苏教版《全等三角形》知识点总结+习题+单元测试题

合集下载

苏科新版八年级上册数学《第1章 全等三角形》单元测试卷(含解析)

苏科新版八年级上册数学《第1章 全等三角形》单元测试卷(含解析)

苏科新版八年级上册数学《第1章全等三角形》单元测试卷一.选择题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC ≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E 3.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一条边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等4.如图,△ABC≌△DEF,下列结论正确的是()A.AB=DF B.BE=CF C.∠B=∠F D.∠ACB=∠DEF 5.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B 6.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形7.下列条件中,不能判定两个直角三角形全等的是()A.两直角边对应相等B.斜边和一条直角边对应相等C.两锐角对应相等D.一个锐角和斜边对应相等8.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A.1B.2C.3D.49.在一次小制作活动中,艳艳剪了一个燕尾图案(如图所示),她用刻度尺量得AB=AC,BO=CO,为了保证图案的美观,她准备再用量角器量一下∠B和∠C是否相等,小麦走过来说:“不用量了,肯定相等”,小麦的说法利用了判定三角形全等的方法是()A.ASA B.SAS C.AAS D.SSS10.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD二.填空题11.能够的两个图形叫做全等图形.12.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.13.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是(只写一个即可,不添加辅助线).14.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2=度.15.已知:△ABC≌△FED,若∠B=45°,∠C=40°,则∠F=度.16.如图,BC=EF,AC∥DF,请你添加一个适当的条件,使得△ABC≌△DEF,.(只需填一个答案即可)17.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=,△ABC与△APQ全等.18.如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件.(只需写出符合条件一种情况)19.如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=°.20.如图,点D,E,F,B在同一条直线上,AB∥CD,AE∥CF且AE=CF,若BD=10,BF=3.5,则EF=.三.解答题21.如图所示,△ABC≌△ADE,BC的延长线交DA于F点,交DE于G点,∠ACB=105°,∠CAD=15°,∠B=30°,则∠1的度数为多少度.22.如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.23.如图所示,△ABC≌△AEC,B和E是对应顶点,∠B=30°,∠ACB=85°,求△AEC各内角的度数.24.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.25.如图:AC∥EF,AC=EF,AE=BD.求证:△ABC≌△EDF.26.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.27.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案与试题解析一.选择题1.解:全等图形是指两个图形的形状和大小都相等,故选:C.2.解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选:B.3.解:A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.4.解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∠B=∠DEF,∠ACB=∠F,∠A=∠D,∴BE=CF,故选:B.5.解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选:A.6.解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.7.解:A、正确.根据SAS即可判断.B、正确.根据HL即可判断.C、错误.两锐角对应相等不能判断两个三角形全等.D.正确.根据AAS即可判断.8.解:如图,过B点作BF⊥CD,与DC的延长线交于F点,∵∠ABC=∠CDA=90°,BE⊥AD,∴四边形EDFB是矩形,∠EBF=90°,∴∠ABE=∠CBF,∵在△BCF和△BAE中,∴△BCF≌△BAE(ASA),∴BE=BF,∴四边形EDFB是正方形,∴S四边形ABCD =S正方形BEDF=4,∴BE==2.故选:B.9.解:在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠B=∠C,故选:D.10.解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.二.填空题11.解:能够完全重合的两个图形叫做全等图形.故答案为完全重合.12.解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.13.解:∠APO=∠BPO等.理由:∵点P在∠AOB的平分线上,∴∠AOP=∠BOP,在△AOP和△BOP中∵,∴△AOP≌△BOP(ASA),故答案为:∠APO=∠BPO(答案不唯一).14.解:在△ACM和△BAN中,,∴△ACM≌△BAN,∴∠2=∠CAM,即可得∠1+∠2=90°.故答案为:90.15.解:∵△ABC≌△FED,∴∠F=∠A,∵∠B=45°,∠C=40°,∴∠A=95°,∴∠F=95°,故答案为:95°.16.解:∵AC∥DF,∴∠ACB=∠F,∵BC=EF,∴添加AC=DF或∠A=∠D或∠B=∠DEF即可证明△ABC≌△DEF,故答案为AC=DF或∠A=∠D或∠B=∠DEF.17.解:∵AX⊥AC,∴∠PAQ=90°,∴∠C=∠PAQ=90°,分两种情况:①当AP=BC=5时,在Rt△ABC和Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=10时,在△ABC和△PQA中,,∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=5或10时,△ABC与△APQ全等;故答案为:5或10.18.解:∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.19.解:在△ADC和△ABC中,,∴△ABC≌△ADC(SSS),∴∠D=∠B,∵∠B=130°,∴∠D=130°,故答案为:130.20.解:∵AB∥CD,∴∠B=∠D,∵AE∥CF,∴∠AEB=∠CFD,在△ABE和△CFD中,,∴△ABE≌△CFD,∴BE=DF,∵BD=10,BF=3.5,∴DF=BD﹣BD=6.5,∴BE=6.5,∴EF=BE﹣BF=6.5﹣3.5=3.故答案为3三.解答题21.解:∵△ABC≌△ADE,∴∠D=∠B=30°,∵∠ACB=∠CAD+∠AFC,∴∠AFC=∠ACB﹣∠CAD=90°,∴∠DFG=90°,∴∠AFC=90°,∴∠1=180°﹣∠D﹣∠DFG=180°﹣90°﹣30°=60°.22.证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).23.解:∵△ABC≌△AEC,∴∠B=∠E,∠BAC=∠EAC,∠ACB=∠ACE.∵∠B=30°,∠ACB=85°,∴∠E=30°,∠ACE=85°,∠ACB=180°﹣∠B﹣∠ACB=65°,∴∠EAC=65°.故∠E=30°,∠ACE=85°,∠EAC=65°.24.解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.25.证明:∵AC∥EF,∴∠CAB=∠FED,∵AE=BD,∴AE+EB=BD+EB,即AB=ED,又∵AC=EF,∴△ABC≌△EDF.26.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.27.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。

苏科版八年级数学上册第1章《全等三角形》单元测试(含答案)

苏科版八年级数学上册第1章《全等三角形》单元测试(含答案)

苏科版八年级数学上册第1章《全等三角形》单元测试一.选择题1.下列各组中的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形3.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D 4.图中的两个三角形全等,则∠1等于()A.45°B.62°C.73°D.135°5.已知△ABC≌△DEF,∠A=∠B=30°,则∠E的度数是()A.30°B.120°C.60°D.90°6.如图,若△ABC≌△DEF,B、E、C、F在同一直线上,BC=7,EC=4,则CF的长是()A.2 B.3 C.5 D.77.下列说法正确的是()A.周长相等的两个三角形全等B.如果三角形的三个内角满足∠A:∠B:∠C=1:2:3.则这个三角形是直角三角形C.从直找外一点到这条直线的垂线段,叫做这点到直线的距离D.两条直线被第三条直线所截,同位角相等二.填空题8.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是.9.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.10.如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.11.如图,已知△ABC≌△ABD,且点C与点D对应,点A与点A对应,∠ACB=30°,∠ABC=85°,则∠BAD的度数为.12.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为.13.如图,已知△ABD≌△ACE,∠A=53°,∠B=22°,则∠C=°.14.如图是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画个.三.解答题15.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).16.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.17.如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为、,结论为;(2)证明你的结论.18.已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.19.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC =4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.20.如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21.如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.参考答案一.选择题1.解:A、两个图形不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确;C、两个图形不能完全重合,故本选项错误;D、两个图形不能完全重合,故本选项错误;故选:B.2.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.3.解:在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明;故选:B.4.解:∵两个三角形全等,∴边长为a的对角是对应角,∴∠1=73°,故选:C.5.解:∵△ABC≌△DEF,∠A=∠B=30°,∴∠D=∠E=∠A=∠B=30°,则∠E的度数是30°.故选:A.6.解:∵△ABC≌△DEF,BC=7,∴EF=BC=7,∴CF=EF﹣EC=3,故选:B.7.解:A、周长相等的两个三角形,不一定全等,说法错误,不符合题意;B.三角形三个内角的比是1:2:3,则这个三角形的最大内角的度数是×180°=90°,即这个三角形是直角三角形,说法正确,符合题意;C.直线外一点到这条直线的垂线段的长度,叫做这点到该直线的距离,说法错误,不合题意;D.两条直线被第三条直线所截,同位角相等,是假命题.两直线不平行,没有这个性质.不符合题意;故选:B.二.填空题8.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.9.解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=135°.故答案为:135°.10.解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).11.解:在△ABC中,∵∠ACB=30°,∠ABC=85°,∠BAC+∠ACB+∠ABC=180°,∴∠BAC=180°﹣∠ACB+∠ABC=65°,∵△ABC≌△ABD,且点C与点D对应,点A与点A对应,∴∠BAD=∠BAC=65°,故答案为65°.12.解:∵△ABE≌△ACF∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故答案为:3.13.解:∵△ABD≌△ACE,∴∠C=∠B,∵∠B=22°,∴∠C=22°,故答案为:22.14.解:如图,以BC为公共边可画出△BDC,△BEC,△BFC三个三角形和原三角形全等.以AB为公共边可画出三个三角形△ABG,△ABM,△ABH和原三角形全等.所以可画出6个.故答案为:6.三.解答题15.解:如图所示:.16.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.17.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.18.证明:(1)∵∠AOB=∠COD,∠ABO=∠DCO,AB=DC,在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.19.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.20.(1)证明:∵△ABC≌△DEC,∴CB=CE,∠DCE=∠ACB,∴∠CEB=∠B=65°,在△BEC中,∠CEB+∠B+∠ECB=180°,∴∠ECB=180°﹣65°﹣65°=50°,又∠DCE=∠ACB,∴∠DCA=∠ECB=50°;(2)解:∵△ABC≌△DEC,∴∠D=∠A=20°,在△DFC中,∠DFA=∠DCA+∠D=50°+20°=70°.21.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.。

