直线方程的两点式和一般式公开课优质课件
合集下载
直线的两点式方程与一般式方程PTT课件
章节:第二章 直线与圆的方程
标题:2.2.2直线的两点式
方程
1课时
环节1:教学目标分解
教学目标
1.根据确定直线位置的几何要素,探索并掌握直线方程的
几种形式(点斜式、斜截式、两点式、截距式及一般式).
2.会进行直线方程的五种形式之间的转化.
3.会根据不同的直线位置特征,求直线的方程.
素养目标
数学抽象
(1) 3x 3 y 8 3 6 0 (2) x 2 (3) 4 x y 7 0
(4) 2 x y 6 0 (5) y 2 ;
距,此时直线在轴上的截距是.
方程
+
= 1由直线在两条坐标轴上的截距与确定
我们把方程
+ = 1叫做直线的截距式方程,简称截距式.
课堂例题
例4 已知△ 的三个顶点(−5,0),(3, − 3),(0,2),
求边所在直线的方程,以及这条边上的中线 所在直线的方
-=(-)
斜截式
= +
两点式
截距式
一般式
− ��
−
=
−
−
+ =
+ + =
求直线方程时方程形式的选择技巧
(1)已知一点的坐标,求过该点的直线方程时,通常选用点斜式
方程.
(2)已知直线的斜率,通常选用点斜式或斜截式,再由其他条件
y 1 x 2
;
3 1 0 2
因为 A 0,5 , B 5,0 ,
y 5 x 0
所以直线 AB 的两点式方程:
标题:2.2.2直线的两点式
方程
1课时
环节1:教学目标分解
教学目标
1.根据确定直线位置的几何要素,探索并掌握直线方程的
几种形式(点斜式、斜截式、两点式、截距式及一般式).
2.会进行直线方程的五种形式之间的转化.
3.会根据不同的直线位置特征,求直线的方程.
素养目标
数学抽象
(1) 3x 3 y 8 3 6 0 (2) x 2 (3) 4 x y 7 0
(4) 2 x y 6 0 (5) y 2 ;
距,此时直线在轴上的截距是.
方程
+
= 1由直线在两条坐标轴上的截距与确定
我们把方程
+ = 1叫做直线的截距式方程,简称截距式.
课堂例题
例4 已知△ 的三个顶点(−5,0),(3, − 3),(0,2),
求边所在直线的方程,以及这条边上的中线 所在直线的方
-=(-)
斜截式
= +
两点式
截距式
一般式
− ��
−
=
−
−
+ =
+ + =
求直线方程时方程形式的选择技巧
(1)已知一点的坐标,求过该点的直线方程时,通常选用点斜式
方程.
(2)已知直线的斜率,通常选用点斜式或斜截式,再由其他条件
y 1 x 2
;
3 1 0 2
因为 A 0,5 , B 5,0 ,
y 5 x 0
所以直线 AB 的两点式方程:
直线的两点式方程、直线的一般式方程课件
2.截距和为零问题 求过点A(4,2)且在两坐标轴上截距互为相反数的直线l的方程. 解:①当直线过原点时,它在x轴、y轴上截距都是0,满 足题意,此时直线斜率为12,所以直线方程为y=12x. ②当直线不过原点时, 由题意可设直线方程为xa-ay=1.又过A(4,2), ∴4-a 2=1,即a=2,∴x-y=2. 综上,直线l的方程为y=12x或x-y=2.
2.直线方程的截距式为xa+by=1,x 项对应的分母是直线在 x 轴上的截距,y 项对应的分母是直线在 y 轴上的截距,中间以“+”
相连,等式的另一端是 1,由方程可以直接读出直线在两轴上的截
距,如x3-4y=1,x3+4y=-1 就不是直线的截距式方程.
直线方程的一般式 [提出问题] 观察下列直线方程: 直线l1:y-2=3(x-1); 直线l2:y=3x+2; 直线l3:3y--22=x4--11; 直线l4:x4+3y=1. 问题1:上述直线方程的形式分别是什么? 提示:点斜式、斜截式、两点式、截距式.
