算法分析与设计部分含计算的复习题及参考答案
算法设计与分析习题答案
算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。
以下是一些典型的算法设计与分析习题及其答案。
习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。
答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
这个过程会不断重复,直到找到目标值或搜索范围为空。
```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。
答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。
```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。
算法设计与分析试卷及答案
算法设计与分析1、(1) 证明:O(f)+O(g)=O(f+g)(7分)(2) 求下列函数的渐近表达式:(6分)① 3n 2+10n;② 21+1/n;2、对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=θ(g(n)),并简述理由。
(15分)(1);5log )(;log )(2+==n n g n n f (2);)(;log )(2n n g n n f == (3);log )(;)(2n n g n n f == 3、试用分治法对数组A[n]实现快速排序。
(13分)4、试用动态规划算法实现最长公共子序列问题。
(15分)5、试用贪心算法求解汽车加油问题:已知一辆汽车加满油后可行驶n 公里,而旅途中有若干个加油站。
试设计一个有效算法,指出应在哪些加油站停靠加油,使加油次数最少。
(12分)6、试用动态规划算法实现下列问题:设A 和B 是两个字符串。
我们要用最少的字符操作,将字符串A 转换为字符串B ,这里所说的字符操作包括:(1)删除一个字符。
(2)插入一个字符。
(3)将一个字符改为另一个字符。
将字符串A 变换为字符串B 所用的最少字符操作数称为字符串A 到B 的编辑距离,记为d(A,B)。
试设计一个有效算法,对任给的两个字符串A 和B ,计算出它们的编辑距离d(A,B)。
(16分)⎣⎦2/)(;3)(i i g i i f ==。
对于给定的两个整数n 和m ,要求用最少的变换f 和g 变换次数将n 变为m 。
(16分)1、⑴证明:令F(n)=O(f),则存在自然数n 1、c 1,使得对任意的自然数n ≥n 1,有:F(n)≤c 1f(n)……………………………..(2分)同理可令G(n)=O(g),则存在自然数n 2、c 2,使得对任意的自然数n ≥n 2,有:G(n)≤c 2g(n)……………………………..(3分)令c 3=max{c 1,c 2},n 3=max{n 1,n 2},则对所有的n ≥n 3,有: F(n)≤c 1f(n)≤c 3f(n)G(n)≤c 2g(n)≤c 3g(n)……………………………..(5分) 故有:O(f)+O(g)=F(n)+G(n)≤c 3f(n)+c 3g(n)=c 3(f(n)+g(n)) 因此有:O(f)+O(g)=O(f+g)……………………………..(7分) ⑵ 解:① 因为;01033)103(lim 222=+-+∞→n n n n n n 由渐近表达式的定义易知: 3n 2是3n 2+10n 的渐近表达式。
计算机算法与设计复习题(含答案)
1、一个算法的优劣可以用(时间复杂度)与(空间复杂度)与来衡量。
2、回溯法在问题的解空间中,按(深度优先方式)从根结点出发搜索解空间树。
3、直接或间接地调用自身的算法称为(递归算法)。
4、 记号在算法复杂性的表示法中表示(渐进确界或紧致界)。
5、在分治法中,使子问题规模大致相等的做法是出自一种(平衡(banlancing)子问题)的思想。
6、动态规划算法适用于解(具有某种最优性质)问题。
7、贪心算法做出的选择只是(在某种意义上的局部)最优选择。
8、最优子结构性质的含义是(问题的最优解包含其子问题的最优解)。
9、回溯法按(深度优先)策略从根结点出发搜索解空间树。
10、拉斯维加斯算法找到的解一定是(正确解)。
11、按照符号O的定义O(f)+O(g)等于O(max{f(n),g(n)})。
12、二分搜索技术是运用(分治)策略的典型例子。
13、动态规划算法中,通常不同子问题的个数随问题规模呈(多项式)级增长。
14、(最优子结构性质)和(子问题重叠性质)是采用动态规划算法的两个基本要素。
15、(最优子结构性质)和(贪心选择性质)是贪心算法的基本要素。
16、(选择能产生最优解的贪心准则)是设计贪心算法的核心问题。
17、分支限界法常以(广度优先)或(以最小耗费(最大效益)优先)的方式搜索问题的解空间树。
18、贪心选择性质是指所求问题的整体最优解可以通过一系列(局部最优)的选择,即贪心选择达到。
19、按照活结点表的组织方式的不同,分支限界法包括(队列式(FIFO)分支限界法)和(优先队列式分支限界法)两种形式。
20、如果对于同一实例,蒙特卡洛算法不会给出两个不同的正确解答,则称该蒙特卡洛算法是(一致的)。
21、哈夫曼编码可利用(贪心法)算法实现。
22概率算法有数值概率算法,蒙特卡罗(Monte Carlo)算法,拉斯维加斯(Las Vegas)算法和舍伍德(Sherwood)算法23以自顶向下的方式求解最优解的有(贪心算法)24、下列算法中通常以自顶向下的方式求解最优解的是(C)。
算法设计与分析-习题参考答案
算法设计与分析基础习题1.15..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所示:b.该算法不稳定.比如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[] 4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章 习题2.17.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。
计算机算法设计和分析习题及答案解析
计算机算法设计与分析习题及答案一.选择题1、二分搜索算法是利用 A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是 A ;A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是A 的一搜索方式;A、分支界限法B、动态规划法C、贪心法D、回溯法4. 回溯法解旅行售货员问题时的解空间树是 A ;A、子集树B、排列树C、深度优先生成树D、广度优先生成树5.下列算法中通常以自底向上的方式求解最优解的是B ;A、备忘录法B、动态规划法C、贪心法D、回溯法6、衡量一个算法好坏的标准是 C ;A 运行速度快B 占用空间少C 时间复杂度低D 代码短7、以下不可以使用分治法求解的是 D ;A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题8. 实现循环赛日程表利用的算法是A ;A、分治策略B、动态规划法C、贪心法D、回溯法9.下面不是分支界限法搜索方式的是D ;A、广度优先B、最小耗费优先C、最大效益优先D、深度优先10.下列算法中通常以深度优先方式系统搜索问题解的是D ;A、备忘录法B、动态规划法C、贪心法D、回溯法11.备忘录方法是那种算法的变形; BA、分治法B、动态规划法C、贪心法D、回溯法12.哈夫曼编码的贪心算法所需的计算时间为B ;A、On2nB、OnlognC、O2nD、On13.分支限界法解最大团问题时,活结点表的组织形式是B ;A、最小堆B、最大堆C、栈D、数组14.最长公共子序列算法利用的算法是B;A、分支界限法B、动态规划法C、贪心法D、回溯法15.实现棋盘覆盖算法利用的算法是A ;A、分治法B、动态规划法C、贪心法D、回溯法16.下面是贪心算法的基本要素的是C ;A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解17.回溯法的效率不依赖于下列哪些因素 DA.满足显约束的值的个数B. 计算约束函数的时间C.计算限界函数的时间D. 确定解空间的时间18.下面哪种函数是回溯法中为避免无效搜索采取的策略BA.递归函数 B.剪枝函数 C;随机数函数 D.搜索函数19. D是贪心算法与动态规划算法的共同点;A、重叠子问题B、构造最优解C、贪心选择性质D、最优子结构性质20. 矩阵连乘问题的算法可由 B 设计实现;A、分支界限算法B、动态规划算法C、贪心算法D、回溯算法21. 分支限界法解旅行售货员问题时,活结点表的组织形式是 A ;A、最小堆B、最大堆C、栈D、数组22、Strassen矩阵乘法是利用A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法23、使用分治法求解不需要满足的条件是 A ;A 子问题必须是一样的B 子问题不能够重复C 子问题的解可以合并D 原问题和子问题使用相同的方法解24、下面问题 B 不能使用贪心法解决;A 单源最短路径问题B N皇后问题C 最小生成树问题D 背包问题25、下列算法中不能解决0/1背包问题的是 AA 贪心法B 动态规划C 回溯法D 分支限界法26、回溯法搜索状态空间树是按照 C 的顺序;A 中序遍历B 广度优先遍历C 深度优先遍历D 层次优先遍历27.实现合并排序利用的算法是A ;A、分治策略B、动态规划法C、贪心法D、回溯法28.下列是动态规划算法基本要素的是D ;A、定义最优解B、构造最优解C、算出最优解D、子问题重叠性质29.下列算法中通常以自底向下的方式求解最优解的是 B ;A、分治法B、动态规划法C、贪心法D、回溯法30.采用广度优先策略搜索的算法是A ;A、分支界限法B、动态规划法C、贪心法D、回溯法31、合并排序算法是利用 A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法32、背包问题的贪心算法所需的计算时间为 BA、On2nB、OnlognC、O2nD、On33.