2020年九年级数学上期中试卷(带答案)
2020-2021学年河南省郑州市新郑市九年级(上)期中数学试卷(解析版)
2020-2021学年河南省郑州市新郑市九年级第一学期期中数学试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题:共10小题,每小题3分,共30分.1.已知一元二次方程3x2=﹣4+2x的常数项为4,则二次项系数和一次项系数分别为()A.3,﹣2B.﹣3,2C.3,2D.﹣3,﹣22.已知2a=3b,且a≠0,则=()A.B.C.﹣D.﹣3.如图,菱形ABCD的边长为,对角线AC,BD交于点O,OA=1,则菱形ABCD的面积为()A.B.2C.2D.44.下列说法正确的是()A.某同学连续投掷一枚质地均匀的硬币5次,有3次正面朝上,因此正面朝上的概率为B.50个人中一定有两人生日相同C.甲、乙射击命中目标的概率分别是和,则甲、乙各射击一次命中目标的概率为D.13个人中有两个人生肖相同的概率为15.已知△ABC∽△DEF,∠A=∠D=70°,∠B=60°,则么∠F=()A.60°B.50°C.70°D.60°或50°6.如图,菱形ABCD对角线AC,BD交于点O,∠ACB=15°,过点C作CE⊥AD交AD 的延长线于点E.若菱形ABCD的面积为4,则菱形的边长为()A.2B.2C.4D.47.定义一种新运算“a△b”,对于任意实数a,b,a△b=a2+2ab﹣b2﹣1,如3△4=32+2×3×4﹣42﹣1,若x△k=0(k为实数)是关于x的方程,则它的根的情况为()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根8.某品牌汽车为了打造更加精美的外观.特将汽车倒车镜设计为整个车身黄金分割点的位置(如图),若车头与倒车镜的水平距离为1.58米,则该车车身总长约为()米.A.4.14B.2.56C.6.70D.3.829.如图,下列条件能判定△ADB∽△ABC的是()A.∠ABD=∠CBD B.=C.AB2=AD•AC D.=10.如图,在Rt△ABC中,∠C=60°,点D是斜边BC的中点,分别以点A,B为圆心,以BC的长为半径画弧,两弧交于点E,连接EA,EB,ED得到四边形EBDA,依次连接四边形EBDA四条边中点得到四边形GHIJ,若AC=2,那么四边形GHIJ的周长为()A.2+B.2+2C.4+2D.4+4二、填空题:本题共5小题,每小题3分,共15分.11.一元二次方程ax2+x﹣2=0有一个根为1,则a=.12.如图,点D,E分别是△ABC两边AB,AC上的点,DE∥BC,若=,AC=5,则EC=.13.一个不透明的袋子中装有2个红球和3个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球记下颜色后不放回,再从袋子里取出1个球,则两次取出的都是红球的概率是.14.某医药超市平均每天卖出口罩100个,每个盈利2元,为了尽快减少库存,该超市准备采取适当的降价措施.调查发现,如果每个口罩售价减少0.5元,那么平均每天可多售出80个.若该超市想平均每天盈利270元,每个口罩应降价多少元?若设每个口罩降价x 元,可列方程为.(不需要化简)15.已知正方形ABCD的边长为4,点E是边AB上靠近点B的四等分点,连接EC,将线段EC绕点E旋转,交∠BAD外角的平分线于点F,若AF=,则FG的长为.三、解答题:本题共8个小题,满分75分.解答应写出文字说明、证明过程或演算步骤. 16.解方程(1)2x2﹣4x﹣1=0(用配方法);(2)(x﹣1)2+3=3x(用适当方法).17.已知Rt△ABC的两直角边AB,AC的长分别为6cm和8cm,动点D从点A开始沿AB 边向点B运动,速度为1cm/s;动点E从点C开始沿CA边向点A运动,速度为2cm/s.若两点同时运动,其中一点到达终点时,另一点也随之停止运动,那么何时△ADE与△ABC 相似?18.已知关于x的一元二次方程x2+(m﹣1)x+m2+1=0.(1)当方程有两个不相等的实数根时,求m的取值范围;(2)若方程有一根为1,求m的值并求出方程的另一根.19.从2021年起,很多省份的高考将采用“3+1+2”的模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若你在“1”中选择了你喜欢的物理,在“2”中已经选择了你喜欢的化学,则你选择地理的概率为.(2)若小王在“1”中选择了喜欢的历史,请用列表法表示他在“2”中所有可选科目的方案,由于大学后考研必须要考思想政治,小王不想到考研的时候出现知识空档期,而他对其他学科没有特别要求,那么他选择合适科目的概率是多少?20.如图,点D是△ABC边BC上一点,连接AD,过AD上点E作EF∥BD,交AB于点F,过点F作FG∥AC交BC于点G,已知=,BG=4.(1)求CG的长;(2)若CD=2,在上述条件和结论下,求EF的长.21.如图,已知菱形ABCD的对角线AC,BD交于点O,分别过点A,D作AO,DO的垂线,两垂线交于点E.(1)请判断四边形AODE的形状并给出证明;(2)若四边形AODE的面积为12,点G是四边形AODE对角线AD的中点,且EG=,请计算四边形AODE的周长.22.如图,在一块长AB=80米,宽AD=60米的矩形空地ABCD上修建两条水平和一条铅直道路,已知水平道路和铅直道路的宽之比为3:4,剩余空地面积为3456平方米.(1)请你计算水平和铅直道路的宽分别是多少米.(2)若将其中一条水平道路改为铅直道路,宽度也随之改变为铅直道路的宽度,也能保证剩余空地面积为3456平方米,你能说明理由吗?23.如图(1),点P是菱形ABCD对角线BD上的一点,连接AP,以AP为腰在AP的右侧作等腰三角形APE,且使∠APE=∠ABC,AP=PE.(1)当点E在菱形ABCD内,=1时,=;(2)如图(2),当点E在菱形ABCD内,=k(k≠1),其他条件不变时,求值;(3)如图(3),当点E在菱形ABCD外,=,BP=6,菱形ABCD的面积为8,其他条件不变,请直接写出△DCE的面积.参考答案一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知一元二次方程3x2=﹣4+2x的常数项为4,则二次项系数和一次项系数分别为()A.3,﹣2B.﹣3,2C.3,2D.﹣3,﹣2【分析】直接利用一元二次方程中各项系数的确定方法分析得出答案.解:一元二次方程3x2=﹣4+2x化为一般形式可得:3x2﹣2x+4=0,∴二次项系数、一次项系数分别为:3,﹣2.故选:A.2.已知2a=3b,且a≠0,则=()A.B.C.﹣D.﹣【分析】根据比例的性质直接解答即可.解:∵2a=3b,且a≠0,∴=.故选:A.3.如图,菱形ABCD的边长为,对角线AC,BD交于点O,OA=1,则菱形ABCD的面积为()A.B.2C.2D.4【分析】根据菱形的对角线互相垂直且互相平分,可得出对角线AC的长度,依据勾股定理即可得到另一条对角线的的长度,进而根据公式可得出菱形的面积.解:∵对角线AC,BD交于点O,OA=1,∴AC=2AO=2,∵菱形ABCD的边长为,∴AB=,∴BO===2,∴BD=2BO=4,∴菱形ABCD的面积=BD×AC==4,故选:D.4.下列说法正确的是()A.某同学连续投掷一枚质地均匀的硬币5次,有3次正面朝上,因此正面朝上的概率为B.50个人中一定有两人生日相同C.甲、乙射击命中目标的概率分别是和,则甲、乙各射击一次命中目标的概率为D.13个人中有两个人生肖相同的概率为1【分析】利用概率的意义逐项进行判断即可.解:A.某同学连续投掷一枚质地均匀的硬币5次,有3次正面朝上,因此正面朝上的频率为,不是概率为,由于实验次数少,不能确定正面朝上的概率,所以选项A不符合题意;B.50个人中不一定有两人生日相同,也可能这50人的生日均不相同,因此选项B不符合题意;C.甲、乙射击命中目标的概率分别是和,则甲、乙各射击一次命中目标的概率不一定是,因此选项C不符合题意;D.根据“抽屉”原理可知,13个人中一定有两人的生肖相同,因此选项D符合题意,故选:D.5.已知△ABC∽△DEF,∠A=∠D=70°,∠B=60°,则么∠F=()A.60°B.50°C.70°D.60°或50°【分析】△ABC中,根据三角形内角和定理即可求得∠C的度数,根相似三角形的对应角相等即可求得答案.解:在△ABC中,∵∠A=70°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=50°.∵△ABC∽△DEF,∠A=∠D=70°,∴∠F=∠C=50°;故选:B.6.如图,菱形ABCD对角线AC,BD交于点O,∠ACB=15°,过点C作CE⊥AD交AD 的延长线于点E.若菱形ABCD的面积为4,则菱形的边长为()A.2B.2C.4D.4【分析】根据菱形的性质和30度角所对直角边等于斜边一半可得CE=AD,再根据菱形面积即可得菱形的边长.解:∵四边形ABCD是菱形,∴AD=CD,AB∥CD,∴∠EDC=∠DAB=2∠ACB=30°,∵CE⊥AD,∴∠CED=90°,∴CE=DC=,∴菱形ABCD的面积=AD•CE=AD AD=AD2=4,∴AD=2(负值舍去),则菱形的边长为2.故选:A.7.定义一种新运算“a△b”,对于任意实数a,b,a△b=a2+2ab﹣b2﹣1,如3△4=32+2×3×4﹣42﹣1,若x△k=0(k为实数)是关于x的方程,则它的根的情况为()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】利用新定义得到x2+2kx﹣k2﹣1=0,然后利用Δ>0可判断方程根的情况.解:由新定义得x2+2kx﹣k2﹣1=0,∵Δ=(2k)2﹣4×1×(﹣k2﹣1)=8k2+4>0,∴方程有两个不相等的实数根.故选:C.8.某品牌汽车为了打造更加精美的外观.特将汽车倒车镜设计为整个车身黄金分割点的位置(如图),若车头与倒车镜的水平距离为1.58米,则该车车身总长约为()米.A.4.14B.2.56C.6.70D.3.82【分析】设该车车身总长为xm,利用黄金分割点的定义得到汽车倒车镜到车尾的水平距离为0.618x,则根据题意列方程x﹣0.618x=1.58,然后解方程即可.解:设该车车身总长为xm,∵汽车倒车镜设计为整个车身黄金分割点的位置,∴汽车倒车镜到车尾的水平距离为0.618x,∴x﹣0.618x=1.58,解得x≈4.14,即该车车身总长约为4.14米.故选:A.9.如图,下列条件能判定△ADB∽△ABC的是()A.∠ABD=∠CBD B.=C.AB2=AD•AC D.=【分析】根据相似三角形的判定方法一一判断即可.解:∵AB2=AD•AC,∴=,∵∠A=∠A,∴△ADB∽△ABC,故选:C.10.如图,在Rt△ABC中,∠C=60°,点D是斜边BC的中点,分别以点A,B为圆心,以BC的长为半径画弧,两弧交于点E,连接EA,EB,ED得到四边形EBDA,依次连接四边形EBDA四条边中点得到四边形GHIJ,若AC=2,那么四边形GHIJ的周长为()A.2+B.2+2C.4+2D.4+4【分析】在Rt△ABC中,∠CAB=90°,AC=2,∠C=60°,推出BC=2AC=4,AB =AC=2,由BD=CD,推出AD=DB=DC=2,由作图可知,四边形ADBE是菱形,推出中点四边形GHIJ是矩形,求出IJ.IH,即可解决问题.解:在Rt△ABC中,∠CAB=90°,AC=2,∠C=60°,∴BC=2AC=4,AB=AC=2,∵BD=CD,∴AD=DB=DC=2,由作图可知,四边形ADBE是菱形,∴中点四边形GHIJ是矩形,∵AD=AC=DC,∴∠ADC=60°,∵AE∥DB,∴∠EAD=∠ADC=60°,∵AE=AD,∴△AED是等边三角形,∴AD=DE=2,∵AJ=JE,AI=ID,∴IJ=DE=1,∵BH=DH,AI=ID,∴IH=AB=,∴四边形GHIJ的周长=2(1+)=2+2,故选:B.二、填空题:本题共5小题,每小题3分,共15分.11.一元二次方程ax2+x﹣2=0有一个根为1,则a=1.【分析】根据一元二次方程的解的定义,将x=1代入关于x的一元二次方程ax2+2x=0,列出关于a的方程,通过解该方程求得a值即可.解:∵一元二次方程ax2+x﹣2=0的一个根为1,∴x=1满足关于x的一元二次方程ax2+x﹣2=0,∴a+1﹣2=0,解得,a=1;故答案是:1.12.