (7)14Mechanical,Packaging,and Orderable9.1Overview (7)Information (12)5Revision HistoryChanges from Revision F(January2014)to Revision G Page ?Added Applications,Device Information table,Pin Functions table,Handling Ratings table,Thermal Information table,Typical Characteristics,Feature Description section,Device Functional Modes,Application andImplementation section,Power Supply Recommendations section,Layout section,Device and DocumentationSupport section,and Mechanical,Packaging,and Orderable Information section (1)Changes from Revision E(May2004)to Revision F Page ?Deleted Ordering Information table (1)2Submit Documentation Feedback Copyright?1983–2014,Texas Instruments IncorporatedProduct Folder Links:OP07C OP07D12348765OFFSET N1IN?IN+V CC?OFFSET N2V CC+OUT NCD OR P PACKAGE(TOP VIEW)NC ?No internal connectionOP07C,OP07DSLOS099G –OCTOBER 1983–REVISED NOVEMBER 20146Pin FunctionsPin FunctionsPINTYPE DESCRIPTIONNAME NO.IN+3I Noninverting input IN–2I Inverting input NC5—Do not connectOFFSET N11I External input offset voltage adjustment OFFSET N28I External input offset voltage adjustment OUT 6O Output V CC +7—Positive supply V CC –4—Negative supplyCopyright ?1983–2014,Texas Instruments Incorporated Submit Documentation Feedback3Product Folder Links:OP07C OP07DOP07C,OP07DSLOS099G–OCTOBER1983–REVISED NOVEMBER201411Power Supply RecommendationsThe OP07is specified for operation from±3to±18V;many specifications apply from0°C to70°C.CAUTIONSupply voltages larger than±22V can permanently damage the device(see theAbsolute Maximum Ratings).Place0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies.For more detailed information on bypass capacitor placement,refer to the Layout Guidelines.10Submit Documentation Feedback Copyright?1983–2014,Texas Instruments IncorporatedProduct Folder Links:OP07C OP07D。

OP07资料.pdf

OP07资料.pdf

OP07中文资料op07的功能介绍:高精度单片运算放大器OP07是一种高精度单片运算放大器,具有很低的输入失调电压和漂移。

OP07的优良特性使它特别适合作前级放大器,放大微弱信号。

使用OP07一般不用考虑调零和频率问题就能满足要求。

主要特点:◆低输入失调电压:75uV(最大)◆低失调电压温漂:1.3uV/℃(最大)◆低失调电压时漂:1.5uV/月(最大)◆低噪声:0.6uV P-P(最大)◆宽输入电压范围:±14V◆宽电源电压范围:3V~18VOp07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

特点:超低偏移:150μV最大。

低输入偏置电流: 1.8nA 。

低失调电压漂移:0.5μV/℃ 。

超稳定,时间:2μV/month最大高电源电压范围:±3V至±22V图1 OP07外型图片图2 OP07 管脚图OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+图3 OP07内部电路图ABSOLUTE MAXIMUM RATINGS 最大额定值Symbol符号Parameter参数Value数值VCC Supply Voltage 电源电压±22Vid Differential Input Voltage差分输入电压±30Vi Input Voltage 输入电压±22Toper Operating Temperature 工作温度-40 to +105 Tstg Storage Temperature 贮藏温度-65 to +150 电气特性虚拟通道连接= ± 15V ,Tamb = 25 ℃(除非另有说明)Symbol符号Parameter 参数及测试条件最小典型最Vio Input Offset Voltage 输入失调电压0℃ ≤ Tamb ≤ +70℃ -60 1525入噪声电压 f = 1kHz-1011.5in Equivalent InputNoise Current 等效输入噪声电流f = 10Hz-0.3 0.9PA√Hzf = 100Hz-0.20.3f = 1kHz-0.1 0.2图4 输入失调电压调零电路应用电路图:图5 典型的偏置电压试验电路图6 老化电路图7 典型的低频噪声放大电路图8 高速综合放大器图9 选择偏移零电路图10 调整精度放大器图11 高稳定性的热电偶放大器图12 精密绝对值电路。