问题2:上述形式的直线方程能化成二元一次方程Ax+By +C=0的形式吗?
提示:能. 问题3:二元一次方程Ax+By+C=0都能表示直线吗? 提示:能.
[导入新知] 1.直线与二元一次方程的关系 (1)在平面直角坐标系中,对于任何一条直线,都可以用一个 关于x,y的二元一次方程表示. (2)每个关于x,y的二元一次方程都表示一条直线. 2.直线的一般式方程的定义 我们把关于x,y的二元一次方程Ax+By+C=0(其中A,B不 同时为0)叫做直线的一般式方程,简称一般式.
3.截距成倍数问题
求过点A(4,2)且在x轴上截距是在y轴上截距的3倍,求直线l的
方程.
解:①当直线过原点时,它在x轴、y轴上截距都是0,满足题
直线的两点式、一般式方程 课件
[例3] 已知直线l经过点A(-5,6)和点B(-4,8),求直线 的一般式方程和截距式方程,并画图.
[解析] 直线过A(-5,6)、B(-4,8)两点, 由两点式得,8y--66=-x+4+55, 整理得2x-y+16=0, ∴2x-y=-16,两边同除以-16得,-x8+1y6=1. 故所求直线的一般式方程为2x-y+16=0,截距式 方程为-x8+1y6=1.图形略.
[解析] ∵点P在l上射影为Q, ∴PQ⊥l,且Q在l上, ∵kPQ=3--1(- -11)=-2,∴kl=12, ∴直线l方程为y-(-1)=12(x-1), 即x-2y-3=0.
三、解答题 7.求过点P(-3,4)且在两坐标轴上的截距之和为12的 直线的方程.
[解析] 设直线方程为ax+by=1,则
[例7] 求斜率为 且与两坐标轴围成的三角形周长为 12的直线方程.
[分析] 已知直线斜率,可选用直线的斜截式方程, 然后根椐题目条件确定b的值.
[解析] 设直线方程为y=34x+b, 令x=0,得y=b;令y=0,得x=-43b. ∴|b|+|-43b|+ b2+(-43b)2=12. ∴|b|+43|b|+53|b|=12,∴b=±3. ∴所求直线方程为y=34x±3.
8.在求直线方程时,点斜式、斜截式、两点式、截距 式各有怎样的局限性?
[答案] 点斜式和斜截式都是适用于直线的斜率存在 即直线不与x轴垂直的情况;两点式和截距式都适用于直线 不与坐标轴垂直且截距式还要求直线不过原点.
9.已知直线Ax+By+C=0.
(1)若直线过原点,则系数A、B、C满足
C=0,A2+B2≠0 .
[答案] B
B.2x+3y=1 D.2x-3y=1
()
2.过点(-3,2),(9,2)的直线方程是
直线方程的两点式和一般式 课件
(2)直线方程任一形式都可化为一般式,而直线方程的一般式 在一定条件下才能化为点斜式、斜截式、两点式或截距式.
直线方程的应用
直线 l 的方程为(a-2)y=(3a-1)x-1(a∈R).
(1)求证:直线 l 必过定点;
(2)若直线 l 不过第二象限,求实数 a 的取值范围. [解] (1)证明:直线方程可变为 a(3x-y)-(x-2y+1)=0 的
=-2(x-15)2+54 150(0≤x≤90).②9 分 3
∴当 x=15,y=60-2×15=50 时, 3
Smax=54 150 m2.11 分
因此点 P 距直线 AE 15 m,距直线 BC 50 m 时所开发的面积 最大,最大面积为 54 150 m2.③12 分 [规范与警示] (1)解答本题的 3 个关键步骤如下: 一是根据条件建立适当的坐标系是将几何问题转化成代数问 题的关键,也是失分点.