如图,点D,E分别是△ABC两边AB,AC上的点,DE∥BC,若=,AC=5,则EC=2.【分析】证明ADE∽△ABC,则利用相似比得到AE=AC=3,然后计算AC﹣AE即可.解:∵DE∥BC,∴△ADE∽△ABC,∴==,∴AE=AC=×5=3,∴CE=AC﹣AE=5﹣3=2.故答案为2.13.一个不透明的袋子中装有2个红球和3个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球记下颜色后不放回,再从袋子里取出1个球,则两次取出的都是红球的概率是.【分析】先画出树状图,共有20个等可能的结果,两次取出的都是红球的结果有2个,然后由概率公式求解即可.解:画树状图如图:共有20个等可能的结果,两次取出的都是红球的结果有2个,∴两次取出的都是红球的概率为=,故答案为:.14.某医药超市平均每天卖出口罩100个,每个盈利2元,为了尽快减少库存,该超市准备采取适当的降价措施.调查发现,如果每个口罩售价减少0.5元,那么平均每天可多售出80个.若该超市想平均每天盈利270元,每个口罩应降价多少元?若设每个口罩降价x 元,可列方程为(2﹣x)(100+80×)=270.(不需要化简)【分析】设每个口罩降价x元,则每个口罩盈利(2﹣x)元,平均每天的销售量为(100+80×)个,根据该超市每天销售口罩的利润=每个口罩的盈利×平均每天的销售量,即可得出关于x的一元二次方程,此题得解.解:设每个口罩降价x元,则每个口罩盈利(2﹣x)元,平均每天的销售量为(100+80×)个,依题意得:(2﹣x)(100+80×)=270.故答案为:(2﹣x)(100+80×)=270.15.已知正方形ABCD的边长为4,点E是边AB上靠近点B的四等分点,连接EC,将线段EC绕点E旋转,交∠BAD外角的平分线于点F,若AF=,则FG的长为.【分析】过点F作FH⊥AD于H,FN⊥AM于N,由“HL”可证Rt△NFE≌Rt△BEC,可得∠BCE=∠NEF,可证∠FEC=90°,由勾股定理可求FC的长,通过证明△FHG∽△CDG,可得=,即可求解.解:过点F作FH⊥AD于H,FN⊥AM于N,设∠BAD的外角为∠MAD,∵AF平分∠MAG,FH⊥AD,FN⊥AM,∴∠FAH=45°,FN=FH,∵FH⊥AD,∴∠FAH=∠AFH=45°,∴AH=FH,∴AF=FH=,∴FH=AH=1,∴FN=FH=1,∵点E是边AB上靠近点B的四等分点,∴BE=1,∴EC===,∵将线段EC绕点E旋转,∴EC=EF,在Rt△NFE和Rt△BEC中,,∴Rt△NFE≌Rt△BEC(HL),∴∠BCE=∠NEF,∵∠BCE+∠BEC=90°,∴∠BEC+∠NEF=90°,∴∠FEC=90°,∴CF=EC=,∵∠FHG=∠D=90°,∠FGH=∠CGD,∴△FHG∽△CDG,∴=,∴FG=FC=.三、解答题:本题共8个小题,满分75分.解答应写出文字说明、证明过程或演算步骤. 16.解方程(1)2x2﹣4x﹣1=0(用配方法);(2)(x﹣1)2+3=3x(用适当方法).【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.解:(1)原方程可化为2x2﹣4x=1,即x2﹣2x=,配方得:x2﹣2x+1=+1,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣;(2)原方程可化为(x﹣1)2+3﹣3x=0,即(x﹣1)2﹣3(x﹣1)=0,提取公因式,得(x﹣1)(x﹣1﹣3)=0,则x﹣1=0或(x﹣1﹣3)=0,解得x1=1,x2=4.17.已知Rt△ABC的两直角边AB,AC的长分别为6cm和8cm,动点D从点A开始沿AB 边向点B运动,速度为1cm/s;动点E从点C开始沿CA边向点A运动,速度为2cm/s.若两点同时运动,其中一点到达终点时,另一点也随之停止运动,那么何时△ADE与△ABC 相似?【分析】分两种情况利用相似三角形的性质解答即可.解:设运动时间为t秒,则由题意得:AD=tcm,AE=(8﹣2t)cm,当△ADE∽△ABC时,∴,即,解得:t=2.4,当△ADE∽△ACB时,∴,即,解得:t=,∴经过2.4秒或秒.△ADE与△ABC相似.18.已知关于x的一元二次方程x2+(m﹣1)x+m2+1=0.(1)当方程有两个不相等的实数根时,求m的取值范围;(2)若方程有一根为1,求m的值并求出方程的另一根.【分析】(1)根据一元二次方程根的判别式得到Δ=(m﹣1)2﹣4×(m2+1)>0,然后解不等式确定m的取值范围;(2)把x=1是方程的一个根,代入方程求得m+m2+1=0,解得m的值,代入求得答案即可.解:(1)∵方程有两个不相等的实数根,∴Δ=b2﹣4ac=(m﹣1)2﹣4×(m2+1)=﹣2m﹣3>0,∴m<﹣;(2)∵方程有一根为1,将x=1代入原方程中,得m+m2+1=0,解这个方程,得m1=m2=﹣2,把m=﹣2代入原方程中,得x2﹣3x+2=0,解得x1=1,x2=2,即方程的另一根为2.19.从2021年起,很多省份的高考将采用“3+1+2”的模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若你在“1”中选择了你喜欢的物理,在“2”中已经选择了你喜欢的化学,则你选择地理的概率为.(2)若小王在“1”中选择了喜欢的历史,请用列表法表示他在“2”中所有可选科目的方案,由于大学后考研必须要考思想政治,小王不想到考研的时候出现知识空档期,而他对其他学科没有特别要求,那么他选择合适科目的概率是多少?【分析】(1)由概率公式即可得出答案;(2)先列表,共有12个等可能的结果,其中含有思想政治学科的方案有6个,然后由概率公式求解即可.解:(1)选择地理的概率为,故答案为:;(2)把化学、生物、思想政治、地理分别记为A、B、C、D,列表如下:共有12个等可能的结果,其中含有思想政治学科的方案有6个,∴小王选择合适科目的概率为=.20.如图,点D是△ABC边BC上一点,连接AD,过AD上点E作EF∥BD,交AB于点F,过点F作FG∥AC交BC于点G,已知=,BG=4.(1)求CG的长;(2)若CD=2,在上述条件和结论下,求EF的长.【分析】(1)由EF∥BD,推出==,由FG∥AC,推出==,可得结论.(2)由EF∥BD,推出=,可得结论.解:(1)∵EF∥BD,∴==,∵FG∥AC,∴==,∵BG=4,∴CG=6.(2)∵CD=2,CG=6,∴DG=CG﹣CD=4,∵BG=4,∴BD=BG+DG=8,∵=,∴=,∴=,∴=,∴EF=21.如图,已知菱形ABCD的对角线AC,BD交于点O,分别过点A,D作AO,DO的垂线,两垂线交于点E.(1)请判断四边形AODE的形状并给出证明;(2)若四边形AODE的面积为12,点G是四边形AODE对角线AD的中点,且EG=,请计算四边形AODE的周长.【分析】(1)根据菱形的性质可得对角线互相垂直,再根据已知条件即可得四边形AODE 是矩形;(2)由(1)知,四边形AODE是矩形,根据直角三角形斜边中线等于斜边一半可得AD 长,由四边形AODE的面积为12,可得AO•OD=12,根据勾股定理可得AO+OD=7,进而可得四边形AODE的周长.解:(1)四边形AODE是矩形,理由如下:∵四边形ABCD是菱形,∴∠AOD=90°,∵EA⊥AO,DO⊥AO,∴∠EAO=∠DOA=90°,∴四边形AODE是矩形;(2)由(1)知,四边形AODE是矩形,∴∠AED=90°,∵点G是矩形AODE对角线AD的中点,∴EG=AD=,∴AD=5,∵四边形AODE的面积为12,∴AO•OD=12,在Rt△AOD中,根据勾股定理,得AO2+OD2=AD2=25,∴(AO+OD)2=AO2+2AO•OD+OD2=25+24=49,∴AO+OD=7,∴四边形AODE的周长为14.22.如图,在一块长AB=80米,宽AD=60米的矩形空地ABCD上修建两条水平和一条铅直道路,已知水平道路和铅直道路的宽之比为3:4,剩余空地面积为3456平方米.(1)请你计算水平和铅直道路的宽分别是多少米.(2)若将其中一条水平道路改为铅直道路,宽度也随之改变为铅直道路的宽度,也能保证剩余空地面积为3456平方米,你能说明理由吗?【分析】(1)把所修的道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程即可求解;(2)结合(1)求出每条水平道路的面积为80×6=480(平方米),每条铅直道路的面积为60×8=480(平方米),进而可得结论.解:(1)设水平道路和铅直道路的宽分别为3x米和4x米,由题意有(80﹣4x)(60﹣2×3x)=3456,解得x1=28(舍去),x2=2.答:水平道路的宽为6米,铅直道路的宽为8米.(2)每条水平道路的面积为80×6=480(平方米),每条铅直道路的面积为60×8=480(平方米),∴将水平道路改为铅直道路,也能保证剩余空地面积为3456平方米.23.如图(1),点P是菱形ABCD对角线BD上的一点,连接AP,以AP为腰在AP的右侧作等腰三角形APE,且使∠APE=∠ABC,AP=PE.(1)当点E在菱形ABCD内,=1时,=1;(2)如图(2),当点E在菱形ABCD内,=k(k≠1),其他条件不变时,求值;(3)如图(3),当点E在菱形ABCD外,=,BP=6,菱形ABCD的面积为8,其他条件不变,请直接写出△DCE的面积.【分析】(1)证明△APE∽△ABC,得到,进而证明△BAP∽△CAE,即可求解;(2)由(1)知,,即可求解;(3)证明AD⊥EF,由△BAP∽△CAE得到=,由菱形ABCD的面积求出AO=,进而求解.解:(1)连接AC,则△ABC为等腰三角形,BA=BC,∵△APE为等腰三角形,且∠APE=∠ABC,∵AP=PE,∴∠EAP=∠CAB,∴△APE∽△ABC,∴,∵∠EAP=∠BAC,∴∠EAP=∠PAC=∠BAC=∠PAC,即∠CAE=∠BAP,在△BAP和△CAE中,∵,∠BAP=∠CAE,∴△BAP∽△CAE,∴,故答案为1;(2)由(1)知,,而=k(k≠1),故=k;(3)连接AO交BD于点O,设CE交AD于点F,∵=,BP=6,由(1)知==,故CE=4,四边形ABCD为菱形,则∠DAC=∠BAC,由△BAP∽△CAE得,∠ABP=∠ACF,∵∠BAC+∠ABP=90°,∴∠DAC+∠ACE=90°,即AD⊥EF,∵△BAP∽△CAE,∴=(三角形相似高的比等于相似比),设AB=3x,则AC=2x,AO=x,则BO==2x,则菱形ABCD的面积=×AC•BD=2AO•BO=2x•2x=8,解得x=,故AO=x=,而=,故AF=,则DF=AD﹣AF=AB﹣AF=3﹣=,故△DCE的面积=CE•DF=×4×=.。
每日一学:浙江省宁波市慈溪市阳光实验中学2020届九年级上学期数学期中考试试卷_压轴题解答
每日一学:浙江省宁波市慈溪市阳光实验中学2020届九年级上学期数学期中考试试卷_压轴题解答答案浙江省宁波市慈溪市阳光实验中学2020届九年级上学期数学期中考试试卷_压轴题~~ 第1题 ~~(2020慈溪.九上期中) 如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1) 若△ABC 是“准互余三角形”,∠C >90°,∠A=60°,则∠B=°;(2) 如图①,在Rt △ABC 中,∠ACB=90°,AC=4,BC=5.若AD 是∠BAC 的平分线,不难证明△ABD 是“准互余三角形”.试问在边BC 上是否存在点E (异于点D ),使得△ABE 也是“准互余三角形”?若存在,请求出BE 的长;若不存在,请说明理由.(3) 如图②,在四边形ABCD 中,AB=7,CD=12,BD ⊥CD ,∠ABD=2∠BCD ,且△ABC 是“准互余三角形”,求对角线AC 的长.考点: 翻折变换(折叠问题);相似三角形的判定与性质;~~ 第2题 ~~(2020慈溪.九上期中) 已知在圆O 中,AB 是直径,点E 和点D 是圆O 上的点,且∠EAB=45°,延长AE 和BD 相交于点C ,连接BE 和AD 交于点F ,BD=12,CD=8,则直径AB 的长是________.~~ 第3题 ~~(2020慈溪.九上期中) 如图,在直角坐标系中,矩形OABC 的顶点A 、B 在双曲线y = ( x >0)上,BC与x 轴交于点D.若点A 的坐标为(2,4),则点D 的坐标为()A . (,0) B . (,0) C . ( ,0) D . ( ,0)浙江省宁波市慈溪市阳光实验中学2020届九年级上学期数学期中考试试卷_压轴题解答~~ 第1题 ~~答案:解析:答案:解析:~~ 第3题 ~~答案:B解析:。