.Op07中文资料

.Op07中文资料

OP07 和Analog Devices信息:Manufactured by Analog Devices, OP07Z 是一种运算放大器。

1.Op07中文资料
Op07芯片是一种低噪声,非斩波稳零的双极性(双电源供电)运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

2.Op07引脚图及功能
1脚:偏置平衡(调零端)
2脚:反向输入端
3脚:正向输入端
4脚:GND
5脚:空脚
6脚:输出
7脚:VCC+
8脚:偏置平衡(调零端)
3.Op07放大电路原理图。

OP07 运算放大器 ADI

OP07 运算放大器 ADI

Ultralow Offset VoltageRev. FInformation furnished by Analog Devices is believed to be accurate and reliable. However , no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, M A 02062-9106, U.S.A.Tel: 781.329.4700 Fax: 781.461.3113 ©2002-2010 Analog Devices, Inc. All rights reserved.FEATURESLow V OS : 75 μV maximumLow V OS drift: 1.3 μV/°C maximumUltrastable vs. time: 1.5 μV per month maximum Low noise: 0.6 μV p-p maximumWide input voltage range: ±14 V typical Wide supply voltage range: 3 V to 18 V 125°C temperature-tested diceAPPLICATIONSWireless base station control circuits Optical network control circuits Instrumentation Sensors and controls ThermocouplesResistor thermal detectors (RTDs) Strain bridgesShunt current measurements Precision filtersGENERAL DESCRIPTIONThe OP07 has very low input offset voltage (75 μV maximum for OP07E) that is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for externalnulling. The OP07 also features low input bias current (±4 nA for the OP07E) and high open-loop gain (200 V/mV for the OP07E). The low offset and high open-loop gain make the OP07particularly useful for high gain instrumentation applications. PIN CONFIGURATIONV OS TRIMV OS TRIM –IN V++IN OUTV–NCNC = NO CONNECT00316-001Figure 1.The wide input voltage range of ±13 V minimum combined with a high CMRR of 106 dB (OP07E) and high inputimpedance provide high accuracy in the noninverting circuit configuration. Excellent linearity and gain accuracy can be maintained even at high closed-loop gains. Stability of offsets and gain with time or variations in temperature is excellent. The accuracy and stability of the OP07, even at high gain, combined with the freedom from external nulling have made the OP07 an industry standard for instrumentation applications.The OP07 is available in two standard performance grades. The OP07E is specified for operation over the 0°C to 70°C range, and the OP07C is specified over the −40°C to +85°C temperature range.The OP07 is available in epoxy 8-lead PDIP and 8-lead narrow SOIC packages. For CERDIP and TO-99 packages and standard microcircuit drawing (SMD) versions, see the OP77.1R2A AND R2B ARE ELECTRONICALLY ADJUSTED ON CHIP AT FACTORY FOR MINIMUM INPUT OFFSET VOLTAGE.00316-002Figure 2. Simplified SchematicRev. F | Page 2 of 16TABLE OF CONTENTSFeatures .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Pin Configuration ............................................................................. 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 OP07E Electrical Characteristics ............................................... 3 OP07C Electrical Characteristics .. (4)Absolute Maximum Ratings ............................................................6 Thermal Resistance .......................................................................6 ESD Caution...................................................................................6 Typical Performance Characteristics ..............................................7 Typical Applications ....................................................................... 11 Applications Information .......................................................... 12 Outline Dimensions ....................................................................... 13 Ordering Guide .. (14)REVISION HISTORY8/10—Rev. E. to Rev FChanges to Ordering Guide .......................................................... 14 7/09—Rev. D. to Rev EChanges to Figure 29 Caption ....................................................... 11 Changes to Ordering Guide .......................................................... 14 7/06—Rev. C. to Rev D Changes to Features .......................................................................... 1 Changes to General Description .................................................... 1 Changes to Specifications Section .................................................. 3 Changes to Table 4 ............................................................................ 6 Changes to Figure 6 and Figure 8 ................................................... 7 Changes to Figure 13 and Figure 14 ............................................... 8 Changes to Figure 20 ........................................................................ 