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。

苏科版八年级数学上册《第一章全等三角形》单元测试含答案

苏科版八年级数学上册《第一章全等三角形》单元测试含答案

第一章全等三角形单元测试一、单选题(共10题;共30分)1.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A、∠A=∠CB、AD=CBC、BE='DF'D、AD∥BC2.如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列条件后,不能判定△ABE≌△ACD的是( )A、AD=AEB、BE=CDC、∠AEB=∠ADCD、AB=AC3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC4.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC5.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=12AC•BD,其中正确的结论有()A.0个B.1个C.2个D.3个7.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE8.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB.AM=CNC.AB=CDD.AM∥CN9.已知△ABC≌△DEF,∠A=50°,∠B=75°,则∠F的大小为()A.50°B.55°C.65°D.75°10.如图,在△ABC和△DEF中,给出以下六个条件中,以其中三个作为已知条件,不能判断△ABC和△DEF 全等的是()①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.A、①⑤②B、①②③C、④⑥①D、②③④二、填空题(共8题;共27分)11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.12.如图所示,已知△ABC≌△ADE,∠C=∠E,AB=AD,则另外两组对应边为________,另外两组对应角为________.13.如图,△ACE≌△DBF,点A、B、C、D共线,若AC=5,BC=2,则CD的长度等于________.14.如图,AB=AD,只需添加一个条件________,就可以判定△ABC≌△ADE.15.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为________.16.如图,已知△ABC≌△DCB,∠BDC=35°,∠DBC=50°,则∠ABD=________.17.如图,△ABC≌△DEF,点F在BC边上,AB与EF相交于点P.若∠DEF=40°,PB=PF,则∠APF=________°.18.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是________.三、解答题(共5题;共37分)19.如图,已知△ABC≌△BAD,AC与BD相交于点O,求证:OC=OD.20.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应顶点•对应边与对应角,并说出图中标的a,b,c,e,α各字母所表示的值.21.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.22.已知命题:如图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.23.如图,已知点C是线段AB上一点,直线AM⊥AB,射线CN⊥AB,AC=3,CB=2.分别在直线AM上取一点D,在射线CN上取一点E,使得△ABD与△BDE全等,求CE2的值.四、综合题(共1题;共10分)24.定义:我们把三角形被一边中线分成的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图1,在△ABC中,CD是AB边上的中线.那么△ACD和△BCD是“朋友三角形”,并且S△ACD=S△BCD.应用:如图2,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=AD=4,BC=6,点E在BC上,点F在AD 上,BE=AF,AE与BF交于点O.(1)求证:△AOB和△AOF是“朋友三角形”;(2)连接OD,若△AOF和△DOF是“朋友三角形”,求四边形CDOE的面积.拓展:如图3,在△ABC中,∠A=30°,AB=8,点D在线段AB上,连接CD,△ACD和△BCD是“朋友三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,则△ABC的面积是________(请直接写出答案).答案解析一、单选题1、【答案】B【考点】全等三角形的判定【解析】【分析】由AE=CF可得AF=CE,再有∠AFD=∠CEB,根据全等三角形的判定方法依次分析各选项即可.【解答】∵AE=CF∴AE+EF=CF+EF,即AF=CE,∵∠A=∠C,AF=CE,∠AFD=∠CEB,∴△ADF≌△CBE(ASA)∵BE=DF,∠AFD=∠CEB,AF=CE,∴△ADF≌△CBE(SAS)∵AD∥BC,∴∠A=∠C,∵∠A=∠C,AF=CE,∠AFD=∠CEB,∴△ADF≌△CBE(ASA)故A、C、D均可以判定△ADF≌△CBE,不符合题意B、AF=CE,AD=CB,∠AFD=∠CEB无法判定△ADF≌△CBE,本选项符合题意.【点评】全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.2、【答案】C【考点】全等三角形的判定【解析】【分析】A、根据AAS(∠A=∠A,∠C=∠B,AD=AE)能推出△ABE≌△ACD,正确,故本选项错误;B、根据AAS(∠A=∠A,∠B=∠C,BE=CD)能推出△ABE≌△ACD,正确,故本选项错误;C、三角对应相等的两三角形不一定全等,错误,故本选项正确;D、根据ASA(∠A=∠A,AB=AC,∠B=∠C)能推出△ABE≌△ACD,正确,故本选项错误;故选C.3、【答案】C【考点】全等三角形的性质【解析】【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选C.【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.4、【答案】D【考点】全等三角形的判定【解析】【解答】解:A、∵在△ABD和△ACD中∴△ABD≌△ACD(SSS),故本选项错误;B、∵在△ABD和△ACD中∴△ABD≌△ACD(SAS),故本选项错误;C、∵在△ABD和△ACD中∴△ABD≌△ACD(AAS),故本选项错误;D、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;故选D.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据全等三角形的判定定理逐个判断即可.5、【答案】D【考点】全等三角形的性质【解析】【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.6、【答案】D【考点】全等三角形的判定【解析】【解答】解:在△ABD与△CBD中,AD=CDAB=BCDB=DB ,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积=S△ADB+S△BDC=12DB×OA+12DB×OC=12AC·BD故③正确;故选D.【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.7、【答案】D【考点】全等三角形的性质【解析】【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.8、【答案】B【考点】全等三角形的判定【解析】【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.9、【答案】B【考点】全等三角形的性质【解析】【解答】解:∵∠A=50°,∠B=75°,又∵∠A+∠B+C=180°,∴∠C=55°,∵△ABC≌△DEF,∴∠F=∠C,即:∠F=55°.故选B.【分析】由∠A=50°,∠B=75°,根据三角形的内角和定理求出∠C的度数,根据已知△ABC≌△DEF,利用全等三角形的性质得到∠F=∠C,即可得到答案.10、【答案】D【考点】全等三角形的判定【解析】【解答】解:在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);∴A不符合题意;在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);∴B不符合题意;在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴C不符合题意;在△ABC和△DEF中,D②③④不能判断△ABC和△DEF全等,故选D.【分析】根据全等三角形的判定方法对组合进行判断即可.二、填空题11、【答案】50【考点】全等三角形的性质【解析】【解答】因为∠B=100°,∠BAC=30°所以∠ACB=50°;又因为△ABC≌△ADE,所以∠ACB=∠AED =50°;【分析】首先根据全等三角形性质可得对应角相等,再结合图形找到全等三角形的那两个角对应相等,根据题意完成填空.12、【答案】BC=DE、AC=AE;∠B=∠ADE、∠BAC=∠DAE【考点】全等三角形的性质【解析】【解答】∵△ABC≌△ADE,∠C=∠E,AB=AD,∴AC=AE,BC=DE;∴∠BAC=∠DAE,∠B=∠ADE.【分析】由已知△ABC≌△ADE,∠C=∠E,AB=AD得C点与点E,点B与点D为对应点,然后根据全等三角形的性质可得答案.13、【答案】3【考点】全等三角形的性质【解析】【解答】解:∵△ACE≌△DBF,∴AC=BD=5,∴CD=BD﹣BC=5﹣2=3.故答案为:3.【分析】根据全等三角形对应边相等可得AC=BD,然后根据CD=BD﹣BC计算即可得解.14、【答案】∠B=∠D【考点】全等三角形的判定【解析】【解答】解:添加条件∠B=∠D,∵在△ABC和△ADE中,∴△ABC≌△ADE(ASA),故答案为:∠B=∠D.【分析】添加条件∠B=∠D,再由条件∠A=∠A,AB=AD,可利用ASA定理证明△ABC≌△ADE,答案不惟一.15、【答案】2或3【考点】全等三角形的判定【解析】【解答】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD= 12 AB=6cm,∵BD=PC,∴BP=8﹣6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=3(m/s),故答案为:2或3.【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.16、【答案】45°【考点】全等三角形的性质【解析】【解答】解:∵∠BDC=35°,∠DBC=50°,∴∠BCD=180°﹣∠BDC﹣∠DBC=180°﹣35°﹣50°=95°,∵△ABC≌△DCB,∴∠ABC=∠BCD=95°,∴∠ABD=∠ABC﹣∠DBC=95°﹣50°=45°.故答案为:45°.【分析】根据三角形的内角和等于180°求出∠BCD,再根据全等三角形对应角相等可得∠ABC=∠BCD,然后列式进行计算即可得解.17、【答案】80【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△DEF,∴∠B=∠DEF=40°,∵PB=PF,∴∠PFB=∠B=40°,∴∠APF=∠B+∠PFB=80°,故答案为:80.【分析】由全等三角形的性质可求得∠B,再利用等腰三角形和外角的性质可求得∠APF.18、【答案】DC=BC或∠DAC=∠BAC【考点】全等三角形的判定【解析】【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.三、解答题19、【答案】证明:∵△ABC≌△BAD,∴∠CAB=∠DBA,AC=BD,∴OA=OB,∴AC﹣OA=BD﹣OB,即:OC=OD.【考点】全等三角形的性质【解析】【分析】由△ABC≌△BAD,根据全等三角形的性质得出∠CAB=∠DBA,AC=BD,利用等角对等边得到OA=OB,那么AC﹣OA=BD﹣OB,即:OC=OD.20、【答案】解:对应顶点:A和G,E和F,D和J,C和I,B和H,对应边:AB和GH,AE和GF,ED和FJ,CD和JI,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F;∵两个五边形全等,∴a=12,c=8,b=10,e=11,α=90°.【考点】全等图形【解析】【分析】根据能够完全重合的两个图形叫做全等形,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角可得对应顶点,对应边与对应角,进而可得a,b,c,e,α各字母所表示的值.21、【答案】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,AB=CB∠ABE=∠CBFBE=BF,∴△ABE≌△CBF(SAS).【考点】全等三角形的判定【解析】【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.22、【答案】解:是假命题.以下任一方法均可:①添加条件:AC=DF.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE.在△ABC和△DEF中,AB=DE,∠A=∠FDE,AC=DF,∴△ABC≌△DEF(SAS);②添加条件:∠CBA=∠E.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE.在△ABC和△DEF中,∠A=∠FDE,AB=DE,∠CBA=∠E,∴△ABC≌△DEF(ASA);③添加条件:∠C=∠F.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE.在△ABC和△DEF中,∠A=∠FDE,∠C=∠F,AB=DE,∴△ABC≌△DEF(AAS)【考点】全等三角形的判定【解析】【分析】本题中要证△ABC≌△DEF,已知的条件有一组对应边AB=DE(AD=BE),一组对应角∠A=∠FDE.要想证得全等,根据全等三角形的判定,缺少的条件是一组对应角(AAS或ASA),或者是一组对应边AC=EF(SAS).只要有这两种情况就能证得三角形全等.23、【答案】解:如图,当△ABD≌△EBD时,BE=AB=5,∴CE2=BE2﹣BC2=25﹣4=21.【考点】全等三角形的判定【解析】【分析】由题意可知只能是△ABD≌△EBD,则可求得BE,再利用勾股定理可求得CE2四、综合题24、【答案】(1)证明:∵AD∥BC,∴∠OAF=∠OEB,在△AOF和△EOB中,,∴△AOF≌△EOB(AAS),∴OF=OB,则AO是△ABF的中线.∴△AOB和△AOF是“朋友三角形”(2)8或8【考点】全等三角形的判定【解析】【解答】(2)解:∵△AOF和△DOF是“朋友三角形”,∴S△AOF=S△DOF,∵△AOF≌△EOB,∴S△AOB=S△EOB,∵△AOB和△AOF是“朋友三角形”∴S△AOB=S△AOF,∴S△AOF=S△DOF=S△AOB=S△EOB,= ×4×2=4,∴四边形CDOE 的面积=S梯形ABCD﹣2S△ABE= ×(4+6)×4﹣2×4=12;拓展:解:分为两种情况:①如图1所示:∵S △ACD =S △BCD .∴AD=BD= AB=4,∵沿CD 折叠A 和A′重合,∴AD=A′D= AB= ×8=4,∵△A′CD 与△ABC 重合部分的面积等于△ABC 面积的,∴S △DOC = S △ABC = S △BDC = S △ADC = S △A′DC ,∴DO=OB ,A′O=CO ,∴四边形A′DCB 是平行四边形,∴BC=A′D=4,过B 作BM ⊥AC 于M ,∵AB=8,∠BAC=30°,∴BM= AB=4=BC ,即C 和M 重合,∴∠ACB=90°,由勾股定理得:AC= =4 ,∴△ABC 的面积= ×BC×AC= ×4×4 =8 ; ②如图2所示:∵S△ACD=S△BCD.∴AD=BD= AB,∵沿CD折叠A和A′重合,∴AD=A′D= AB= ×8=4,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC= S△ABC= S△BDC= S△ADC= S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=4,过C作CQ⊥A′D于Q,∵A′C=4,∠DA′C=∠BAC=30°,∴CQ= A′C=2,∴S△ABC=2S△ADC=2S△A′DC=2× ×A′D×CQ=2× ×4×2=8;即△ABC的面积是8或8 ;故答案为:8或8 .【分析】应用:(1)由AAS证明△AOF≌△EOB,得出OF=OB,AO是△ABF的中线,即可得出结论;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE和梯形ABCD的面积的面积,根据S四边形CDOF=S矩形ABCD﹣2S△ABF即可求解.拓展:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积。

