离散数学期末练习题(带答案)
离散数学期末考试题及详细答案
离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。
B. 如果今天是周一,则明天不是周二。
答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。
答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。
这种性质称为函数的______。
答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。
如果一个图的直径为1,则该图被称为______。
答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。
布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。
答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。
答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。
例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。
2. 请解释什么是二元关系,并给出一个二元关系的例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。
离散数学期末考试复习题及参考答案
参考答案: B
6、 设 A. 代数系统 B. 半群 C. 群
,*为普通乘法,则<S,*>是( )
D. 都不是
参考答案: A
7、 设S={0,1},*为普通乘法,则< S , * >是( ) A. 半群,但不是独异点 B. 只是独异点,但不是群 C. 群 D. 环,但不是群
参考答案: B
A. B. C. D.
参考答案: B
3、 命题“有的人喜欢所有的花”的逻辑符号化为( ) 设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y
A. B. C. D.
参考答案: D
4、 下列等价式成立的有( )
A. B. C. D.
参考答案: D
5、 下列公式是重言式的有( )
5、 ( )设S={1,2},则S在普通加法和乘法运算下都不封闭。 参考答案: 正确
8、 谓词公式
中的x是( )
A. 自由变元
B. 约束变元
C. 既是自由变元又是约束变元
D. 既不是自由变元又不是约束变元
参考答案: C
9、 设
是一个有界格,如果它也是有补格,只要满足( )
A. 每个元素都至少有一个补元
B. 每个元素都有多个补元
C. 每个元素都无补元
D. 每个元素都有一个补元
参考答案: A
10、 一棵无向树T有4度、3度、2度的分枝点各1个,其余顶点均为树叶,则T中有( )片树叶
A. 3 B. 4 C. 5 D. 6
参考答案: C
11、 设
A. {{1,2}} B. {1,2 } C. {1} D. {2}
参考答案: A
,则有( )
离散数学期末试卷(4套附答案)
一、单项选择题(每小题3分,共30分)1.下列为两个命题变元p,q的最小项的是( ) A .p∧q∧⎤ pB .⎤ p∨qC .⎤ p∧qD .⎤ p∨p∨q 2.下列句子不是命题的是( ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的D .太好了!3.对于公式(∀x ) (∃y )(P (x )∧Q (y ))→(∃x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元C .(∃x )的辖域是R(x , y )D .(∀x )的辖域是(∃y )(P (x )∧Q (y ))→(∃x )R (x ,y )4.7.集合A={1,2,…,10}上的关系R={(x ,y )|x +y =10,x ∈A ,y ∈A},则R 的性质是( )A .自反的B .对称的C .传递的、对称的D .反自反的、传递的 5.设论域为{l ,2},与公式)(x xA ∃等价的是( ) A.A (1)∨A (2)B. A (1)→A (2)C.A (1)D. A (2)→A (1)6. 下列关系矩阵所对应的关系具有反自反性的是( ) A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001110101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101100001 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0010101017. 下列运算不满足...交换律的是( ) A .a *b =a+2bB .a *b =min(a ,b )C .a *b =|a -b |D .a *b =2ab8..设A 是奇数集合,下列构成独异点的是( ) A.<A ,+> B.<A ,-> C.<A ,×> D.<A ,÷> 9. 右图的最大入度是( ) A .0 B .1 C .2D .3第9题图拟题学院(系): 高密校区 适用专业: 学年 2学期 离散数学 (B卷) 试题标准答案10. 设有向图D 的节点数大于1,D=(V ,E )是强连通图,当且仅当( ) A. D 中至少有一条通路 B. D 中至少有一条回路C. D 中有通过每个结点至少一次的通路D. D 中有通过每个结点至少一次的回路 二、填空题(每空3分,共30分)1.设A ={1,2,3,4},B ={2,4,6},则A -B =________,A ⊕B =________。
离散数学期末考试试题(配答案)