实现大整数的乘法是利用的算法C ;A、贪心法B、动态规划法C、分治策略D、回溯法34.0-1背包问题的回溯算法所需的计算时间为AA、On2nB、OnlognC、O2nD、On35.采用最大效益优先搜索方式的算法是A;A、分支界限法B、动态规划法C、贪心法D、回溯法36.贪心算法与动态规划算法的主要区别是B;A、最优子结构B、贪心选择性质C、构造最优解D、定义最优解37. 实现最大子段和利用的算法是B ;A、分治策略B、动态规划法C、贪心法D、回溯法38.优先队列式分支限界法选取扩展结点的原则是 C ;A、先进先出B、后进先出C、结点的优先级D、随机39.背包问题的贪心算法所需的计算时间为 B ;A、On2nB、OnlognC、O2nD、On40、广度优先是A 的一搜索方式;A、分支界限法B、动态规划法C、贪心法D、回溯法41. 一个问题可用动态规划算法或贪心算法求解的关键特征是问题的 B ;A、重叠子问题B、最优子结构性质C、贪心选择性质D、定义最优解42.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为 B ;A 、On2nB 、OnlognC 、O2nD 、On43. 以深度优先方式系统搜索问题解的算法称为 D ;A 、分支界限算法B 、概率算法C 、贪心算法D 、回溯算法44. 实现最长公共子序列利用的算法是B ;A 、分治策略B 、动态规划法C 、贪心法D 、回溯法45. Hanoi 塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B46. 动态规划算法的基本要素为 CA. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用 47. 能采用贪心算法求最优解的问题,一般具有的重要性质为: AA. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用48. 回溯法在问题的解空间树中,按 D 策略,从根结点出发搜索解空间树;A.广度优先B. 活结点优先C.扩展结点优先D. 深度优先49. 分支限界法在问题的解空间树中,按 A 策略,从根结点出发搜索解空间树;A.广度优先B. 活结点优先C.扩展结点优先D. 深度优先50. 程序块 A 是回溯法中遍历排列树的算法框架程序;A.B. C. D. 51. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO 分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO 分支限界法与优先队列式分支限界法;1.算法的复杂性有 时间 复杂性和 空间 ;2、程序是 算法用某种程序设计语言的具体实现;3、算法的“确定性”指的是组成算法的每条 指令 是清晰的,无歧义的;4. 矩阵连乘问题的算法可由 动态规划 设计实现;5、算法是指解决问题的 一种方法 或 一个过程 ;6、从分治法的一般设计模式可以看出,用它设计出的程序一般是 递归算法 ;7、问题的 最优子结构性质 是该问题可用动态规划算法或贪心算法求解的关键特征;8、以深度优先方式系统搜索问题解的算法称为 回溯法 ;9、计算一个算法时间复杂度通常可以计算 循环次数 、 基本操作的频率 或计算步; Hanoi 塔A. void hanoiint n, int A, int C, int B{ if n > 0{ hanoin-1,A,C, B;moven,a,b; hanoin-1, C, B, A; }} B. void hanoiint n, int A, int B, int C { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } }D. void hanoiint n, int C, int A, int B { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } } void backtrack int t{ if t>n outputx; else for int i=t;i<=n;i++ { swapxt, xi; if legalt backtrackt+1; swapxt, xi; } } void backtrack int t { if t>n outputx;elsefor int i=0;i<=1;i++ { xt=i; if legalt backtrackt+1; } }void backtrack int t { if t>n outputx; else for int i=0;i<=1;i++ { xt=i; if legalt backtrackt-1; } }voidbacktrack int t{ if t>n outputx; else for int i=t;i<=n;i++ { swapxt, xi; if legalt backtrackt+1;}}10、解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是动态规划 ,需要排序的是回溯法 ,分支限界法 ;11、使用回溯法进行状态空间树裁剪分支时一般有两个标准:约束条件和目标函数的界,N皇后问题和0/1背包问题正好是两种不同的类型,其中同时使用约束条件和目标函数的界进行裁剪的是 0/1背包问题 ,只使用约束条件进行裁剪的是 N皇后问题 ;12、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别;13、矩阵连乘问题的算法可由动态规划设计实现;14.贪心算法的基本要素是贪心选择性质和最优子结构性质 ;15. 动态规划算法的基本思想是将待求解问题分解成若干子问题 ,先求解子问题 ,然后从这些子问题的解得到原问题的解;16.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有限性四条性质;17、大整数乘积算法是用分治法来设计的;18、以广度优先或以最小耗费方式搜索问题解的算法称为分支限界法 ;19、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别;20.快速排序算法是基于分治策略的一种排序算法;21.动态规划算法的两个基本要素是. 最优子结构性质和重叠子问题性质 ;22.回溯法是一种既带有系统性又带有跳跃性的搜索算法;23.分支限界法主要有队列式FIFO 分支限界法和优先队列式分支限界法;24.分支限界法是一种既带有系统性又带有跳跃性的搜索算法;25.回溯法搜索解空间树时,常用的两种剪枝函数为约束函数和限界函数 ;26.任何可用计算机求解的问题所需的时间都与其规模有关;27.快速排序算法的性能取决于划分的对称性 ;28.所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到 ;29.所谓最优子结构性质是指问题的最优解包含了其子问题的最优解 ;30.回溯法是指具有限界函数的深度优先生成法 ;31.用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为 Ohn ;32.回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;33.用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构;34.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构;35.旅行售货员问题的解空间树是排列树 ;三、算法填空1.背包问题的贪心算法void Knapsackint n,float M,float v,float w,float x{//重量为w1..n,价值为v1..n的 n个物品,装入容量为M的背包//用贪心算法求最优解向量x1..nint i; Sortn,v,w;for i=1;i<=n;i++ xi=0;float c=M;for i=1;i<=n;i++{if wi>c break;xi=1;c-=wi;}if i<=n xi=c/wi;}2.最大子段和: 动态规划算法int MaxSumint n, int a{int sum=0, b=0; //sum存储当前最大的bj, b存储bjfor int j=1; j<=n; j++{ if b>0 b+= aj ;else b=ai; ; //一旦某个区段和为负,则从下一个位置累和 ifb>sum sum=b;}return sum;}3.贪心算法求活动安排问题template<class Type>void GreedySelector int n, Type s, Type f, bool A{A1=true;int j=1;for int i=2;i<=n;i++if si>=fj{ Ai=true;j=i;}else Ai=false;}4.快速排序template<class Type>void QuickSort Type a, int p, int r{if p<r{int q=Partitiona,p,r;QuickSort a,p,q-1; //对左半段排序QuickSort a,q+1,r; //对右半段排序}}5. 回溯法解迷宫问题迷宫用二维数组存储,用'H'表示墙,'O'表示通道int x1,y1,success=0; //出口点void MazePathint x,int y{//递归求解:求迷宫maze从入口x,y到出口x1,y1的一条路径mazexy=''; //路径置为if x==x1&&y==y1 success=1; //到出口则成功else{if mazexy+1=='O' MazePathx,++y;//东邻方格是通路,向东尝试if success&&mazex+1y=='O' MazePath++x,y;//不成功且南邻方格是通路,向南尝试if success&&mazexy-1=='O' MazePathx,--y;//不成功且西邻方格是通路,向西尝试if success&&mazex-1y=='O' MazePath--x,y;//不成功且北邻方格是通路,向北尝试}if success mazexy=''; //死胡同置为}四、算法设计题1. 