二是根据直线方程确定 x 和 y 的关系后,在②处要根据实际情 况确定出 x 的范围,否则会在后面的应用中忽略范围而出现错 误解答.
三 是在解 答的③ 处的 结论一 定不能 漏掉, 否则解 题步骤 不完 整,造成没必要的 失分. (2)解决 该类问题应注意以下两点: 一是利用坐标法解 决生活问题时,首先要建立适当的坐 标系, 再借助已知条件寻求 x 和 y 的关系.要求一定准确、恰当,否 则给后面的运算化 简带来麻烦.
(3)分类讨论思想的运用 对于特殊情况的处理,考虑问题要全面,这对于完整的解题 是必需的,如本例中的截距互为相反数这一条件的处理,就 必须分等于零和不等于零两种情况来分类讨论,使问题的解 决做到不重不漏.
已知直线 l:5ax-5y-a+3=0.
(1)求证:不论 a 为何值,直线 l 恒过第一象限;
直线方程的应用
直线 l 的方程为(a-2)y=(3a-1)x-1(a∈R).
(1)求证:直线 l 必过定点;
(2)若直线 l 不过第二象限,求实数 a 的取值范围. [解] (1)证明:直线方程可变为 a(3x-y)-(x-2y+1)=0 的
=-2(x-15)2+54 150(0≤x≤90).②9 分 3
∴当 x=15,y=60-2×15=50 时, 3
Smax=54 150 m2.11 分
因此点 P 距直线 AE 15 m,距直线 BC 50 m 时所开发的面积 最大,最大面积为 54 150 m2.③12 分 [规范与警示] (1)解答本题的 3 个关键步骤如下: 一是根据条件建立适当的坐标系是将几何问题转化成代数问 题的关键,也是失分点.
二是根据直线方程确定 x 和 y 的关系后,在②处要根据实际情 况确定出 x 的范围,否则会在后面的应用中忽略范围而出现错 误解答.
三 是在解 答的③ 处的 结论一 定不能 漏掉, 否则解 题步骤 不完 整,造成没必要的 失分. (2)解决 该类问题应注意以下两点: 一是利用坐标法解 决生活问题时,首先要建立适当的坐 标系, 再借助已知条件寻求 x 和 y 的关系.要求一定准确、恰当,否 则给后面的运算化 简带来麻烦.
(3)分类讨论思想的运用 对于特殊情况的处理,考虑问题要全面,这对于完整的解题 是必需的,如本例中的截距互为相反数这一条件的处理,就 必须分等于零和不等于零两种情况来分类讨论,使问题的解 决做到不重不漏.
已知直线 l:5ax-5y-a+3=0.
(1)求证:不论 a 为何值,直线 l 恒过第一象限;
人教版新教材高中数学优质课件直线的两点式方程直线的一般式方程
的斜率为k时(此时直线的倾斜角α≠90°),其方程为y-y0=k(x-x0),这是关于x,y
的二元一次方程.当直线l的斜率不存在,即直线l的倾斜角α=90°时,直线的
方程为x-x0=0,可以认为是关于x,y的二元一次方程,此时方程中y的系数为0.
方程y-y0=k(x-x0)和x-x0=0都是二元一次方程,因此平面直角坐标系中的任
∵直线 l 与直线 3x+4y+1=0
3
平行,∴k=- .
4
又直线 l 经过点(1,2),
∴直线 l 的方程为
3
y-2=-4(x-1),整理得
3x+4y-11=0.
(方法二)设与直线3x+4y+1=0平行的直线l的方程为3x+4y+m=0.
∵直线l经过点(1,2),
∴3×1+4×2+m=0,解得m=-11.∴直线l的方程为3x+4y-11=0.
2019普通
高中教科书
人教版新教材高中数学优质课件
REN JIAO BAN XIN JIAO CAI GAO ZHONG SHU XUE YOU ZHI KE JIAN
第二章
2.2
2.2.2 直线的两点式方程
2.2.3 直线的一般式方程
内
容
索
引
01
自主预习 新知导学
02
合作探究 释疑解惑
03
随堂练习
BC所在直线的方程.