2020-2021学年湖北省武汉市青山区九年级(上)期中数学试卷(附答案详解)
2020-2021学年湖北省武汉市青山区九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.将方程x2−8x=10化成一元二次方程的一般形式,其中二次项系数为1,常数项为()A. −8B. 8C. 10D. −102.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A. B. C. D.3.若将抛物线y=2x2向上平移3个单位,所得抛物线的解析式为()A. y=2x2+3B. y=2x2−3C. y=2(x−3)2D. y=2(x+3)24.如图,在⊙O中,∠BOC=100°,则∠A等于()A. 100°B. 50°C. 40°D. 25°5.抛物线y=−3(x−1)2−2的顶点坐标是()A. (1,2)B. (−1,2)C. (−1,−2)D. (1,−2)6.用配方法解方程x2+10x+9=0,配方正确的是()A. (x+5)2=16B. (x+5)2=34C. (x−5)2=16D. (x+5)2=257.如图,Rt△ABC中,∠BAC=30°,∠C=90°,将△ABC绕点A旋转,使得点C的对应点C′落在AB上,则∠BB′C′的度数为()A. 12°B. 15°C. 25°D. 30°8.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,则参赛球队的个数是()A. 5个B. 6个C. 7个D. 8个9.如图,四边形ABCD为⊙O的内接四边形,∠AOD+∠BOC=180°.若AD=2,BC=6,则△BOC的面积为()A. 3B. 6C. 9D. 1210.抛物线y=ax2+bx+c的顶点为D(−1,2),与x轴的一个交点A在点(−3,0)和(−2,0)之间,其部分图象如图,则以下结论:①b2−4ac<0;②a+b+c<0;③c−a=2;④方程ax2+bx+c−2=0有两个相等的实数根.其中正确结论的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.已知方程x2−4x+1=0的两个根是x1和x2,则x1+x2=______.12.已知点A(−2,a)与点B(b,3)关于原点对称,则a−b=______13.已知点A(−2,y1),点B(1,y2)在抛物线y=3x2−2上,则y1,y2的大小关系是:y1______y2.(填“>”或“<”)14.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程是______.15.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加______m.16.如图,矩形ABCD中,AB=2,AD=√3,O为AB的中点,将OA绕着点O旋转得到OE,连接DE.以DE为边作等边△DEF(点D、E、F按顺时针方向排列),连接CF,则CF的最小值为______.三、计算题(本大题共1小题,共8.0分)17.解方程:x2−x−1=0.四、解答题(本大题共7小题,共64.0分)18.二次函数y=ax2−2x+c中的x,y满足如表:x…−10123…y…0−3−4−3m…(1)求抛物线的解析式;(2)求m的值.19.小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽度.20.请用无刻度直尺画出下列图形,并保留作图痕迹.(1)将线段AB绕点B顺时针旋转90°,得到线段BD;(2)过C作线段AB的垂线段CE,垂足为E;(3)作∠ABD的角平分线BF.21.如图,AB为⊙O的直径,C是⊙O上的一点,连接AC,BC.D是BC⏜的中点,过D作DE⊥AB于点E,交BC于点F.(1)求证:BC=2DE;(2)若AC=6,AB=10,求DF的长.22.某超市销售一种成本为每千克40元的水产品,若按每千克50元销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.(1)直接写出月销售量y(千克)与售价x(元/千克)之间的函数关系式:______;月销售利润w(元)与售价x(元/千克)之间的函数关系式:______;(2)该超市想在月销售量不低于250千克的情况下,使月销售利润达到8000元,销售单价应定为每千克多少元?(3)售价定为每千克多少元时会获得最大利润?求出最大利润.23.[学习概念]有一组对角互余的凸四边形称为对余四边形.[理解运用](1)如图1,在对余四边形ABCD中,连接AC,∠D=30°,∠ACD=105°,AB=AC,求∠BAD的度数;(2)如图2,在凸四边形ABCD中,DA=DB,DA⊥DB,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形?并证明你的结论;(3)[拓展提升]如图3,在对余四边形ABCD中,∠A=45°.∠ABD+∠BDC=180°,BC=4.求AB+CD的长.24.已知抛物线y=ax2经过点A(2,1).(1)求抛物线的解析式;(2)如图1,直线l经过点A且与抛物线对称轴右侧交于点B,若△ABO的面积为6,求直线l的解析式;(3)如图2,直线CD与抛物线交于C、D两点,与y轴交于点(0,m),直线PC、PD与抛物线均只有一个公共点,点P的纵坐标为n,求m与n的数量关系.答案和解析1.【答案】D【解析】解:方程整理得:x2−8x−10=0,其中二次项系数为1,常数项为−10.故选:D.方程整理后为一般形式,找出二次项系数与一次项系数即可.此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c= 0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.【答案】C【解析】解:A、B、D中图形都不是中心对称图形,C中图形是中心对称图形,故选:C.根据中心对称图形的概念判断即可.本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.【答案】A【解析】解:由“上加下减”的原则可知,将二次函数y=2x2向上平移3个单位可得到函数y=2x2+3,故选:A.直接根据“上加下减、左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.4.【答案】B∠BOC=50°.【解析】解:∵∠BOC=100°,∴∠A=12故选:B.根据圆周角定理可求得∠A=50°.本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.【答案】D【解析】解:∵y=−3(x−1)2−2是抛物线的顶点式,∴顶点坐标为(1,−2).故选:D.直接根据顶点式的特点求顶点坐标.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).6.【答案】A【解析】解:x2+10x+9=0,x2+10x=−9,x2+10x+52=−9+52,(x+5)2=16.故选:A.移项,配方(方程两边都加上一次项系数的一半的平方),即可得出答案.本题考查了用配方法解一元二次方程的应用,关键是能正确配方.7.【答案】B【解析】解:由旋转的性质可知,∠B′AB=∠BAC=30°,AB=AB′,(180°−30°)=75°,∴∠ABB′=∠AB′B=12∵∠BCB=90°,∴∠BB′C=90°−75°=15°,故选:B.利用旋转的性质,三角形面积和定理求解即可.本题考查旋转变化的性质,三角形内角和定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.【答案】B【解析】解:设参赛球队的个数是x,每个队都要赛(x−1)场,但两队之间只有一场比赛,由题意得:x(x−1)2=15,解得:x1=6,x2=−5(不合题意,舍去),则参赛球队的个数是6个;故选:B.根据赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=x(x−1)2,由此列出方程,然后求解即可.本题考查了由实际问题抽象一元二次方程的应用,读懂题意,得到总场数与球队之间的关系是解决本题的关键.9.【答案】A【解析】解:延长BO交⊙O于E,连接CE,则∠COE+∠BOC=180°,∠BCE=90°,即CE⊥BC,∵∠AOD+∠BOC=180°,∴∠AOD=∠COE,∴AD⏜=CE⏜,∴AD=CE=2,∵BC=6,∴△BEC的面积为12BC⋅CE=12×6×2=6,∵OB=OE,∴△BOC的面积=12△BEC的面积=12×6=3,故选:A.延长BO交⊙O于E,连接CE,可得∠COE+∠BOC=180°,∠BCE=90°,由∠AOD+∠BOC=180°,∠AOD=∠COE,推出AD=CE=2,根据三角形的面积公式可求得△△BEC的面积.BEC的面积为6,由OB=OE,可得△BOC的面积=12本题主要考查了圆心角所对弧、弦的关系,圆周角定理,三角形面积公式,正确作出辅助线是解决问题的关键.10.【答案】C【解析】【分析】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为;抛物线与y轴的交点坐标抛物线,当a>0,抛物线开口向上;对称轴为直线x=−b2a为(0,c);当b2−4ac>0,抛物线与x轴有两个交点;当b2−4ac=0,抛物线与x轴有一个交点;当b2−4ac<0,抛物线与x轴没有交点.由抛物线与x轴有两个交点得到b2−4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=−1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(−1,2)得a−b+c=2,由抛物线的对称轴为直=−1得b=2a,所以c−a=2;根据二次函数的最大值问题,当x=−1时,线x=−b2a二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,所以说方程ax2+bx+c−2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2−4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x轴的一个交点A在点(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(−1,2),∴a−b+c=2,∵抛物线的对称轴为直线x=−b2a=−1,∴b=2a,∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,∴方程ax2+bx+c−2=0有两个相等的实数根,所以④正确.故选C.11.【答案】4【解析】解:根据题意得x1+x2=−−41=4.故答案为4.根据根与系数的关系求解.本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.12.【答案】−5【解析】解:由题意,得:a=−3,b=2,a−b=−3−2=−5,故答案为:−5.根据关于原点对称的点的坐标,可得答案.本题考查了关于原点对称的点的坐标,利用关于原点对称的点的坐标规律得出a,b是解题关键.13.【答案】>【解析】解:∵点A(−2,y1),点B(1,y2)在抛物线y=3x2−2上,∴当x=−2时,y1=12−2=10,当x=1时,y2=3−2=1,∴y1>y2,故答案为>.将点A(−2,y1),点B(1,y2)分别代入y=3x2−2,求出相应的y1、y2,即可比较大小.本题考查二次函数的图象上点的特点;能够用代入法求二次函数点的坐标是解题的关键.14.