给定已按升序排好序的n个元素a0:n-1,现要在这n个元素中找出一特定元素x,返回其在数组中的位置,如果未找到返回-1;写出二分搜索的算法,并分析其时间复杂度;template<class Type>int BinarySearchType a, const Type& x, int n{//在a0:n中搜索x,找到x时返回其在数组中的位置,否则返回-1Int left=0; int right=n-1;While left<=right{int middle=left+right/2;if x==amiddle return middle;if x>amiddle left=middle+1;else right=middle-1;}Return -1;}时间复杂性为Ologn2. 利用分治算法写出合并排序的算法,并分析其时间复杂度void MergeSortType a, int left, int right{if left<right {//至少有2个元素int i=left+right/2; //取中点mergeSorta, left, i;mergeSorta, i+1, right;mergea, b, left, i, right; //合并到数组bcopya, b, left, right; //复制回数组a}}算法在最坏情况下的时间复杂度为Onlogn;3.N皇后回溯法bool Queen::Placeint k{ //检查xk位置是否合法for int j=1;j<k;j++if absk-j==absxj-xk||xj==xk return false;return true;}void Queen::Backtrackint t{if t>n sum++;else for int i=1;i<=n;i++{xt=i;if 约束函数 Backtrackt+1;}}4.最大团问题void Clique::Backtrackint i // 计算最大团{ if i > n { // 到达叶结点for int j = 1; j <= n; j++ bestxj = xj;bestn = cn; return;}// 检查顶点 i 与当前团的连接int OK = 1;for int j = 1; j < i; j++if xj && aij == 0 // i与j不相连{OK = 0; break;}if OK { // 进入左子树xi = 1; cn++;Backtracki+1;xi = 0; cn--; }if cn+n-i>bestn { // 进入右子树xi = 0;Backtracki+1; }}5. 顺序表存储表示如下:typedef struct{RedType rMAXSIZE+1; //顺序表int length; //顺序表长度}SqList;编写对顺序表L进行快速排序的算法;int PartitionSqList &L,int low,int high //算法10.6b{//交换顺序表L中子表L.rlow..high的记录,枢轴记录到位,并返回其所在位置, //此时在它之前后的记录均不大小于它.int pivotkey;L.r0=L.rlow; //用子表的第一个记录作枢轴记录pivotkey=L.rlow.key; //枢轴记录关键字while low<high //从表的两端交替地向中间扫描{while low<high&&L.rhigh.key>=pivotkey --high;L.rlow=L.rhigh; //将比枢轴记录小的记录移到低端while low<high&&L.rlow.key<=pivotkey ++low;L.rhigh=L.rlow; //将比枢轴记录大的记录移到高端}L.rlow=L.r0; //枢轴记录到位return low; //返回枢轴位置}void QSortSqList &L,int low,int high{//对顺序表L中的子序列L.rlow..high作快速排序int pivotloc;if low<high //长度>1{pivotloc=PartitionL,low,high; //将L.rlow..high一分为二QSortL,low,pivotloc-1; //对低子表递归排序,pivotloc是枢轴位置 QSortL,pivotloc+1,high; //对高子表递归排序}}void QuickSortSqList &L{//对顺序表L作快速排序QSortL,1,L.length; }。
中南大学现代远程教育课程考试复习试题及参考答案
中南大学现代远程教育课程考试复习试题及参考答案《算法分析与设计》一简答题1.算法的复杂性分析主要是分析算法的什么耗费情况?2.算法的重要特性是什么?3.算法的时间复杂度用什么计量?4.用比较树模型描述三个数排序的过程。
5.分治法的基本思想。
6.二分检索算法为什么可以提高查找的效率?7.简述顺序选择select算法的基本流程。
8.简述顺序选择select2算法的改进思路。
9.简述快速排序的基本思想。
10.快速排序算法的最坏时间复杂性和平均时间复杂性函数。
11.快速排序算法怎样抽取分割元素?12.partition怎样将数组划分成3段?13.分治合并排序的是怎样分治的?14.分治合并排序的二分归并过程在最坏情况下花费多少时间?15.分治合并排序的二分归并过程在最好情况下花费多少时间?16.MaxMin算法是怎样分治的?17.贪心法的基本思路是什么?18.用贪心法求解的问题有什么特点?19.背包问题的目标函数是什么,最优量度是什么?20.带限期的作业调度的贪心策略是什么?约束条件是什么?21.说明n皇后问题的解(x1,x2,….,x n)的含义。
22.简述n皇后算法的place函数的功能。
23.简述动态规划方法所运用最优化原理。
24.用多段图说明最优化原理。
二解释下列动态规划优解的一般递归形式。
1)0/1背包2)货郎担问题3)流水作业调度三算法分析。
1.分析汉诺塔算法的时间复杂性。
2.计算冒泡排序算法时间复杂性的阶。
3.分析maxmin算法的时间复杂性。
4.分析分治合并排序算法的时间复杂性。
5.分析二分检索的时间复杂性。
6.背包问题贪心算法的时间复杂性。
7.快速排序的partition过程中,进行了多少次元素之间的比较。
8.多段图算法的时间复杂性。
四算法段填空。
1.MaxMin 算法Maxmin(i,j,max,min)ifthen 对两元素进行比较;return;else{maxmin(i,m,max1,min1); //其中max1和min1为解子问题1的解}2.Hanoi算法Hanoi(n,a,b,c)If n=1 thenElse{;Hanoi(n-1,b, a, c);}3.二分检索BINSRCH(A,n,x,j)low←1;high←n;while low<high do{ ________________ mid←(low+high)/2;case:x=A[mid] :j←mid; return;:x< A[mid]:_________________high←mid-1;:x> A[mid]:_________________low←mid+1;endcase}j←0;end4.快速排序Quicksort(p,q)if p>q then_____________{call partition(p,j);call _______________________call _______________________}end5.贪心方法的抽象化控制procedure GREEDY(A,n)//A(1:n)包含n个输入//solutions←;for i←1 to do{x←SELECT(A)if FEASIBLE(solution,x)then solutions←; endif}return(solution)end GREEDY6.背包问题贪心算法procedure GREEDY-KNAPSACK(P,W,M,X,n)X←0 ;cu←M ;for i←1 to n do{ if then exit endifX(i) ← _ ;cu←;}if i ≤n then X(i) ←;endifend GREEDY-KNAPSACK7.分治合并排序算法procedure MERGESORT(low,high)if low < high thenmid ←_______________________________________________________MERGE(low,mid,high)endifend MERGESORT8. 多段图动态规划算法 procedure FGRAPH(E ,k ,n ,P) 1 real COST(n),integerD(n 一1),P(k),r ,j ,k ,n 2; 3 for to 1 by -1do4 设r 是一个这样的结点,(j ,r)∈E 且使c(j ,r)+COST(r)取最小值5 COST(j)← ;6 ;7 repeat8 P(1)←1;P(k)←n ;9 for do10 P(j)←D ( P(j-1) )11 repeat12 end FGRAPH9. n 后问题递归算法procedure RNQUEENS(K)global x( 1:m ),n;for x(k)←1 to _____ doif place( k )= true thenif k = n then ________else_____________endifendifrepeatend ENQUEENS1. 写递归形式的二分检索算法2. 设计三分检索算法3. 有n 个大小相同而重量不同的集装箱,重量分别为(w1,w2,……,wn),已知货船的额定载重量为M ,Σwi>M,i=1,2,3,…,n 。
《算法分析与设计》期末考试复习题纲(完整版)
《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。
A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成概算法的时间为t秒。
现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。
A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。
