《大学物理光学》PPT课件
大学物理第20章几何光学.ppt
心处.对于厚透镜,如果两侧的折射率相同,物方焦
距等于像方焦距.
21
三、成像公式
图中△PA1B1~△F1A2B2,△RB2A2~△F2H2A2
所以
f1 u
h/ h + h/
f2
h h + h/
两式相加得
f1 + f2 1
u
若系统两侧的折射率相同,此时有f1=f2= f 22
1+1 1
u f
注意式中u、、f 都是从相应的主平面算起的
一、光的直线传播定律
光在均匀介质中沿直线传播.
二、光的独立传播定律
不同的光线以不同的方向通过空间某一点时彼
此不发生影响.
三、折射定律和反射定律
1.折射定律
相对折射率 绝对折射率
sin i1 sin i2
n21
n2 n1
n cP
o
Q
i2 n2
N/ C
为光在介质中的速度
3
2.反射定律
A
N
B
7
n1
n2
n1
n2
F1
A
A
F2
物方焦点
像方焦点
物方焦距f1. u=f1, =∞
f1
n1 n2 n1
r
像方焦距f2. u=∞,=f2
f2
n2 n2 n1
r
1.焦距f1和f2可能是正数,也可能是负数 2. 一般地,n1≠n2,对于同一折射面, f1 ≠f2
f1 n1
f2 n2
8
3. 曲率半径 r↑→f1 ↑(f2↑),折射本领就越差 媒质的折射率与该侧焦距的比值来表示折射本 领,称为折射面的焦度,用Φ表示,
18
2024版物理光学ppt课件
产生条件
光波通过偏振片或反射、 折射等过程。
应用举例
偏振片的应用、偏振光的 干涉等。
光的波动理论
光的波动说
认为光是一种波动的ห้องสมุดไป่ตู้ 质,具有干涉、衍射等
波动特性。
光的电磁理论
认为光是一种电磁波, 具有电场和磁场交替变
化的特点。
光的量子理论
认为光是由一份份能量 子组成的,即光子,具
有粒子性。
光的波粒二象性
光学仪器的主要性能指标及其评价方法,包括分辨率、放大率、视 场、像质等。
光学仪器的使用与维护
光学仪器的正确使用方法、保养维护及故障排除技巧。
04 光的量子性质
光的粒子性表现
光的直线传播 光在同种均匀介质中沿直线传播,这是光的粒子性的表现 之一。
光的反射和折射
光在传播过程中遇到不同介质的分界面时,会发生反射和 折射现象,这些现象也可以用光的粒子性来解释。
光的散射
当光通过不均匀介质时,部分光束将偏离原来方向而分散 传播,从侧面看到光亮的物体,这种现象称为光的散射, 也是光的粒子性的一种表现。
光电效应实验
• 实验原理:光电效应是指光照射到物质表面时,引起物质电性质发生变化的现象。爱因斯坦提出了著名的光电 效应方程,成功地解释了光电效应现象。
• 实验装置:光电效应实验装置包括光源、滤光片、光电管、微电流计和电源等部分。 • 实验步骤:首先选择合适的光源和滤光片,调整光源和光电管之间的距离和角度,使光束能够照射到光电管的
05 现代光学技术
激光技术及应用
激光产生原理
介绍激光产生的物理过程,包括粒子数反转、受激辐射等概念。
激光器种类
列举不同类型的激光器,如气体激光器、固体激光器、半导体激 光器等,并简述其工作原理和应用领域。
《物理光学》PPT课件
h N / 2 单色光波长
M1走过的距离 视场中心移过的条纹的数目
6
3、泰曼干涉仪 结构原理 在迈克尔逊干涉仪的一个光路中加入了被测光学器件
单色准直光照明,使产生等厚干涉条纹,用于检验光 学零件的综合质量 检验原理 通过研究光波波面经光学零件后的变形确定零件质量
7
8
4、马赫-曾德干涉仪
结构和光路走向如图 适用于研究气体密度迅速 变化的状态
IG
Ii
1
F
s
Ii in
2
22
在F点,1=2m
2
,
2
2 m
2
IF
1
2Ii F sin2 (
4)
1
2Ii F(
4)2
G1 G2
Dd
d1
d2
当IF 0.81IM时,
2Ii 1 F(
4)2
0.81
Ii
Ii
1 F(
2)2
得到 其中
=4.15 2.07 Fs
s F ,为条纹精细度。 2
= 4 =21-,当 1时,变得很小。
F
(5) 条纹精细度s
定义:相邻条纹相位差2与 条纹锐度之比
s 2
F
2 1
反射率越趋近于1, s值越大,
条纹越精细,条纹锐度也越好。
二、法布里-泊罗干涉仪(一种多光束干涉装置)
(一)仪器结构
法布里-泊罗标准具(F-P)
玻璃板或石英板 隔圈
镀膜(提高表面的反射率)
......