9 Changes to Figure 21 to Figure 25 ................................................ 10 Changes to Figure 26 and Figure 30 ............................................. 11 Replaced Figure 28 ......................................................................... 11 Changes to Applications Information Section ............................ 12 Updated Outline Dimensions ....................................................... 13 Changes to Ordering Guide . (14)8/03—Rev. B to Rev. CChanges to OP07E Electrical Specifications .................................. 2 Changes to OP07C Electrical Specifications ................................. 3 Edits to Ordering Guide ................................................................... 5 Edits to Figure 6 ................................................................................. 9 Updated Outline Dimensions ....................................................... 11 3/03—Rev. A to Rev. BUpdated Package Titles ...................................................... U niversal Updated Outline Dimensions ....................................................... 11 2/02—Rev. 0 to Rev. AEdits to Features................................................................................. 1 Edits to Ordering Guide ................................................................... 1 Edits to Pin Connection Drawings ................................................. 1 Edits to Absolute Maximum Ratings .............................................. 2 Deleted Electrical Characteristics .............................................. 2–3 Deleted OP07D Column from Electrical Characteristics ....... 4–5 Edits to TPCs ................................................................................ 7–9 Edits to High-Speed, Low V OS Composite Amplifier . (9)SPECIFICATIONSOP07E ELECTRICAL CHARACTERISTICSV S = ±15 V, unless otherwise noted.Rev. F | Page 3 of 16Rev. F | Page 4 of 161 Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.2Long-term input offset voltage stability refers to the averaged trend time of V OS vs. the time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V OS during the first 30 operating days are typically 2.5 μV. Refer to the Typical Performance Characteristics section. Parameter is sample tested. 3Sample tested. 4Guaranteed by design. 5Guaranteed but not tested.OP07C ELECTRICAL CHARACTERISTICSV S = ±15 V , unless otherwise noted.Rev. F | Page 5 of 161 Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.2Long-term input offset voltage stability refers to the averaged trend time of V OS vs. the time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V OS during the first 30 operating days are typically 2.5 μV. Refer to the Typical Performance Characteristics section. Parameter is sample tested. 3Sample tested. 4Guaranteed by design. 5Guaranteed but not tested.Rev. F | Page 6 of 16ABSOLUTE MAXIMUM RATINGS1For supply voltages less than ±22 V, the absolute maximum input voltage is equal to the supply voltage.Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operationalsection of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.THERMAL RESISTANCEθJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.ESD CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.Rev. F | Page 7 of 16TYPICAL PERFORMANCE CHARACTERISTICS10000200400600800900100300500700–50–75100500–251257525O P E N -L O OP G A I N (V /m V )TEMPERATURE (°C)00316-003Figure 3. Open-Loop Gain vs. Temperature302520151050–20020406080100A B S O L U T E C H A N G E I N I N P U T O F F S ET V O L T A G E (µV )TIME (Seconds)00316-004Figure 4. Offset Voltage Change due to Thermal ShockOP07COP07E252015105012345A B S O L U T E C H A N G E I N I N P U T O F F S E T V O L T A G E (µV )TIME AFTER SUPPLY TURN-ON (Minutes)V S = ±15V T A = 25°C00316-005Figure 5. Warm-Up Drift 1.00.80.60.40.201001k10k100kMATCHED OR UNMATCHED SOURCE RESISTANCE (Ω)M A X I M U M E R R O R R E F E R R E D T O I N P U T (mV )00316-006Figure 6. Maximum Error vs. Source Resistance1.21.00.80.60.40.201001k10k100kMATCHED OR UNMATCHED SOURCE RESISTANCE (Ω)M A X I M U M E R R O R R E F E R R E D TO I N P U T (m V )00316-007Figure 7. Maximum Error vs. Source Resistance30–30–20–101020–30–20–103020100DIFFERENTIAL INPUT VALUE (V)N O N I N V E R T I N G I N P U TB I A SC U R R E N T (n A )00316-008Figure 8. Input Bias Current vs. Differential Input VoltageRev. F | Page 8 of 1643210TEMPERATURE (°C)I N P U T B I A S C U R R E N T(n A )–50–75100500–25125752500316-009Figure 9. Input