分析:已知直线上两个点的坐标,可以利用两点式写出直线的方程.
解:由两点式,得边 AB
同理,边 BC
-(-1)
所在直线的方程为
0-(-1)
-3
所在直线的方程为
【精品课件】高中数学必修2 直线的方程(两点式、一般式)
x C A
所以任意一个关于x,y的二元一次方程Ax+By+C=0(A,B不同 时为零)都表示一条直线.
问题探究
结论一: 平面直角坐标系中的每一条直线都可以用
一个关于x,y的二元一次方程Ax+By+C=0 (其 中A,B不同时为0)表示.
结论二: 任意一个关于x,y的二元一次方程
Ax+By+C=0 (其中A,B不同时为0)都表示一条直 线.
y 4 x. 5
x y 1,
把P(-5,4)代入上式得 a 1. a a
直线方程为 x y 1,
即 x y 1 0. 综上:直线方程为 y 或54 x
截距为零不 容忽视
x y 1 0.
练习:
1.根据下列条件写出直线方程,并画出简图。
(1)在x轴上的截距是2,在y轴上的截距是3;
⑤过原点
C=0
课堂练习
4.设直线L的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6 根据下列条件确定m的值
(1)L在x轴上的截距为-3;(2)L的斜率为1.
小结
1.本节课都学了哪些知识点?
①二元一次方程与直线的一一对应关系; ②直线的一般式方程的概念; ③ 直线方程的一般式Ax+By+C=0系数A、B、C的几何意义; ④直线方程的各种特殊形式和一般式之间在一定条件下可以互 相转化。
直线的方程 ①过点P1(x1, y1),垂直于x轴的直线的方程:
x= x1 ②过点P1(x1, y1),垂直于y轴的直线的方程:
y= y1 ③x轴: y= 0
④y轴: x= 0
问题探究
问题一: 平面直角坐标系中的每一条直线都可以用
教学课件:第2课时-直线方程的两点式和一般式
直线方程的应用
通过直线方程,可以解决 与直线相关的实际问题, 如求直线上的点、判断两 直线是否平行等。
下节课预告
直线的倾斜角和斜率
直线方程的应用
介绍直线的倾斜角和斜率的概念,以 及它们之间的关系。
通过直线的倾斜角和斜率,可以解决 与直线相关的实际问题,如求直线的 长度、判断两直线是否垂直等。
直线的点斜式和截距式
两点式直线方程的应用
确定直线的斜率和截距
通过给定的两点,可以确定直线的斜 率和截距,进而确定直线的方程。
解决与直线相关的问题
利用两点式直线方程,可以解决与直 线相关的问题,如求直线上某一点的 坐标、判断三点共线等。
03 直线方程的一般式
一般式直线方程的定义
总结词
一般式直线方程是数学中描述直线的一种方式,它包含了直线的斜率和截距信息。
要点二
基础练习题2
已知直线经过点$(2,3)$和斜率为$2$,求直线的两点式方程。
进阶练习题
进阶练习题1
已知直线的一般式方程为$3x + 4y - 12 = 0$,求该直线的斜率。
VS
进阶练习题2
已知直线的一般式方程为$2x - y + 5 = 0$, 求该直线经过的点。
综合练习题
综合练习题1
已知直线经过点$(2,3)$,斜率为$2$,且与 $x$轴交于点$(4,0)$,求该直线的方程。
04 两点式与一般式的比较
形式上的比较
两点式方程
(y - y_1 = m (x - x_1))
一般式方程
(ax + by + c = 0)
使用场景的比较
01
两点式方程适用于已知两点坐标 的情况,可以快速求出直线方程 。
直线方程的两点式和一般式PPT课件
奠定基础。
学习目标
掌握直线方程的两点 式和一般式的推导过 程。
能够运用直线方程的 两点式和一般式解决 实际问题。
理解直线方程的两点 式和一般式的几何意 义。
02 两点式直线方程
定义