A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。
A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。
A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。
A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。
A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。
A.备忘录法 B.动态规划法C.贪心法 D.回溯法11.下列算法中不能解决0/1背包问题的是( A )。
A.贪心法 B.动态规划C.回溯法 D.分支限界法12.下列哪个问题可以用贪心算法求解( D )。
算法设计与分析期末复习题
算法设计与分析期末考试复习题1.算法有哪些特点?为什么说一个具备了所有特征的算法,不一定就是使用的算法?2.证明下面的关系成立:(参考例题1.5--1.6)(1)logn!=Θ(nlogn) (2)2n=Θ(2n+1)(3)n!=Θ(n n) (4)5n2-6n=Θ(n2)3.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void sort(int A[],int n)2. {3. int i,j,temp;4. for(i=0;i<n-1;i++)5. for(j=i+1;j<n;j++)6. if(A[j]<A[i]) {7. temp=A[i];8. A[i]=A[j];9. A[j]=temp;10. }11. }(1)什么时候算法所执行的元素赋值的次数最少?最少多少次?(2)什么时候算法所执行的元素赋值的次数最多?最多多少次?4.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void bubblesort(int A[],int n)2. {3. int j,i,sorted;4. i=sorted=0;5. while(i<n-1 && !sorted) {6. sorted=1;7. for(j=n-1;j>i;j--) {8. if(A[j]<A[j-1]) {9. temp=A[j];10. A[j]=A[j-1];11. A[j-1]=temp;12. sorted=0;13. }14. }15. i=i+1;16. }17. }(1)算法所执行的元素比较次数最少是多少次?什么时候达到最少?(2)算法所执行的元素比较次数最多是多少次?什么时候达到最多?(3)算法所执行的元素赋值次数最少是多少次?什么时候达到最少?(4)算法所执行的元素赋值次数最多是多少次?什么时候达到最多?(5)用О、和Ω记号表示算法的运行时间。
(完整版)算法设计与分析考试题及答案,推荐文档
____________________________________。 4.若序列 X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列
X 和 Y 的一个最长公共子序列_____________________________。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至
和
之分。
5、 f(n)= 6×2n+n2,f(n)的渐进性态 f(n)= O(
)
6、 贪心算法总是做出在当前看来
的选择。也就是说贪心算法并不从整体最优考
虑,它所做出的选择只是在某种意义上的
。
7、 许多可以用贪心算法求解的问题一般具有 2 个重要的性质:
性质和
性质。
二、简答题(本题 25 分,每小题 5 分)
五、算法理解题(本题 5 分) 设有 n=2k 个运动员要进行循环赛,
现设计一个满足以下要求的比赛日程表:
①每个选手必须与其他 n-1 名选手比赛各一次; ②每个选手一天至多只能赛一次;
③循环赛要在最短时间内完成。
我去(人1)如也果 就n=2k有,循人环赛!最少为需要U进R行扼几天腕; 入站内信不存在向你偶同意调剖沙 (2)当 n=23=8 时,请画出循环赛日程表。
六、算法设计题(本题 15 分) 分别用贪心算法、动态规划法、回溯法设计 0-1 背包问题。要求:说明所使用的算法
策略;写出算法实现的主要步骤;分析算法的时间。 七、算法设计题(本题 10 分)
建议收藏下载本文,以便随时学习! 通过键盘输入一个高精度的正整数 n(n 的有效位数≤240),去掉其中任意 s 个数字后, 剩下的数字按原左右次序将组成一个新的正整数。编程对给定的 n 和 s,寻找一种方案, 使得剩下的数字组成的新数最小。 【样例输入】 178543 S=4 【样例输出】 13
算法分析与设计试题及答案
算法分析与设计试题及答案一、选择题1. 下列哪个是属于分治算法的例子?A. 冒泡排序B. 归并排序C. 顺序查找D. 选择排序答案:B2. 在排序算法中,时间复杂度最优的是:A. 冒泡排序B. 插入排序C. 归并排序D. 快速排序答案:C3. 哪个不是动态规划的特点?A. 具有重叠子问题B. 通过递归求解C. 需要保存子问题的解D. 具有最优子结构答案:B4. 在图的广度优先搜索算法中,使用的数据结构是:A. 栈B. 队列C. 数组D. 堆栈答案:B5. 在最小生成树算法中,下列哪个不属于贪心策略?A. Kruskal算法B. Prim算法C. Dijkstra算法D. Prim-Kruskal混合算法答案:C二、简答题1. 请简述分治算法的思想和应用场景。
答案:分治算法的思想是将原问题分解成若干个规模较小且类似的子问题,然后解决子问题,最后将子问题的解合并得到原问题的解。
其应用场景包括排序算法(如归并排序、快速排序)、搜索算法(如二分查找)等。
2. 什么是动态规划算法?请给出一个动态规划算法的示例。
答案:动态规划算法是一种通过将问题分解成子问题并解决子问题来解决复杂问题的方法。
它的特点是具有重叠子问题和最优子结构性质。
以斐波那契数列为例,可以使用动态规划算法求解每一项的值,而不需要重复计算。
3. 图的深度优先搜索和广度优先搜索有什么区别?答案:图的深度优先搜索(Depth First Search,DFS)是一种先访问子节点再访问兄弟节点的遍历算法,通常使用递归或者栈实现。
而广度优先搜索(Breadth First Search,BFS)则是以层次遍历的方式展开搜索,使用队列来实现。
DFS更适合用于搜索路径,BFS则适用于寻找最短路径等。
4. 请简述贪心算法的特点及其应用场景。
答案:贪心算法的特点是每一步都采取当前状态下最优的选择,以期望得到全局最优解。
然而,贪心算法并不一定能求解所有问题的最优解,但对于一些特定问题,贪心算法往往能得到近似最优解。
算法分析与设计作业及参考答案
算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在实际中的应用场景。
2、设计一个算法,用于在一个未排序的整数数组中找到第二大的元素,并分析其时间复杂度。
3、比较贪心算法和动态规划算法的异同,并分别举例说明它们在解决问题中的应用。
参考答案1、冒泡排序算法时间复杂度:冒泡排序的基本思想是通过相邻元素的比较和交换,将最大的元素逐步“浮”到数组的末尾。
在最坏情况下,数组完全逆序,需要进行 n 1 轮比较和交换,每一轮比较 n i 次(i 表示当前轮数),所以总的比较次数为 n(n 1) / 2,时间复杂度为 O(n^2)。
在最好情况下,数组已经有序,只需要进行一轮比较,时间复杂度为 O(n)。
平均情况下,时间复杂度也为 O(n^2)。
空间复杂度:冒泡排序只在原数组上进行操作,不需要额外的存储空间,空间复杂度为 O(1)。
应用场景:冒泡排序算法简单易懂,对于规模较小的数组,或者对算法的简单性要求较高而对性能要求不是特别苛刻的场景,如对少量数据进行简单排序时,可以使用冒泡排序。
例如,在一个小型的学生成绩管理系统中,需要对一个班级的少量学生成绩进行排序展示,冒泡排序就可以满足需求。
2、找到第二大元素的算法以下是一种使用遍历的方法来找到未排序整数数组中第二大元素的算法:```pythondef find_second_largest(arr):largest = arr0second_largest = float('inf')for num in arr:if num > largest:second_largest = largestlargest = numelif num > second_largest and num!= largest:second_largest = numreturn second_largest```时间复杂度分析:这个算法需要遍历数组一次,所以时间复杂度为O(n)。
(完整版)算法设计与分析考试题及答案
一、填空题(20分)1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
算法分析与设计考试复习题及参考答案jing
D.桶排
序
9、以下( A )不一定得到问题的最优解
A.贪心算法
B.回溯算法
C.分支限界法
D.动态
规划法
10、以下( C )不包括在图灵机结构中
A. 控制器
B. 读写磁头
C.计算器
D. 磁带
三、简答题(本题20分,每小题5分) 1、设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛
日程表:
不同输入实例下的算法所耗时间。最坏情况下的时间复杂性取的输入 实例中最大的时间复杂度: W(n) = max{ T(n,I) } , I∈Dn 平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和: A(n) =∑P(I)T(n,I) I∈Dn 6. 简述二分检索(折半查找)算法的基本过程。
设输入是一个按非降次序排列的元素表A[i:j] 和x,选取 A[(i+j)/2]与x比较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果 A[(i+j)/2]<x,则A[i:(i+j)/2-1]找x,否则在A[ (i+j)/2+1:j] 找x。上述过程被反复递归调用。 回溯法的搜索特点是什么 7. 背包问题的目标函数和贪心算法最优化量度相同吗?