离散数学期末考试试题(配答案)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是___________。
2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =____;=A _____;=B A Y __ _____3. 设{}{}b a B c b a A ,,,,==;则=-)()(B A ρρ__ __________;=-)()(A B ρρ_____ ______。
二.选择题(每小题2分;共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=;A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 三.计算题(共43分)1. 求命题公式r q p ∨∧的主合取范式与主析取范式。
(6分)2. 设集合{}d c b a A ,,,=上的二元关系R 的关系矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000011010001R M ;求)(),(),(R t R s R r 的关系矩阵;并画出R ;)(),(),(R t R s R r 的关系图。
(10分)5. 试判断),(≤z 是否为格?说明理由。
(5分)(注:什么是格?Z 是整数;格:任两个元素;有最小上界和最大下界的偏序)四.证明题(共37分)1. 用推理规则证明D D A C C B B A ⌝⇒∧⌝⌝⌝∧∨⌝→)(,)(,。
(10分)2. 设R 是实数集;b a b a f R R R f +=→⨯),(,:;ab b a g R R R g =→⨯),(,:。
求证:g f 和都是满射;但不是单射。
(10分)一;1; _ ∃x ∃y¬P(x)∨Q(y)2; {2} {4;5} {1;3;4;5}3; {{c};{a ;c};{b ;c};{a ;b ;c}} Φ_ 二;B D三;解:主合取方式:p ∧q ∨r ⇔(p ∨q ∨r)∧(p ∨¬q ∨r)∧(¬p ∨q ∨r)= ∏0.2.4主析取范式:p ∧q ∨r ⇔(p ∧q ∧r) ∨(p ∧q ∧¬r) ∨(¬p ∧q ∧r) ∨(¬p ∧¬q ∧r) ∨(p ∧¬q ∧r)= ∑1.3.5.6.7 四;1;证明:编号 公式 依据 (1) (¬B∨C )∧¬C 前提 (2) ¬B∨C ;¬C (1) (3) ¬B (2) (4) A →B (3) (5) ¬A (3)(4) (6) ¬(¬A∧D ) 前提 (7) A ∨¬D (6) (8)¬D (5)(6)2;证明:要证f 是满射;即∀y ∈R ;都存在(x1;x2)∈R ×R ;使f (x1;x2)=y ;而f (x1;x2)=x1+x2;可取x1=0;x2=y ;即证得;再证g 是满射;即∀y ∈R ;;都存在(x1;x2)∈R ×R ;使g (x1;x2)=y ;而g (x1;x2)=x1x2;可取x1=1;x2=y ;即证得;最后证f 不是单射;f (x1;x2)=f (x2;x1)取x1≠x2;即证得;同理:g (x1;x2)=g (x2;x1);取x1≠x2;即证得。
离散数学期末考试题(附答案和含解析)
一、填空2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 (B ⊕C)-A4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 )()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 。
6.设A={1,2,3,4},A 上关系图如下,则 R^2= {(1,1),(1,3),(2,2),(2,4)} 。
//备注:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000000101001012R7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图如下,则R= {(a,b),(a,c), (a,d), (b,d), (c,d)} U {(a,a),(b,b)(c,c)(d,d)} 。
//备注:偏序满足自反性,反对称性,传递性8.图的补图为 。
//补图:给定一个图G ,又G 中所有结点和所有能使G 成为完全图的添加边组成的图,成为补图. 自补图:一个图如果同构于它的补图,则是自补图 9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 a ,有逆元的元素为 a,b,c,d ,它们的逆元分别为 a,b,c,d 。
//备注:二元运算为x*y=max{x,y},x,y ∈A 。
10.下图所示的偏序集中,是格的为 c 。
//(注:什么是格?即任意两个元素有最小上界 和最大下界的偏序)二、选择题1、下列是真命题的有( C 、D )A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C .}},{{ΦΦ∈Φ; D .}}{{}{Φ∈Φ。
2、下列集合中相等的有( B 、C )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
离散数学期末试卷(3套附答案)