Anr A(i)tt(r)(2n1) exp i(n 1) ,
r
t'
t
r'
r'
《大学物理光学》PPT课件
1
i
C
2
e AB cos r
e AB BC cosr
'
c
A
e
B
AC ACsini 2etgrsini
2ne sinr λ δ 2n1e sini cosr cosr 2
sini n u1 sinr n 1 u 2
2e λ δ ( n n 1 sinrsini) cosr 2
凸起
(4)牛顿环 R-e R
e
r
λ 明纹 2e kλ 2 λ λ 暗纹 2e ( 2k 1) 2 2 2 2 2 R r (R e)
r R 2 Re e
2 2 2
R>>e
r 2 R e
2
r
2Re
0
明环半径
r
λ ( 2k 1)R 2
k 1,2,3
例题,已知 =500nm 平行单色光垂直入射 a=0.25mm f=25cm 求:(1)两第三级明纹之间的距离 f
x3 o
(2)第三级明条纹的宽度 解: (1)第三级明条纹满足
7 a sinθ 3 λ k3 2 7λ f x3 7 x3 a sinθ 3 λ si nθ 3 2a 2 f
) 菲涅耳衍射(近场衍射 衍射的两大分类 夫琅和费衍射(远场衍 射)
菲涅耳衍射 光源,屏幕 距衍射屏有限远
夫琅和费衍射 光源,屏幕 距衍射屏无限远
S
P
菲涅耳衍射
(近场衍射) 衍射屏
菲涅耳
圆孔 圆屏 单缝 双缝 单边
衍射
圆孔 圆 屏 夫琅和费
单缝 双缝 单边
衍射
2024大学物理课件光学篇
•光的本质与传播•几何光学基础•波动光学初步•量子光学简介•激光技术与应用•光纤通信技术基础光的本质与传播光的波粒二象性01波动性质光具有干涉、衍射等波动特有的现象,表明光是一种波动。
02粒子性质光电效应等现象揭示了光的粒子性,即光由一份一份不连续的能量组成,称为光子。
03波粒二象性的统一光既具有波动性又具有粒子性,二者在不同条件下表现出来。
光的传播速度与介质关系真空中的光速01在真空中,光的传播速度最快,约为3×10^8米/秒。
介质中的光速02光在不同介质中的传播速度不同,一般比在真空光的反射与折射定律反射定律01入射光线、反射光线和法线在同一平面内;入射光线和反射光线分居法线两侧;入射角等于反射角。
折射定律02入射光线、折射光线和法线在同一平面内;入射光线和折射光线分居法线两侧;入射角的正弦与折射角的正弦成正比,即sinθ1/sinθ2=n2/n1(其中n1和n2分别为两种介质的折射率)。
全反射现象03当光从光密介质射入光疏介质,且入射角大于或等于临界角时,会发生全反射现象。
光的偏振现象自然光与偏振光自然光在各个振动方向上的光强相同,而偏振光则只在某一特定方向上振动。
偏振片的起偏与检偏作用偏振片可以将自然光转变为偏振光,也可以用来检测偏振光。
光的双折射现象当光射入某些晶体时,会发生双折射现象,即分解成两束振动方向互相垂直的偏振光。
几何光学基础03光线与光束的区别与联系光线是理想化的模型,而光束是实际存在的;光束由无数光线组成,而光线是光束的抽象表示。
01光线定义光线是表示光的传播方向和路径的几何线,它代表能量传播的方向。
02光束概念光束是由许多光线组成的集合,具有一定的截面形状和发散角。
光线与光束概念透镜成像基本原理透镜通过改变光线的传播方向来实现成像,遵循光的折射定律。
透镜成像规律物体在透镜前不同位置时,成像位置、大小、虚实等规律。
透镜类型及特点包括凸透镜和凹透镜,分别具有会聚和发散作用。
《大学物理》第十二章 光学
h
结束 返回
解:
=a
acos2
+
2
=
2asin2
=
2
asin =h
sin =4h
a 2
h
结束 返回