Bias Current vs. Temperature2.52.01.51.00.50TEMPERATURE (°C)I N P U T O F F S E T C U R R EN T (n A )–50–100–75500–25100752500316-010Figure 10. Input Offset Current vs. TemperatureTIME (1s/DIV)VO L T A G E (200n V /D I V )00316-011Figure 11. Low Frequency Noise 1000100101FREQUENCY (Hz)I N P U T N O I S E V O L T A G E (n V / H z )101100010000316-012Figure 12. Total Input Noise Voltage vs. Frequency1010.1BANDWIDTH (Hz)R M S N O I S E (µV )1k 100100k10k00316-013Figure 13. Input Wideband Noise vs. Bandwidth,0.1 Hz to Frequency Indicated13012011010090807060FREQUENCY (Hz)CM R R (d B )101100k1k10k10000316-014Figure 14. CMRR vs. FrequencyRev. F | Page 9 of 161201101009080705060FREQUENCY (Hz)P S R R (d B )100.1110k 1k 10000316-015Figure 15. PSRR vs. Frequency1000800600400200POWER SUPPLY VOLTAGE (V)O P E N -L O O P G A I N (V /m V )±100±5±20±15T A = 25°C00316-016Figure 16. Open-Loop Gain vs. Power Supply Voltage120100806040200–20–40FREQUENCY (Hz)O P E N -L O O P G A IN (d B )0.11101001k 10k 100k 1M 10M 00316-017Figure 17. Open-Loop Frequency Response 10080604020–20FREQUENCY (Hz)C L O S ED -L O O P G A I N (d B )101001k10k 100k 1M 10M00316-018Figure 18. Closed-Loop Frequency Response for Various Gain Configurations2824201612840FREQUENCY (Hz)P E A K -T O -P E A K A M P L I T U DE (V )1k10k 100k1M00316-019Figure 19. Maximum Output Swing vs. Frequency20151050LOAD RESISTANCE TO GROUND (Ω)M A X I M U M O U T P U T (V)1001k10k00316-020Figure 20. Maximum Output Voltage vs. Load ResistanceRev. F | Page 10 of 161000100101TOTAL SUPPLY VOLTAGE, V+ TO V– (V)P O W E R C O N S U MP T I O N (m W )010203040506000316-021Figure 21. Power Consumption vs. Power Supply3530252015TIME FROM OUTPUT BEING SHORTED (Minutes)O U T P U T S H O R T -C I R C U I T C U R R E N T (m A )0432100316-022Figure 22. Output Short-Circuit Current vs. Time85.0042.5063.7521.250TEMPERATURE (°C)A B S O L U T E V A L U E O F O F F S E T V O L T AG E (µV )–751251007550250–25–5000316-023Figure 23. Untrimmed Offset Voltage vs. Temperature30.015.022.57.50TEMPERATURE (°C)A B S O L U T E V A L U E O F O F F S E T V O L T A G E (µV)–100–751007550250–25–5000316-024Figure 24. Trimmed Offset Voltage vs. Temperature16–16–12–8–404812TIME (Months)T O T A L D R I F T W I T H T I M E (µV )012111098765432100316-025Figure 25. Offset Voltage Drift vs. TimeRev. F | Page 11 of 16TYPICAL APPLICATIONSE OE INE O = –E IN –I B RFRFR100316-026Figure 26. Typical Offset Voltage Test CircuitE OE3E 2E 1R410k Ω00316-027Figure 27. Typical Low Frequency Noise Circuit OUTV+00316-028Figure 28. Optional Offset Nulling CircuitE OR5R4R3E IN ±10V00316-029Figure 29. Absolute Value CircuitE OE INO IN B RF R1NOTES1. PINOUT SHOWN FOR P PACKAGE00316-030Figure 30. High Speed, Low V OS Composite AmplifierE OE 3E 2E 1R410k ΩNOTES1. PINOUT SHOWN FOR P PACKAGE00316-031Figure 31. Adjustment-Free Precision Summing AmplifierRev. F | Page 12 of 16NOTES1. PINOUT SHOWN FOR P PACKAGEE OREFERENCE JUNCTIONSENDING JUNCTION00316-032Figure 32. High Stability Thermocouple AmplifierE OR510k ΩR410k ΩR310k ΩE IN ±10VNOTES1. PINOUT SHOWN FOR P PACKAGE00316-033Figure 33. Precision Absolute-Value CircuitAPPLICATIONS INFORMATIONThe OP07 provides stable operation with load capacitance of up to 500 pF and ±10 V swings; larger capacitances should be decoupled with a 50 Ω decoupling resistor.Stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can degrade driftperformance. Therefore, best operation is obtained when both input contacts are maintained at the same temperature, preferably close to the package temperature.Rev. F | Page 13 of 16OUTLINE DIMENSIONSCONTROLLING DIMENSIONS ARE IN MILLIMETERS;INCH DIMENSIONS (IN PARENTHESES)ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DES IGN.COMPLIANT TO JEDEC STANDARDS MS-012-AA012407-A0.17(0.0067)0.40(0.0157)0.25(0.0098)0.10(0.0040)COPLANARITY0.10Figure 34. 8-Lead Standard Small Outline Package [SOIC_N]Narrow Body S-Suffix(R-8)Dimensions shown in millimeters and (inches)COMPLIANT TO JEDEC STANDARDS MS-001CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES)ARE ROUNDED-OFF INCH EQUIVALENTS FORREFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.070606-A0.070 (1.78)0.060 (1.52)0.045 (1.14)BSCMAX0.325 (8.26)0.310 (7.87)0.300 (7.62)0.015 (0.38)GAUGE PLANEFigure 35. 8-Lead Plastic Dual-in-Line Package [PDIP]P-Suffix (N-8)Dimensions shown in inches and (millimeters)1 Z = RoHS Compliant Part.Rev. F | Page 14 of 16NOTESRev. F | Page 15 of 16NOTES©2002-2010 Analog Devices, Inc. All rights reserved. Trademarks andD00316-0-8/10(F)Rev. F | Page 16 of 16。