2 离散数学(A 卷) 王军东(答案写在答题纸上,写在试题纸上无效)一、单项选择题(每小题3分,共30分)1.设A , B 是集合,若A B A =-,则(A) B = ∅ (B) A = ∅ (C) =⋂B A ∅ (D) A B A =⋂2.在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.3.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R4.设p :我们划船,q :我们跑步, 则有命题“我们不能既划船又跑步”符号化为( )(A) ⌝ p ∧⌝ q (B) ⌝ p ∨⌝ q (C) ⌝ (p ↔ q ) (D) ⌝ (⌝ p ∨⌝ q ).5.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( )A .仅是单射B .仅是满射C .是双射D .不是函数6. 设集合A = {1, 2, 3, 4, 5}上的关系R = {(x , y )|x , y ∈ A 且x + y = 6},则R 的性质是( ).(A) 自反的. (B) 对称的. (C) 对称的、传递的. (D) 反自反的、传递的.7. 下列联结词中,不满足交换律的是( ).(A)∧. (B)∨. (C)⊕. (D) →.8..设G 是n 阶简单无向图,则其最大度)(G ∆( ).(A) > n (B) ≤ n . (C) < n . (D) ≥ n .9. 下列所示的哈斯图所对应的偏序集中能构成格的是( )A .B .C .D .课程考试试题学期 学年 拟题人:校对人:拟题学院(系): 适 用 专 业:10. 设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 二、填空题(每空3分,共30分)1.设A={1,2},B={2,3},则A-B=_______, A ⊕B=________,2.设A={2,3 },R ⊆A ×A ,R={(2,3), (2,2)},则R 的自反闭包r(R)=__________,对称闭包s(R)=__________。
大学离散数学期末考试题库和答案
大学离散数学期末考试题库和答案一、单项选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示“属于”?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 如果A和B是两个集合,那么A∪B表示什么?A. A和B的交集B. A和B的并集C. A和B的差集D. A和B的补集答案:B3. 以下哪个命题是真命题?A. ∀x∈N, x^2 > xB. ∃x∈N, x^2 = x + 1C. ∀x∈N, x^2 ≥ xD. ∃x∈N, x^2 < x答案:C4. 在图论中,一个无向图的边数为E,顶点数为V,那么这个图的生成树的边数是多少?A. EB. V-1C. VD. E-1答案:B5. 以下哪个算法是用于解决旅行商问题(TSP)的?A. 动态规划B. 贪心算法C. 分支限界法D. 回溯法答案:D6. 在逻辑中,以下哪个符号表示“蕴含”?A. ∧B. ∨C. →D. ↔答案:C7. 以下哪个是二进制数?A. 1010B. 2A3C. 12BD. ZYX答案:A8. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D9. 以下哪个是布尔代数的基本运算?A. 并集B. 交集C. 差集D. 所有以上答案:D10. 在离散数学中,以下哪个概念用于描述两个集合之间的关系?A. 函数B. 映射C. 序列D. 所有以上答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是集合的基本运算?A. 并集B. 交集C. 差集D. 补集答案:ABCD12. 在图论中,以下哪些是图的基本类型?A. 无向图B. 有向图C. 完全图D. 二分图答案:ABCD13. 在逻辑中,以下哪些是命题逻辑的基本连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 蕴含(→)答案:ABCD14. 在关系数据库中,以下哪些是SQL的基本操作?A. SELECTB. INSERTC. UPDATED. DELETE答案:ABCD15. 在离散数学中,以下哪些是组合数学的基本概念?A. 排列B. 组合C. 二项式系数D. 图论答案:ABC三、填空题(每题3分,共30分)16. 如果集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B=______。
离散数学-期末复习题及答案
离散数学-期末复习题及答案课程名称:《离散数学》一、单项选择题1、 (D)。
下列句子是命题的为。
A 、这朵花多好看呀!B 、明天下午有会吗?C 、5y x >+D 、地球外的星球上也有人。
2、 (A)。
李平不是不聪明,而是不用功。
p:李平聪明q:李平用功。
符号化为。
A 、 q )p (??∧ B 、q p ??∧ C 、q )p (∧?? D 、q )p (?∨ 3、 (A)。
与)q p (∨?命题公式等值的是。
A 、q p ??∧ B 、q p ??∨ C 、q p ∧ D 、q)(p ∧?4、 (D)。
含有3个命题变项的简单和取式中一定可形成种不同的极小项。
A 、2 B 、4 C 、6 D 、85、 (C)。
q )q p (∧→?此公式的类型为。
A 、重言式B 、永真式C 、矛盾式D 、可满足式 6、 (C)。
q )q )q p ((→∧→此公式的类型为。
A 、矛盾式B 、可满足式C 、重言式D 、永假式7、 (A)。
设A 是含有3个命题变项的公式,若它的主析取范式中含有8个极小项,则它是。
A 、重言式B 、矛盾式C 、可满足式D 、永假式8、 (B)。
只有天下大雨,他才乘公共汽车上班.p:天下大雨q:他乘车上班,符号化为。
A 、q p → B 、p q → C 、q p →?D 、p q →?9、 (B)。
不经一事,不长一智p:经一事q:长一智,符号化为。
A 、p q →B 、q p ??→C 、p q ??→ D 、q p → 10、 (B)。