12-5 一平面单色光波垂直照射在厚度 均匀的薄油膜上,油 膜 覆盖在玻璃板上, 所用 单色光的波长可以连续变化,观察到 500nm与700nm这两个波长的光在反射 中消失,油的折射率为 1.30,玻璃的折射 率为1.50。试求油膜的厚度 。
第二级明纹的宽度为
Δx
´=
Δx 2
=2.73 (mm)
结束 返回
12-15 一单色平行光束垂直照射在宽 为 1.0mm 的单缝上,在缝后放一焦距为 20m的会其透镜,已知位于透镜焦面处的 屏幕上的中央明条纹宽度为2.5mm。求入 射光波长。
结束 返回
解:
=
aΔx 2D
=
1.0×2.5 2×2.0×103
sinj
=
k (a+b)
sin =0.1786k-0.5000
在 -900 < j < 900 间,
对应的光强极大的角位置列表如下:
k
sinj j
k
sinj j
0
-0.500 -300
1
2
-0.3232 -0.1464
-18051’ -8025’
3
4
0.0304 0.2072
1045’ 11057’
结束 返回
12-22 一光栅,宽为2.0cm,共有
6000条缝。如用钠光(589.3nm)垂直入射,
中央明纹的位置? 共有几级?如钠光与光
大学物理课件 光学-1
第十一章 光学
波阵面分割法
s1
光源 *
s2
相干光的产生原理:光源上同一点发的光分成两部分, 再进行叠加,这两部分光是同一个发光原子的同一次 发光,为相干光。
杨氏
11-2 杨氏双缝干涉 一、杨氏双缝干涉
实
s1
r1
验 装 置
s d o
s2
r
d'
d' d
劳埃第十德一镜章 光学
p
B
r2
x
o
光程差
sin tan x d'
概述
光 学(Optics第)十一章 光 学
1)光的机械微粒学说(17世纪---18世纪末)
代表:牛顿 对立面:惠更斯--波动说
v水 v空气
v水 v空气
分歧的焦点:光在水中的速度
v v 1850年佛科(Foucauld)测定
水
空气
2)光的机械波动说(19世纪初--后半世纪)
2)光的机械波动说(19世纪初--后第半十世一纪章)光 学
1、理解相干光的条件及获得相干光的方法。
2、掌握光程的概念以及光程差和相位差的关系, 理解在什么情况下的反射光有相位跃变。
3、能分析杨氏双缝干涉条纹及薄膜等厚干涉条 纹的位置。
4、了解迈克耳孙干涉仪的工作原理。
二、光的衍射
第十一章 光 学
1、了解惠更斯-菲涅耳原理及它对光的衍射现 象的定性解释。
2、理解用波带法来分析单缝的夫琅禾费衍射条 纹分布规律的方法,会分析缝宽及波长对衍射条纹 分布的影响。
n
第十一章 光学
s1 *
r1
P
➢ 波程差 r r2 r1
s 2*
r2 n
《大学物理光学》PPT课件
3
光学仪器的发展趋势 随着光学技术的不断发展,光学仪器正朝着高精 度、高灵敏度、高分辨率和自动化等方向发展。
03
波动光学基础
Chapter
波动方程与波动性质
波动方程
描述光波在空间中传播的数学模型,包括振幅、频率、波长等参现象,是波动光学的基础。
偏振现象及其产生条件
干涉仪和衍射仪使用方法
干涉仪使用方法
通过分束器将光源发出的光波分成两束,再经过反射镜反射后汇聚到一点,形成干涉图样。通过调整反射镜的位 置和角度,可以观察不同干涉现象。
衍射仪使用方法
将光源发出的光波通过衍射光栅或单缝等衍射元件,观察衍射现象。通过调整光源位置、衍射元件参数等,可以 研究光的衍射规律。
光的反射与折射现象
光的反射
光在两种介质的分界面上改变传播方向又返回原来 介质中的现象。反射定律:反射光线、入射光线和 法线在同一平面内,反射光线和入射光线分居法线 两侧,反射角等于入射角。
光的折射