p[v]=u }
dijkstra(G,w,s) 1. init-single-source(G,s) 2. S=Φ
3. Q=V[G]
4.while Q<> Φ
do u=min(Q)
S=S∪{u}
for each vertex v∈adj[u] //所有u的邻接点 v
do
relax(G,v,w)
2、某工厂预计明年有N个新建项目,每个项目的投资额 w[k]及其投
算法设计与分析考试题目及答案
算法设计与分析考试题目及答案Revised at 16:25 am on June 10, 2021I hope tomorrow will definitely be better算法分析与设计期末复习题一、 选择题1.应用Johnson 法则的流水作业调度采用的算法是DA. 贪心算法B. 分支限界法C.分治法D. 动态规划算法塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B3. 动态规划算法的基本要素为C A. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质 C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用4. 算法分析中,记号O 表示B , 记号Ω表示A , 记号Θ表示D ; A.渐进下界 B.渐进上界 C.非紧上界 D.紧渐进界 E.非紧下界5. 以下关于渐进记号的性质是正确的有:A A.f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ⇒=Θ B. f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==⇒= C. Ofn+Ogn = Omin{fn,gn} D. f (n)O(g(n))g(n)O(f (n))=⇔=Hanoi 塔A. void hanoiint n, int A, int C, int B { if n > 0 {hanoin-1,A,C, B; moven,a,b;hanoin-1, C, B, A; } B. void hanoiint n, int A, int B, int C { if n > 0 {hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }D. void hanoiint n, int C, int A, int B { if n > 0 {hanoin-1, A, C, B; moven,a,b;hanoin-1, C, B, A; }6.能采用贪心算法求最优解的问题,一般具有的重要性质为:AA. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按D策略,从根结点出发搜索解空间树;广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按A策略,从根结点出发搜索解空间树;A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块A是回溯法中遍历排列树的算法框架程序;A.B.C.D.10.xk的个数;11. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性Sn是指BA.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数;B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和;C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数;D.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最小方格数;13. N P类语言在图灵机下的定义为DA.NP={L|L是一个能在非多项式时间内被一台NDTM所接受的语言};B.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};C.NP={L|L是一个能在多项式时间内被一台DTM所接受的语言};D.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};14. 记号O的定义正确的是A;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0C.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤fn<cgn };>0使得对所有n≥n0D.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤cgn < fn };15. 记号Ω的定义正确的是B;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0有:C.gn = { fn | 对于任何正常数c>0,存在正数和n0 ≤fn<cgn };D.gn = { fn | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cgn < fn };二、 填空题1. 下面程序段的所需要的计算时间为 2O(n ) ;2.3.4. 5.6. 用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树 中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为Ohn ;7. 回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;8. 用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构; 9.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构; 10.用回溯法解0/1背包问题时,计算结点的上界的函数如下所示,请在空格中填入合适的内容:11. n m12. 用回溯法解图的m着色问题时,使用下面的函数OK检查当前扩展结点的每一个儿子所相应的颜色的可用性,则需耗时渐进时间上限Omn;13.;设分分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用fn个单位时间;用Tn表示该分治法解规模为|P|=n的问题所需的计算时间,则有:(1)1 ()(/)()1O nT nkT n m f n n=⎧=⎨+>⎩通过迭代法求得Tn的显式表达式为:log1log()(/)nmk j jmjT n n k f n m-==+∑试证明Tn的显式表达式的正确性;2. 举反例证明0/1背包问题若使用的算法是按照p i/w i的非递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装入背包,则此方法不一定能得到最优解此题说明0/1背包问题与背包问题的不同;证明:举例如:p={7,4,4},w={3,2,2},c=4时,由于7/3最大,若按题目要求的方法,只能取第一个,收益是7;而此实例的最大的收益应该是8,取第2,3 个;3. 求证:Ofn+Ogn = Omax{fn,gn} ;证明:对于任意f1n∈ Ofn ,存在正常数c1和自然数n1,使得对所有n≥n1,有f1n≤ c1fn ;类似地,对于任意g1n ∈ Ogn ,存在正常数c2和自然数n2,使得对所有n≥n2,有g1n ≤c2gn ;令c3=max{c1, c2}, n3 =max{n1, n2},hn= max{fn,gn} ;则对所有的 n ≥ n3,有f1n +g1n ≤ c1fn + c2gn≤c3fn + c3gn= c3fn + gn≤ c32 max{fn,gn} = 2c3hn = Omax{fn,gn} .4. 求证最优装载问题具有贪心选择性质;最优装载问题:有一批集装箱要装上一艘载重量为c 的轮船;其中集装箱i 的重量为Wi;最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船; 设集装箱已依其重量从小到大排序,x 1,x 2,…,x n 是最优装载问题的一个最优解;又设1min{|1}i i nk i x ≤≤== ;如果给定的最优装载问题有解,则有1k n ≤≤;证明: 四、 解答题1. 机器调度问题;问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理;每件任务的开始时间为s i ,完成时间为f i ,s i <f i ;s i ,f i 为处理任务i 的时间范围;两个任务i,j 重叠指两个任务的时间范围区间有重叠,而并非指i,j 的起点或终点重合;例如:区间1,4与区间2,4重叠,而与4,7不重叠;一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器;因此,在可行的分配中每台机器在任何时刻最多只处理一个任务;最优分配是指使用的机器最少的可行分配方案;问题实例:若任务占用的时间范围是{1,4,2,5,4,5,2,6,4,7},则按时完成所有任务最少需要几台机器提示:使用贪心算法画出工作在对应的机器上的分配情况;2. 已知非齐次递归方程:f (n)bf (n 1)g(n)f (0)c =-+⎧⎨=⎩ ,其中,b 、c 是常数,gn 是n 的某一个函数;则fn 的非递归表达式为:nnn i i 1f (n)cb b g(i)-==+∑;现有Hanoi 塔问题的递归方程为:h(n)2h(n 1)1h(1)1=-+⎧⎨=⎩ ,求hn 的非递归表达式;解:利用给出的关系式,此时有:b=2, c=1, gn=1, 从n 递推到1,有: 3. 单源最短路径的求解;问题的描述:给定带权有向图如下图所示G =V,E,其中每条边的权是非负实数;另外,还给定V 中的一个顶点,称为源;现在要计算从源到所有其它各顶点的最短路长度;这里路的长度是指路上各边权之和;这个问题通常称为单源最短路径问题;解法:现采用Dijkstra 算法计算从源顶点1到其它顶点间最短路径;请将此过程填入下表中;4. 请写出用回溯法解装载问题的函数; 装载问题:有一批共n 个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i 的重量为wi,且121ni i w c c =≤+∑;装载问题要求确定是否有一个合理的装载方案可将这n 个集装箱装上这2艘轮船;如果有,找出一种装载方案;解:void backtrack int i{用分支限界法解装载问题时,对算法进行了一些改进,下面的程序段给出了改进部分;试说明斜线部分完成什么功能,以及这样做的原因,即采用这样的方式,算法在执行上有什么不同;初始时将;也就是说,重量仅在搜索进入左子树是增加,因此,可以在算法每一次进入左子树时更新bestw 的值;43 2 110030maxint10 - {1} 初始 dist5 dist4 dist3 dist2 u S 迭代7. 