R Q P →∧?)(成真赋值为。
A 、 000,001,110B 、 001,011,101,110,111C 、全体赋值D 、无11、 (B)。
公式Q P→的主析取范式为)3,1,0(∑,则公式的主合取范式为。
A 、)2(TB 、)2(∏C 、)3,1,0(∏D 、)3,2,1,0(∏12、 (A)。
R Q P →∧?成假赋值为。
A 、 100,B 、 001,011,101,110,111C 、全体赋值D 、无13、 (B)。
大学《离散数学》期末考试试卷及答案(1)
大学《离散数学》期末考试试卷及答案(1)一、选择题1. 离散数学的主要研究对象是()。
A. 连续的数学结构B. 有限的数学结构C. 数学的综合应用D. 数学的哲学思考2. 命题逻辑是离散数学的一个重要组成部分,它主要研究()。
A. 命题之间的真假关系B. 变量之间的关系C. 函数之间的关系D. 集合之间的关系3. 集合的基本运算包括()。
A. 并、交、差、补B. 加、减、乘、除C. 包含、相等、不等、自反D. 大于、小于、等于、不等于二、填空题1. 若集合A={m|2m-1>3},则A中的元素为______。
2. 有一个集合A={1,2,3},则集合A的幂集为______。
3. 若命题p为真,命题q为假,则复合命题“p∧q”的真值为______。
三、解答题1. 请写出离散数学中常用的数学符号及其含义。
2. 请解释命题逻辑中的充分必要条件及其符号表示,并给出一个例子。
3. 请定义集合的笛卡尔积,并给出两个集合进行笛卡尔积运算的例子。
四、问答题1. 离散数学在计算机科学中有着重要的应用,请列举三个与计算机科学相关的离散数学应用领域并简要介绍。
2. 请简要解释归纳法在离散数学中的作用,并给出一个使用归纳法证明的例子。
3. 什么是有向图?请给出一个有向图的例子,并解释该图中的关系。
参考答案:一、选择题1. B2. A3. A二、填空题1. A={m|2m-1>3}2. {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}3. 假三、解答题1. 常用数学符号及含义:- ∪:并,表示集合的合并操作。
- ∩:交,表示集合的交集操作。
- ∖:差,表示减去一个集合中的元素。
- ⊆:包含,表示一个集合包含于另一个集合。
- =:相等,表示两个集合具有相同的元素。
2. 充分必要条件是指一个命题的成立与另一个命题的成立互为必要条件,若A是B的充分必要条件,那么当A成立时B一定成立,且当A不成立时B也一定不成立。
离散数学期末考试题(附答案和含解析1)
一、填空2.A ,B,C 表示三个集合,文图中阴影部分的集合表达式为 (B ⊕C )—A4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 )()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 . 6.设A={1,2,3,4},A 上关系图如下,则 R^2= {(1,1),(1,3),(2,2),(2,4)} 。
//备注:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000000101001012R7.设A={a,b ,c ,d},其上偏序关系R 的哈斯图如下,则R= {(a ,b),(a ,c ), (a ,d), (b,d ), (c,d )} U {(a ,a),(b,b)(c,c )(d ,d )} .//备注:偏序满足自反性,反对称性,传递性8.图的补图为 。
//补图:给定一个图G ,又G 中所有结点和所有能使G 成为完全图的添加边组成的图,成为补图。
自补图:一个图如果同构于它的补图,则是自补图 9.设A={a ,b ,c ,d } ,A 上二元运算如下:* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统〈A,*〉的幺元是 a ,有逆元的元素为 a ,b,c,d ,它们的逆元分别为 a ,b ,c,d 。
//备注:二元运算为x*y=max{x,y },x ,y ∈A 。
10.下图所示的偏序集中,是格的为 c 。
//(注:什么是格?即任意两个元素有最小上界 和最大下界的偏序)二、选择题1、下列是真命题的有( C 、D )A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C .}},{{ΦΦ∈Φ; D .}}{{}{Φ∈Φ.2、下列集合中相等的有( B 、C )A CA .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
《离散数学》期末练习题考试卷和答案
a , b, c , d , e, f , g,那么 所对应的 19. 设集合 A a , b , c , d , e , f , g , A 上有一个划分
等价关系 R 应有( )个序偶。 )。
20. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
等价关系 R 应有( )个序偶。 )。
25. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
26. 一个(
)称为布尔代数。
27.P Q P Q 的主析取范式是
。(写出一般
5
表示形式即可) 28.设集合 A a , b , c , d , R 是 A 上的二元关系,且 R a , b , b , a , b , c , c , d , a , c , 则 R 的传递闭包 t R 。
C. x x是正整数, x 5
D. x x是有理数, x 5
。
6.下面有关集合之间的包含和属于关系的说法,正确的是 Ⅰ. Ⅲ.