光从一种介质斜射入另一种介质时,传播方向发生 改变的现象。折射定律:折射光线、入射光线和法 线在同一平面内,折射光线和入射光线分居法线两 侧,折射角与入射角的正弦之比等于两种介质的折 射率之比。
了解干涉条纹的形成和特点。
衍射光栅测量光谱线宽度
03
使用衍射光栅测量光谱线的宽度,掌握衍射光栅的工作原理和
测量方法。
量子光学实验项目注意事项
单光子源的制备与检测 了解单光子源的概念、制备方法及其检测原理,注意实验 过程中的光源稳定性、探测器效率等因素对实验结果的影 响。
量子纠缠态的制备与观测 熟悉量子纠缠态的基本概念和制备方法,掌握纠缠态的观 测和度量方法,注意实验中的环境噪声、探测器暗计数等 因素对纠缠态的影响。
《大学物理光学》PPT课件 (2)
• 注意区分:
界面;入射面;振动面
n1
E P 光矢量的p分量-平行于入射面振动 n2
E S 光矢量的s分量-垂直于入射面振动
i1 i1'
i2
r—是在界面上的任一点的位置矢量。
图1.2-3 光在两种介质分界面上的反射与折射
1 波动光学基础
1.5.1 光在介质界面的反射与折射
E1s E1's E2s
A 1 s e i ( k x 1 r p t ) A ] 1 's [ e i ( k x 1 ' r p 1 't ) A ] 2 [ s e i ( k x 2 r p 2 t )] [
1. 1 1' 2
2.
k1rk1 ' rk2r
(k1' k1) r 0 (k2 k1) r 0
1、rp、r
均为复数
s
rp rs 1, RP RS 1
S 0 p,P 0 p 2、1 C时,s p 0,不改变偏振态 1 C时,s p 0 p,改变偏振态
二、倏逝波
1、等幅面是平行于界面的平面, 等相面是垂直于界面的平面。
2、入射波透入介质2约一个波长的深度, 透射波沿界面传播约半个波长, 然后返回介质1。
R
wp
0
0
30
1.5.5 反射光与透射光的半波损失(相位突变)
结论: ① 自然光自疏(快)介质向密(慢)介质入射时,反射光相对入射光 存在半波损失(p 相位突变),反之不存在。
② 透射光在任何情况下都不存在半波损失。
1 波动光学基础
1.5.6 全反射现象与应用
1.5.6 全反射现象与应用
• 一、反射系数及反射相移
大学物理光学基础ppt
解: (1) a sin k (k 1,2,3)
第一级暗纹
k=1,1=300
a
0.5 2 1.0
m
sin 1
例、一束波长为 =5000Å的平行光垂直照射在一个
单缝上。(2)如果所用的单缝的宽度a=0.5mm,缝后 紧挨着的薄透镜焦距f=1m,求:(a)中央明条纹的角
即: k =(a+b) /a·k'
缝间光束干 (a+b)sin =k
涉极大条件 k=0,±1, ±2, ···
k 就是所缺的级次
缺级
单缝衍射 第一级极 小值位置
光栅衍射 第三级极 大值位置
缺级
k=-6 k=-4
k=-2 k=0
k=2
k=4
k=6
k=-5 k=-3
k=-1 k=1
k=3
k=5
若
a b k 3 6 9 a k 1 2 3
包权
人书友圈7.三端同步
dE C K ( ) cos 2 ( t r )dS C----比例常数
r
T
K( )----倾斜因子
K ( ) 0 K ( ) 最大
, K ( ) 0 dE 0
2
惠更斯-菲涅耳原理解释了波为什么不向后传 的问题,这是惠更斯原理所无法解释的。
P点的光振动(惠更斯原理的数学表达)为:
E
dE
C
K (
r
)
cos 2
(t T
r
)dS
15-2 单缝夫琅禾费衍射
单缝衍射实验装置
L1
K
L2
E 屏幕
S
*
用菲涅耳半波带法解释单缝衍射现象
将衍射光束分成一组一组的平行光,每组平行光的 衍射角(与原入射方向的夹角)相同
大学物理课件光学