总结词
两点式直线方程是描述直线方程的一种方式,基于直线上两点的坐标来定义。
详细描述
两点式直线方程,也称为两点式或线式方程,是基于直线上两个已知点的坐标来定 义的。假设两点为$P_1(x_1, y_1)$和$P_2(x_2, y_2)$,则两点式直线方程可以表示 为:$frac{y - y_1}{x - x_1} = frac{y_2 - y_1}{x_2 - x_1}$。
解决实际问题
在实际问题中,已知直线上两点 的坐标,可以通过两点式方程求 出直线的斜率和截距,再通过转 换得到一般式方程,从而解决实
际问题。
数学建模
在数学建模中,通过将实际问题 转化为数学模型,利用两点式与 一般式的转换关系,可以方便地
求解直线方程。
科学实验
在科学实验中,有时需要利用已 知的两点坐标来计算直线的斜率 和截距,进而通过转换得到一般 式方程,用于描述实验数据的变
应用场景
总结词
一般式直线方程在几何、代数、解析几何等领域都有广 泛的应用。
详细描述
在几何中,一般式直线方程可以用来描述平面上的任意 一条直线,并且可以用来计算直线的斜率和截距。在代 数中,一般式直线方程可以用来解决线性方程组的问题 ,通过代入法或者消元法可以得到解。在解析几何中, 一般式直线方程可以用来研究直线的性质和特点,例如 直线的平行、垂直、相交等关系。
$Ax + By + C = 0$,其中$A$、$B$ 不同时为零。
学习目标
掌握直线方程的两点 式和一般式的推导过 程。
能够运用直线方程的 两点式和一般式解决 实际问题。
理解直线方程的两点 式和一般式的几何意 义。
02 两点式直线方程
定义
总结词
两点式直线方程是描述直线方程的一种方式,基于直线上两点的坐标来定义。
详细描述
两点式直线方程,也称为两点式或线式方程,是基于直线上两个已知点的坐标来定 义的。假设两点为$P_1(x_1, y_1)$和$P_2(x_2, y_2)$,则两点式直线方程可以表示 为:$frac{y - y_1}{x - x_1} = frac{y_2 - y_1}{x_2 - x_1}$。
解决实际问题
在实际问题中,已知直线上两点 的坐标,可以通过两点式方程求 出直线的斜率和截距,再通过转 换得到一般式方程,从而解决实
际问题。
数学建模
在数学建模中,通过将实际问题 转化为数学模型,利用两点式与 一般式的转换关系,可以方便地
求解直线方程。
科学实验
在科学实验中,有时需要利用已 知的两点坐标来计算直线的斜率 和截距,进而通过转换得到一般 式方程,用于描述实验数据的变
应用场景
总结词
一般式直线方程在几何、代数、解析几何等领域都有广 泛的应用。
详细描述
在几何中,一般式直线方程可以用来描述平面上的任意 一条直线,并且可以用来计算直线的斜率和截距。在代 数中,一般式直线方程可以用来解决线性方程组的问题 ,通过代入法或者消元法可以得到解。在解析几何中, 一般式直线方程可以用来研究直线的性质和特点,例如 直线的平行、垂直、相交等关系。
$Ax + By + C = 0$,其中$A$、$B$ 不同时为零。
直线的两点式方程 、直线的一般式方程 课件
法二 由题意可知,直线 l 的斜率存在且不为 0,设其斜 率为 k,则可得直线的方程为 y+2=k(x-3).
令 x=0,得 y=-2-3k. 令 y=0,得 x=2k+3. 由题意-2-3k=2k+3,解得 k=-1 或 k=-23. 所以直线 l 的方程为 y+2=-(x-3)或 y+2=-23(x-3), 即 x+y-1=0 或 2x+3y=0.
直线的两点式方程 三角形的三个顶点是 A(-1,0),B(3,-1),
C(1,3),求三角形三边所在直线的方程. 【思路探究】 由两点式直接求出三角形三边所在的直
线的方程.