最长公共子序列问题:给定2个序列X={x 1,x2,…,xm }和Y={y 1,y2,…,yn },找出X 和Y 的最长公共子序列;由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系;用cij 记录序列Xi 和Yj 的最长公共子序列的长度;其中, Xi={x1,x2,…,xi};Y j={y1,y2,…,yj};当i=0或j=0时,空序列是Xi 和Yj 的最长公共子序列;故此时Cij=0;其它情况下,由最优子结构性质可建立递归关系如下:00,0[][][1][1]1,0;max{[][1],[1][]},0;i j i ji j c i j c i j i j x y c i j c i j i j x y ⎧==⎪=--+>=⎨⎪-->≠⎩在程序中,bij 记录Cij 的值是由哪一个子问题的解得到的;8.1.2.3.4.5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________;6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解;7.以深度优先方式系统搜索问题解的算法称为_____________;背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________;9.动态规划算法的两个基本要素是___________和___________;10.二分搜索算法是利用_______________实现的算法;二、综合题50分1.写出设计动态规划算法的主要步骤;2.流水作业调度问题的johnson算法的思想;3.若n=4,在机器M1和M2上加工作业i所需的时间分别为ai 和bi,且a 1,a2,a3,a4=4,5,12,10,b1,b2,b3,b4=8,2,15,9求4个作业的最优调度方案,并计算最优值;4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间从根出发,左1右0,并画出其解空间树,计算其最优值及最优解;5.设S={X1,X2,···,Xn}是严格递增的有序集,利用二叉树的结点来存储S中的元素,在表示S的二叉搜索树中搜索一个元素X,返回的结果有两种情形,1在二叉搜索树的内结点中找到X=Xi ,其概率为bi;2在二叉搜索树的叶结点中确定X∈Xi ,Xi+1,其概率为ai;在表示S的二叉搜索树T中,设存储元素Xi的结点深度为C i ;叶结点Xi,Xi+1的结点深度为di,则二叉搜索树T的平均路长p为多少假设二叉搜索树Tij={Xi ,Xi+1,···,Xj}最优值为mij,Wij= ai-1+bi+···+bj+aj,则mij1<=i<=j<=n递归关系表达式为什么6.描述0-1背包问题;三、简答题30分1.流水作业调度中,已知有n个作业,机器M1和M2上加工作业i所需的时间分别为ai 和bi,请写出流水作业调度问题的johnson法则中对ai和bi的排序算法;函数名可写为sorts,n2.最优二叉搜索树问题的动态规划算法设函数名binarysearchtree答案:一、填空1.确定性有穷性可行性 0个或多个输入一个或多个输出2.时间复杂性空间复杂性时间复杂度高低3. 该问题具有最优子结构性质4.{BABCD}或{CABCD}或{CADCD}5.一个最优解6.子问题子问题子问题7.回溯法8. on2n omin{nc,2n}9.最优子结构重叠子问题10.动态规划法二、综合题1.①问题具有最优子结构性质;②构造最优值的递归关系表达式;③最优值的算法描述;④构造最优解;2. ①令N1={i|ai<bi},N2={i|ai>=bi};②将N1中作业按ai的非减序排序得到N1’,将N2中作业按bi的非增序排序得到N2’;③N1’中作业接N2’中作业就构成了满足Johnson法则的最优调度;3.步骤为:N1={1,3},N2={2,4};N 1’={1,3}, N2’={4,2};最优值为:384.解空间为{0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0,1, 1,1,0,1,1,1}; 解空间树为:该问题的最优值为:16 最优解为:1,1,0 5.二叉树T 的平均路长P=∑=+ni 1Ci)(1*bi +∑=nj 0dj *aj{mij=0 i>j6.已知一个背包的容量为C,有n 件物品,物品i 的重量为W i ,价值为V i ,求应如何选择装入背包中的物品,使得装入背包中物品的总价值最大; 三、简答题 1.void sortflowjope s,int n {int i,k,j,l;fori=1;i<=n-1;i++ag=0 k++; ifk>n break;ag==0ifsk.a>sj.a k=j; swapsi.index,sk.index; swapsi.tag,sk.tag;} }l=i;<sj.b k=j;swapsi.index,sk.index; ag,sk.tag; }mij=Wij+min{mik+mk+1j} 1<=i<=j<=n,mii-1=0}2.void binarysearchtreeint a,int b,int n,int m,int s,int w{int i,j,k,t,l;fori=1;i<=n+1;i++{wii-1=ai-1;mii-1=0;}forl=0;l<=n-1;l++Init-single-sourceG,s2. S=Φ3. Q=VGQ<> Φdo u=minQS=S∪{u}for each vertex 3do 4四、算法理解题本题10分根据优先队列式分支限界法,求下图中从v1点到v9点的单源最短路径,请画出求得最优解的解空间树;要求中间被舍弃的结点用×标记,获得中间解的结点用单圆圈○框起,最优解用双圆圈◎框起;五、算法理解题本题5分设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:①每个选手必须与其他n-1名选手比赛各一次;②每个选手一天至多只能赛一次;③循环赛要在最短时间内完成;1如果n=2k,循环赛最少需要进行几天;2当n=23=8时,请画出循环赛日程表;六、算法设计题本题15分分别用贪心算法、动态规划法、回溯法设计0-1背包问题;要求:说明所使用的算法策略;写出算法实现的主要步骤;分析算法的时间;七、算法设计题本题10分通过键盘输入一个高精度的正整数nn的有效位数≤240,去掉其中任意s个数字后,剩下的数字按原左右次序将组成一个新的正整数;编程对给定的n 和s,寻找一种方案,使得剩下的数字组成的新数最小;样例输入178543S=4样例输出13一、填空题本题15分,每小题1分1.规则一系列运算2. 随机存取机RAMRandom Access Machine;随机存取存储程序机RASPRandom Access Stored Program Machine;图灵机Turing Machine3. 算法效率4. 时间、空间、时间复杂度、空间复杂度5.2n6.最好局部最优选择7. 贪心选择最优子结构二、简答题本题25分,每小题5分1、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同;对这k个子问题分别求解;如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止;将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解;2、“最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的;3、某个问题的最优解包含着其子问题的最优解;这种性质称为最优子结构性质;4、回溯法的基本思想是在一棵含有问题全部可能解的状态空间树上进行深度优先搜索,解为叶子结点;搜索过程中,每到达一个结点时,则判断该结点为根的子树是否含有问题的解,如果可以确定该子树中不含有问题的解,则放弃对该子树的搜索,退回到上层父结点,继续下一步深度优先搜索过程;在回溯法中,并不是先构造出整棵状态空间树,再进行搜索,而是在搜索过程,逐步构造出状态空间树,即边搜索,边构造;5、PPolynomial问题:也即是多项式复杂程度的问题;NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题;NPCNP Complete问题,这种问题只有把解域里面的所有可能都穷举了之后才能得出答案,这样的问题是NP里面最难的问题,这种问题就是NPC问题;三、算法填空本题20分,每小题5分1、n后问题回溯算法1 Mj&&Li+j&&Ri-j+N2 Mj=Li+j=Ri-j+N=1;3 tryi+1,M,L,R,A4 Aij=05 Mj=Li+j=Ri-j+N=0 2、数塔问题; 1c<=r2trc+=tr+1c 3trc+=tr+1c+1 3、Hanoi 算法 1movea,c2Hanoin-1, a, c , b 3Movea,c 4、1pv=NIL 2pv=u3 v ∈adju 4Relaxu,v,w四、算法理解题本题10分五、18天2分;2当n=23=8时,循环赛日程表3分;六、算法设计题本题15分 1贪心算法 Onlogn ➢ 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包;若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包;依此策略一直地进行下去,直到背包装满为止; ➢ 具体算法可描述如下:void Knapsackint n,float M,float v,float w,float x {Sortn,v,w; int i;for i=1;i<=n;i++ xi=0; float c=M;for i=1;i<=n;i++ {if wi>c break; xi=1; c-=wi; }if i<=n xi=c/wi; }2动态规划法 Oncmi,j 是背包容量为j,可选择物品为i,i+1,…,n 时0-1背包问题的最优值;由0-1背包问题的最优子结构性质,可以建立计算mi,j 的递归式如下;void KnapSackint v,int w,int c,int n,int m11 {int jMax=minwn-1,c;for j=0;j<=jMax;j++ /mn,j=0 0=<j<wn/ mnj=0;1 2 3 4 5 6 7 82 1 43 6 5 8 73 4 1 2 7 8 5 64 3 2 1 8 7 6 55 6 7 8 1 2 3 4 6 5 8 7 2 1 4 37 8 5 6 3 4 1 28 7 6 5 4 3 2 1for j=wn;j<=c;j++ /mn,j=vn j>=wn/mnj=vn;for i=n-1;i>1;i--{ int jMax=minwi-1,c;for j=0;j<=jMax;j++ /mi,j=mi+1,j 0=<j<wi/mij=mi+1j;for j=wi;j<=c;j++/mn,j=vn j>=wn/mij=maxmi+1j,mi+1j-wi+vi;}m1c=m2c;ifc>=w1m1c=maxm1c,m2c-w1+v1;}3回溯法 O2ncw:当前重量 cp:当前价值 bestp:当前最优值voidbacktrack int i//回溯法 i初值1{ifi>n //到达叶结点{ bestp=cp; return; }ifcw+wi<=c //搜索左子树{cw+=wi;cp+=pi;backtracki+1;cw-=wi;cp-=pi;}ifBoundi+1>bestp//搜索右子树backtracki+1;}七、算法设计题本题10分为了尽可能地逼近目标,我们选取的贪心策略为:每一步总是选择一个使剩下的数最小的数字删去,即按高位到低位的顺序搜索,若各位数字递增,则删除最后一个数字,否则删除第一个递减区间的首字符;然后回到串首,按上述规则再删除下一个数字;重复以上过程s次,剩下的数字串便是问题的解了;具体算法如下:输入s, n;while s > 0{ i=1; //从串首开始找while i < lengthn && ni<ni+1{i++;}deleten,i,1; //删除字符串n的第i个字符s--;}while lengthn>1&& n1=‘0’deleten,1,1; //删去串首可能产生的无用零输出n;。