Ⅱ. , ,
Ⅳ.
a, b a, b, a, b
B.Ⅰ和Ⅲ
a, b a, b, a, b, c
二、填空题 1.设 A 为非空集合,且 A n ,则 A 上不同的二元关系的个数为 为 。 时, P Q 的真值为 1。 , A 上不同的映射的个数
2.设 P 、 Q 为两个命题,当且仅当
3. 在运算表中的空白处填入适当符号,使 a , b , c, * 成为群。 *
a a
a b c
4. 当 n 为 数时, K n n 3 必为欧拉图。
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。
(完整word版)离散数学期末练习题(带答案)
离散数学复习注意事项:1、第一遍复习一定要认真按考试大纲要求将本学期所学习内容系统复习一遍。
2、第二遍复习按照考试大纲的要求对第一遍复习进行总结.把大纲中指定的例题及书后习题认真做一做。
检验一下主要内容的掌握情况。
3、第三遍复习把随后发去的练习题认真做一做,检验一下第一遍与第二遍复习情况,要认真理解,注意做题思路与方法。
离散数学综合练习题一、选择题1.下列句子中,()是命题。
A.2是常数。
B.这朵花多好看呀!C.请把门关上!D.下午有会吗?2.令p: 今天下雪了,q:路滑,r:他迟到了。
则命题“下雪路滑,他迟到了”可符号化为()。
A. p q r∨→∧→B。
p q rC。
p q r∨↔∧∧ D. p q r3.令:p今天下雪了,:q路滑,则命题“虽然今天下雪了,但是路不滑"可符号化为()。
A.p q∧⌝ B.p q∧C。
p q→⌝∨⌝ D. p q4.设()Q x:x会飞,命题“有的鸟不会飞”可符号化为()。
P x:x是鸟,()A. ()(()())Q x⌝∀∧())x P x⌝∀→B。
()(()x P x Q xC。
()(()())⌝∃∧())x P xQ x⌝∃→ D. ()(()x P x Q x5.设()L x y:x大于等于y;命题“所有整数的绝对值大于等f x:x的绝对值,(,)P x:x是整数,()于0”可符号化为()。
A。
(()((),0))x P x L f x∀→∀∧B。
(()((),0))x P x L f xC. ()((),0)∀→xP x L f xxP x L f x∀∧D。
()((),0)6。
设()G x:x犯错误,命题“没有不犯错误的人”符号化为()。
F x:x是人,()A.(()())⌝∃→⌝x F x G x∀∧B.(()())x F x G xC.(()())⌝∃∧⌝x F x G x⌝∃∧D.(()())x F x G x7.下列命题公式不是永真式的是()。
离散数学期末考试题及答案
离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∩B=()。
A. {1,2,3}B. {2,3}C. {2,4}D. {1,4}答案:B2. 命题“若x>0,则x>1”的逆否命题是()。
A. 若x≤0,则x≤1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤1,则x≤0答案:B3. 函数f: A→B的定义域是集合A,值域是集合B,则()。
A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A4. 集合{1,2,3}与集合{3,2,1}是否相等?()。
A. 是B. 否C. 无法确定D. 以上都不对答案:A5. 命题p:“x>0”,则¬p为()。
A. x≤0B. x<0C. x=0D. x<0或x=0答案:A6. 命题“若x>0,则x>1”的逆命题是()。
A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C7. 函数f: A→B的定义域是集合A,值域是集合B,则()。
A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A8. 集合{1,2,3}与集合{3,2,1}是否相等?()。
A. 是B. 否C. 无法确定D. 以上都不对答案:A9. 命题p:“x>0”,则¬p为()。
A. x≤0B. x<0C. x=0D. x<0或x=0答案:A10. 命题“若x>0,则x>1”的逆命题是()。
A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C二、填空题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∪B=______。
答案:{1,2,3,4}2. 命题“若x>0,则x>1”的逆否命题是:若x≤1,则x≤0。
离散数学期末考试题及答案