当X射线或γ射线与物质相互作用时,光子将部分能量转移 给电子,使电子获得动能并从原子中逸出。康普顿效应进 一步证实了光的粒子性。
02
光的干涉现象及应用
双缝干涉实验及原理
双缝干涉实验装置与步骤
介绍双缝干涉实验的基本装置,包括 光源、双缝、屏幕等,以及实验的操 作步骤。
双缝干涉现象观察
双缝干涉原理分析
光的偏振现象
横波特有的现象,纵波不发生偏振。 光的偏振证明了光是一种横波。
光的量子性描述
光子概念
光是由一份份不连续的能量子组成的,每一份能量子称为 一个光子。光子具有能量ε=hν和动量p=h/λ,其中h为普 朗克常量,ν为光的频率,λ为光的波长。
光电效应 当光照在金属表面时,金属中的电子会吸收光子的能量并 从金属表面逸出,形成光电流。光电效应实验证明了光的 量子性。
大学物理课件光学
目录
• 光学基本概念与理论 • 光的干涉现象及应用 • 光的衍射现象及应用 • 光的偏振现象及应用 • 现代光学技术与发展趋势 • 实验方法与技巧
01
光学基本概念与理论
光的本质和特性
01 光是一种电磁波
光具有波粒二象性,既可以表现为波动性质,也 可以表现为粒子性质。
02 光速不变原理
偏振光
光振动在某一特定方向的光,在垂直于传播方向的平面 上,只沿某个特定方向振动。
马吕斯定律和布儒斯特角
马吕斯定律
描述线偏振光通过检偏器后透射光强与检偏器透振方向夹角的关系,即透射光强与夹角的余弦值的平方成正比。
布儒斯特角
当自然光在两种各向同性媒质分界面上反射、折射时,反射光和折射光都是部分偏振光。反射光中垂直振动多于 平行振动,折射光中平行振动多于垂直振动。当入射角满足某种条件时,反射光中垂直振动的光完全消失,只剩 下平行振动的光,这种光是线偏振光,而此时的入射角叫做布儒斯特角。
物理光学第一章节PPT
利用斯托克斯公式和高斯公式可以把麦克斯韦方 程组的积分形式化为微分形式。(见郭硕鸿电动力学)
麦克斯韦方程组的微分形式
r r B E t r D r B 0 r r r D H J t
A dS AdV NhomakorabeaS V高斯公式
A dl ( A) dS
w D B E H t t t
对于各向同性介质
D 0 r E
B 0 r H
w d 1 1 d ( E D H B) ( we wm ) t dt 2 2 dt
为我们熟知的形式。 四、波动方程 当电磁波(也就是光波)在透明各向同性介质中 的传播时
2. 球面波
现再给出波动方程的另一个简单解:球面波的 解。球面波是指波面为一球面的波。一般从点光源 发出的光波就是球面波。(当观察点到光源的距离 比光源线度大十倍以上时 ,这光源就可看作点光 源。)由于球面波的波面是球面,同一个球面上的 ˆ, t ), s ˆr ˆ 点有相同的振动状态。因此 f f (r s 波方程解的形式则为f = f ( r , t ) , r=r (x ,y ,z )
w
单位体积内电磁场的能量 单位时间内垂直通过单位面积的电磁能
能流密度 S
dW dP S dtd d
传输功率
dP Sd Sd cos S d
S d
单位时间内从封闭曲面向外流出的电磁能量
F q(E u B) dF dq(E u B) dV (E u B)
第1章 光波的基本性质
光波是电磁波。因此要了解光波的基本性质,首先 要知道电磁波的基本性质。
1.1 电磁场基本方程 一、麦克斯韦方程组 相互作用和交变的电场和磁场的总和,称为电 磁场。交变的电磁场按照电磁定律的传播就形成了 电磁波。电磁波用电场强度E和磁感应强度B、电 位移矢量D和磁场强度H来描述,描述这四个量之 间相互关系的就是麦克斯韦方程组。
《大学物理物理光学》PPT课件
(Wave optics)
Introduction