第1章 全等三角形 苏科版八年级数学上册单元复习习题精选(含解析)

第1章 全等三角形 苏科版八年级数学上册单元复习习题精选(含解析)

第1章·素养综合检测(满分100分,限时60分钟)一、选择题(每小题3分,共24分)1.(2022独家原创)观察图中各组图形,其中不是全等图形的是( )A B C D2.如图,方格纸中的△ABC经过变换,可以得到△A1B1C1,下列选项中变换方法正确的是( )A.把△ABC向右平移5格B.把△ABC向右平移5格,再向下平移4格C.把△ABC绕点C按逆时针方向旋转90°后,再向下平移3格D.把△ABC绕点C按顺时针方向旋转90°后,再向下平移3格3.下列说法正确的是( )A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形4.一块三角形玻璃样板不慎被张宇同学碰破,成了四片完整碎片(如图所示),聪明的他经过仔细地考虑认为只要带其中的两片碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板,你认为下列四个答案中考虑最全面的是( )A.带1,2或2,3去就可以了B.带1,4或3,4去就可以了C.带1,4或2,4或3,4去均可D.带其中的任意两块去都可以5.(2022北京期中)如图,要测量湖两岸相对两点A,B的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再在BF的垂线DG上取点E,使点A,C,E在一条直线上,可得△ABC≌△EDC.判定全等的依据是( )A.ASAB.SASC.SSSD.HL6.(2022江苏如皋期中)如图所示,已知AB=CD,则再添加下列哪一个条件,可以判定△ABC≌△DCB( )A.∠A=∠DB.∠ABC=∠ACBC.AC=BDD.BC=CD7.(2022江苏徐州期中)如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是( )A.AB=DE B.BC=EFC.∠B=∠E D.∠ACB=∠DFE8.(2020江苏苏州期中)如图,在△ABC中,E,D分别是边AB,AC上的点,且AE=AD,BD,CE交于点F,AF的延长线交BC于点H,若∠EAF=∠DAF,则图中的全等三角形共有( )A.4对B.5对C.6对D.7对二、填空题(每小题3分,共30分)9.(2022独家原创)如图,小明是这样修理凳子的,他这种做法的数学原理是 .10.工人师傅常用角尺平分一个任意角,做法:如图,在∠AOB的边OA、OB上分别取点M、N,使OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP.做法中用到三角形全等的判定方法是 .11.(2021山东济宁中考)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件: ,使△ABC≌△ADC.12.如图,四边形ABCD与四边形A'B'C'D'全等,则∠D'= °,∠A= °,B'C'= ,AD= .13.(2020黑龙江龙东地区中考)如图,在Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件: ,使Rt△ABC和Rt△EDF全等.14.如图,图中由实线围成的图形与①是全等图形的有 .(填序号)图① 图② 图③ 图④ 图⑤15.(2022江苏泰兴期末)如图是由6个相同的小正方形拼成的网格,则∠2-∠1= °.16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,B,D,E在同一条直线上,则∠3= .17.(2020辽宁葫芦岛中考)如图,在△ABC中,AB=5,AC=8,BC=9,以A为圆心,以适当的长MN的长为半径为半径作弧,交AB于点M,交AC于点N.分别以M,N为圆心,以大于12作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,点F在AC边上,AF=AB,连接DF,则△CDF的周长为 .18.(2022江苏东台月考)如图,已知四边形ABCD中,AB=10 cm,BC=8 cm,CD=12cm,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3 cm/s的速度沿B—C—B运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为 cm/s时,能够使△BPE与△CQP全等.三、解答题(共46分)19.(2021广东广州中考)(6分)如图,点E、F在线段BC上,AB∥CD,∠A=∠D,BE=CF,求证:AE=DF.20.(6分)如图,已知点A,B,C,D在同一条直线上,EA⊥AB,FD⊥AD,AB=CD,若用“HL”证明Rt△AEC≌Rt△DFB,需添加什么条件?并写出你的证明过程.21.(6分)如图,将4×4的棋盘沿网格线划分成两个全等图形,参考图例补全另外几种.22.(2020四川宜宾中考)(8分)如图,在△ABC 中,点D 是边BC 的中点,连接AD 并延长到点E,使DE=AD,连接CE.(1)求证:△ABD ≌△ECD;(2)若△ABD 的面积为5,求△ACE 的面积.23.(9分)如图是小朋友荡秋千的图及侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离BD=2.5 m.乐乐在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离AC=1.5 m,点A 到地面的距离AE=1.5 m,当他从A 处摆动到A'处时,若A'B ⊥AB,求A'到BD 的距离.24.(2021江苏如东期末)(11分)如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A、B,AC=5 cm.点P在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t s(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图②,若将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P、Q运动到某处时,△ACP与△BPQ全等,求出相应的x、t的值.图① 图②答案全解全析1.D A.将其中一个图形平移可得到另一个图形;B.将其中一个图形旋转一定的角度后再平移可以得到另一个图形;C.将其中一个图形翻折后可以得到另一个图形.故A、B、C中的图形是全等图形.D.两个图形形状相同,但大小不等,所以不是全等图形.故选D.2.D 把△ABC绕点C按顺时针方向旋转90°后,再向下平移3格就可以得到△A1B1C1,故选D.3.C A.全等三角形不仅仅形状相同而且大小相同,错误;B.全等三角形不仅仅面积相等而且要边、角完全相等,错误;C.全等则重合,重合则周长与面积分别相等,则C正确;D.完全相同的等边三角形才是全等三角形,错误.故选C.4.C 带3,4可以用“角边角”确定三角形,带1,4可以用“角边角”确定三角形,带2,4可以延长还原出原三角形.故选C.5.A 在△ABC和△EDC中,∠ABC=∠EDC=90°, BC=CD,∠BCA=∠DCE,∴△ABC≌△EDC(ASA),故选A.6.C 添加AC=BD可利用SSS判定△ABC≌△DCB.故选C.7.B ∵AF=DC,∴AF+FC=DC+FC,即AC=DF.A.AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定SAS,能推出△ABC≌△DEF,故本选项不符合题意;B.BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定,不能推出△ABC≌△DEF,故本选项符合题意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定AAS,能推出△ABC≌△DEF,故本选项不符合题意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定ASA,能推出△ABC≌△DEF,故本选项不符合题意.故选B.8.D 在△AEF和△ADF中,AE=AD,∠EAF=∠DAF, AF=AF,∴△AEF≌△ADF(SAS),∴EF=DF,∠EFA=∠DFA,∠FEA=∠FDA,∴∠FEB=∠FDC.在△EBF和△DCF中,∠EFB=∠DFC, EF=DF,∠FEB=∠FDC,∴△EBF≌△DCF(ASA),∴BF=CF,BE=CD,∵180°-∠AFE-∠EFB=180°-∠AFD-∠DFC,AE+EB=AD+DC,∴∠HFB=∠HFC,AB=AC.在△HFC和△HFB中,FC=FB,∠HFC=∠HFB, FH=FH,∴△HFC≌△HFB(SAS),∴CH=BH,在△ABF和△ACF中,AB=AC, AF=AF, FB=FC,∴△ABF≌△ACF(SSS),同理可得△ABH≌△ACH(SSS),△BEC≌△CDB(SSS),△ABD≌△ACE(SSS),故选D.9.三角形具有稳定性解析 加一根木条,做成三角形是因为三角形具有稳定性.10.SSS解析 由题意可得,ON=OM,PN=PM,OP=OP,∴△OPN≌△OPM(SSS),所以∠NOP=∠MOP,所以OP为∠AOB的平分线.11.AB=AD(答案不唯一)解析 添加的条件是AB=AD.理由:在△ABC和△ADC中,AC=AC,∠BAC=∠DAC, AB=AD,∴△ABC≌△ADC(SAS),故答案为AB=AD(答案不唯一).12.120;70;12;6解析 根据四边形的内角和为360°及全等图形的对应边、对应角相等即可解答.13.AB=ED(答案不唯一)解析 答案不唯一.若添加的条件是AB=ED,则在Rt△ABC和Rt△EDF中,∠B=∠D,AB=ED,∠A=∠DEF=90°,∴Rt△ABC≌Rt△EDF(ASA).14.②③解析 根据全等图形是可以完全重合的图形进行判定即可.15.90解析 如图所示:由图可知△ABF与△CED全等,∴∠BAF=∠ECD,∴∠1=∠3,∴∠2-∠1=∠2-∠3=90°.故答案为90.16.55°解析 ∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠1=∠EAC.在△BAD和△CAE中,AB=AC,∠BAD=∠CAE, AD=AE,∴△BAD≌△CAE(SAS),∴∠ABD=∠2=30°.∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°.17.12解析 ∵AB=5,AC=8,AF=AB,∴FC=AC-AF=8-5=3.由作图方法可得AD平分∠BAC,∴∠BAD=∠CAD.在△ABD和△AFD中,AB=AF,∠BAD=∠FAD, AD=AD,∴△ABD≌△AFD(SAS),∴BD=DF,∴△CDF的周长为DF+FC+DC=BD+DC+FC=BC+FC=9+3=12.18.913或3或54或154解析 设点P 在线段BC 上运动的时间为t s.①点P 由B 向C 运动时,BP=3t cm,CP=(8-3t)cm.若△BPE ≌△CQP,则BE=CP=5 cm,BP=CQ=3 cm,∴5=8-3t,解得t=1,此时,点Q 的运动速度为3÷1=3 cm/s;若△BPE ≌△CPQ,则BP=CP,CQ=BE=5 cm,∴3t=8-3t,解得t=43,此时,点Q 的运动速度为5÷43=154 cm/s.②点P 由C 向B 运动时,CP=(3t-8) cm.若△BPE ≌△CQP,则BE=CP=5 cm,BP=CQ=3 cm,∴5=3t-8,解得t=133,此时,点Q 的运动速度为3÷133=913 cm/s;若△BPE ≌△CPQ,则BP=CP=4 cm,BE=CQ=5 cm,∴3t-8=4,解得t=4,此时,点Q 的运动速度为5÷4=54 cm/s.综上所述,点Q 的运动速度为913 cm/s 或3 cm/s 或54 cm/s 或154 cm/s.故答案为913或3或54或154.19.证明 ∵AB ∥CD,∴∠B=∠C.在△ABE 和△DCF 中,∠A =∠D ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF(AAS).∴AE=DF.20.解析 需添加条件 EC=BF.证明如下:∵AB=CD,∴AB+BC=CD+BC,∴AC=BD.∵EA ⊥AB,FD ⊥AD,∴∠A=∠D=90°.在Rt △AEC 和Rt △DFB 中,EC =FB ,AC =DB ,∴Rt △AEC ≌Rt △DFB(HL).21.解析 如图所示.(答案不唯一)22.解析 (1)证明:∵D 是BC 的中点,∴BD=CD.在△ABD 与△ECD 中,BD =CD ,∠ADB =∠EDC ,AD =ED ,∴△ABD ≌△ECD(SAS).(2)在△ABC 中,D 是边BC 的中点,∴S △ABD =S △ADC .∵△ABD ≌△ECD,∴S △ABD =S △ECD .∵S △ABD =5,∴S △ACE =S △ACD +S △ECD =5+5=10.23.解析 如图,作A'F ⊥BD,垂足为F.∵AC⊥BD,∴∠ACB=∠A'FB=90°.在Rt△A'FB中,∠1+∠3=90°,∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3.在△ACB和△BFA'中,∠ACB=∠A'FB,∠2=∠3,AB=A'B,∴△ACB≌△BFA'(AAS),∴A'F=BC.∵AC∥DE,AC⊥CD,AE⊥DE,∴CD=AE=1.5 m,∴BC=BD-CD=2.5-1.5=1(m),∴A'F=1 m,即A'到BD的距离是1 m.24.解析 (1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°.当t=1时,AP=BQ=2 cm,∴BP=AB-AP=5 cm,∴BP=AC.在△ACP 和△BPQ 中,AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ(SAS).∴∠C=∠BPQ.∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=180°-(∠APC+∠BPQ)=90°,∴PC ⊥PQ.(2)①若△ACP ≌△BPQ,则AC=BP,AP=BQ,∴5=7-2t,2t=xt,解得x=2,t=1;②若△ACP ≌△BQP,则AC=BQ,AP=BP,∴5=xt,2t=7-2t,解得x=207,t=74.。