【答案】36(1−x)2=25【解析】【分析】本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.可先表示出第一次降价后的价格,那么第一次降价后的价格×(1−降低的百分率)=25,把相应数值代入即可求解.【解答】解:第一次降价后的价格为36×(1−x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1−x)×(1−x),则列出的方程是36(1−x)2=25.故答案为:36(1−x)2=25.15.【答案】(2√6−4)【解析】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(−2,0),到抛物线解析式得出:a=−0.5,所以抛物线解析式为y=−0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=−1时,对应的抛物线上两点之间的距离,也就是直线y=−1与抛物线相交的两点之间的距离,可以通过把y=−1代入抛物线解析式得出:−1=−0.5x2+2,解得:x=±√6,所以水面宽度增加到2√6米,比原先的宽度当然是增加了2√6−4,故答案为:(2√6−4).根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=−1代入抛物线解析式得出水面宽度,即可得出答案.此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.16.【答案】2√3−1【解析】解:如图,连接DO,延长OA到T,使得AT=OA,连接DT,FT,CT.∵四边形ABCD是矩形,∴∠OAD=90°,∵AD=√3,OA=OB=1,=√3,∴tan∠AOD=ADAO∴∠AOD=60°,∠ADO=30°,∴OD=2AO,∵AO=AT,∴OT=2AO,∴OT=OD,∴△ODT 是等边三角形,∵△DEF 是等边三角形,∴∠ODT =∠EDF =60°,DO =DT ,DE =DF ,∴∠DEO =∠FDT ,∴△DEO≌△FDT(SAS),∴FT =OE =OA =1,∵∠B =90°,BT =2+1=3,BC =√3,∴CT =√BT 2+BC 2=√32+(√3)2=2√3,∵CF ≥CT −TF ,∴CF ≥2√3−1,∴CF 的最小值为2√3−1.故答案为:2√3−1.如图,连接DO ,延长OA 到T ,使得AT =OA ,连接DT ,FT ,CT.证明△DEO≌△FDT(SAS),推出FT =OE =OA =1,利用勾股定理求出CT ,根据CF ≥CT −TF ,可得CF ≥2√3−1,由此即可解决问题.本题考查旋转变换的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.【答案】解:x 2−x −1=0,x =−b±√b 2−4ac 2a=1±√1+42×1=1±√52, ∴x 1=1+√52,x 2=1−√52.【解析】本题考查了公式法解一元二次方程,解题时要注意将方程化为一般形式.确定a ,b ,c 的值,然后检验方程是否有解,若有解,代入公式即可求解.解此题的关键是熟练应用求根公式,要注意将方程化为一般形式,确定a 、b 、c 的值.18.【答案】解:(1)由题意可知,抛物线y =ax 2−2x +c 经过(−1,0),(0,−3), ∴{a +2+c =0c =−3, 解得:{a =1c =−3, 所以抛物线的解析式为:y =x 2−2x −3;(2)把x=3代入y=x2−2x−3,可得y=9−6−3=0,所以m=0.【解析】(1)取两组对应值代入y=ax2−2x+c得到关于a、c的方程组,然后解方程组即可;(2)把x=3代入二次函数的解析式求解即可.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.19.【答案】解:设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+ 2x)cm,根据题意得:(80+2x)(50+2x)=5400,解得:x1=−70(不符合题意,舍去),x2=5.答:金色纸边的宽度为5cm.【解析】设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+2x)cm,根据题目条件列出方程,求出其解就可以.本题考查了根据矩形的面积公式的列一元二次方程解决实际问题的运用及一元二次方程解法的运用.解答时检验根是否符合题意是容易被忽略的地方.20.【答案】解:(1)如图,线段BD即为所求.(2)如图,线段CE即为所求.(3)如图,射线BF即为所求.【解析】(1)根据旋转变换的性质画出图形即可.(2)取格点T,连接CT交AB于点E,线段CE即为所求.(3)取格点,G,H,连接GH,AD交于点F,作射线BF,射线BF即为所求.本题考查作图−旋转变换,角平分线,垂线段等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】(1)证明:延长DE交⊙O于点G,如图所示:∵AB为⊙O的直径,DE⊥AB,∴DE=GE,BD⏜=BG⏜,∵D是BC⏜的中点,∴CD⏜=BD⏜=BG⏜,∴BC⏜=DG⏜,∴BC=DG=2DE;(2)解:连接BD、OD,如图所示:∵CD⏜=BG⏜,∴∠DBC=∠BDF,∴DF=BF,∵AB为⊙O的直径,AB=10,∴∠ACB=90°,OB=OD=5,∴BC=√AB2−AC2=√102−62=8,BC=4,由(1)得:DE=12∵DE⊥AB,∴OE=√OD2−DE2=√52−42=3,∴BE=OB−OE=2,设DF=BF=a,则EF=4−a,在Rt△BEF中,由勾股定理得:22+(4−a)2=a2,,解得:a=52∴DF=5.2【解析】(1)延长DE交⊙O于点G,先由垂径定理得DE=GE,BD⏜=BG⏜,再证出BC⏜=DG⏜,由圆心角、弧、弦的关系即可得出结论;(2)连接BD、OD,先由圆周角定理得∠DBC=∠BDF,得DF=BF,由圆周角定理得BC=4,再由勾股定理求出OE=3,则BE=∠ACB=90°,勾股定理得BC=8,则DE=12OB−OE=2,设DF=BF=a,则EF=4−a,然后在Rt△BEF中,由勾股定理得出方程,解方程即可.本题考查了圆周角定理、垂径定理、圆心角、弧、弦的关系、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.22.【答案】y=−10x+1000w=−10x2+1400x−40000【解析】解:(1)月销售量y(千克)与售价x(元/千克)之间的函数关系式:y=500−10(x−50)=−10x+1000,即y=−10x+1000;月销售利润w(元)与售价x(元/千克)之间的函数关系式:w=(x−40)y=(x−40)(−10x+1000)=−10x2+1400x−40000,即w=−10x2+1400x−40000,故答案为:y=−10x+1000,w=−10x2+1400x−40000;(2)根据题意得:−10x2+1400x−40000=8000,解得:x1=80,x2=60,又∵月销售量不低于250千克,则有:−10x+1000≥250,解得:x≤75,∴x1=80>75(舍去),答:销售单价应定为60元时,月销售利润达到8000元;(3)由(2)得:w=−10x2+1400x−40000=−10(x−70)2+9000,∵a=−10<0,∴抛物线的开口向下,抛物线有最高点,函数有最大值,当x=70时,w取最大值,最大值为9000元,答:售价定为每千克70元时会获得最大利润?最大利润为9000元.(1)根据一个月可售出500千克,减去因涨价而减少的数量得到月销售量y(千克)与售价x(元/千克)之间的函数关系式,根据(售价−成本)×月销售量得到月销售利润w(元)与售价x(元/千克)之间的函数关系式;(2)将月销售利润8000元代入w=−10x2+1400x−40000,解方程即可得到结果;(3)将w=−10x2+1400x−40000化为顶点式就可以求出结果.本题考查了二次函数的应用,一元二次方程的运用,解答时求出函数的解析式是解题的关键.23.【答案】解:(1)∵四边形ABCD是对余四边形,依题意得,∠B+∠D=90°,∵∠D=30°,∴∠B=90°−∠D=60°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACD=105°,∴∠BCD=∠ACB+∠ACD=165°,在四边形ABCD中,∠BAD=360°−∠B−∠ACD−∠D=360°−60°−165°−30°= 105°;(2)四边形ABCD为对余四边形,证明:∵AD⊥BD,∴∠ADB=90°,∵DA=DB,∴∠BAD=∠ABD=45°,如图2,过点D作DM⊥CD,使CD=CM,连接CM,BM,∴∠DMC=∠DCM=45°,∵∠ADB=∠CDM=90°,∴∠ADB+∠BDC=∠CDM+∠BDC,∴∠ADC=∠BDM.在△ADC和△BDM中,{DA=DB∠ADC=∠BDM DC=DM,∴△ADC≌△BDM(SAS),∴AC=BM.在Rt△MDC中,根据勾股定理得,CM2=CD2+DM2=2CD2,∵2CD2+CB2=AC2,∴CM2+CB2=BM2,∴△BCM是直角三角形,且∠BCM=90°,∵∠DCM=45°,∴∠DCB=∠BCM−∠DCM=45°,∴∠DCB+∠DAB=90°,∴四边形ABCD为对余四边形;(3)如图3,过点B作BE⊥BC交CD的延长线于点E,∵四边形ABCD为对余四边形,依题意得,∠A+∠C=90°,∵∠A=45°,∴∠C=∠E=45°=∠A,∵∠ABD+∠BDC=180°,∠BDE+BDC=180°,∴∠ABD=∠EDB,在△ABD和△EDB中,{∠A=∠E∠ABD=∠EDB BD=DB,∴△ABD≌△EDB(AAS),∴AB =ED ,EB =BC =4,在Rt △EBC 中,根据勾股定理得,BE 2+BC 2=CE 2,∴CE =4√2, 即AB +CD =4√2.【解析】(1)先根据对余四边形求出∠B =60°,进而得出∠ACB =60°,∠BCD =165°,最后用四边形内角和定理,即可得出结论;(2)先判断出∠BAD =∠ABD =45°,进而判断出∠ADC =∠BDM ,即可判断出△ADC≌△BDM(SAS),得出AC =BM.再根据勾股定理得出CM 2=CD 2+DM 2=2CD 2,进而判断出∠BCM =90°,即可得出结论;(3)先判断出∠C =∠E =45°=∠A ,再判断出∠ABD =∠EDB ,进而得出△ABD≌△EDB(AAS),得出AB =ED ,EB =BC =4,最后用勾股定理求出CE =4√2,即可得出结论.此题是四边形综合题,主要考查了新定义,等边三角形的判定和性质,勾股定理,全等三角形的判定和性质,直角三角形的判定和性质,构造出全等三角形是解本题的关键.24.【答案】解:(1)∵抛物线y =ax 2经过点A(2,1). ∴1=4a ,解得a =14,∴抛物线解析式为y =14x 2;(2)∵点A(2,1).∴直线OA 为y =12x ,如图1,过B 作BE//OA 交y 轴于E ,连接AE ,则S △AOB =S △AOE =6,∴12OE ×2=6,∴OE =6,∴点E(0,6),设直线BE 为y =12x +6,解{y =12x +6y =14x2得{x =6y =9或{x =−4y =4,∴B(6,9),设直线l 的解析式为y =kx +b ,∴{2k +b =16k +b =9,解得{k =2b =−3, ∴直线l 的解析式为y =2x −3;(3)设直线CD 的解析式为y =kx +m ,由{y =kx +m y =14x2去掉y 整理得14x 2−kx −m =0. 设C 、D 的坐标分别为(x C ,y C ),(x D ,y D ),∴x C ⋅x D =−4m ,设直线CP 的解析式为y =ax +c ,由{y =ax +c y =14x 2整理得,14x 2−ax −c =0. ∵CP 与抛物线只有一个公共点,∴△=a 2+c =0,∴c =−a 2,∴14x 2−ax +a 2=0,解得x C =2a ,同理:设直线DP 的解析式为y =bx +d ,可得x D =2b ,∴2a ⋅2b =−4m ,∴ab =−m ,联立{y =ax +c y =bx +d ,即{y =ax −a 2y =bx −b 2, 解得{x =a +b y =ab, ∴P(a +b,ab),∵点P 的纵坐标为n ,∴n =ab =−m .【解析】(1)利用待定系数法求抛物线解析式解答即可;(2)求得直线OA 的解析式,过B 作BE//OA 交y 轴于E ,连接AE ,则S △AOB =S △AOE =6,根据三角形面积求得OE ,得到E 的坐标,进而求得直线BE 的解析式,与抛物线解析式联立,解方程组求得B 的坐标,然后根据待定系数法即可求得直线l 的解析式;(3)设直线CD 的解析式为y =kx +m ,与抛物线解析式联立整理得14x 2−kx −m =0.根据根与系数的关系得到x C ⋅x D =−4m ,设直线CP 的解析式为y =ax +c ,联立抛物线x2−ax−c=0.根据题意△=a2+c=0,解析式得到14x2−ax+a2=0,解得x C=2a,同理:设直线DP的解析式求得c=−a2,即可得到14为y=bx+d,可得x D=2b,所以4ab=−m,直线CP和直线DP联立,解方程求得交点P((a+b,ab),即可求得n=−m.本题考查了待定系数法求二次函数的解析式,待定系数法求一次函数的解析式,两条直线相交或平行问题,直线与抛物线的交点问题,方程思想的运用是解题的关键.。