离散数学期末考试题及答案1. 题目描述:以下是离散数学期末考试的题目。
请仔细阅读每个问题,并在题后给出相应的答案。
请注意,答案应尽量详细和准确,以确保得分。
1.1 命题与谓词逻辑(20分)1.1.1 什么是命题逻辑?它可以用于解决哪些问题?1.1.2 简要解释谓词逻辑的概念和其在离散数学中的应用。
1.2 集合和图论(30分)1.2.1 定义两个集合的并、交和差的概念。
1.2.2 解释有向图和无向图的区别,并给出一个实际应用中的例子。
1.3 关系和函数(40分)1.3.1 什么是关系?请给出一个实际应用中关系的例子。
1.3.2 定义函数的概念,并解释函数与关系的区别。
1.4 计数原理(20分)1.4.1 简要阐述乘法原理和加法原理的概念,并给出一个应用实例。
1.4.2 什么是排列和组合?请说明它们的应用场景,并给出一个例子。
2. 答案解析:2.1 命题与谓词逻辑1.1.1 命题逻辑是一种数学分支,用于研究命题之间的关系和推理规则。
其应用范围广泛,包括数学、计算机科学、哲学等领域。
1.1.2 谓词逻辑是一种扩展了命题逻辑的逻辑体系,它考虑了命题中的变量、谓词和量词等元素。
在离散数学中,谓词逻辑常用于描述集合、函数和关系等概念。
2.2 集合和图论1.2.1 集合的并(∪)是指将两个或多个集合中的所有元素取出形成一个新的集合;交(∩)指仅包含两个或多个集合中共有的元素;差(-)是指从一个集合中去除另一个集合中的元素。
1.2.2 有向图中,边是具有方向性的;而在无向图中,边是没有方向性的。
例如,在社交网络中,有向图可以表示人与人之间的关注关系,而无向图可以表示人与人之间的好友关系。
2.3 关系和函数1.3.1 关系是集合之间的一种特殊的子集,它描述了元素之间的某种联系。
例如,家族中的血亲关系可以看作是一个关系。
关系可以用图、矩阵等方式表示。
1.3.2 函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
离散数学期末练习题带答案
离散数学复习考前须知:1、第一遍复习一定要认真按考试大纲要求将本学期所学习内容系统复习一遍。
2、第二遍复习按照考试大纲的要求对第一遍复习进展总结。
把大纲中指定的例题及书后习题认真做一做。
检验一下主要内容的掌握情况。
3、第三遍复习把随后发去的练习题认真做一做,检验一下第一普及第二遍复习情况,要认真理解,注意做题思路及方法。
离散数学综合练习题一、选择题1.以下句子中,〔〕是命题。
A.2是常数。
B.这朵花多好看呀!C.请把门关上!D.下午有会吗?2.令p: 今天下雪了,q:路滑,r:他迟到了。
那么命题“下雪路滑,他迟到了〞可符号化为〔〕。
A. p q r∨→∧→ B. p q rC. p q r∨↔∧∧ D. p q r3.令:p今天下雪了,:q路滑,那么命题“虽然今天下雪了,但是路不滑〞可符号化为〔〕。
A.p q∧∧⌝ B.p qC.p q→⌝∨⌝ D. p q4.设()Q x:x会飞,命题“有的鸟不会飞〞可符号P x:x是鸟,()化为〔〕。
A. ()(()())Q x⌝∀∧())x P x⌝∀→ B. ()(()x P x Q xC. ()(()())Q x⌝∃∧())x P x⌝∃→ D. ()(()x P x Q x5.设()f x:x的绝对值,(,)L x y:x大于等于y;命P x:x是整数,()题“所有整数的绝对值大于等于0〞可符号化为〔〕。
A. (()((),0))∀→x P x L f xx P x L f x∀∧B. (()((),0))C. ()((),0)xP x L f x∀→∀∧ D. ()((),0)xP x L f xG x:x犯错误,命题“没有不犯错误的人〞符号化F x:x是人,()()为〔〕。
A.(()())⌝∃→⌝x F x G xx F x G x∀∧B.(()()) C.(()())⌝∃∧⌝x F x G xx F x G x⌝∃∧D.(()())7.以下命题公式不是永真式的是〔〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学复习注意事项:1、第一遍复习一定要认真按考试大纲要求将本学期所学习容系统复习一遍。
2、第二遍复习按照考试大纲的要求对第一遍复习进行总结。
把大纲中指定的例题及书后习题认真做一做。
检验一下主要容的掌握情况。
3、第三遍复习把随后发去的练习题认真做一做,检验一下第一遍与第二遍复习情况,要认真理解,注意做题思路与方法。
离散数学综合练习题一、选择题1.下列句子中,()是命题。
A.2是常数。
B.这朵花多好看呀!C.请把门关上!D.下午有会吗?2.令p: 今天下雪了,q:路滑,r:他迟到了。
则命题“下雪路滑,他迟到了”可符号化为()。