运算放大器OP07中文手册

运算放大器OP07中文手册

Value 数值 Unit 单位
±22 ±30 ±22 -40 +105 -65 +150
V V V to ℃
to ℃
Sym Parameter 参数及测试条件
最小 典 最 Unit
bol 符号
Input Offset Voltage 输 入 失 调 电 压 0℃ ≤ Tamb ≤
Vio +70℃
运算放大器 OP07中文资料
op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于 OP07具有非常低的输入失调电压(对于 OP07A 最大为25µV),所以 OP07在很多应用场合不需 要额外的调零措施。OP07同时具有输入偏置电流低(OP07A 为±2nA)和开环增益高(对于 OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得 OP07特别适用于高增益的测量设备 和放大传感器的微弱信号等方面。 特点: 超低偏移: 150µV 最大 。 低输入偏置电流: 1.8nA 。 低失调电压漂移: 0.5µV/℃ 。 超稳定,时间: 2µV/month 最大 高电源电压范围: ±3V 至±22V
Iio Input Offset Current 输入失调电流 0℃≤Tamb≤ +70℃ -
6
0.8
nA
8
DIio Input Offset Current Drifturrent 输入偏置电流 0℃≤Tamb ≤ +70℃ -
5 pA/
15 0
0℃ ≤ Tamb ≤ +70℃ RL =2KΩ ±11
Slew Rate 转换率(RL =2KΩ,CL = 100pF)
-
Gain Bandwidth Product 带宽增益(RL =2KΩ,CL = -
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

OP07C中文资料篇一:op07管脚、原理及其应用电路中文资料一、Op07芯片是一种低噪声,非斩波稳零的单运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