2020-2021学年九年级第一学期期中考试数学试卷(含答案)
2020-2021学年九年级第一学期期中考试数学试卷(含答案)一、选择题(每小题4分,共10小题,满分40分)1、抛物线y = 2(x+1)2-3的顶点坐标是( )A. (-1,-1)B. (1,3)C. (-1,3)D. (1,-3)2、在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3(x-5),则这个变化可以是( )A. 向左平移2个单位B. 向右平移2个单位C. 向左平移8个单位D. 向右平移2个单位3、已知点A(1,-3)关于y 轴的对称点A ′在反比例函数y=k x 的图象上,则实数k 的值为( ) A. 3 B. 31 C. -3 D. - 314、已知学校航母组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数关系式h=-t 2+24t+1,则下列说法中正确的是( )A. 点火后9s 点火后13s 的升空高度相同B. 点火后24s 火箭落于地面C. 点火后10S 的升空高度为139mD. 火箭升空的最大高度为145m5、已知y=x 2+(t-2)x-2,当x>1时y 随x 的增大而增大,则t 的取值范围是( )A. t > 0B. t = 0C. t < 0D. t ≥ 06、如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE=3CE ,AB=8,则AD 的长为( )A. 3B. 4C. 5D. 6第6题 第7题 第8题 第9题7、如图,一张矩形纸片ABCD 的长AB=a ,宽BC=b ,将纸片对折,折痕为EF ,所得矩形AFED 与矩形ABCD 相似,则a :b=( )A. 2:1B. 2:1C. 3:3D. 3:28、如图,二次函数y=ax 2+bx+c(a ≠0)的图象的对称轴是直线x=1,则以下四个结论中:① abc>0,② 2a+b=0, ③ 4a+b 2< 4ac ,④ 3a+c< 0.正确的个数是( )A. 1B. 2C. 3D. 49、孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则这个小孔的水面宽度为( )A. 52米B. 43米C. 7米D. 213米10、若一次函数y=ax+b 与反比例函数y=c x的图象在第二象限内有两个交点,且其中一个交点的横坐标为-1,则二次函数y=ax 2+bx+c 的图像可能是( )A B C D二、填空题(每小题5分,满分20分)11、若35a b b -=,则a b = . 12、已知二次函数y=ax 2+bx+c 的部分图象如图所示,则关于x 的方程y=ax 2+bx+c 的两个根的和为 .第12题 第13题13、如图,点C 在反比例函数y=k x(x>0)的图像上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB=BC , 已知△AOB 的面积为1,则k 的值为 .14、已知抛物线y=ax 2+bx-1a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛线上. (1)此抛物线的对称轴是直线 ;(2)已知点P (12,-1a),Q (2,2),若抛物线与线段PQ 恰有一个公共点,则a 的取值范围是 . 三、(每小题8分,满分16分)15、已知二次函数y=x 2+bx+c 的图象经过点(4,3),(2,-1),求此二次函数的表达式,并求出当0≤x ≤3时, y 的最值.16、已知234a b c ==,且a+3b-2c=15,求4a-3b+c 的值 四、(每小题8分,满分16分)17、如图,二次函数y=(x+2)2+m 的图像与y 轴交于点C ,点B 在抛物线上,且点B 与点C 关于该二次函数图象的对称轴对称,已知一次函数y=kx+b 的图象经过该二次函数图象上点A(-1,0)及点B.(1)求二次函数的解析式;(2)根据图像,写出满足kx+b ≥(x+2)2+m 的x 的取值范围.18、如图是反比例函数y=k x的图象,当-4≤x ≤-1时,-4≤y ≤-1. (1)求该反比例函数的解析式;(2)若M 、N 分别在反比例函数图象的两个分支上,请直接写出线段MN 长度的最小值五、(每小题10分,满分20分)19、如图,点R 是正方形ABCD 的边AB 边上的黄金分割点,且AR> RB ,S 1表示AR 为边长的正方形面积,S 2表示以BC 为长,BR 为宽的矩形面积,S 3表示正方形ABCD 除去S 1和S 2剩余的面积,求S 3:S 2的值20、如图,在△ABC 中,AB=12cm ,AE=6cm ,EC=4cm ,且EC AE BD AD =.(1)求AD 的长; (2)求证:ACEC AD BD =.六、本题12分21、如图,函数y 1=k 1x+b 的图象与函数22k y x=的图象交于点A(2,1)、B ,与y 轴交于点C (0,3). (1)求函数y 1的表达式和点B 的坐标; (2)观察图像,比较当x>0时y 1与y 2的大小.七、本题12分22、如图,开口向下的抛物线与x 轴交于点A (-1,0)、B (2,0),与y 轴交于点C(0,4),点P 是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP 的面积为S 求S 的最大值.八、本题14分x(1≤x≤80)天的售价与销量的相关信息如下表:时间x(天)1≤x≤40 41≤x≤80售价(元/件)x+40 90每天销量(件) 200-2x已知该商品的进价为每件30元,设销售该商品每天的利润为y元。
2020-2021学年山东省青岛市九年级(上)期中数学试卷(附答案详解)
2020-2021学年山东省青岛市九年级(上)期中数学试卷1.下列方程是一元二次方程的是()A. 2x2+y=1B. 9y=3y−1C. 2x2=1D. 3x−2x2=82.如图所示的4个三角形中,相似三角形有()A. 1对B. 2对C. 3对D. 4对3.根据表格中的信息,估计一元二次方程ax2+bx+c=10(a、b、c为常数,a≠0)的一个解x的范围为()x00.51 1.52 ax2+bx+c−15−8.75−2 5.2513A. 0<x<0.5B. 0.5<x<1C. 1<x<1.5D. 1.5<x<24.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作BD的垂线,垂足为E,已知∠EAB:∠EAD=1:3,则∠EOA的度数为()A. 30°B. 35°C. 40°D. 45°5.青岛第四届海上马拉松比赛将在2020年11月举行,小明和小刚分别从A、B、C三个组中随机选择一个组参加志愿者活动,假设每人参加这三个组的可能性都相同,小明和小刚恰好选择同一组的概率是()A. 13B. 23C. 19D. 296.如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点O为BD的中点,过点A作AE⊥BC交CB的延长线于点E,连接OE,则线段OE的长度是()A. 3cmB. 4cmC. 4.8cmD. 5cm7.下列结论正确的是()A. 如果一个四边形是轴对称图形,而且有两条互相垂直的对称轴,那么这个四边形一定是菱形.B. 如果一个四边形,既是轴对称图形,又是中心对称图形,那么这个四边形一定是正方形.C. 如果一个菱形绕对角线的交点旋转90°后,所得图形与原来的图形重合,那么这个菱形是正方形.D. 一个直角三角形绕斜边的中点旋转180°后,原图形与所得的图形构成的四边形一定是正方形.8.如图,在Rt△ABC中,∠C=90°,∠ABC的角平分线交AC于点D,过点D分别作BC和AB的平行线,交AB于点E,交BC于点H,连接EH交BD于点G,在AE上截取EF=BE,连接DF.下列说法中正确的有()(1)GH:FD=1:2;(2)BD2=BF⋅BC;(3)四边形EBHD是菱形;(4)S△ADF=29S△ABC.A. 1个B. 2个C. 3个D. 4个9.已知x2=y4≠0,则3x+y2y=______ .10.在一个不透明的口袋里装有黑、白两种颜色的球30个,这些球除颜色外都相同.某学习小组进行摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再把它放回袋中,不断重复上述过程,试验数据如下表:摸球的次数10020050080010001200摸到白球的次数4281201324402481根据上表数据,估算口袋中黑球有______ 个.11.如图,直线a//b//c,直线AC与DF交于点O,且与直线a、b、c分别交于点A、B、D、E、F,如果DE=2,EF=5,AC=6,那么AB的长为______ .12.书香相伴,香满校园,某校9月份借阅图书500本,11月份借阅图书845本,该校这两个月借阅图书的月均增长率是______ .13.如图,四边形ABCD是面积为6cm2的正方形,△ACE是等边三角形,图中阴影部分的面积是______ cm2.14.现有30张相同的菱形纸片(如图1,有一个内角为60°),小亮用其中3张密铺成一个如图2所示的正六边形;若小芳想密铺出一个与图②相似但面积比它大的正六边形,则她至少要用______ 张菱形纸片(不得将菱形纸片剪开).15.已知:如图,四边形ABCD是平行四边形.求作:一个菱形,使它的四个顶点分别在平行四边形ABCD的四条边上.16.解方程:x2+2x+2=8x+4(配方法).17.解方程:8x2−2x−3=0.18.已知:关于x的一元二次方程(k−1)x2+2x−1=0有两个不相等的实数根.求:k的最小整数解.19.用如图所示的两个可以自由转动的转盘进行“配紫色“游戏:游戏者同时转动两个转盘,若其中一个转盘转出了红色,另一个转盘转出了蓝色,那么他就赢了.(1)利用画树状图或列表的方法表示游戏所有可能出现的结果;(2)求游戏者获胜的概率.20.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,ADAB =25,求BC的长.21.有一个面积为54cm2的长方形,将它的一边剪短5cm,另一边剪短2cm,恰好变成一个正方形,求这个正方形的边长.22.已知:在△ABC中,CB=CA,点D、E分别是AB、AC的中点,连接DE并延长交外角∠ACM的平分线CN与点F.(1)求证:AD=CF;(2)连接CD,AF,当△ABC满足什么条件时,四边形ADCF为正方形?请证明你的结论.23.尊老爱幼是中华民族的传统美德,九九重阳节前夕,某商店为老人推出一款特价商品,每件商品的进价为15元,促销前销售单价为25元,平均每天能售出80件;根据市场调查,销售单价每降低0.5元,平均每天可多售出20件.(1)若每件商品降价5元,则商店每天的平均销量是______ 件(直接填写结果);(2)不考虑其他因素的影响,若商店销售这款商品的利润要平均每天达到1280元,每件商品的定价应为多少元?