A. p q r∨→∧→ B. p q rC. p q r∧∧ D. p q r∨↔3.令:p今天下雪了,:q路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为()。
A.p q∧∧⌝ B.p qC.p q∨⌝ D. p q→⌝4.设()Q x:x会飞,命题“有的鸟不会飞”可符号化为()。
P x:x是鸟,()A. ()(()())⌝∀∧())Q x⌝∀→ B. ()(()x P x Q xx P xC. ()(()())Q xx P x Q x⌝∃∧())x P x⌝∃→ D. ()(()5.设()L x y:x大于等于y;命题“所有整数f x:x的绝对值,(,)P x:x是整数,()的绝对值大于等于0”可符号化为()。
A. (()((),0))∀→x P x L f xx P x L f x∀∧B. (()((),0))C. ()((),0)xP x L f xxP x L f x∀→∀∧ D. ()((),0)6.设()G x:x犯错误,命题“没有不犯错误的人”符号化为()。
F x:x是人,()A .(()())x F x G x ∀∧B . (()())x F x G x ⌝∃→⌝C .(()())x F x G x ⌝∃∧D . (()())x F x G x ⌝∃∧⌝ 7.下列命题公式不是永真式的是( )。
A . ()p q p →→ B. ()p q p →→ C. ()p q p ⌝∨→D. ()p q p →∨8.设()R x :x 为有理数;()Q x :x 为实数。
命题“任何有理数都是实数”的符号化为( )A .()(()())x R x Q x ∃∧B .()(()())∀∧x R x Q xC .()(()())∀→x R x Q xD .(()())x R x Q x ∃→ 9.设个体域{,}D a b =,与公式()xA x ∀等价的命题公式是( )A .()()A a A b ∧B .()()A a A b →C .()()A a A b ∨D .()()A b A a →10.下列等价式不正确的是( )。
A .(()())()()x P x Q x xP x xQ x ∀∨⇔∀∨∀ B .(()())()()x P x Q x xP x xQ x ∀∧⇔∀∧∀ C .(()())()()x P x Q x xP x xQ x ∃∨⇔∃∨∃ D .(())()x P x Q xP x Q ∀∧⇔∀∧11. 设个体域{,}D a b =,与公式()xA x ∃等价的命题公式是( )A .()()A a A b ∧B .()()A a A b →C .()()A a A b ∨D .()()A b A a → 12.设X ={,{},{,}}a a ∅∅,则下列述正确的是( )。
A.a X ∈B.{,}a X ∅⊆ C .{{,}}a X ∅⊆D.{}X ∅∈13.有向图D 是连通图,当且仅当( )。
A. 图D 中至少有一条通路B. 图D 中有通过每个顶点至少一次的通路C. 图D 的连通分支数为一D . 图D 中有通过每个顶点至少一次的回路 14.设A={a,b,c},则下列是集合A 的划分的是( ) A.{{,},{}}b c c B . {{},{,}}a b c C.{{,},{,}}a b a cD. {{,},}a b c 15.下列谓词公式中是前束式的是( )。
A .()()()xF x x G x ∀∧⌝∃B .()()xF x yG y ∀∨∀C .(()(,))x P x yQ x y ∀→∃D .(()(,))x y P x Q x y ∀∃→16.设12{|()0},{|()0}M x f x N x f x ====,则方程12()()0f x f x ⋅=的解为( )。
A .M ∩NB .M ∪ NC .M ⊕N C .M-N 17.设,G A =<*>是群,则下列述不正确的是( )。
A. 11()a a --=B. n m n m a a a += C . 111()ab a b ---= D. 11()n n a ba a b a --= 18.在整数集合Z 上,下列定义的运算满足结合律的是( )。
A. 1a b b *=+B. 1a b a *=-C. 1a b ab *=-D . 1a b a b *=++19. 设简单图G 所有结点的度数之和为50,则G 的边数为( )。
( ) A. 50 B . 25 C. 10 D. 5 20.设简单无向图G 是一个有5个顶点的4-正则图,则G 有( )条边。
A. 4B. 5C . 10D. 2021.设集合{1,2,3,4}A =,A 上的等价关系{1,1,3,2,2,3,R =<><><> 4,4}A I <>U ,则对应于R 的划分是( )。