二、OP07特点:超低偏移: 150μV最大。

低输入偏置电流:。

低失调电压漂移:μV/℃。

超稳定,时间: 2μV/month最大高电源电压范围:±3V至±22V三、OP07内部结构原理图四、OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+ABSOLUTE MAXIMUM RATINGS 最大额定值五、OP07典型应用电路图4 输入失调电压调零电路图5 典型的偏置电压试验电路图6 老化电路图7 典型的低频噪声放大电路图8 高速综合放大器图9 选择偏移零电路图10 调整精度放大器图11高稳定性的热电偶放大器图12 精密绝对值电路篇二:OP07中文op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

特点:超低偏移: 150μV最大。

低输入偏置电流:。

低失调电压漂移:μV/℃。

超稳定,时间: 2μV/month最大高电源电压范围:±3V至±22V工作电源电压范围是±3V~±18V;OP07完全可以用单电源供电,你说的+5V,-5V绝对没有问题,用单+5V也可以供电,但是线性区间太小,单电源供电,模拟地在1/2 VCC. 建议电源最好>8V,否则线性区实在太小,放大倍数无法做大,一不小心,就充顶饱和了。

我一直用+12V,-12V双电源供电。

图2 OP07 管脚图 OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源ABSOLUTE MAXIMUM RATINGS 最大额定值Symbol符号 VCC Vid Vi Toper TstgSupply Voltage 电源电压Differential Input Voltage差分输入电压 Input Voltage 输入电压Operating Temperature 工作温度 Storage Temperature 贮藏温度±22 ±30 ±22 -40 +105 -65 +150to toV V V ℃℃Parameter参数Value数值 Unit 单位电气特性虚拟通道连接= ± 15V , Tamb = 25 ℃(除非另有说明)Symbol符号Parameter 参数及测试条件最小典型 60最大Unit 单位150 250VioInput Offset Voltage 输入失调电压0℃≤ Tamb ≤ +70℃-μVLong Term Input Offset Voltage Stability-(note 1) 长期输入偏置电压的稳定性- 2μV/MoDVio Input Offset Voltage Drift 输入失调电压漂移 -μV/℃Iio Input Offset Current输入失调电流 0℃≤Tamb≤ +70℃ -6 8nADIio Input Offset Current Drift 输入失调电流漂移 - 155pA/℃Input Bias Current输入偏置电流 0℃≤Tamb ≤ +70℃-7 9 50 - - -nADIib Ro Rid RicInput Bias Current Drift 输入偏置电流漂移 Open Loop Output Resistance 开环输出电阻 Differential Input Resistance 差分输入电阻 Common Mode Input Resistance 共模输入电阻 Input Common Mode Voltage Range输入共模电压范围 0℃≤ Tamb ≤+70℃- - - - ±13 ±1315 60 33 120 ±pA/℃Ω MΩ GΩVicm - VCMRCommon Mode Rejection Ratio (Vi =Vicm min)共模抑制比 0℃≤ Tamb ≤ +70℃100 97 90 86120 104-dB -SVRSupply Voltage Rejection Ratio 电源电压抑制比(VCC = ±3to ±18V) 0℃≤ Tamb ≤ +70℃VCC = ±15, RL =2KΩ,VO =LargeSignal ±10V,0℃≤ Tamb ≤ +105℃VCC = ±3V, RL = 500W,VO = ± RL = 10KΩ120 100 100 ±12 ±±11 - -400400 ±13 ±±12 -- - -V/mVAvd Voltage Gain 大信号电压增益VoppOutput 摆幅VoltageSwing 输出电压RL= 2kΩ RL= 1KΩ0℃≤ Tamb ≤ +70℃ RL =2KΩ- VSR GBPSlew Rate 转换率(RL =2KΩ,CL = 100pF)Gain Bandwidth Product 带宽增益(RL =2KΩ,CL = 100pF, f = 100kHz)Supply Current -(no load) 电源电流(无负载) 0℃≤ Tamb ≤ +70℃ VCC = ±3V Equivalent Input f = 10Hz- - 5 6 2V/μS MHzIcc -mAen - 11Noise Voltage等效输入噪声电压f = 100Hz-f = 1kHz-100 √Hzf = 10Hz- - -√HzEquivalent InputinNoiseCurrent f = 100Hzf = 1kHz等效输入噪声电流图4 输入失调电压调零电路应用电路图:图5 典型的偏置电压试验电路图6 老化电路篇三:单路双极性运算放大器OP07中文资料单路双极性运算放大器OP07中文资料op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。