(3)在(2)的前提下,若商店平均每天至少要销售200件该商品,求商品的销售单价.24.古希腊数学家欧多克索斯曾提出:能否将一条线段分成不相等的两部分,使较短线段与较长线段的比等于较长线段与原线段的比?这就是黄金分割问题,这个相等的比又被称为黄金比,其比值是√5−12.古希腊很多矩形建筑中,宽与长之比都等于黄金比,在艺术领域,许多优美的曲线也与黄金比有关,黄金比在我们的生活中彰显着丰富的美学价值.【探索发现】:如图1,若点P1是线段AB靠近点B的黄金分割点,则AP1=√5−12AB,所以BP1=(1−√5−12)AB=3−√52AB.若P2是线段BP1靠近点B的黄金分割点,则BP2=3−√52BP1,所以BP2=______ AB.若P3是线段BP2靠近点B的黄金分割点,则BP3=3−√52BP2,所以BP3=______ AB.……【归纳提炼】若P n是线段BP n−1靠近点B的黄金分割点,则BP n=______ AB.【解释应用】:如图2,矩形ABCD中,宽BC与长AB的比为黄金比,则称矩形ABCD为“黄金矩形”.在课本“想一想”中我们已经知道,该矩形有如下特点:作正方形①,剩下的矩形仍是“黄金矩形”,且点P1为线段AB的黄金分割点;以此类推:作正方形②,剩下的矩形仍是“黄金矩形”,且点Q1为线段BC的黄金分割点;作正方形③,剩下的矩形仍是“黄金矩形”,且点P2为线段______ 的黄金分割点;作正方形④,剩下的矩形仍是“黄金矩形”,且点Q2为线段______ 的黄金分割点;……显然,这样变换可以无限的进行下去.借助对“BP2与AB,BQ2与BC的比例关系”的探究,写出当“黄金矩形”ABCD 的周长为a时,以BP2,BQ2为领边的“黄金矩形”的周长y与a的关系式:______ .【拓展延伸】:(1)设图2中四个正方形①,②,③,④的边长分别为a1,a2,a3,a4,请直接写出a1+a2+a3+a4=______ .(用含有a的代数式表示)(2)如图3,将正方形③和④的位置重新排列,再分别在每个正方形中作四分之一圆弧,四段弧可以连出一条优美的曲线,称为“黄金螺旋线”.请直接写出这条曲线的长度:______ .(用含有a的代数式表示)25.已知:如图1,在矩形ABCD中,AC是对角线,AB=6cm,BC=8cm.点P从点A出发,沿AB方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CA方向匀速运动,速度为2cm/s.过点Q作QE⊥AC,QE与BC相交于点E,连接PQ.设),解答下列问题:运动时间为t(s)(0<t≤165(1)连接BQ,当t为何值时,点E在线段BQ的垂直平分线上?(2)设四边形BPQC的面积为y(cm2),求y与t之间的函数关系式;(3)如图2,取点E关于AC的对称点F,是否存在某一时刻t,使△CDF为等腰三角形?若存在,直接写出t的值(不需提供解答过程);若不存在,请说明理由.答案和解析1.【答案】C【解析】解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;B.是一元一次方程,不是一元二次方程,故本选项不符合题意;C.是一元二次方程,故本选项符合题意;D.是分式方程,不是一元二次方程,故本选项不符合题意;故选:C.根据一元二次方程的定义逐个判断即可.本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式方程,叫一元二次方程.2.【答案】A【解析】解:观察图象可知,图中有3个直角三角形,一个锐角三角形,其中左边的两个直角三角形的直角边的比都是1:2,所以这两个直角三角形相似.故选:A.根据相似三角形的判定方法判断即可.本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定方法,属于中考常考题型.3.【答案】D【解析】解:由表格可知:当x=1.5时,ax2+bx+c=5.25,则ax2+bx+c−10=−4.75,当x=2时,ax2+bx+c=13,则ax2+bx+c−10=3,∴关于x的一元二次方程ax2+bx+c=10(a≠0)的一个解x的范围是1.5<x<2,故选:D.根据ax2+bx+c的符号即可估算ax2+bx+c=10的解.本题考查一元二次方程,解题的关键是正确理解一元二次方程的近似解,本题属于基础题型.4.【答案】D【解析】解:∵四边形ABCD是矩形,∴OA=OB,∠BAD=90°,∴∠OAB=∠OBA,∵∠EAB:∠EAD=1:3,∴∠EAB=22.5°,∵AE⊥BD于点E,∴∠AEB=90°,∴∠ABE=67.5°,∴∠OBA=∠OAB=67.5°,∴∠AOB=45°,即∠EOA的度数为45°,故选:D.根据∠EAB:∠EAD=1:3,∠BAD=90°,可以求得∠BAE的度数,再根据矩形的性质和三角形内角和,即可得到∠EOA的度数.本题考查矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.5.【答案】A【解析】解:画树状图得:∵共有9种等可能的结果,小明和小刚恰好选择同一组的有3种情况,∴两人恰好选择同一组的概率为39=13;故选:A.首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及小明和小刚选到同一组的情况,再利用概率公式求解即可求得答案.本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.【答案】B【解析】解:∵四边形ABCD是菱形,∴BD⊥AC,∵BD=6cm,S菱形ABCD ═12AC×BD=24cm2,∴AC=8cm,∵AE⊥BC,∴∠AEC=90°,∴OE=12AC=4cm,故选:B.由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线性质即可得出结果.本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.7.【答案】C【解析】解:A.若一个四边形是轴对称图形,且有两条互相垂直的对称轴,则这个四边形是菱形或矩形,故本选项不合题意;B.如果一个四边形,既是轴对称图形,又是中心对称图形,那么这个四边形可以是菱形,故本选项不合题意;C.若一个菱形绕对角线的交点旋转90°后所得图形与原图形重合,则这个菱形是正方形,本选项符合题意;D.一个直角三角形绕斜边的中点旋转180°后,原图形与所得的图形构成的四辺形一定是矩形,故本选项不合题意;故选:C.依据菱形、矩形以及正方形的判定方法,即可得出结论.本题考查了菱形、矩形、正方形的判定与性质;熟练掌握特殊平行四边形的判定和性质,并能进行推理论证是解答本题的关键.8.【答案】C【解析】解:∵DE//BC,DH//AB,∴四边形DEBH是平行四边形,∴GH=EG,BG=DG,又∵EF=BE,∴EG//DF,GE=12DF,∴GH=12DF,∴GH:DF=1:2,故①正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵DE//BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴BE=DE,∴BE=DE=EF,∴∠BDF=90°=∠C,又∵∠ABD=∠DBC,∴△BDF∽△BCD,∴BDBC =BFBD,∴BD2=BC⋅BF,故②正确;∵BE=DE,四边形DEBH是平行四边形,∴四边形DEBH是菱形,故③正确;条件不足,无法证明S△ADF=29S△ABC.故④错误,故选:C.①由题意可证四边形DEBH是平行四边形,可得GH=EG,BG=DG,由三角形中位线定理可得EG//DF,GE=12DF,可得GH=12DF;②通过证明△BDF∽△BCD,可得BDBC =BFBD,可证BD2=BC⋅BF;③由菱形的判定可证四边形EBHD 是菱形;④条件不足,无法证明.本题是三角形综合题,考查了直角三角形的性质,菱形的判定和性质,三角形中位线定理,相似三角形的判定与性质等知识点,数形结合并熟练掌握相关性质及定理是解题的关键.9.【答案】54【解析】解:∵x 2=y 4≠0, ∴y =2x ,则3x+y 2y =3x+2x 4x=54. 故答案为:54.直接利用已知得出y =2x ,即可代入化简得出答案.此题主要考查了比例的性质,得出y 与x 之间的关系是解题关键.10.【答案】18【解析】解:根据图表给出的数据可得,摸到白球的频率将会接近0.4,所以可估计口袋中白种颜色的球的个数是:30×0.4=12(个),则口袋中黑球有30−12=18(个).故答案为:18.根据图表给出的数据得出白球的频率,再用总球的个数乘以白球的频率,求出白球的个数,再用总个数减去白球的个数即可得出黑球的个数.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.11.【答案】127【解析】解:∵直线a//b//c,∴DEEF =ABBC=25,∴ABAC =DEDF=22+5,∴AB6=27,解得:AB=127,故答案为:127.平行线分线段成比例定理的内容是:一组平行线截两条直线,所截的线段对应成比例,根据平行线分线段成比例解答即可.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.12.【答案】30%【解析】解:该校这两个月借阅图书的月均增长率是x,依题意,得:500(1+x)2=845,解得:x1=0.3=30%,x2=−2.3(不合题意,舍去).故答案为:30%.该校这两个月借阅图书的月均增长率是x,根据该校9月份及11月份借阅图书数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.【答案】(3√3−3)【解析】解:如图,连接BE,交AC于O,∵△ACE是等边三角形,四边形ABCD是正方形,∴EA=EC,BA=BC,∴BE垂直平分AC,∵四边形ABCD是面积为6cm2的正方形,△ACE是等边三角形,∴AB=BC=√6(cm),∴AC=√2AB=2√3(cm),∴AE=2√3(cm),AO=12AC=√3(cm),∴Rt△AOE中,EO=√AE2−AO2=3(cm),∴阴影部分面积=S△ACE−S△ACD=12×AC×EO−12×6=12×2√3×3−3=(3√3−3)cm2,故答案为:(3√3−3).连接BE,交AC于O,依据等边三角形和正方形的性质,即可得到AO的长,依据勾股定理即可得到EO的长,最后根据阴影部分面积=S△ACE−S△ACD进行计算.本题主要考查了正方形的性质、等边三角形的性质以及勾股定理的运用,正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.14.【答案】12【解析】解:观察图象可知,至少要用12张菱形纸片.故答案为:12.利用图象法,画出图形判断即可.本题考查相似多边形的性质,菱形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用图象法解决问题.15.【答案】解:如图,四边形EFGH即为所求.【解析】过平行四边形的对角线的交点,画两条互相垂直直线EG ,FH ,J 交平行四边形ABCD 的边于E ,G ,F ,H ,连接EF ,FG ,GH ,HE ,四边形EFGH 即为所求. 本题考查作图−复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】解:x 2+2x +2=8x +4,x 2+2x −8x =−2+4,x 2−6x =2,配方得:x 2−6x +9=2+9,(x −3)2=11,开方得:x −3=±√11,解得:x 1=3+√11,x 2=3−√11.【解析】移项,合并同类项,配方,开方,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能够正确配方是解此题的关键.17.【答案】解:8x 2−2x −3=0,b 2−4ac =(−2)2−4×8×(−3)=100,x =−b±√b 2−4ac 2a=2±√1002×8, x 1=34,x 2=−12.【解析】先求出b 2−4ac 的值,再代入公式求出即可.