【自主解答】 由两点式,直线 AB 所在直线方程为: y0----11=-x-1-33,即 x+4y+1=0. 同理,直线 BC 所在直线方程为: -y-1-33=3x--11,即 2x+y-5=0. 直线 AC 所在直线方程为: 0y--33=-x-1-11,即 3x-2y+3=0.
2.关于 x,y 的二元一次方程 Ax+By+C=0(A,B 不同 时为 0)一定表示直线吗?
【提示】 一定.
直线的一般式方程 (1)定义:关于 x,y 的二元一次方程 Ax+By+C=0 (其 中 A,B 不同时为 0)叫做直线的一般式方程,简称一般式. (2)斜率:直线 Ax+By+C=0(A,B 不同时为 0),当 B≠0 时,其斜率是-AB ,在 y 轴上的截距是-CB .当 B=0 时,这 条直线垂直于 x 轴,不存在斜率.
直线的两点式方程 直线的一般式方程
直线方程的两点式和截距式 【问题导思】
1.利用点斜式解答如下问题: (1)已知直线 l 经过两点 P1(1,2),P2(3,5),求直线 l 的方程; (2)已知两点 P1(x1,y1),P2(x2,y2),其中 x1≠x2,y1≠y2, 求通过这两点的直线方程. 【提示】 (1)y-2=32(x-1). (2)y-y1=yx22- -yx11(x-x1). 2.过点(3,0)和(0,6)的直线能用3x+6y=1 表示吗? 【提示】 能.
《直线的两点式方程》课件
= (y2 - y1) / (x2 - x1)。
3
利用斜率和点的坐标得出方程
将斜率m和点A的坐标代入点斜式方 程y - y1 = m(x - x1)。
通过两点求直线方程的示例
示例一
已知点A(2, 3)和点B(4, -1),求 通过这两点的直线方程。
示例二
已知点A(-1, 5)和点B(3, -7), 求通过这两点的直线方程。
《直线的两点式方程》 PPT课件
直线的两点式方程是描述直线的一种常用方程形式,通过给定直线上的两个 点来确定直线的方程。
直线的两点式方程的定义
什么是两点式方程?
直线的两点式方程是通过给定直线上的两个 点,来表示直线的方程。
两点式方程的一般形式
直线的两点式方程一般形式为:y - y1 = (y2 - y1) / (x2 - x1) * (x - x1)
示例三
已知点A(0, 2)和点B(5, 2),求 通过这两点的直线方程。
直线的两点式方程的应用
几何分析
两点式方程可以用来计算 直线的斜率、判断直线是 否垂直或平行于坐标轴。
图形绘制
通过两点式方程,可以在 坐标系上画出直线的图像。
实际应用
两点式方程可以应用于设 计和建筑、工程测量以及 计算机图形学等领域。
两点式方程与斜率的关系
斜率 正斜率 负斜率 零斜率 无穷大斜率
直线的特性 直线向上倾斜 直线向下倾斜 水平直线 垂直直线
总结和要点
1 两点式方程
2 推导过程
通过给定直线上的两个点来确定直线的方 程。
通过计算斜率和利用点斜式方程得出直线 的两点式方程。
3 应用
4 与斜率的关系
两点式方程可以用于几何分析、图形绘制 以及实际应用。
直线的两点式和截距式的方程及一般式方程PPT课件
参数法求解
参数法是一种将变量用参数表示 出来的方法,适用于已知一个点
坐标和斜率的情况。
步骤:首先根据已知条件设定参 数方程,然后根据参数方程解出
变量的值。
例如,已知点A(1,2)和斜率m=1, 代入参数方程得:{x=t*cosα,
y=t*sinα},将点A的坐标代入得: {t*cosα=1, t*sinα=2},解得:
力的合成与分解
在分析力的作用时,直线 方程可以用来表示力的方 向和大小。
电路分析
在电路分析中,直线方程 可以用来描述电流、电压 和电阻之间的关系。
实际生活问题
交通规划