A . {{1},{2,3},{4}} B. {{1,3},{2,4}} C. {{1,3},{2},{4}}D. {{1},{2},{3},{4}}22.设集合{1,2,3,4}A =,A 上的等价关系{1,3,3,1,2,4,R =<><><> 4,2}A I <>U ,则对应于R 的划分是( )。
A. {{1},{2,3},{4}} B . {{1,3},{2,4}} C. {{1,3},{2},{4}}D. {{1},{2},{3},{4}}23.设,G A =<*>是群,则下列述不正确的是( )。
A. 11()a a --= B . 111()ab a b ---= C. n m n m a a a +=D. 11()n n a ba a b a --=24.{1,2,,10}A =L ,下列定义的运算关于集合A 是不封闭的是( )。
A. max{,}x y x y *=,即,x y 的较大数 B. min{,}x y x y *=,即,x y 的较小数 C. gcd{,}x y x y *=,即,x y 的最大公约数 D . {,}x y lcm x y *=,即,x y 的最小公倍数25. 设{1,2,3},{,,,},{1,,2,,3,}X Y a b c d f a b c ===<><><>,则f 是( )。
A .从X 到Y 的双射B .从X 到Y 的满射,但不是单射 C .从X 到Y 的单射,但不是满射D .从X 到Y 的二元关系,但不是从X 到Y 的映射26.设简单无向图G 是一个有6个顶点的5-正则图,则G 有( )条边。
A. 5B. 6C . 15D. 3027.图G 如下图所示,以下说确的是( )。
A .a 是割点 B .{b,c }是点割集 C .{b,d }是点割集D .{c }是割点28.格L 是分配格的充要条件是L 不含与下面哪一个选项同构的子格( )。
A .链B .钻石格C .五角格D . 五角格与钻石格29.下列图是欧拉图的是( D )。
30.给定一个有n 个结点的无向树,下列述不正确的是( )。
A .所有结点的度数≥2B .无回路但若增加一条新边就会变成回路C .连通且1e v =-,其中e 是边数,v 是结点数D .无回路的连通图31. 设A 有5个元素,则其幂集()P A 的元素总个数为( )。
A . 32 B.25 C. 50D. 532.若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( )。
A. (1,2,2,3,4,5) B. (1,2,3,4,5,5) C . (1,1,1,2,3)D. (2,3,3,4,5,6)dbc33. 设{,{},{,{}}}A a a a a =则其幂集()P A 的元素总个数为( )。
A. 3 B. 4 C . 8D. 1634. 在实数集合R 上,下列定义的运算中不可结合的是( )。
A. 2a b a b ab *=++ B. a b a b *=+ C. a b a b ab *=++ D . a b a b *=-35. 无向图G 是欧拉图,当且仅当( )。
A. G 的所有结点的度数全为偶数 B. G 中所有结点的度数全为奇数 C. G 连通且所有结点度数全为奇数 D . G 连通且所有结点度数全为偶数 36.下列不一定...是树的是( ) A. 无回路的连通图DB . 有n 个结点,n -1条边的连通图 C. 每对结点之间都有通路的图 D. 连通但删去一条边则不连通的图37. 设简单图G 所有结点的度数之和为48,则G 的边数为 ( ) A. 48 B . 24 C. 16 D. 12 38.下面既是哈密顿图又是欧拉图的图形是( B )。
39.下列必为欧拉图的是( )A.有回路的连通图B.不可以一笔画的图C.有1个奇数度结点的连通图 D .无奇数度结点的连通图 40.二部图 3,3K 是( )。
A.欧拉图 B . 哈密顿图 C.平面图D. 完全图41.下列所示的哈斯图所对应的偏序集中能构成格的是( C )。
A. B.C. D.42.设简单无向图G 是一个有6个顶点的3-正则图,则G 有( )条边。
A. 3B. 6 C . 9D. 1843.下列式子为矛盾式的是( )。
A .()p p q ∨∧B .p p ∨⌝C .p p ∧⌝D . ()p q p q ⌝∨⇔⌝∧⌝44.设集合{,,}A a b c =,A 上的关系{,,,,,}R a a a c c a =<><><>,则R 是( ) A .自反的 B .对称的 C .传递的 D .反对称的 45.设12,R R 是集合{,,,}A a b c d =上的两个关系,其中1{,,,,R a a b b =<><> ,,,}b c d d <><>,2{,,,,,,,,,}R a a b b c b b c d d =<><><><><>,则2R 是1R 的( )闭包。