Review of history
The period of Ancient optics
The period of geometric optics The period of wave optics The period of quantum optics
橙 622~597 4 .8 110 ~ 45 .0 110 4 610
黄 597~577 5 .0 110 ~ 45 .4 110 4 570
绿 577~492 5 .4 110 ~ 46 .1 110 4 540
青 492~470 6 .1 110 ~ 46 .4 110 4 480
相干条件:
(1)振动方向相同
(2)频率相同
(3)有恒定的位精相选pp差t
14
相干光的获得
分波阵面法:
在光源发出的 同一波阵面上 取两个点光源, 该两个点光源 发出的光为相 干光(杨氏实 验)
波阵面分割法
s1
光源 *
s2
精选ppt
15
分振幅法:
利用反射或 折射把一束 光的振幅分 成两部分, 这两部分光 为相干光 (薄膜干涉)
独立性:各原子各次发光相互独立,各波列互不相干.
非相干(不同原子发的光)
非相干(同一原子先后发的光)
精选ppt
11
激光属于受激辐射
• E2 • E1
2.激光
波列
E 2 E 1 /h
光波的相位、频率、振动方向以及传播方向都和原 来的入射光相同,即它们具有好
谱线宽度
例:普通单色光
: 10-2 10 0A
0
【精品】物理光学PPT课件(完整版)
绪论
1. 物理光学的研究对象和内容
光学是研究光的本性,光的传播以及它和物质相互作 用的学科。
光学
几何光学 物理光学 现代光学
波动光学 量子光学
几何光学:基于“光直线传播”的概念讨论光的传播规律 几何光学三个基本定律(直线传播,折射、反射定律)。
是光波衍射规律的短波近似。
它们在方法上是几何的,在物理上不涉及光的本质。
f ( ) 1 cos Ts ( )
在三个坐标轴方向上方向的空间频率为:
fx
cos
fy
cos
fz
cos
f x , f y , fz 又称为三维简谐波固有空间频率 f 的坐标轴分量。
f
2 x
f
2 y
f
2 z
1
2
f
2
光波的空间频率分量反映了波的传播方向, 所以可以根据光的波长和空间频率分量写出 波函数:
I A2 E(r ) E*(r )
此公式也适用于非单色光。
x 2π
O
0 y
-2π
共轭光波,也就是与原复振幅共轭的复振幅所描述的光波。 以图1.5的情形为例,z=0平面上的复振幅为:
E(r ) Aexp(ikx sin )
其中的γ也是入射光波的入射角。 其共轭为:
E*(r) Aexp(ikxsin ) Aexpikxsin( )
波面为球面的波被称为球面波。
理想点光源发出的波为球面波。
一个在真空或各向同性介质中的 理想点光源,它向外发射的光波 是球面光波,等相位面是以点光 源为中心、随着距离的增大而逐 渐扩展的同心球面。
1.3.1 球坐标系中的波动微分方程
球面波具有球对称性,在球坐标系中,球面波的波
大学物理光学部分ppt
薄膜的最小厚度对应 k 0 ,所以 emin 4n
在镀膜工艺中,常把 ne 称为薄膜的光学厚度,镀膜时控 制厚度e,使膜的光学厚度等于入射光波长的1/4。
注意: 一定的膜厚只对应一定波长的单色光,照相机镜头常
取 550 n黄m绿光
来计算镀膜的厚度。在白光
下观看此薄膜的反射光,因缺少黄绿色光而表面呈蓝紫色。
相对光强 I E 2 E是电场强度振幅
2、光源
光 是原子或分子的运动
状态变化时辐射出来 大量处的于激发态的原子自发地 跃迁到低激发态或基态时就辐 射电磁波(光波)。
- 1.5 e V - 3.4 e V
波列