在城市交通规划中,直线 方程可以用来描述道路的 走向和长度。
建筑结构设计
在建筑设计时,直线方程 可以用来确定建筑物的位 置、高度和方向。
直线的两点式和截距式的方程及一 般式方程ppt课件
contents
目录
• 直线的两点式方程 • 直线的截距式方程 • 直线的一般式方程 • 直线方程的求解方法 • 直线方程在实际问题中的应用
01 直线的两点式方程
定义
两点式方程
给定直线上的两个点$(x_1, y_1)$ 和$(x_2, y_2)$,通过这两点可以 确定一条直线的方程。
经济数据分析
在经济数据分析中,直线 方程可以用来描述经济增 长、消费和收入之间的关 系。
THANKS FOR WATCHING
感谢您的观看
推导过程
通过两点确定一条直线的原理,设直线上的两点为 (P_1(x_1, y_1)) 和 (P_2(x_2, y_2)),斜率 (m = frac{y_2 - y_1}{x_2 - x_1}),截距 (b = y_1 - m cdot x_1)。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题引入
直线方程的点斜式和斜截式是什么?适用条件是什么?
点斜式方程: y-y0=k(x-x0) 条件:k是直线的斜率,(x0,y0 )是直线上的一个点 斜截式方程: y =kx+b 条件:k是直线的斜率,b是直线在y轴上的截距
教学重难点
1.掌握直线的两点式和一般式方程.(重点) 2.直线的两点式和一般式方程的推导过程.(难 点)
b0 0a
x y 1. ab
直线方程的一般式
问题:平 面直角坐 标系中的 任意一 条直线都 可以表 示成
Ax By C 0 ( A, B 不同时为 0)的形式吗?
过点 P(x0 , y0 ) 与 x 轴不垂直的直线方程都可 写成点斜式形式 y y0 k (x x0 ) ,
它可化为 kx y kx0 y0 0 的形式.
关于 x, y 的二元一次方程 Ax By C 0 ( A, B 不同时为 0)
表 示的是一 条直线 ,我们把 它叫作直 线方程 的一般式 .
在无特殊说明的 条件下,直线方 程写成一般式.
想一想
△ABC的三个顶点为A(-3,0),B(2,1), C(-2,3),求这个三角形三边所在的直线方程.
当x1 =x2 时 方程为: x =x1
当 y1= y2时 方程为: y= y1
问题:
直线方程的两点式不能表示有什么特征的直 线?
直线方程的两点式中要求x1≠x2,y1≠y2,即两 点式不能表示与坐标轴垂直的直线,即它只能表 示斜率存在且不为零的直线.
直线l经过 (a,0)和(0,b)两点时 (a,b不同时为零),求直线l 的方程.
由点斜式方程得
y
y1
y2 x2
y1 x1
(x
x1 )
,
两点式方程不能表 示和坐标轴垂直的
直线方程.
可化为 y y1 x x1 . y2 y1 x2 x1
这个方程称为直线方程的两点式.
记忆特点:
左边全为y,右边全为x, 两边的分母全为常数, 分子,分母中的减数相同.
探究(二):
若点P1 ( x1 , y1 ),P2( x2 , y2)中有x1 =x2 或y1= y2,此时过这两点的直线方程是什么?
通常称 x y 1为直线方程的截距式.
ab
注意:
(1) 其中,a 为直线在 x 轴上的截距, b 为直
线在 y 轴上的截距; (2)截距不是距离,可正可负可为零.
截距式与两点式的关系是什么?
提示:截距式源于两点式,是两点式的特殊情形.当
直线l经过 (a,0)和(0,b)两点时,将这两点的坐
标代入两点式,得 y 0 化x 简a , 得
探究(一)
问题1 已知一个点和直线的斜率可以确定一条 直线,还有别的条件可以确定一条直线吗?