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键.18.【答案】解:根据题意,得:△=22−4×(k −1)×(−1)>0且k −1≠0, 解得k >0且k ≠1,所以k 的最小整数解为2.【解析】根据一元二次方程有两个不相等的实数根得出△=22−4×(k −1)×(−1)>0,结合一元二次方程的定义知k −1≠0,从而得出答案.本题主要考查根的判别式和一元二次方程的定义,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.19.【答案】解:(1)根据题意画图如下:共有6种等可能的结果数;(2)∵共有6种等可能的结果数,其中一个转盘转出了红色,另一个转盘转出了蓝色的有3种,∴游戏者获胜的概率是36=12.【解析】(1)根据题意画出树状图得出所有等可能的情况数即可;(2)找出一个转盘转出了红色,另一个转盘转出了蓝色的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.【答案】(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴ADAB =DEBC,∵ADAB =25,BC=3,∴25=3BC,∴BC=152.【解析】(1)由直角三角形的性质得出∠B=∠ADG,可证明△ABC∽△ADE;(2)由相似三角形的性质可得出答案.本题考查了相似三角形的判定与性质,直角三角形的性质,熟练掌握相似三角形的判定与性质是解题的关键.21.【答案】解:设这个正方形的边长为x cm,则原长方形的长为(x+5)cm,宽为(x+ 2)cm,依题意,得:(x+5)(x+2)=54,整理,得:x2+7x−44=0,解得:x1=4,x2=−11(不合题意,舍去).答:这个正方形的边长为4cm.【解析】设这个正方形的边长为xcm,则原长方形的长为(x+5)cm,宽为(x+2)cm,根据原长方形的面积为54cm2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【答案】(1)证明:∵CB=CA,∴∠A=∠B,∵∠ACM=∠A+∠B,∴∠A=12∠ACM,∵CN平分∠ACM,∴∠ACF=12∠ACM,∴∠A=∠ACF,∵E是AC的中点,∴AE=CE,在△ADE与△CFE中,{∠A=∠ECFAE=CE∠AED=∠CEF,∴△ADE≌△CFE(ASA),∴AD=CF;(2)解:当∠ACB=90°,四边形ADCF是正方形,理由:∵AC=BC,∠ACB=90°,∴△ACB是等腰直角三角形,∴∠BAC=45°,∵CN平分∠ACM,∴∠ACF=12∠ACM=45°,∴∠DAC=∠ACF,∴AD//CF,由(1)知AD=CF,∴四边形ADCF是平行四边形,∵点D是AB的中点,∴AD=CD,∴∠ACD=∠CAD=45°,∴∠DCF=90°,∴矩形ADCF是正方形.【解析】(1)根据等腰三角形的性质得到∠A=∠B,根据外角的性质定理得到∠A=1 2∠ACM,由角平分线的定义得到∠ACF=12∠ACM,求得∠A=∠ACF,根据全等三角形的判定和性质定理即可得到结论;(2)由已知条件得到△ACB是等腰直角三角形,求得∠BAC=45°,推出AD//CF,由(1)知AD=CF,得到四边形ADCF是平行四边形,根据直角三角形的性质得到AD=CD,求得∠ACD=∠CAD=45°,根据正方形的判定定理得到结论.本题考差了正方形的判定,全等三角形的判定和性质,三角形的中位线的性质,熟练掌握全等三角形的判定和性质是解题的关键.23.【答案】280【解析】解:(1)80+5÷0.5×20=280(件). 故答案为:280.(2)设每件商品降价x 元,则销售每件商品的利润为(25−15−x)元,平均每天可售出80+x0.5×20=(40x +80)件,依题意,得:(25−15−x)(40x +80)=1280, 整理,得:x 2−8x +12=0, 解得:x 1=2,x 2=6, ∴25−x =23或19.答:每件商品的定价应为23元或19元.(3)当x =2时,40x +80=160<200,不合题意,舍去; 当x =6时,40x +80=320>200,符合题意, ∴25−x =19.答:商品的销售单价为19元.(1)根据每天的平均销售量=80+降低的价格÷0.5×20,即可求出结论;(2)设每件商品降价x 元,则销售每件商品的利润为(25−15−x)元,平均每天可售出80+x 0.5×20=(40x +80)件,根据每天的总利润=销售每件商品的利润×平均每天的销售量,即可得出关于x 的一元二次方程,解之即可得出结论;(3)由(2)的结论结合平均每天至少要销售200件该商品,可确定x 的值,再将其代入(40x +80)中即可求出结论.本题考查了一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)找准等量关系,正确列出一元二次方程;(3)将x 的值代入(40x +80)中,求出平均每天的销售量.24.【答案】(3−√52)2(3−√52)3 (3−√52)n BP 1 BQ 1 y =(√5−12)4a (√5−1)223a +(√5−1)324a +(√5−1)425a +(√5−1)526a πa ⋅[(√5−1)22+(√5−1)322+(√5−1)423+(√5−1)423]【解析】解:【探索发现】:由题意可知:BP 2=(3−√52)2AB ,BP 3=(3−√52)3AB , 故答案为:(3−√52)2,(3−√52)3.【归纳提炼】:由规律可知:BP n =(3−√52)nAB . 故答案为:(3−√52)n.【解释应用】:且点P 2为线段P 1B 的黄金分割点,点Q 2为线段BQ 1的黄金分割点, ∵BC =√5−12AB ,BP 1=√5−12BC ,BQ 1=√5−12BP 1,BP 2=√5−12BQ 1,所有矩形相似, ∴BP 2,BQ 2为领边的“黄金矩形”的周长y 与a 的关系式:y =(√5−12)4a. 故答案为:BP 1,BQ 2,y =(√5−12)4a.【拓展延伸】:(1)设图2中四个正方形①,②,③,④的边长分别为a 1,a 2,a 3,a 4, 设AB =x ,BC =y ,则2x +2y =a , ∴2x +2⋅√5−12x =a , ∴x =√5−14a ,y =(√5−1)223a , ∴a 1+a 2+a 3+a 4=(√5−1)223a +(√5−1)324a +(√5−1)425a +(√5−1)526a.(2)如图3,将正方形③和④的位置重新排列,再分别在每个正方形中作四分之一圆弧,四段弧可以连出一条优美的曲线,称为“黄金螺旋线”. 请直接写出这条曲线的长度:14⋅π(a 1+a 2+a 3+a 4)=14π⋅[(√5−1)223a +(√5−1)324a +(√5−1)425a +(√5−1)526a]=πa ⋅[(√5−1)22+(√5−1)322+(√5−1)423+(√5−1)423]. 故答案为:πa ⋅[(√5−1)22+(√5−1)322+(√5−1)423+(√5−1)423]. 【探索发现】:根据黄金分割的定义计算即可; 【归纳提炼】:探究规律,利用规律解决问题即可;【解释应用】:根据相似多边形的性质相似比等于周长比,解决问题即可; 【拓展延伸】:(1)分别求出a 1,a 2,a 3,a 4即可解决问题; (2)利用弧长公式计算即可.本题属于四边形综合题,考查了矩形的性质,黄金分割,解直角三角形,相似多边形的性质等知识,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.25.【答案】解:(1)∵四边形ABCD是矩形,∴∠B=90°,∵AB=6cm,BC=9cm,∴AC=√AB2+BC2=√62+82=10,∵EQ⊥AC,∴∠EQC=∠B=90°,∵∠ECQ=∠ACB,∴△ECQ∽△ACB,∴EQAB =CQCB=ECAC,∴EQ6=2t8=EC10,∴EQ=32t,EC=52t,∵点E在BQ的垂直平分线上,∴EB=EQ,∴8−52t=32t,∴t=2.(2)如图2中,过点Q作QH⊥AB于H,则AQ=10−2t,QH=45AQ=45(10−2t),∵AP=t,∴S△APQ=12⋅AP⋅QH=12⋅t⋅45(10−2t)=−45t2+4t,∴y=S△ABC−S△APQ=12×6×8−(−45t2+4t)=45t2−4t+24(0<t≤165).(3)①如图2−1中,当DC=DF时,连接DF,取AC的中点J,连接BJ,和点B作BH⊥AC于H,过点F作FK⊥CD于K.∵∠ABC=90°,AJ=JC,∴BJ=AJ=JC=12AC=5,∴∠JBC=∠JCB,∴∠BJH=∠BCJ+∠JCB=2∠JCB,∵E,F关于AC对称,∴∠ACE=∠ACF,CF=CE=52t ∴∠FCE=2∠ACB=∠BJH,∵FK⊥CD,CB⊥CD,∴FK//CB,∴∠CFK=∠FCE=∠BJH,∵BH⊥AC,∴S△ACB=12⋅AB⋅CB=12⋅AC⋅BH,∴BH=AB⋅BCAC =245,∵FD=FC,FK⊥CD,∴CK=KD=3,∵∠BJH=∠CFK,∴sin∠BJH=sin∠CFK,∴BHBJ =CKCF,∴2455=352t,∴t=54,②当CF=CD时,52t=6,∴t=125,综上所述,满足条件的t 的值为54或125.【解析】(1)证明△ECQ∽△ACB ,可得EQAB =CQCB =ECAC ,可得EQ6=2t 8=EC10,推出EQ =32t ,EC =52t ,由题意点E 在BQ 的垂直平分线上,推出EB =EQ ,由此构建方程,求解即可.(2)如图2中,过点Q 作QH ⊥AB 于H ,则AQ =10−2t ,QH =45AQ =45(10−2t),根据y =S △ABC −S △APQ ,求解即可.(3)分两种情形:①如图2−1中,当DC =DF 时,连接DF ,取AC 的中点J ,连接BJ ,和点B 作BH ⊥AC 于H ,过点F 作FK ⊥CD 于K.证明∠BJH =∠CFK ,可得sin∠BJH =sin∠CFK ,由此构建方程求解.②当CF =CD 时,构建方程,求解即可.本题属于四边形综合题,考查了矩形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
人教版九年级数学上册试卷 期中检测题
期中检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.(2020·黔东南州)已知关于x的一元二次方程x2+5x-m=0的一个根是2,则另一个根是( A )A.-7 B.7 C.3 D.-32.(2020·怀化)已知一元二次方程x2-kx+4=0有两个相等的实数根,则k的值为( C ) A.k=4 B.k=-4 C.k=±4 D.k=±23.(宜宾中考)一元二次方程x2-2x+b=0的两根分别为x1和x2,则x1+x2为( C ) A.-2 B.b C.2 D.-b4.(襄阳中考)已知二次函数y=x2-x+14m-1的图象与x轴有交点,则m的取值范围是( A )A.m≤5 B.m≥2 C.m<5 D.m>25.(2020·衢州)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程( B )A.180(1-x)2=461B.180(1+x)2=461C.368(1-x)2=442D.368(1+x)2=4426.(百色中考)抛物线y=x2+6x+7可由抛物线y=x2如何平移得到的( A )A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先回右平移3个单位,再向上平移2个单位7.(2020·株洲)二次函数y=ax2+bx+c,若ab<0,a-b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( B )A.y1=-y2B.y1>y2C.y1<y2D.y1,y2的大小无法确定8.(达州中考)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5,6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是( D )A.2500(1+x)2=9100 B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100 D.2500+2500(1+x)+2500(1+x)2=9100 9.