苏科版八上第一章全等三角形(中档题)单元测试(2)(有答案)

苏科版八上第一章全等三角形(中档题)单元测试(2)(有答案)

苏科版八上第一章全等三角形(中档题)单元测试(2)班级:姓名:得分:一、选择题如图所示,己知48 = AC.BD = DC,下列结论:①△力BD ACD, ②乙8 =乙。

,(3)Z.BAD = L.CAD, @AD 1 BC,其中正确的个数有()1.2. 3.A. 1个 B.2个C3个 D.4个如图,在△力BC中,乙力= 50。

,48 =乙。

,点。

,E,尸分别在边3C, CA, A3上,且满足8F = CD, BD = CE, Z,BFD =30°,则hDE的度数为()C. 65。

如图,AB = DB,41 =42,欲证A/lBEEaDBC.则补充的条件中不正确的是()A.乙力=乙DB.乙E =乙CC.乙4 =乙C4.如图,AD = BD, AD 1 BC,垂足为。

,BF 1 AC,垂足为 F, BC = 7, DC = 2,则 AE 的长为()A. 2B. 5C. 35.下列说法中,正确的是()A,两边及其中一边的对角分别相等的两个三角形全等B.两边及其中一边上的高分别相等的两个三角形全等C,斜边和一锐角分别相等的两个直角三角形全等D.面积相等的两个三角形全等D.7D. BC = BE两个等腰三角形,若顶角和底边对应相等,则两个等腰三角形全等,其理由是()A.SASB.SSSC.ASA如图,正方形网格中的网格线交点称为格点.△A8C 的三 个顶点为三个格点,如果尸是图中异于C 点的格点,且 以A,B,尸为顶点的三角形与△A8C 全等,则符合条件的 P 点有()A.1个B.2个 C3个如图,AC 和8。

相交于点。

,AD//BC, AD = BC,过点 。

任作一条直线分别交A 。

、BC 于点E 、F,则下列结论: ①。

月=0C ②。

8 = 0D ③AE = CF ④0E = 0C ,其中成 立的个数是().A.1个B.2个 C3个 D.4个 9 .已知△A8C 的三边长分别为3, 4, 5, 4DE 尸的三边长分别为3, 3x-2, 2x + 1,若这两个三角形全等,则x 的值为A.2B.2或:C.融吟D.2或京吟 10 .已知:如图,点C 为线段A5C 上一点,△力CM 、△ CBN 是等边三角形.下列结论:①AN = BM;②CD = CE:③△ CDE 是等边三角形:④乙= 60°.其中正确的有A.①B.①②C.①②③D.①②③④ 二、填空题 11 .已知△X3CEADEF,若△<3。

第十二章全等三角形知识点及单元测试题

第十二章全等三角形知识点及单元测试题

第十二章 全等三角形知识点总结一、全等三角形的性质;全等三角形的对应边相等,全等三角形的对应角相等。

二、全等三角形的判定方法:一般三角形的判定方法:边角边(SAS )、角边角(ASA )、角角边(AAS )、边边边(SSS )直角三角形的判定方法:除了以上四种方法之外,还有斜边、直角边(HL )全等三角形的证明过程: ①找已知条件,做标记;②找隐藏条件,如对顶角、等腰三角形、平行四边形、公共边、公共角等; ③对照定理,看看还是否需要构造条件。

全等三角形的证明思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 三、角平分线的性质:角的平分线上的点到角的两边的距离相等。

符号语言:∵OP 平分∠MON (∠1=∠2),PA ⊥OM ,PB ⊥ON , ∴PA =PB .四、角平分线的判定方法:角的内部到角的两边的距离相等的点在角的平分线上。

符号语言:∵PA ⊥OM ,PB ⊥ON ,PA =PB ∴∠1=∠2(OP 平分∠MON )角平分线的画法:第十一章 全等三角形测试题(A )一、选择题(每小题4分,共40分) 1、下列说法正确的是( )A :全等三角形是指形状相同的两个三角形 C :全等三角形的周长和面积分别相等C :全等三角形是指面积相等的两个三角形D :所有的等边三角形都是全等三角形 2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( ) A :2 B :3 C :5 D :2.53、如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=∠C ,③BD=CD ,④AD ⊥BC 。

新苏教版七年级数学下册《全等三角形》单元测试题及答案解析(精品试卷).docx

新苏教版七年级数学下册《全等三角形》单元测试题及答案解析(精品试卷).docx

(新课标)苏教版2017-2018学年七年级下册《全等三角形》单元测试题一、选择题:(本题共10小题,每小题3分,共30分)1.如图,△ABC≌△CDA,AB=4,BC=5,AC=6,则△ADC的周长为…………………………………………( )A.4 ;B.5;C.15;D.不能确定;2.(2015•沂源县校级模拟)如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是………………………………………………………………………………………()A.ASA;B.SSS; C.SAS; D.AAS;3.(2014秋•黔东南州期末)如图,在下列条件中,不能证明△ABD≌△ACD的条件是………………()A.∠B=∠C,BD=DC;B.∠ADB=∠ADC,BD=DC;C.∠B=∠C,∠BAD=∠CAD;D.BD=DC,AB=AC;4. 如图,在△ABC中,AD是BC边上的高,点E、F是AD上的两点,AB=AC,BC=4,AD=3,则图中阴影部分的面积是…………………………………………………………………………………………………( ) A.12 ;B.6;C.3 ;D.4;5.(2014春•兴化市期末)小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带……()A.第1块;B.第2块;C.第3块;D.第4块;6.(2014秋•铜陵期末)能使两个直角三角形全等的条件是………………………………………………()A.斜边相等; B.一锐角对应相等;C.两锐角对应相等;D.两直角边对应相等;7.如图,在△ABC中,∠C=90°,DE⊥AB于D,BC=BD,已知AC=3㎝,那么AE+DE等于…………()A.2㎝;B.3㎝;C.4㎝;D.5㎝;8.如图,已知△ABC为等边三角形,点D、E分别在边BC、AC上,且AE=CD,AD与BE相交于点F.则∠BFD的度数为……………………………………………………………………………………………………()A.45°B.90°C.60°D.30°9.如图,AB∥CD,CE∥BF,A、E、F、D在一直线上,BC与AD交于点O,且OE=OF,则图中有全等三角形的对数为……………………………………………………………………………………………………()A. 2 B. 3 C. 4 D. 5DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有………………()A.1个;B. 2个;C.3个;D.4个;二、填空题:(本题共8小题,每小题3分,共24分)11. 如图,若AB=DE,_________,BE=CF,则根据“SSS”可得△ABC≌△DEF.12.(2013秋•兴化市校级月考)如图,AB∥FC,DE=EF,AB=15,CF=8,则BD= .13.如图,已知:∠B=∠DEF,AB=DE,要说明△ABC≌△DEF.(1)若以“ASA”为依据,还缺条件;(2)若以“AAS”为依据,还缺条件;(3)若以“SAS”为依据,还缺条件;14.(2012•无锡)如图,△ABC中,∠C=30°.将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于F,则∠AFB= °.15.如图所示,在Rt△ABC中,E为斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=1:7,则∠BAC的度数为_______.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A 的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE= ㎝.17.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)18.如图,在直角三角形ABC中,∠C=90°,AC=20,BC=10,PQ=AB,P,Q两点分别在线段AC和过点A且垂直于AC的射线AM上运动,且点P 不与点A,C重合,那么当点P运动到的位置时,才能使△ABC与△APQ 全等?三、解答题:(本题共9大题,满分共76分)19. (6分)如图,方格纸中的△ABC的三个顶点分别在小正方形的顶点(格点)上,请在方格纸上按下列要求画图.(1)在图①中画出与△ABC全等且有一个公共顶点的△A′B′C′;(2)在图②中画出与△ABC全等且有一条公共边的△A″B″C″.20. (本题满分6分)如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3 cm,求∠DFE的度数和EC的长.AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.22. (本题满分8分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.23. (本题满分8分)(2014•自贡)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(2)若∠ABE=55°,求∠EGC的大小.24.(本题满分8分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.25. (本题满分8分)如图,已知△ABC中,AB>AC,BE、CF都是△ABC 的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,求证:(1)AP=AQ;(2)AP⊥AQ.26. (本题满分9分)已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.求证:①△BDF≌△ADC;②FG+DC=AD;(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.27.(本题满分8分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.28. (本题满分9分)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q 第一次在△ABC的哪条边上相遇?《全等三角形》单元测试题参考答案一、选择题:1.C;2.B;3.A;4.C;5.B;6.D;7.B;8.C;9.B;10.D;二、填空题:11.AC=DF;12.7;13. ∠A=∠D;∠ACB=∠F;BC=EF;14.90;15.48°;16.7;17.①②③;18.AC中点;三、解答题:19.20. ∠DFE=90°,EC=3㎝;21.证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴B DEFBC EFACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ) 22.证明:(1)∵DE ⊥AC ,BF ⊥AC ,在△ABF 和△CDE 中,AB CD DE BF=⎧⎨=⎩,∴△ABF ≌△CDE (HL ). ∴AF=CE .(2)由(1)知∠ACD=∠CAB ,∴AB ∥CD .23.(1)证明:∵四边形ABCD 是正方形,∴∠ABC=90°,AB=BC ,∵BE ⊥BF ,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF ,在△AEB 和△CFB 中,AB =BC ∠ABE =∠CBF BE =BF ,∴△AEB ≌△CFB (SAS ),∴AE=CF .(2)解:∵BE ⊥BF ,∴∠FBE=90°,又∵BE=BF ,∴∠BEF=∠EFB=45°,∵四边形ABCD 是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°-55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.24.(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+CAD,即∠BAD=∠CAE ,又∵AB=AC ,AD=AE ,∴△BAD ≌△CAE (SAS ).(2)BD 、CE 特殊位置关系为BD ⊥CE .证明如下:由(1)知△BAD ≌△CAE ,∴∠ADB=∠E .∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD 、CE 特殊位置关系为BD ⊥CE .26.(1)证明:在△AOB 和△COD 中∵B CAOB DOC AB DC ∠=∠⎧⎪∠=⎨⎪=⎩,∴△AOB ≌△COD (AAS ) (2)∵△AOB ≌△COD (已证),∴AO=DO,∵E 是AD 的中点, ∴AE=DE ; 在△AOE 和△DOE 中∵AO ODAE DE OE OE =⎧⎪=⎨⎪=⎩,∴△AOE ≌△DOE (SSS ), ∴90AEO DEO ∠=∠=︒; 25. 证明:(1)∵BE 、CF 都是△ABC 的高,∴∠AFC=∠AFQ=∠AEB=90°. ∴∠BAC+∠ABE=90°,∠BAC+∠ACF=90°,∴∠ABE=∠ACF . 在△ABP 和△QCA 中AB QC ABE ACFBP CA =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△QCA (ASA ),∴AP=QA ;(2)∵△ABP ≌△QCA ,∴∠BAP=∠CQA .∵∠CQA+∠FAQ=90°, ∴∠BAP+∠FAQ=90°,即∠APQ=90°,∴AQ ⊥AQ .26.解:(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD ;∵∠BEC=90°,∴∠CBE+∠C=90° 又∵∠DAC+∠C=90°,∴∠CBE=∠DAC ;∵∠FDB=∠CDA=90°,∴△FDB ≌△CDA (ASA )②∵△FDB ≌△CDA ,∴DF=DC ;∵GF ∥BC ,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD ,∴FA=FG ;∴FG+DC=FA+DF=AD.(2)FG、DC、AD之间的数量关系为:FG=DC+AD.理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴BD=AD,FG=AF=AD+DF;∵∠FAE+∠DFB=∠FAE+∠DCA=90°,∴∠DFB=∠DCA;又∵∠FDB=∠CDA=90°,BD=AD,∴△BDF≌△ADC(AAS);∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.27.解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC ∠BAD=∠CAE AD=AE ,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC ∠BAD=∠CAE AD=AE∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D在射线BC上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD和△ACE中AB=AC ∠BAD=∠CAE AD=AE∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D在射线BC的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC中,AD=AE ∠DAB=∠EAC AB=AC ,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB ,∠ACE=∠BCE+∠ACB ,∴∠BAC=∠BCE ,即α=β.28.解:(1)①∵t=1秒,∴BP=CQ=3×1=3厘米,∵AB=10厘米, 点D 为AB 的中点,∴BD=5厘米.又∵PC=BC-BP ,BC=8厘米, ∴PC=8-3=5厘米,∴PC=BD .又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP .(SAS ) ②∵P v ≠Q v ,∴BP ≠CQ ,又∵△BPD ≌△CPQ ,∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t =433BP =秒,∴Q v =515443CQ t==厘米/秒; (2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯解得803x =.∴点P 共运动了803×3=80厘米.∵80=56+24=2×28+24,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇.。