问题2 已 知直线 l 上 两点 A( x1, y1 ), B ( x2 , y2 ) (其 中 x1 x2 , y1 y2 ), 如何求直线 l 的方程呢?
根据 A,B 两点的坐标算出直线的斜率
k y2 y1 , x2 x1
练一练
设直线l的方程为(m2-2m-3)x+(2m2+m- 1)y=2m-6,根据下列条件分别确定m的值.
(1)l在x轴上的截距是-;2)x+(m-2)y-2m+5=0表示直线. (1)求实数m的范围. (2)若该直线的斜率k=1,求实数m的值.
直线方程的点斜式和斜截式是什么?适用条件是什么?
点斜式方程: y-y0=k(x-x0) 条件:k是直线的斜率,(x0,y0 )是直线上的一个点 斜截式方程: y =kx+b 条件:k是直线的斜率,b是直线在y轴上的截距
教学重难点
1.掌握直线的两点式和一般式方程.(重点) 2.直线的两点式和一般式方程的推导过程.(难 点)
b0 0a
x y 1. ab
直线方程的一般式
问题:平 面直角坐 标系中的 任意一 条直线都 可以表 示成
Ax By C 0 ( A, B 不同时为 0)的形式吗?
过点 P(x0 , y0 ) 与 x 轴不垂直的直线方程都可 写成点斜式形式 y y0 k (x x0 ) ,
它可化为 kx y kx0 y0 0 的形式.
关于 x, y 的二元一次方程 Ax By C 0 ( A, B 不同时为 0)
表 示的是一 条直线 ,我们把 它叫作直 线方程 的一般式 .
在无特殊说明的 条件下,直线方 程写成一般式.
想一想
△ABC的三个顶点为A(-3,0),B(2,1), C(-2,3),求这个三角形三边所在的直线方程.
当x1 =x2 时 方程为: x =x1
当 y1= y2时 方程为: y= y1
问题:
直线方程的两点式不能表示有什么特征的直 线?
直线方程的两点式中要求x1≠x2,y1≠y2,即两 点式不能表示与坐标轴垂直的直线,即它只能表 示斜率存在且不为零的直线.
直线l经过 (a,0)和(0,b)两点时 (a,b不同时为零),求直线l 的方程.
由点斜式方程得
y
y1
y2 x2
y1 x1
(x
x1 )
,
两点式方程不能表 示和坐标轴垂直的
直线方程.
可化为 y y1 x x1 . y2 y1 x2 x1
这个方程称为直线方程的两点式.
记忆特点:
左边全为y,右边全为x, 两边的分母全为常数, 分子,分母中的减数相同.
探究(二):
若点P1 ( x1 , y1 ),P2( x2 , y2)中有x1 =x2 或y1= y2,此时过这两点的直线方程是什么?
通常称 x y 1为直线方程的截距式.
ab
注意:
(1) 其中,a 为直线在 x 轴上的截距, b 为直
线在 y 轴上的截距; (2)截距不是距离,可正可负可为零.
截距式与两点式的关系是什么?
提示:截距式源于两点式,是两点式的特殊情形.当
直线l经过 (a,0)和(0,b)两点时,将这两点的坐
标代入两点式,得 y 0 化x 简a , 得
探究(一)
问题1 已知一个点和直线的斜率可以确定一条 直线,还有别的条件可以确定一条直线吗?
问题2 已 知直线 l 上 两点 A( x1, y1 ), B ( x2 , y2 ) (其 中 x1 x2 , y1 y2 ), 如何求直线 l 的方程呢?
根据 A,B 两点的坐标算出直线的斜率
k y2 y1 , x2 x1
练一练
设直线l的方程为(m2-2m-3)x+(2m2+m- 1)y=2m-6,根据下列条件分别确定m的值.
(1)l在x轴上的截距是-;2)x+(m-2)y-2m+5=0表示直线. (1)求实数m的范围. (2)若该直线的斜率k=1,求实数m的值.