- 13.6 e V 氢原子的发光跃迁
原子发光的特性
间歇性 每个原子或分子的辐射是断续的、无规则的,每
1 m . 若第 1 级明纹到第 4 级明纹的距离为 7.5 mm ,求光波 波长。
解 d 0.2 mm
D 1m
x D
d
r2
P
s1
d
r1
o
s2
D
x 7.5 2.5 mm 3
所以 d x 500 nm
D
例2 用云母片( n = 1.58 )覆盖在杨氏双缝的一条缝上,
这时屏上的零级明纹移到原来的第 7 级明纹处。若光波波长 为 550 nm ,求云母片的厚度。
§10.1 光的相干性
1、光的电磁理论要点
光速
光波是电磁波, 电磁波在真空中的传播速度
c
1
00
, 介质中 v
c
r r
而
c n v
rr
可见光的波长范围
400 nm — 760 nm
1 nm =10-9 m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条纹间隔(明 明,暗 暗) 同一D, 2a ,
红 紫 (一级明纹,彩带) 白光(0级明纹,白的)
不同,间隔不同 红x,紫x
紫 红 (一级明纹,彩带)
3 半波损失
S
P 条件:从光蔬媒质—光密媒质 (1) 位相改变
暗 (2)形成波节
S
(3)从波蔬媒质到波密媒质的反射
S
r2
r1' r1"
P
r2
-
(r1'
N1 2a sinφ
o
N2 2a tgφ
2a x
D
S1N1P
r12 D2 (x a) 2
S2N 2P
r22 D2 (x a) 2
rБайду номын сангаас2 r12 4ax
(r2 r1 )(r2 r1 ) 4ax
2D δ
δ r2 r1 k λ
明条纹(干涉最大k) 0,1,2,3
λ
δ
r2
L可测,如果已知 如果已知
测小角 测波长
条纹左移
条纹右移
条纹移动一条,厚度改变 e λ 2n
条纹移动 N 条,厚度改变 E N λ 2n
应用的例子 (1)干涉膨胀仪
λ 光学玻璃,平整度小于 10
(2)测厚 H
S
条纹间隔 m
m λ ΔH 2n
测光学平面的平整度
凹陷
r1"
λ) 2
λ
r2 r1 2
例题 已知 2a=0.2mm D=1m=1000mm
r1 r1' r1"
求 (1) x4 x1 7.5mm ?
解
(2) =600nm
x
D 2a
kλ
x=?
x4
x1
D (4 1)λ 2a
λ x4 x1 2a 5 104 (mm ) 500(nm) 41 D
两个独立光源不相干 原子发光 间歇的波列
机械波 波源 媒质
光波
光源 “以太”
§2研究光干涉的基本实验
1几种实验装置 扬氏双缝实验
菲涅尔双面镜实验
s 1
S
s 2
s 1
S
s 2
菲涅尔双棱镜实验
观察屏
洛埃镜实验
S
s
2 干涉条纹的分布 2a<<D x<<D
s1
r1 r
2a r
s2 2
D
p (x) r2 r1
n A
c
e
光λ线11:A C'
2π
AC '
(半波损失)
n2
B
C与C'的位相差
2π (AB BC) 2π AC
λ膜
λ1
真空:
介质 1 : λ 1
介质 2 : λ 2
不变
C
u1
C n1
C u2 n2
不同
λ C ν
λ1
u1 ν1
λ n1
λ2
u2 ν
λ n2
λ λ膜 n
λ λ 1 n1
2
1
sλ2i明n2i (2kλ2k1)
明 2
暗
{ (2k 1)λ 2
暗
k=0,1,2
(1)e. i 一定, (2), e 一定, 等倾干涉条纹 (3) , i 一定, 等厚干涉条纹 例题:空气中放一水平肥皂膜,以知:n = 1.33
e = 0.32 m.用白光垂直照射,波长 从0.4----
0.7m.问在反射光中观察,肥皂膜显现什麽颜色?