苏教版八年级数学上册第1章全等三角形单元检测(有答案)

苏教版八年级数学上册第1章全等三角形单元检测(有答案)

苏教版八年级上册第一单元单元检测(有答案)数学考试一、单选题(共10题;共20分)1. ( 2分) 如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A. AB=ACB. BD=CDC. ∠B=∠CD. ∠BDA=∠CDA2. ( 2分) 下列判断中错误的是()A. 有两角和一边对应相等的两个三角形全等B. 有两边和一角对应相等的两个三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有一边对应相等的两个等边三角形全等3. ( 2分) 如图,△ABE≌△ACF.若AB=5,AE=2,BE=4,则CF的长度是()A. 4B. 3C. 5D. 64. ( 2分) 已知△ABC≌△DEF,BC= EF=6m,△A BC的面积为18㎡,则EF边上的高的长是( ).A. 3mB. 4m C .5mC. 6m5. ( 2分) .如图,已知≌,A和B,C和D分别是对应顶点.如果AB=6cm,BD=7cm,AD=4cm,那么BC的长为()A. 4cmB. 5cmC. 6cmD. 7cm6. ( 2分) 如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A. 54°B. 60°C. 66°D. 76°7. ( 2分) 如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A. ∠DAE=∠CBEB. ΔDEA不全等于ΔCEBC. CE=DED. ΔEAB是等腰三角形8. ( 2分) 如图,在格的正方形网格中,与△ABC有一条公共边且全等(不与△ABC重合)的格点三角形(顶点在格点上的三角形)共有( )A. 5个B. 6 个C. 7个D. 8 个9. ( 2分) 下列命题中,真命题是().A. 周长相等的锐角三角形都全等;B. 周长相等的直角三角形都全等;C. 周长相等的钝角三角形都全等;D. 周长相等的等腰直角三角形都全等.10. ( 2分) (2015•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A. AB=DC,AC=DBB. AB=DC,∠ABC=∠DCBC. BO=CO,∠A=∠DD. AB=DC,∠DBC=∠ACB二、填空题(共10题;共21分)11. ( 2分) 如图,∠ACB=∠DFE,BC=EF,可以补充一个直接条件________,就能使△ABC≌△DEF.12. ( 2分) 如图,在△ABC和△DEF中,已知:AC=DF,,BC=EF,要使△ABC≌△DEF,还需要的条件可以是________ ;(只填写一个条件)13. ( 2分) 如图所示,两个三角形全等,其中已知某些边的长度和某些角的度数,则x=________.14. ( 2分) 如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠AEB=________°.15. ( 2分) 如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为________.16. ( 2分) 如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB= ________17. ( 2分) 如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是________.(只需填一个即可)18. ( 4分) 如图所示,△ABD≌△ACE,∠B与∠C是对应角,若AE=5cm,BE=7cm,∠ADB=100°,则∠AEC=________,AC=________.19. ( 2分) 如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥CD,垂足为E,若线段AE=10,则S=________.四边形ABCD20. ( 1分) 如图,已知,添加下列条件中的一个:① ,② ,③,其中不能确定≌△的是________(只填序号).三、解答题(共4题;共17分)21. ( 4分) 如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.22. ( 4分) 如图:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AB∥DE.求证:△ABC≌△DEF.23. ( 4分) 如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.24. ( 5分) 如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.求证:△ADC≌△BEA.四、作图题(共1题;共5分)25. ( 5分) 沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形五、综合题(共5题;共37分)26. ( 6分) 已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.27. ( 6分) 如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=65°,求∠EGC的大小.28. ( 8分) 如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.29. ( 8分) 在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB= ,则GE的长为,并简述求GE长的思路.30. ( 9分) 问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM 为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.答案解析部分一、单选题1.【答案】B【考点】三角形全等的判定【解析】【解答】解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故答案为:B.【分析】已经有一边一角对应相等,再添一个条件不能判断两个三角形全等的话,只能添加这个角的对边。

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习全等三角形全章复习与巩固(基础)【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质进行证明.【知识网络】【要点梳理】【388614 全等三角形单元复习,知识要点】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路 一般三角形 直角三角形 判定 边角边(SAS ) 角边角(ASA ) 角角边(AAS ) 边边边(SSS ) 两直角边对应相等 一边一锐角对应相等 斜边、直角边定理(HL ) 性质 对应边相等,对应角相等 (其他对应元素也相等,如对应边上的高相等) 备注 判定三角形全等必须有一组对应边相等SAS HL SSS AAS SAS ASA AAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边 要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1. 证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2. 证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3. 证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4. 辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的性质和判定1、(2015•西城区模拟)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【思路点拨】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.【答案与解析】证明:(1)在△ABE和△ADG中,,∴△ABE≌△A DG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为 EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,在△A BE和△ADG中,,∴△ABE≌△A DG(SAS),∴A E=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.【总结升华】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE ⊥AB ,AD ⊥AC ,∴∠EAB =∠DAC =90°∴∠EAB +∠DAE =∠DAC +∠DAE ,即∠DAB =∠EAC.在△DAB 与△EAC 中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA )∴BD =CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:2、 如图:在四边形ABCD 中,AD ∥CB ,AB ∥CD.求证:∠B =∠ D.【思路点拨】∠B 与∠D 不包含在任何两个三角形中,只有添加辅助线AC ,根据平行线的性质,可构造出全等三角形.【答案与解析】证明:连接AC ,∵AD ∥CB ,AB ∥CD.∴∠1=∠2,∠3=∠4在△ABC 与△CDA 中1243AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDA (ASA )∴∠B =∠D【总结升华】添加公共边作为辅助线的时候不能割裂所给的条件,如果证∠A =∠C ,则连接对角线BD.举一反三:【变式】在ΔABC 中,AB =AC.求证:∠B =∠C【答案】证明:过点A 作AD ⊥BC在Rt △ABD 与Rt △ACD 中AB AC AD AD=⎧⎨=⎩∴Rt △ABD ≌Rt △ACD (HL )∴∠B =∠C.(2).倍长中线法:【388614 全等三角形单元复习,例8】3、己知:在ΔABC 中,AD 为中线.求证:AD <()12AB AC +【答案与解析】证明:延长AD 至E ,使DE =AD ,∵AD 为中线,∴BD =CD在△ADC 与△EDB 中DC DB ADC BDE AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS )∴AC =BE在△ABE 中,AB +BE >AE ,即AB +AC >2AD∴AD <()12AB AC +. 【总结升华】用倍长中线法可将线段AC ,2AD ,AB 转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D 旋转180°.举一反三:【变式】若三角形的两边长分别为5和7, 则第三边的中线长x 的取值范围是( ) A.1 <x < 6 B.5 <x < 7 C.2 <x < 12 D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x <7+5,所以选A 选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:4、(2016秋•诸暨市期中)如图,已知∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA=PC . 求证:∠PCB +∠BAP=180°.【思路点拨】过点P 作PE ⊥BA 于E ,根据角平分线上的点到角的两边距离相等可得PE=PF ,然后利用HL 证明Rt △PEA 与Rt △PFC 全等,根据全等三角形对应角相等可得∠PAE=∠PCB ,再根据平角的定义解答.【答案与解析】证明:如图,过点P 作PE ⊥BA 于E ,∵∠1=∠2,PF ⊥BC 于F ,∴PE=PF ,∠PEA=∠PFB=90°,在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL ),∴∠PAE=∠PCB ,∵∠BAP +∠PAE=180°,∴∠PCB +∠BAP=180°.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.举一反三:【变式】(2015•开县二模)如图,已知,∠BAC=90°,AB=AC,BD是∠ABC的平分线,且CE⊥BD 交BD延长线于点E.求证:BD=2CE.【答案】解:如图2,延长CE、BA相交于点F,∵∠EBF+∠F=90°,∠ACF+∠F=90°,∴∠EBF=∠ACF,在△ABD和△ACF中∴△ABD≌△ACF(ASA),∴BD=CF,在△BCE和△BFE中,∴△BCE≌△BFE(ASA),∴CE=EF,∴BD=2CE.(4).利用截长(或补短)法构造全等三角形:5、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB -MC <AB -AC .【思路点拨】因为AB >AC ,所以可在AB 上截取线段AE =AC ,这时BE =AB -AC ,如果连接EM ,在△BME 中,显然有MB -ME <BE .这表明只要证明ME =MC ,则结论成立.【答案与解析】证明:∵AB >AC ,则在AB 上截取AE =AC ,连接ME .在△MBE 中,MB -ME <BE (三角形两边之差小于第三边).在△AMC 和△AME 中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边, ∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .【总结升华】充分利用角平分线的对称性,截长补短是关键.类型三、全等三角形动态型问题6、如图(1),AB ⊥BD 于点B ,ED ⊥BD 于点D ,点C 是BD 上一点.且BC =DE ,CD =AB .(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置关系还成立吗?(注意字母的变化)【答案与解析】证明:(1)AC ⊥CE .理由如下:在△ABC 和△CDE 中,,90,,BC DE B D AB CD =⎧⎪∠=∠=︒⎨⎪=⎩∴ △ABC ≌△CDE (SAS ).∴ ∠ACB =∠E .又∵ ∠E +∠ECD =90°,∴ ∠ACB +∠ECD =90°.∴ AC ⊥CE .(2)∵ △ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC =DE ,∠ABC =∠EDC =90°,∴ 也一直有△ABC ≌△C DE '(SAS).∴ ∠ACB =∠E .而∠E +∠EC D '=90°,∴ ∠ACB +∠EC D '=90°.故有AC ⊥C E ',即AC 与BE 的位置关系仍成立.【总结升华】变还是不变,就看在运动的过程中,本质条件(本题中的两三角形全等)变还是没变.本质条件变了,结论就会变;本质条件不变,仅仅是图形的位置变了.结论仍然不变.举一反三:【变式】如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?【答案】证明:∵∠BCA =∠ECD ,∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS)∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.。