算法设计与分析复习题目及答案详解
算法设计与分析复习题目及答案详解分治法 1、二分搜索算法是利用(分治策略)实现的算法。
9.实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是(分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除(栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
《算法设计与分析》试卷及答案
《算法设计与分析》试卷1一、多项选择题(每空2分, 共20分):1.以下关于算法设计问题的叙述中正确的是__________。
A.计算机与数值问题的求解——方程式求根、插值问题、数值积分、函数逼近等有关B.利用计算机无法解决非数值问题C.计算机在解决分类、语言翻译、图形识别、解决高等代数和组合分析等方面的数学问题、定理证明、公式推导乃至日常生活中各种过程的模拟等问题中, 主要进行的是判断、比较, 而不是算术运算D、算法设计与分析主要研究对象是非数值问题, 当然也包含某些数值问题2.算法的特征包括_________。
A.有穷性B、确定性C.输入和输出D.能行性或可行性3、以下描述是有关算法设计的基本步骤:①问题的陈述②算法分析③模型的拟制④算法的实现⑤算法的详细设计⑥文档的编制, 应与其它环节交织在一起其中正确的顺序是__________。
A.①②③④⑤⑥B.①③⑤②④⑥C.②④①③⑤⑥D.⑥①③⑤②④4.以下说法正确的是__________。
A.数学归纳法可以证明算法终止性B.良序原则是证明算法的正确性的有力工具C. x = 小于或等于x的最大整数(x的低限)D. x = 小于或等于x的最大整数(x的高限)5、汉诺塔(Hanoi)问题中令h(n)为从A移动n个金片到C上所用的次数, 则递归方程为__________, 其初始条件为__________, 将n个金片从A柱移到C柱上的移动次数是__________;设菲波那契(Fibonacci)数列中Fn为第n个月时兔子的对数, 则有递归方程为__________, 其中F1=F2=__________。
A.Fn=Fn-1+Fn-2 B、h(n)= 2h(n-1)+1C.1 D、h(1)= 1E、h(n)=2n-1F、06.在一个有向连通图中(如下图所示), 找出点A到点B的一条最短路为____ ______。
A.最短路: 1→3→5→8→10, 耗费: 20B、最短路:1→4→6→9→10, 耗费:16C.最短路: 1→4→6→9, 耗费: 12D.最短路: 4→6→9→10, 耗费: 13二、填空(每空2分, 共20分):1.快速排序法的基本思想是重新排列关键字, 把一个文件分成两个文件, 使得第一个文件中所有元素均小于第二个文件中的元素;然后再对两个子文件进行同样的处理。
算法分析与设计—部分复习题答案
算法设计与分析复习题1、一个算法应有哪些主要特征?有限性、确定性、输入、输出、可行性2、分治法(Divide and Conquer)与动态规划(Dynamic Programming)有什么不同?分治法是将一个问题划分成一系列独立的子问题,分别处理后将结果组合以得到原问题的答案。
动态规划同样将一个问题划分成一系列子问题进行处理,但当子问题不是互相独立而是互有联系时,动态规划不会重复计算子问题间联系的问题,是更高效的解决办法。
(具体解释太长了这个答案可以得点分)3、试举例说明贪心算法对有的问题是有效的,而对一些问题是无效的。
贪心算法的思想是通过选择局部最优以求得最优解,但某些最优解问题无法由局部最优推出,如0-1 knapsack problem(背包问题,一个能装20斤的背包装入一定商品,要求价值最高)4、求解方程f(n)=f(n-1)+f(n-2),f(1)=f(2)=1。
(斐波那契数列)(证明太复杂了不贴了)k5、求解方程T(n)=2T(n/2)+1,T(1)=1,设n=2。
T(n)=2*(2*T(n/4)+1)+1=2*(2*(T(n/8)+1)+1)+1 推出以下方程且且证明用数学归纳法。
void max_min(int a[],int m, int n, int* min) //运用分治法查找最大值与最小值{ int middle,hmin,gmin; if( m==n ) { * min = a[m]; } else if(m == n-1) { if( a[m] > a[n]) {*min = a[n]; } else { *min =a[m]; } } else { middle = (m+n)/2; max_min(a,m,middle,&gmin); max_min(a,middle+1,n,&hmin); if(gmin < hmin) { *min = gmin; } else { *min= hmin; } } } 6、编写一个Quick Sorting 算法,并分析时间复杂性。
算法设计与分析复习题目及答案
算法设计与分析复习题目及答案一、算法的基本概念1、什么是算法?算法是指解决特定问题的一系列明确步骤,它具有确定性、可行性、有穷性、输入和输出等特性。
例如,计算两个数的最大公约数的欧几里得算法,就是通过反复用较小数去除较大数,然后将余数作为新的较小数,直到余数为 0,此时的除数就是最大公约数。
2、算法的复杂度包括哪些?它们的含义是什么?算法的复杂度主要包括时间复杂度和空间复杂度。
时间复杂度是指算法执行所需要的时间量,通常用大 O 记号来表示。
例如,一个算法的时间复杂度为 O(n),表示其执行时间与输入规模 n成正比。
空间复杂度则是算法在运行过程中所需要的额外存储空间的大小。
比如说,一个算法需要创建一个大小为 n 的数组来存储数据,那么其空间复杂度就是 O(n)。
二、分治法1、分治法的基本思想是什么?分治法的基本思想是将一个规模为 n 的问题分解为 k 个规模较小的子问题,这些子问题相互独立且与原问题结构相同。
然后分别求解这些子问题,最后将子问题的解合并得到原问题的解。
2、请举例说明分治法的应用。
例如归并排序算法。
将一个未排序的数组分成两半,对每一半分别进行排序,然后将排好序的两部分合并起来。
其时间复杂度为 O(nlogn),空间复杂度为 O(n)。
三、动态规划1、动态规划的基本步骤有哪些?动态规划的基本步骤包括:(1)定义问题的状态。
(2)找出状态转移方程。
(3)确定初始状态。
(4)计算最终的解。
2、解释最长公共子序列问题,并给出其动态规划解法。
最长公共子序列问题是指找出两个序列的最长公共子序列的长度。
假设我们有两个序列 X 和 Y,用 dpij 表示 X 的前 i 个字符和 Y 的前 j 个字符的最长公共子序列长度。
状态转移方程为:如果 Xi 1 == Yj 1,则 dpij = dpi 1j 1 + 1否则 dpij = max(dpi 1j, dpij 1)四、贪心算法1、贪心算法的特点是什么?贪心算法在每一步都做出当前看起来最优的选择,希望通过这种局部最优选择达到全局最优解。
算法设计与分析课后习题
算法设计与分析课后习题(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章1. 算法分析题算法分析题1-1 求下列函数的渐进表达式(1). 3n^2 + 10n < 3n^2 + 10n^2 = 13n^2 = O(n^2)(2). n^2 / 10 + 2^n当n>5是,n^2 < 2 ^n所以,当n >= 1时,n^2/10 < 2 ^n故: n^2/10 + 2^n < 2 ^n + 2^n = 2*2^n = O(2^n)(3). 21 + 1/n < 21 + 1 = 22 = O(1)(4). log(n^3)=3log(n)=O(log(n))(5). 10log(3^n) = (10log3)n = O(n)算法分析题1-6(1)因为:f(n)=log(n^2) = 2log(n); g(n) = log(n) + 5所以:f(n)=Θ(log(n)+5) =Θ(g(n))(2)因为:log(n) < √n ; f(n) = 2log(n); g(n)= √n所以:f(n) = O(g(n))(3)因为:log(n) < n; f(n) = n; g(n) = log(n^2) = 2log(n)所以;f(n) = Ω(g(n))(4)因为:f(n) = nlogn +n; g(n) = logn所以:f(n) =Ω(g(n))(5)因为: f(n) = 10; g(n) = log(10)所以:f(n) =Θ(g(n))(6)因为: f(n)=log^2(n); g(n) = log(n)所以: f(n) ==Ω(g(n))(7)因为: f(n) = 2^n < 100*2^n; g(n)=100n^2; 2^n > n ^2所以: f(n) = Ω(g(n))(8)因为:f(n) = 2^n; g(n) = 3 ^n; 2 ^n < 3 ^n所以: f(n) = O(g(n))习题1-9 证明:如果一个算法在平均情况下的计算时间复杂性为Θ(f(n)),该算法在最坏情况下所需的计算时间为Ω(f(n)).分析与解答:因此,Tmax(N) = Ω(Tavg(N)) = Ω(Θ(f(n)))=Ω(f(n)).第二章算法分析题2-3 设a[0:n-1]是已经排好序的数组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、简答题:1.备忘录方法和动态规划算法相比有何异同简述之。