例如:在媒质中走的距离为 r (λ 1 ) 相当于在真空中走 nr (n 1 )
i C
A
1 2
c
e
B
e AB cos r
AB BC e cosr
AC' AC sini 2etgrsini
2ne
sinr
λ
δ cosr 2n1e cosr sini 2
sini n u1 sinr n1 u2
k=0,1,2
2[n (AB BC) n1 AC' 1 ] { 2 k π 明
λ
λ
2 (2k 1)π 暗
n (AB
BC)
n1 AC'
λ 2
{
kλ (2k 1) λ
2
明 暗
折射率 n 几何距离=光程
n (AB BC)
第二条光线的光程
n1 AC'
第一条光线的光程
光程:把光在媒质中走的距离折合到真空中,
(2) x D λ 1000 6 104 (mm) 3(mm)
2a 0.2
§3薄膜的干涉 1 薄膜干涉的一般公式,光程
1,2 两束光的波程差 = k
明亮的
=2k 明
=(2k+1)/2 黑暗的
=(2k+1) 暗 光线2:ABC
n n1
n n2
1 2
2π (AB BC) λ膜
n1
i C
第五篇光学
光学绪论 人类对光的认识过程
光学是物理学最早的一个分支,也是最前沿的学科
光的传播定律 几何i 光学
光的独立传播定律 光的直线传播定律
光的反射和折射定律
从认识光到几何光学 2000年左右
17世纪研究光的本性
微粒说 光是从光源中发出的粒子流(弹性小球
按惯性沿直线传播 牛顿)。
波动说 光是从光源中发出的某种波动。(机械 波 惠更斯)
0.8512 k = 3 λ 3 2.5 0.34 (μ m ) 紫外,无
2 等厚(干涉)条纹及其应用
条件:,i 一定,e不同 劈尖形薄膜
夸大 L
ek
e ek1 ek
ek1
k
k+1
δ
2neλ 2
kλ {(2k 1)λ
2
明 暗
e
ek1
ek
λ 2n
λn 2
Lsin=L = e
e
λλ 2n
解:i = 0 δ
n1
2 n e λ k λ 时干涉加强
2 干涉 加强 λ
2ne
k
1 2
ne
0.8512 (m)
n1
k
1 2
k = 0 < 0 , k< 0 < 0 无物理意义
k=1
λ
1
0.8512 0.5
1.7 (μ
m)
红外,无
0.8512 k = 2 λ 2 1.5 0.567(μ m ) 绿色
r1
(2k 1) 2
暗条纹(干涉最小) k
δ
r2
r1
2ax D
(
2a s
1,2,3
inφ 2a
2a
tgφ
x D
)
x D kλ k 0,1,2,3.. (明纹中心位置)
2a
x D (2k 1) k 1,2,3..(暗纹中心位置 2a
x
xk x1
x2Dka λ
D λ
2a
x—D 2a
δ
2e cosr
(
n
n1
sinrsini ) λ 2
2 e ( n n sin2r ) λ
cosr
2
2 n e ( 1 sin2r ) λ
cosr
2
2 n e 1 sin2r λ
2
2 e n2 n2 sin2r λ
薄膜干涉的一般公式
2
2 e
2ne2
n2
n12 s
kλ
in 2ni
波动说理论本身不能自恰自相矛盾。媒质“以太”
17,18世纪微粒说占统治地位。 19世纪中期麦克斯韦提出了光的电磁波理论, 才确立了波动说。
19世纪末20世纪初中期麦克斯韦提出了光的电 磁波理论,才确立了波动说。
波粒二象性
第十四章光的干涉 §1光的相干性 相干的3个条件,加强减弱的稳定分布 光干涉现象为明,暗相间条纹的稳定分布