苏科版八年级上册数学《第1章全等三角形》单元测试题及答案

苏科版八年级上册数学《第1章全等三角形》单元测试题及答案

苏科版数学八年级上册《第1章全等三角形》单元测试题考试分值:120;考试时间:100分钟一.选择题(共10小题,满分40分)1.(4分)如图所示正方形网格中,连接AB、AC、AD,观测∠1+∠2+∠3=()A.120°B.125°C.130°D.135°2.(4分)长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.B.C.D.3.(4分)如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若△ABC和△APQ全等,则AP的值为()A.6cm B.12cm C.12cm或6cm D.以上答案都不对4.(4分)如图,已知△ABC≌△CDA,∠B=∠D,则下列结论中正确的是()①AB=CD,BC=DA.②∠BAC=∠DCA,∠ACB=∠CAD.③AB∥CD,BC∥DA.A.①B.②C.①③D.①②③5.(4分)下列说法正确的是()A.全等三角形是指周长和面积都一样的三角形B.全等三角形的周长和面积都一样C.全等三角形是指形状相同的两个三角形D.全等三角形的边都相等6.(4分)如图,已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A:∠C=5:3,则∠DBC=()A.30°B.25°C.20°D.15°7.(4分)如图所示,△ABC≌△EDF,DF=BC,AB=ED,AE=20,AF=5,则AC的长为()A.20 B.5 C.10 D.158.(4分)下列不能判定三角形全等的是()A.如图(1),线段AD与BC相交于点O,AO=DO,BO=CO.△ABO与△BCO B.如图(2),AC=AD,BC=BD.△ABC与△ABDC.如图(3),∠A=∠C,∠B=∠D.△ABO与△CDOD.如图(4),线段AD与BC相交于点E,AE=BE,CE=DE,AC=BD.△ABC与△BAD9.(4分)如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②E为CD中点;=S四边形ABCD;⑤BC=CE.()③∠AEB=90°;④S△ABEA.0个B.1个C.2个D.3个10.(4分)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可二.填空题(共5小题,满分20分)11.(4分)如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,AB的长为cm.12.(4分)如图:已知DE=AB,∠D=∠A,请你补充一个条件,使△ABC≌△DEF,并说明你判断的理由:或.13.(4分)七巧板是我们祖先的一项卓越创造,它虽然只有七块,但是可以拼出多种多样的图形,如图就是一个七巧板,七块刚好拼成一个正方形,图中全等的三角形有对.14.(4分)在△ABC和△DEF中,AB=4,∠A=35°,∠B=70°,DE=4,∠D=°,∠E=70°,根据判定△ABC≌△DEF.15.(4分)如图,AB,D相交于点O,已知OC=OA,请你补充的一个条件或使△AOD≌△COB.三.解答题(共5小题,满分60分)16.(10分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.17.(12分)如图,在△ABC和△DCB中AC与BD相交于点O,AB=DC.(1)请你再添加一个条件,使得△ABC≌△DCB;(2)根据(1)中你所添加的条件,求证:△ABC≌△DCB;(3)△OBC的形状是.(直接写出结论,不需证明)18.(12分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(12分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.20.(14分)点D是等边△ABC(即三条边都相等,三个角都相等的三角形)边BA上任意一点(点D与点B不重合),连接DC.(1)如图1,以DC为边在BC上方作等边△DCF,连接AF,猜想线段AF与BD的数量关系?请说明理由.(2)如图2,若以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?请说明理由.参考答案一.选择题1.D.2.A.3.C.4.D.5.B.6.C.7.D.8.C.9.B.10.D.二.填空题11.2.12.∠B=∠E或∠ACB=∠DFE或AF=CD.13.3.14.35,ASA.15.OB=DO或∠A=∠C.三.解答题16.解:(1)3对.分别是:△ABD≌△ACD;△ADE≌△ADF;△BDE≌△CDF.(2)△BDE≌△CDF.证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.又D是BC的中点,∴BD=CD.在Rt△BDE和Rt△CDF中,,∴△BDE≌△CDF(HL).17.解:(1)添加∠ABC=∠DCB,(2)证明如下:∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS).(3)由(2)知△ABC≌△DCB,∴∠ACB=∠DBC,∴△OBC的形状是等腰三角形.18.解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.19.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.20.解:(1)BD=AF,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CD=CF,∠ACB=∠DCF=60°,∴∠BCD=∠ACF,在△BCD和△ACF中,,∴△BCD≌△ACF(SAS),∴BD=AF;(2)AB=AF+BF′,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CF′=CD,∠F′CD=∠BCA=90°,∴∠F′CB=∠DCA,在△F′CB和△DCA中,,∴△F′CB≌△DCA(SAS),∴BF′=DA,由(1)知,BD=AF,∵AB=BD+AD,∴AB=AF+BF′.。