特点:超低偏移: 150μV最大。

低输入偏置电流:。

低失调电压漂移:μV/℃。

超稳定,时间: 2μV/month最大高电源电压范围:±3V至±22V图1 OP07外型图片图2 OP07 管脚图OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+图3OP07内部电路图 ABSOLUTE MAXIMUM RATINGS 最大额定值Symbol符号 VCC Vid Vi Toper TstgSupply Voltage 电源电压Differential Input Voltage差分输入电压 Input Voltage 输入电压Operating Temperature 工作温度 Storage Temperature 贮藏温度±22 ±30 ±22 -40 +105 -65 +150to toV V V ℃℃Parameter参数Value数值 Unit 单位电气特性虚拟通道连接= ± 15V , Tamb = 25 ℃(除非另有说明)SymParameter 参数及测试条件最小典最Unitbol符号型大单位60150 250VioInput Offset Voltage 输入失调电压0℃≤ Tamb ≤ +70℃- μVLong Term Input Offset Voltage Stability-(note 1) 长期输入偏置电压的稳定性- 2 6 8 50 7 9 50 - - -μV/MoDVio Input Offset Voltage Drift 输入失调电压漂移 - μV/℃Iio Input Offset Current输入失调电流 0℃≤Tamb≤ +70℃ - nADIio Input Offset Current Drift 输入失调电流漂移 - 15 pA/℃Iib Input Bias Current输入偏置电流 0℃≤Tamb ≤ +70℃ - nADIib Ro Rid RicInput Bias Current Drift 输入偏置电流漂移 Open Loop Output Resistance 开环输出电阻 Differential Input Resistance 差分输入电阻 Common Mode Input Resistance 共模输入电阻 Input Common Mode Voltage Range输入共模电压范围 0℃≤ Tamb ≤+70℃- - - - ±13 ±13 100 97 90 8615 60 33 120± 120 104pA/℃Ω MΩ GΩVicm - VCMRCommon Mode Rejection Ratio (Vi =Vicm min)共模抑制比 0℃≤ Tamb ≤ +70℃- dBSVRSupply Voltage Rejection Ratio 电源电压抑制比(VCC = ±3to ±18V) 0℃≤ Tamb ≤ +70℃- dBVCC = ±15, RL =2KΩ,VO =LargeAvd10V, Signal ±0℃≤ Tamb ≤ +105℃VCC = ±3V, RL = 500W,VO = ± RL = 10KΩVoppOutput Voltage Swing 输出电压摆幅RL= 2kΩ RL= 1KΩ0℃≤ Tamb ≤ +70℃ RL =2KΩSR GBPSlew Rate 转换率(RL =2KΩ,CL = 100pF)Gain Bandwidth Product 带宽增益(RL =2KΩ,CL = 100pF, f = 100kHz)Supply Current -(no load) 电源电流(无负载) 0℃≤ Tamb ≤ +70℃ VCC = ±3V Voltage Gain 大信号电压增益120 100 100 ±12 ±±11 - -400400 ±13 ±±12 -- - -V/mV- V- - 5 6 20V/μS MHzIcc -mAf = 10HzEquivalent InputenNoise Voltage等效输入噪声电压f = 1kHz- 11f = 100Hz -√Hz- 10f = 10HzEquivalent InputinNoiseCurrent f = 100Hzf = 1kHz- - -√Hz等效输入噪声电流图4 输入失调电压调零电路应用电路图:图5 典型的偏置电压试验电路。

相关文档
最新文档