2.简述回溯法解题的主要步骤。
3.简述动态规划算法求解的基本要素。
4.简述回溯法的基本思想。
5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
6.简要分析分支限界法与回溯法的异同。
7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面 8.贪心算法求解的问题主要具有哪些性质简述之。
9.分治法的基本思想是什么合并排序的基本思想是什么请分别简述之。
10.简述分析贪心算法与动态规划算法的异同。
三、算法编写及算法应用分析题:1.已知有3个物品:(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10),背包的容积M=20,根据0-1背包动态规划的递推式求出最优解。
2.按要求完成以下关于排序和查找的问题。
①对数组A={15,29,135,18,32,1,27,25,5},用快速排序方法将其排成递减序。
②请描述递减数组进行二分搜索的基本思想,并给出非递归算法。
③给出上述算法的递归算法。
④使用上述算法对①所得到的结果搜索如下元素,并给出搜索过程:18,31,135。
3.已知1()*()i i k kij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序(要求给出计算步骤)。
4.根据分枝限界算法基本过程,求解0-1背包问题。
已知n=3,M=20,(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10)。
5.试用贪心算法求解汽车加油问题:已知一辆汽车加满油后可行驶n 公里,而旅途中有若干个加油站。
试设计一个有效算法,指出应在哪些加油站停靠加油,使加油次数最少,请写出该算法。
6.试用动态规划算法实现下列问题:设A 和B 是两个字符串。
我们要用最少的字符操作,将字符串A 转换为字符串B ,这里所说的字符操作包括: ①删除一个字符。
②插入一个字符。
③将一个字符改为另一个字符。
请写出该算法。
7.对于下图使用Dijkstra 算法求由顶点a 到顶点h 的最短路径。
8.试写出用分治法对数组A[n]实现快速排序的算法。
9.有n 个活动争用一个活动室。
已知活动i 占用的时间区域为[s i ,f i ],活动i,j 相容的条件是:sj ≥f i ,问题的解表示为(x i | x i =1,2…,n,),x i 表示顺序为i 的活动编号活动,求一个相容的活动子集,且安排的活动数目最多。
10.设x 1、x 2、x 3是一个三角形的三条边,而且x 1+x 2+x 3=14。
请问有多少种不同的三角形给出解答过程。
11.设数组A 有n 个元素,需要找出其中的最大最小值。
①请给出一个解决方法,并分析其复杂性。
②把n 个元素等分为两组A1和A2,分别求这两组的最大值和最小值,然后分别将这两组的最大值和最小值相比较,求出全部元素的最大值和最小值。
如果A1和A2中的元素多于两个,则再用上述方法各分为两个子集。
直至子集中元素至多两个元素为止。
这是什么方法的思想请给出该方法的算法描述,并分析其复杂性。
12.有n 个程序和长度为L 的磁带,程序i 的长度为a i ,已知L ani i∑=1,求最优解(x i ,x 2 ,...,x i ,…, x n ),x i =0,1, x i =1,表示程序i 存入磁带,x i =0,表示程序i 不存入磁带,满足L ax ni ii ≤∑=1,且存放的程序数目最多。
13.试用分治法实现有重复元素的排列问题:设),...,,{21n r r r R =是要进行排列的n 个元素,其中元素n r r r ,...,,21可能相同,试设计计算R 的所有不同排列的算法。
14.试用动态规划算法实现0-1闭包问题,请写出该算法。
15.试用贪心算法求解下列问题:将正整数n 分解为若干个互不相同的自然数之和,使这些自然数的乘积最大,请写出该算法。
16.试写出用分治法对一个有序表实现二分搜索的算法。
17.试用动态规划算法实现最长公共子序列问题,请写出该算法。
18.假设有7个物品,它们的重量和价值如下表所示。
若这些物品均不能被分割,且背包容量M =150,使用回溯方法求解此背包问题,请写出状态空间搜索树。
19.求解子集和问题:对于集合S={1,2 ,6,8},求子集,要求该子集的元素之和d=9。
①画出子集和问题的解空间树;②该树运用回溯算法,写出依回溯算法遍历节点的顺序;③如果S 中有n 个元素,指定d ,用伪代码描述求解子集和问题的回溯算法。
20.求解填字游戏问题:在3×3个方格的方阵中要填入数字1到N (N ≥10)内的某9个数字,每个方格填一个整数,似的所有相邻两个方格内的两个整数之和为质数。
试采用回溯法写出满足这个要求的一种数字填法的算法和满足这个要求的全部数字填法的算法。
21.试用动态规划算法实现最大子矩阵和问题:求n m ⨯矩阵A 的一个子矩阵,使其各元素之和为最大。
22.试用回溯法解决下列整数变换问题:关于整数i 的变换f 和g 定义如下:⎣⎦2/)(;3)(i i g i i f ==。
对于给定的两个整数n 和m ,要求用最少的变换f 和g 变换次数将n 变为m 。
23.关于15谜问题。
在一个4×4的方格的棋盘上,将数字1到15代表的15个棋子以任意的顺序置入各方格中,空出一格。
要求通过有限次的移动,把一个给定的初始状态变成目标状态。
移动的规则是:每次只能把空格周围的四格数字(棋子)中的任意一个移入空格,从而形成一个新的状态。
为了有效的移动,设计了估值函数C 1(x),表示在结点x 的状态下,没有到达目标状态下的正确位置的棋子的个数。
请使用该估计函数,对图示的初始状态,给出使用分支限界方法转换到目标状态的搜索树。
初始状态目标状态二、简答题:1.备忘录方法和动态规划算法相比有何异同简述之。
备忘录方法是动态规划算法的变形。
与动态规划算法一样,备忘录方法用表格保存已解决的子问题的答案,在下次需要解此问题时,只要简单地查看该子问题的解答,而不必重新计算。
备忘录方法与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上递归的。
因此,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同的子问题的重复求解,而直接递归方法没有此功能。
2.简述回溯法解题的主要步骤。
回溯法解题的主要步骤包括:1)针对所给问题,定义问题的解空间;2)确定易于搜索的解空间结构;3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。
3.简述动态规划算法求解的基本要素。
动态规划算法求解的基本要素包括:1)最优子结构是问题能用动态规划算法求解的前提;2)动态规划算法,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常数时间查看一下结果,即重叠子问题。
4.简述回溯法的基本思想。
回溯法的基本做法是搜索,在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。
如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。
5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
将递归算法转化为非递归算法的方法主要有:1)采用一个用户定义的栈来模拟系统的递归调用工作栈。
该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。
2)用递推来实现递归函数。
3)通过Cooper变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。
后两种方法在时空复杂度上均有较大改善,但其适用范围有限。
6.简要分析分支限界法与回溯法的异同。
1)求解目标:回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。
2)搜索方式的不同:回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。
7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面算法复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复杂性,需要的空间资源的量称为空间复杂性。
这个量应该只依赖于算法要解的问题的规模、算法的输入和算法本身的函数。
如果分别用N、I和A表示算法要解问题的规模、算法的输入和算法本身,而且用C表示复杂性,那么,应该有C=F(N,I,A)。
算法复杂性度量主要包括算法的时间复杂性和算法的空间复杂性。
8.贪心算法求解的问题主要具有哪些性质简述之。
贪心算法求解的问题一般具有二个重要的性质:一是贪心选择性质,这是贪心算法可行的第一个基本要素;另一个是最优子结构性质,问题的最优子结构性质是该问题可用贪心算法求解的关键特征。
9.分治法的基本思想是什么合并排序的基本思想是什么请分别简述之。
分治法的基本思想:将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k ≤n,而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。
合并排序基本思想:将待排序元素分成大小大致相同的2个子集合,分别对2个子集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合。
10.简述分析贪心算法与动态规划算法的异同。
贪心算法和动态规划算法都要求问题具有最优子结构性质,这是两类算法的一个共同点。
动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。
三、算法编写及算法应用分析题:1.已知有3个物品:(w1,w2,w3)=(12,10,6), (p1,p2,p3)=(15,13,10), 背包的容积M=20,根据0-1背包动态规划的递推式求出最优解。
解:根据递推式 f i (X )=max{f i-1(X),f i-l (X —w i )+p i |X ≥wi } 从i=1开始,最后得到f n (M )f1(1) ~ f1(11)= 0 f1(12) ~ f1(20)= p1=15 f2(1) ~ f2(9)= 0f2(10) ~ f2(11)= max{f1(10),f1(10 – w2)+p2} =13 f2(12) ~ f2(20)= max{f1(12),f1(12 – w2)+p2}=15f3(20)=max{f2(20),f2(20 – w3)+p3} = f2(20 –6)+10=25 可获得的最大利润为25,最优解为:(1,0,1) 2.按要求完成以下关于排序和查找的问题。