苏科版八年级上《第1章全等三角形》单元测试(3)含答案解析

苏科版八年级上《第1章全等三角形》单元测试(3)含答案解析

《第1章 全等三角形》一、选择题1.如图,OA=OB ,OC=OD ,∠O=50°,∠D=35°,则∠AEC 等于( )A .60°B .50°C .45°D .30°2.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其长度的线段是( )A .POB .PQC .MOD .MQ3.已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确,②错误B .①错误,②正确C .①,②都错误D .①,②都正确4.如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )A .∠BCA=∠FB .∠B=∠EC .BC ∥EFD .∠A=∠EDF5.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个6.如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()A.BE=CD B.BE>CDC.BE<CD D.大小关系不确定7.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE 交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④8.如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.A.1个B.2个C.3个D.4个二、填空题9.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.10.如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED等于.11.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号:.12.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)13.如图:在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E,若四边形ABCD的面积为16,则DE的长为.14.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC 交CD的延长线于点F,若EF=5cm,则AE= cm.16.如图,小明为了测量河的宽度,他站在河边的点C,头顶为点D,面向河对岸,压低帽檐使目光正好落在河对岸的岸边点A,然后他姿势不变,在原地方转了180°,正好看见了他所在的岸上的一块石头点B,他测出BC=30m,你能猜出河有多宽吗?说说理由.答:m.17.如图,高速公路上有A、B两点相距25km,C、D为两村庄.已知DA=10km,CB=15km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,则AE的长是km.18.已知三角形的两边长分别为5和7,则第三边上的中线长x的取值范围是.三、解答题19.如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.20.已知:AD∥BC,AD=CB,AE=CF,请问∠B=∠D吗?为什么?21.如图,已知:CD⊥AB于D,BE⊥AC于E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.22.如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.23.如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.24.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.25.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.《第1章全等三角形》参考答案与试题解析一、选择题1.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()A.60° B.50° C.45° D.30°【考点】全等三角形的判定与性质;多边形内角与外角.【分析】首先由已知可求得∠OAD的度数,通过三角形全等及四边形的知识求出∠AEB的度数,然后其邻补角就可求出了.【解答】解:∵在△AOD中,∠O=50°,∠D=35°,∴∠OAD=180°﹣50°﹣35°=95°,∵在△AOD与△BOC中,OA=OB,OC=OD,∠O=∠O,∴△AOD≌△BOC,故∠OBC=∠OAD=95°,在四边形OBEA中,∠AEB=360°﹣∠OBC﹣∠OAD﹣∠O,=360°﹣95°﹣95°﹣50°,=120°,又∵∠AEB+∠AEC=180°,∴∠AEC=180°﹣120°=60°.故选:A.【点评】本题考查了全等三角形的判定及性质;解题过程中用到了三角形、四边形的内角和的知识,要根据题目的要求及已知条件的位置综合运用这些知识.2.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其长度的线段是( )A .POB .PQC .MOD .MQ【考点】全等三角形的应用.【分析】利用全等三角形对应边相等可知要想求得MN 的长,只需求得其对应边PQ 的长,据此可以得到答案.【解答】解:要想利用△PQO ≌△NMO 求得MN 的长,只需求得线段PQ 的长,故选:B .【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起.3.已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确,②错误B .①错误,②正确C .①,②都错误D .①,②都正确【考点】全等三角形的判定.【专题】压轴题.【分析】根据SSS 即可推出△A 1B 1C 1≌△A 2B 2C 2,判断①正确;根据“两角法”推知两个三角形相似,然后结合两个三角形的周长相等推出两三角形全等,即可判断②.【解答】解:∵△A 1B 1C 1,△A 2B 2C 2的周长相等,A 1B 1=A 2B 2,A 1C 1=A 2C 2,∴B 1C 1=B 2C 2,∴△A 1B 1C 1≌△A 2B 2C 2(SSS ),∴①正确;∵∠A 1=∠A 2,∠B 1=∠B 2,∴△A 1B 1C 1∽△A 2B 2C 2∵△A 1B 1C 1,△A 2B 2C 2的周长相等,∴△A 1B 1C 1≌△A 2B 2C 2∴②正确;故选:D .【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,而AAA 和SSA 不能判断两三角形全等.4.如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )A .∠BCA=∠FB .∠B=∠EC .BC ∥EFD .∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS 是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE ,BC=EF ,其两边的夹角是∠B 和∠E ,只要求出∠B=∠E 即可.【解答】解:A 、根据AB=DE ,BC=EF 和∠BCA=∠F 不能推出△ABC ≌△DEF ,故本选项错误;B 、∵在△ABC 和△DEF 中,∴△ABC ≌△DEF (SAS ),故本选项正确;C 、∵BC ∥EF ,∴∠F=∠BCA ,根据AB=DE ,BC=EF 和∠F=∠BCA 不能推出△ABC ≌△DEF ,故本选项错误;D 、根据AB=DE ,BC=EF 和∠A=∠EDF 不能推出△ABC ≌△DEF ,故本选项错误.故选B .【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.5.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定.【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.6.如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()A.BE=CD B.BE>CDC.BE<CD D.大小关系不确定【考点】全等三角形的判定与性质;等边三角形的性质.【分析】由全等三角形的判定可证明△BAE≌△DAC,从而得出BE=CD.【解答】解:∵△ABD与△ACE均为正三角形∴BA=DA,AE=AC,∠BAD=∠CAE=60°∴∠BAE=∠DAC∴△BAE≌△DAC∴BE=CD故选A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE 交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④【考点】全等三角形的判定;等腰三角形的性质.【分析】根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法AAS或ASA判定全等的三角形.【解答】解:∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE (ASA);③△BDA≌△CEA (ASA);④△BOE≌△COD (AAS或ASA).故选D.【点评】此题考查等腰三角形的性质和全等三角形的判定,难度不大.8.如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等边三角形的性质;平行线分线段成比例.【专题】几何综合题;压轴题.【分析】根据题意,结合图形,对选项一一求证,判定正确选项.【解答】解:(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°,在△BCD和△ACE中∵,∴△BCD≌△ACE∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC,又∵∠ACG=∠BCF=60°,AC=BC∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∠DCE=∠ABC=60°,∴DC∥AB,∴,∵∠ACB=∠DEC=60°,∴DE∥AC,∴ =,∴,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°,∵△ACE≌△BCD,∴∠CDZ=∠CEN,在△CDZ和△CEN中∵,∴△CDZ≌△CEN,∴CZ=CN,∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述,四个结论均正确,故本题选D.【点评】本题综合考查了全等、圆、相似、特殊三角形等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.二、填空题9.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.【点评】本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.10.如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED等于70°.【考点】全等三角形的判定与性质.【分析】在△BCO中利用外角和定理求得∠DBE的度数,然后证明△ADO≌△BCO,求得∠D的度数,在△BED中利用内角和定理求解.【解答】解:∠DBE=∠O+∠C=60°+25°=85°,∵在△ADO和△BCO,,∴△ADO≌△BCO,∴∠D=∠C=25°,∴∠BED=180°﹣∠D﹣∠DBE=180°﹣25°﹣85°=70°.故答案是:70°.【点评】本题考查全等三角形的判定与性质,以及三角形的外角的性质以及三角形内角和定理,正确证明△ADO≌△BCO是关键.11.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号:①②④.【考点】全等三角形的判定与性质.【分析】要得到OP=OP′就要证明两三角形全等,现有的条件为有一对角相等,一条公共边,缺少角,于是答案可得.【解答】解:①OCP=∠OCP′,符合ASA,可得二三角形全等,从而得到OP=OP′;②∠OPC=∠OP′C;符合AAS,可得二三角形全等,从而得到OP=OP′;④PP′⊥OC,符合ASA,可得二三角形全等,从而得到OP=OP′;③中给的条件是边边角,全等三角形判定中没有这个定理.故填①②④.【点评】本题考查了全等三角形的判定与性质;转化为添加条件使三角形全等是正确解答本题的关键.12.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN ≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)【考点】全等三角形的判定与性质.【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.【点评】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.13.如图:在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E,若四边形ABCD的面积为16,则DE的长为 4 .【考点】全等三角形的判定与性质;三角形的面积.【专题】计算题.【分析】可过点C作CF⊥DE,得出Rt△ADE≌Rt△DCF,得出线段之间的关系,进而将四边形的面积转化为矩形BCFE的面积与2个△CDF的面积,通过线段之间的转化,即可得出结论.【解答】解:过点C作CF⊥DE交DE于F,∵AD=CD,∠ADE=90°﹣∠CDF=∠DCF,∠AED=∠DFC=90°,∴△ADE≌△DCF(AAS),∴DE=CF=BE,又四边形ABCD的面积为16,即S矩形BCFE +2S△CDF=16,即BE•EF+2×CF•DF=16,BE•DE=BE•BE=16,解得DE=4.故此题答案为4.【点评】本题主要考查了全等三角形的判定及性质以及三角形、矩形面积的计算,能够熟练掌握.14.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是 1 .【考点】全等三角形的判定与性质.【专题】几何图形问题.【分析】根据AD⊥BC,CE⊥AB,得出∠ADB=∠AEH=90°,再根据∠BAD=∠BCE,利用AAS得到△HEA ≌△BEC,由全等三角形的对应边相等得到AE=EC,由HC=EC﹣EH代入计算即可.【解答】解:∵AD⊥BC,CE⊥AB,∴∠ADB=∠AEH=90°,∵∠AHE=∠CHD,∴∠BAD=∠BCE,∵在△HEA和△BEC中,,∴△HEA≌△BEC(AAS),∴AE=EC=4,则CH=EC﹣EH=AE﹣EH=4﹣3=1.故答案为:1.【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质,解题的关键是找出图中的全等三角形,并进行证明.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC 交CD的延长线于点F,若EF=5cm,则AE= 3 cm.【考点】全等三角形的判定与性质.【分析】根据直角三角形的两锐角互余的性质求出∠ECF=∠B,然后利用“角边角”证明△ABC和△FCE全等,根据全等三角形对应边相等可得AC=EF,再根据AE=AC﹣CE,代入数据计算即可得解.【解答】解:∵∠ACB=90°,∴∠ECF+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ECF=∠B(等角的余角相等),在△FCE和△ABC中,,∴△ABC≌△FEC(ASA),∴AC=EF,∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=3cm.故答案为:3.【点评】本题考查了全等三角形的判定与性质,根据直角三角形的性质证明得到∠ECF=∠B是解题的关键.16.如图,小明为了测量河的宽度,他站在河边的点C,头顶为点D,面向河对岸,压低帽檐使目光正好落在河对岸的岸边点A,然后他姿势不变,在原地方转了180°,正好看见了他所在的岸上的一块石头点B,他测出BC=30m,你能猜出河有多宽吗?说说理由.答:30 m.【考点】全等三角形的应用.【专题】应用题.【分析】要转化为数学问题,须仔细读题,找出有用的已知条件,其中∠BDC=∠ADC是不易被发现的.【解答】解:由题意知∠BCD=∠ACD=90°,CD=CD,∠BDC=∠ADC,∴△BCD≌△ACD,∴AC=BC=30m.故答案为:30.【点评】解决本题的关键是条件∠BDC=∠ADC的找出,做题时要认真读题,理解题意,这是正确解题的保证.17.如图,高速公路上有A、B两点相距25km,C、D为两村庄.已知DA=10km,CB=15km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,则AE的长是15 km.【考点】全等三角形的应用.【分析】根据题意设出AE的长为x,再由勾股定理列出方程求解即可.【解答】解:设AE=x,则BE=25﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=102+x2,在Rt△BCE中,CE2=BC2+BE2=152+(25﹣x)2,由题意可知:DE=CE,所以:102+x2=152+(25﹣x)2,解得:x=15km.所以,E应建在距A点15km处.故答案为:15【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.18.已知三角形的两边长分别为5和7,则第三边上的中线长x的取值范围是1<x<6 .【考点】三角形三边关系;全等三角形的判定与性质.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【解答】解:如图所示,AB=5,AC=7,设BC=2a,AD=x,延长AD至E,使AD=DE,在△BDE与△CDA中,∵AD=DE,BD=CD,∠ADC=∠BDE,∴△BDE≌△CDA,∴AE=2x,BE=AC=7,在△ABE中,BE﹣AB<AE<AB+BE,即7﹣5<2x<7+5,∴1<x<6.故答案为:1<x<6.【点评】有关三角形的中线问题,通常要倍数延长三角形的中线,把三角形的一边变换到与另一边和中线的两倍组成三角形,再根据三角形三边关系定理列出不等式,然后解不等式即可.三、解答题19.(春•大丰市期末)如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.【考点】作图—应用与设计作图.【专题】网格型.【分析】利用正方形的对称轴和中心结合正方形的面积即可解决问题.【解答】解:如图所示:【点评】本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.20.已知:AD∥BC,AD=CB,AE=CF,请问∠B=∠D吗?为什么?【考点】全等三角形的判定与性质.【分析】由平行线的性质可得∠A=∠C,已知AD=BC,根据等式的性质得AF=CE,从而可根据SAS判定△DAF≌△BCE,根据全等三角形的对应角相等即可求证.【解答】解:∠B=∠D.原因如下:∵AD∥BC,∴∠A=∠C.∵AE=CF,∴AF=CE.∵AD=BC,∴△DAF≌△BCE.∴∠B=∠D.【点评】此题主要考查学生对全等三角形的判定方法及全等三角形的性质的理解及运用.21.如图,已知:CD⊥AB于D,BE⊥AC于E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】首先证得△BOD≌△COE,得到:BD=CE,然后证明Rt△AOD≌Rt△AOE,从而证得.【解答】证明:∵OD⊥AB,OE⊥AC∴∠BDO=∠CEO=90°,又∵∠BOD=∠COE,BD=CE,∴△BOD≌△COE∴OD=OE又由已知条件得△AOD和△AOE都是Rt△,且OD=OE,OA=OA,∴Rt△AOD≌Rt△AOE.∴∠DAO=∠EAO,即AO平分∠BAC.【点评】本题主要考查了三角形全等的判定,可以通过全等三角形的对应边相等,对应角相等.22.如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.【考点】全等三角形的判定与性质.【专题】动点型.【分析】要证BE=DE,先证△ADC≌△ABC,再证△ADE≌△ABE即可.【解答】解:相等.证明如下:在△ABC和△ADC中,AB=AD,AC=AC(公共边)BC=DC,∴△ABC≌△ADC(SSS),∴∠DAE=∠BAE,在△ADE和△ABE中,AB=AD,∠DAE=∠BAE,AE=AE,∴△ADE≌△ABE(SAS),∴BE=DE.【点评】本题重点考查了三角形全等的判定定理,利用全等得出结论证明三角形全等是常用的方法.23.如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证△ABF≌△CBF,得出AF=FC,利用等腰三角形的性质可知∠3=∠4,再利用平行线的性质可证出∠4=∠5,等量代换,可得:∠3=∠5.那么AC就是∠DCF的平分线.【解答】证明:∵BF是∠ABC的平分线,∴∠1=∠2,又AB=BC,BF=BF,∴△ABF≌△CBF(SAS),∴FA=FC,∴∠3=∠4,又AF∥DC,∴∠4=∠5,∴∠3=∠5,∴CA是∠DCF的平分线.【点评】本题考查了角平分线的性质、判定,全等三角形的判定和性质;找着并利用△ABF≌△CBF 是正确解答题目的关键.24.(•泰安)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.【考点】全等三角形的判定与性质.【专题】几何综合题.【分析】根据等腰直角三角形的性质利用SAS判定△ABE≌△ACD;因为全等三角形的对应角相等,所以∠ACD=∠ABE=45°,已知∠ACB=45°,所以可得到∠BCD=∠ACB+∠ACD=90°,即DC⊥BE.【解答】(1)解:图2中△ACD≌△ABE.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD.∵在△ABE与△ACD中,∴△ABE≌△ACD(SAS);(2)证明:由(1)△ABE≌△ACD,则∠ACD=∠ABE=45°.又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.【点评】此题主要考查学生对等腰三角形的性质及全等三角形的判定方法的理解及运用.25.(•河北)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.【考点】全等三角形的判定与性质;平移的性质.【专题】探究型.【分析】(1)根据图形就可以猜想出结论.(2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;要证明BQ⊥AP,可以证明∠QMA=90°,只要证出∠1=∠2,∠3=∠4,∠1+∠3=90°即可证出.(3)类比(2)的证明就可以得到,结论仍成立.【解答】解:(1)AB=AP;AB⊥AP;(2)BQ=AP;BQ⊥AP.证明:①由已知,得EF=FP,EF⊥FP,∴∠EPF=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°.∴CQ=CP.∵在Rt△BCQ和Rt△ACP中,BC=AC,∠BCQ=∠ACP=90°,CQ=CP,∴△BCQ≌△ACP(SAS),∴BQ=AP.②如图,延长BQ交AP于点M.∵Rt△BCQ≌Rt△ACP,∴∠1=∠2.∵在Rt△BCQ中,∠1+∠3=90°,又∠3=∠4,∴∠2+∠4=∠1+∠3=90°.∴∠QMA=90°.∴BQ⊥AP;(3)成立.证明:①如图,∵∠EPF=45°,∴∠CPQ=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°.∴CQ=CP.∵在Rt△BCQ和Rt△ACP中,BC=AC,CQ=CP,∠BCQ=∠ACP=90°,∴Rt△BCQ≌Rt△ACP.∴BQ=AP.②如图③,延长QB交AP于点N,则∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.∵在Rt△BCQ中,∠BQC+∠CBQ=90°,又∵∠CBQ=∠PBN,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴QB⊥AP.【点评】证明两个线段相等可以转化为证明三角形全等的问题.证明垂直的问题可以转化为证明两直线所形成的角是直角来解决.。

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]本文介绍了八年级上册数学中的全等三角形知识点,包括全等三角形的概念和性质,三角形全等的判定方法,角的平分线的性质以及全等三角形证明方法。

要点一介绍了全等三角形的判定与性质,其中包括边角边(SAS)、角边角(ASA)、角角边(AAS)、斜边、直角边定理(HL)、边边边(SSS)等判定方法,并说明了对应元素相等的性质。

要点二介绍了全等三角形的证明思路,包括找夹角、找直角、找另一边、边为角的对边等方法。

要点三介绍了角平分线的性质和判定定理,以及与角平分线有关的辅助线。

要点四介绍了全等三角形证明方法,包括证明线段相等的方法、证明角相等的方法等。

XXX∠FAE。

又∠EAG+∠XXX∠BAG=180°。

AEF≌△AGF(AAS)。

XXX.结论:BE=FD,EF=FD/2.2、(2014•北京市海淀区期末)如图,在△ABC中,AB=AC,D为BC边上一点,且AD=AC.连接CD,交AB于E点.证明:AE=DE.思路点拨】1)延长AD交CE于点F;2)证明△AFE≌△CFD,得到∠AFE=∠CFD,再证明△AED≌△CED,得到AE=DE.答案与解析】证明:(1)连接AF,CF,DF,因为AB=AC,AD=AC,∴∠BAD=∠CAD,∠AFD=∠CFD。

又∠AFE=∠XXX,∴△AFE≌△CFD(AAS)。

AE=DE.证明:作角平分线AD,连接BD,CD.AB=AC。

BAD=∠CAD。

又∠ABD=∠ACD。

ABD≌△ACD(AAS)。

BD=CD。

又∠BDA=∠CDA。

BDA≌△CDA(SAS)。

B=∠C.总结升华】本题考查了角平分线的性质,以及全等三角形的判定方法,即AAS和SAS定理。

证明:过点A作AD⊥BC,则在Rt△ABD与Rt△ACD 中,由于AB=AC,AD=AD,根据HL(斜边-直角边-斜边)可得Rt△ABD≌Rt△ACD,因此∠B=∠C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章三角形全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;③三角形全等不因位置发生变化而改变。

2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

⑵全等三角形的周长相等、面积相等。

⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定:①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

④边边边公理(SSS)有三边对应相等的两个三角形全等。

⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。

4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS;②找夹角(SAS;③找是否有直角(HL).⑵已知一边一角:①找一角(AAS或ASA;②找夹边(SAS .⑶已知两角:①找夹边(ASA ;②找其它边(AAS .例题评析例1已知:如图,点D、E在BC上,且BD=CE AD=AE, 求证:AB=AC例 2 已知:如图,A、C、F、D 在同一直线上,AF= DC, AB= DE, BC= EF,求证:△ ABC^^DEF.例 3 已知:BE± CD, BE= DE, BC= DA,求证:①厶BEC^A DEA; ②DF丄BC.例 4 如图,在△ ABE中,AB= AE,AD= AC,/ BAD=Z EAC, BC DE 交于点0•求证:(1) △ ABC^A AED; (2) OB= OE .例5如图,在正方形ABCD中,E为DC边上的点,连接BE,将厶BCE绕点C顺时针方向旋转90°得到△ DCF连接EF,若/ BEC=6C°,求/ EFD的度数.例6如图,将长方形纸片ABCD沿对角线AC折叠,使点B落到点B'的位置,AB与CD交于点E(1) 试找出一个三角形与△ AED全等,并加以证明•(2) 若AB=8, D E=3, P为线段AC上的任意一点,PGL AE于G PH丄EC于H, PG+PH的值会变化吗?若变化,请说明理由; 若不变化,请求出这个值。

E例7已知,点P是直角三角形ABC斜边AB上一动点(不与A, B重合),分别过A, B向直线CP作垂线, 垂足分别为E, F, Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是___________________ ,QE与QF的数量关系是(2) 如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA (或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.复习作业:解答题1. ___________________________________________________________________________________________ (1)如下图,等边△ ABC内有一点P若点P到顶点A, B,C的距离分别为3, 4,5,则/ APB=____________________________________________________________________________________________。

分析:由于PA PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ ACP处,此时△ACP也______________ 这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出/ APB的度数。

(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如右图,△ABC中,/ CAB=90 , AB=AC E、F 为BC上的点且/ EAF=45,求证:EF2=BE2+ FC2。

3.如图所示,△ ABC^^ ADE 且/ CAD10。

,/ B=Z D=25°, /EAB1200,求/ DFB和/ DGB勺度数.4. 如图所示,已知AE丄AB, AF丄AC, AE=AB, AF=AC 求证:(1) EC=BF; ( 2) EC丄BF.5. 已知:如图,AB=AE/ 仁/ 2,Z B=Z E.2.如图所示,四边形ABCD勺对角线AC BD相交于点Q △ ABC^A BAD£8. 在厶ABC中,/ ABC= 90°,分别以边AB、BC 连接GD, AG, BD.⑴如图1,求证:AG= BD.⑵ 如图2,试说明:S\ ABG= S^CDG (提示:求证:BC=ED.6.如图所示,在△ ABC中,AB=AC, BD丄AC于D, CE1AB于E, BD, CE相交于F.求证:AF平分/ BAC7. △ ABC中,/ ACB= 90°, AC= BC= 6,的垂线交AB边于E点.动点P从点A出发沿AC边向M点运动,速度为每秒1个单位, 时,运动停止.连接EP, EC在此过程中,⑴ 当t为何值时,△ EPC的面积为10?⑵将厶EPC沿CP翻折后,点E的对应点为F点,当t为何值时,PF// EC?=2,过M 点作AC 当动点P到达M点图CA向厶ABC外作正方形ABHI、正方形BCGF正方形CAED正方形的四条边相等,四个角均为直角)《全等三角形》单元测试题姓名 ____________ 班级 _________ 得分 ___________一、填空题(4X 10=40分)1、 _____________________________________________________________________ 在厶 ABC 中,AC>BC>AB ,且△ ABC ◎△ DEF ,则在△ DEF 中, _________________________________________ > _______ > ________ (填边)。

2、已知:△ ABC A ' B ' C A= / A / B= / B / C=70 ° , AB=15cm ,则/ C ' = ___________________________ : A ' B ' = ________ 。

3、 如图〔,△ ABDBAC ,若AD=BC ,则/ BAD 的对应角是 ____________ 。

AD _____________/\z 刁/ / \\ \X/Z L VB \ L DCB图1图2图34、如图2,在厶ABC 和厶FED , AD=FC , AB=FE ,当添加条件 _________________ 时,就可得到厶 ABC ◎△ FED 。

(只需填写一个你认为正确的条件 )5、如图3,在厶ABC 中,AB=AC , AD 丄BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等 三角形 对。

6、如图4, BE , CD 是厶ABC 的高,且 BD = EC ,判定△ BCD CBE 的依据是3cm ,贝H CF= ___________ cm.& 如图 6,在厶ABC 中,AD=DE , AB=BE ,/ A=80°,则/ CED= _______9、 P 是/ AOB 平分线上一点, CD 丄OP 于F ,并分别交 0A 、OB 于CD ,贝U CD ________P 点到/ AOB 两 边距离之和。

(填“ >”,“ <”或“=”)10、 A D 是厶ABC 的边BC 上的中线,AB = 12, AC = 8,则中线 AD 的取值范围是 ___________二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边 是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, 其中真命题的个数有()图4图57、如图 5,A ABC 中,/ C=90 °,CD 丄AB 于点D , AE 是/ BAC 的平分线,点E 到AB 的距离等于△图6A、3个B、2个C、1个D、0个12、如图 7 已知点 E 在厶ABC 的外部,点 D 在BC 边上, 正确的有(B • 2个C . 3个15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形, 假设AABC 和A A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A TB T A ,及A 1~B 1T A 1环绕时,若运动方向相同,则称它们是真正合同三角形 (如图9),若运动方向相反,则称它们是镜面合同三角形 (如图10),两个真正合同三角形都可以在平面内通过平移或旋转使它们重 合,两个镜面合同三角形要重合,则必须将其中一个翻转180° (如图11),下列各组合同三角形中,是镜面AB=DC , AE//DF , AE=DF ,求证:EC=FB、解答下列各(17-18题各8分,19-22题各10分,23题-24题各12分,共80分)17、如图13,点A 、B 、C 、D 在同一条直线上,DE 交 AC 于 F ,若/ 1 = / 2= / 3, AC=AE ,则有(A 、△ ABD BA AFD C 、△ AEF BA DFC13、下列条件中,不能判定A B '4 AFE BA ADC D 、△ ABC BA ADEABC BA A ' B ' C '的是(A 、 AB=A 'B ' ,/ A= / A ' ,AC=A 'C ' B 、 AB=A ' B ' ,/ A= / A ' ,/ B= / B ' C 、 AB=A ' B ' ,/ A= / A ' ,/ C=Z C 'D 、 / A= / A ' ,/ B= / B ' ,/ C= / C 'EF 90o , B C , AE AF ,结论:① EM FN :② CDDN ;③ FANEAM :④厶 ACN ^A ABM •其16、如图 12,在A ABC 若 BC=64,且 BD : CD=9 : A 、18中,/ C=90 ° , AD 平分/ BAC 交 BC 于 D , 7,则点D 到AB 边的距离为( )32C 、28D 、2414、如图8所示,£O图BA18、如图14, AE是/ BAC的平分线,AB=AC。

相关文档
最新文档