(湖州中考)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是( D )10.(2020·宜宾 )函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点(2,0),顶点坐标为(-1,n ),其中n >0.以下结论正确的是( C )①abc >0;②函数y =ax 2+bx +c (a ≠0)在x =1和x =-2处的函数值相等;③函数y =kx +1的图象与y =ax 2+bx +c (a ≠0)的函数图象总有两个不同交点;④函数y =ax 2+bx +c (a ≠0)在-3≤x ≤3内既有最大值又有最小值.A .①③B .①②③C .①④D .②③④解析:根据待定系数法,方程根与系数的关系等知识和数形结合能力仔细分析即可解. 依照题意,画出图形如图,∵函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点(2,0),顶点坐标为(-1,n ),其中n>0.∴a <0,c >0,对称轴为直线x =-b 2a=-1,∴b =2a <0,∴abc >0,故①正确;∵对称轴为直线x =-1,∴x =1与x =-3的函数值是相等的,故②错误;∵顶点为(-1,n ),∴抛物线解析式为y =a (x +1)2+n =ax 2+2ax +a +n ,联立方程组可得:⎩⎪⎨⎪⎧y =kx +1,y =ax 2+2ax +a +n ,可得ax 2+(2a -k )x +a +n -1=0,∴Δ=(2a -k )2-4a (a +n -1)=k 2-4ak +4a -4an ,∵无法判断Δ是否大于0,∴无法判断函数y =kx +1的图象与y =ax 2+bx +c (a ≠0)的函数图象的交点个数,故③错误;当-3≤x ≤3时,当x =-1时,y 有最大值为n ,当x =3时,y 有最小值为16a +n ,故④正确,故选:C二、填空题(每小题3分,共15分)11.(2020·吉林 )一元二次方程x 2+3x -1=0根的判别式的值为__13__.12.(2020·淮安)二次函数y =-x 2-2x +3的图象的顶点坐标为__(-1,4)__.13.(2020·毕节)关于x 的一元二次方程(k +2)x 2+6x +k 2+k -2=0有一个根是0,则k 的值是__1__.14.(襄阳中考)如图,若被击打的小球飞行高度h (单位:m)与飞行时间t (单位:s)之间具有的关系为h =20t -5t 2,则小球从飞出到落地所用的时间为__4__s.第14题图第15题图15.(2020·益阳)某公司新产品上市30天全部售完,图①表示产品的市场日销售量与上市时间之间的关系,图②表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是__1800__元.三、解答题(共75分)16.(8分)用适当的方法解方程:(1)x2-2x-3=0; (2)(2x-1)2=x(3x+2)-7.解:x1=3,x2=-1 解:x1=2,x2=417.(9分)如图,已知抛物线y1=-2x2+2与直线y2=2x+2交于A,B两点.(1)求A,B两点的坐标;(2)若y1>y2,请直接写出x的取值范围.解:(1)A(-1,0),B(0,2)(2)-1<x<018.(9分)(衡阳中考)关于x的一元二次方程x2-3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,求此时m的值.解:(1)根据题意得Δ=(-3)2-4k≥0,解得k≤94(2)k的最大整数为2,方程x2-3x+k=0变形为x2-3x+2=0,解得x1=1,x2=2,∵一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,∴当x=1时,m-1+1+m-3=0,解得m=3 2;当x=2时,4(m-1)+2+m-3=0,解得m=1,而m-1≠0,∴m的值为3 219.(9分)如图,已知抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),B (3,0),且过点C (0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y =-x 上,并写出平移后抛物线的解析式.解:(1)抛物线解析式为y =-x 2+4x -3,即y =-(x -2)2+1,∴顶点坐标为(2,1) (2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y =-x 2,平移后抛物线的顶点为(0,0)落在直线y =-x 上20.(9分)(贺州中考)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,依题意,得2500(1+x )2=3600,解得x 1=0.2=20%,x 2=-2.2(舍去).答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20% (2)3600×(1+20%)=4320(元),4320>4200.答:2019年该贫困户的家庭年人均纯收入能达到4200元21.(10分)(2020·陕西)如图,抛物线y =x 2+bx +c 经过点(3,12)和(-2,-3),与两坐标轴的交点分别为A ,B ,C ,它的对称轴为直线l .(1)求该抛物线的解析式;(2)P 是该抛物线上的点,过点P 作l 的垂线,垂足为D ,E 是l 上的点.要使以P ,D ,E 为顶点的三角形与△AOC 全等,求满足条件的点P ,点E 的坐标.解:(1)将点(3,12)和(-2,-3)代入抛物线解析式得⎩⎪⎨⎪⎧12=9+3b +c ,-3=4-2b +c , 解得⎩⎪⎨⎪⎧b =2,c =-3, 故抛物线的解析式为y =x 2+2x -3 (2)抛物线的对称轴为直线x =-1,令y =0,则x =-3或1,令x =0,则y =-3,故点A ,B 的坐标分别为(-3,0),(1,0),点C (0,-3),故OA =OC =3,∵∠PDE =∠AOC =90°,∴当PD =DE =3时,以P ,D ,E 为顶点的三角形与△AOC 全等,设点P (m ,n ),当点P 在抛物线对称轴右侧时,m -(-1)=3,解得m =2,故n =22+2×2-3=5,故点P (2,5),故点E (-1,2)或(-1,8);当点P 在抛物线对称轴的左侧时,由抛物线的对称性可得,点P (-4,5),此时点E 坐标同上,综上,点P 的坐标为(2,5)或(-4,5);点E 的坐标为(-1,2)或(-1,8)22.(10分)(2020·随州)2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系如下表:1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q (只)与第x 天的关系为q =-2x 2+80x -200 (6≤x ≤30,且x 为整数),已知该型号口罩的进货价格为0.5元/只.(1)直接写出该药店该月前5天的销售价格p 与x 和销量q 与x 之间的函数解析式;(2)求该药店该月销售该型号口罩获得的利润W (元)与x 的函数解析式,并判断第几天的利润最大;(3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m 倍的罚款,若罚款金额不低于2000元,则m 的取值范围为__m ≥85__. 解:(1)根据表格数据可知:前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系为p =x +1,1≤x ≤5且x 为整数;q =5x +65,1≤x ≤5且x 为整数 (2)当1≤x ≤5且x 为整数时,W =(x +1-0.5)(5x +65)=5x 2+1352 x +652;当6≤x ≤30且x 为整数时,W =(1-0.5)(-2x 2+80x -200)=-x 2+40x -100.即有W =⎩⎪⎨⎪⎧5x 2+1352x +652,1≤x ≤5且x 为整数,-x 2+40x -100,6≤x ≤30且x 为整数,当1≤x ≤5且x 为整数时,售价,销量均随x 的增大而增大,故当x =5时,W 有最大值为495元;当6≤x ≤30且x 为整数时,W =-x 2+40x -100=-(x -20)2+300,故当x =20时,W 有最大值为300元;由495>300,可知:第5天的利润最大为495元 (3)根据题意可知:获得的正常利润之外的非法所得部分为:(2-1)×70+(3-1)×75+(4-1)×80+(5-1)×85+(6-1)×90=1250(元),∴1250m ≥2000,解得m ≥85 .则m 的取值范围为m ≥85 .故答案为:m ≥8523.(11分)(辽阳中考)如图,在平面直角坐标系中,Rt △ABC 的边BC 在x 轴上,∠ABC =90°,以A 为顶点的抛物线y =-x 2+bx +c 经过点C (3,0),交y 轴于点E (0,3),动点P 在对称轴上.(1)求抛物线解析式;(2)若点P 从A 点出发,沿A →B 方向以1个单位/秒的速度匀速运动到点B 停止,设运动时间为t 秒,过点P 作PD ⊥AB 交AC 于点D ,过点D 平行于y 轴的直线l 交抛物线于点Q ,连接AQ ,CQ ,当t 为何值时,△ACQ 的面积最大?最大值是多少?(3)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点P ,M ,E ,C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,请说明理由.解:(1)将点C ,E 的坐标代入二次函数表达式得:⎩⎪⎨⎪⎧-9+3b +c =0,c =3, 解得⎩⎪⎨⎪⎧b =2,c =3, 故抛物线的解析式为:y =-x 2+2x +3 (2)∵y =-x 2+2x +3=-(x -1)2+4,∴A (1,4),将点A ,C 的坐标代入一次函数解析式,可得直线AC 的解析式为:y =-2x +6,点P (1,4-t ),则点D (t +22 ,4-t ),点Q (t +22 ,4-t 24 ),S △ACQ =12 DQ ·BC =-14 t 2+t =-14(t -2)2+1,∵-14<0,故S △ACQ 有最大值,当t =2时,其最大值为1 (3)设点P (1,m ),点M (x ,y ),①当EC 是菱形一条边时,当点M 在点P 右方时,点E 向右平移3个单位、向下平移3个单位得到C ,则点P 向右平移3个单位、向下平移3个单位得到M ,则1+3=x ,m -3=y ,∴x =4,y =m -3即为M (4,m -3),而MP =EP 得:1+(m -3)2=(4-1)2+(m -3-m )2,解得:m =3+17 ,∴y =m -3=17 ,故点M (4,17 );当点M 在点P 左方时,同理可得:点M (-2,3+14 );②当EC 是菱形一对角线时,则EC 中点即为PM 中点,则x +1=3,y +m =3,而PE =PC ,即1+(m -3)2=4+(m -0)2,解得:m =1,故x =2,y =3-m =3-1=2,故点M (2,2);综上,点M (4,17 )或(-2,3+14 )或M (2,2)。
2020-2021学年天津市红桥区九年级上学期数学期中试卷及答案
2020-2021学年天津市红桥区九年级上学期数学期中试卷及答案一、选择题(本大题共12小题,每小题3分,共36分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列方程中,是一元二次方程的是( )A. B.3561x x -=-()2310x y -+=C. D. 2270x x --=213x x=+【答案】C【解析】 【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可.【详解】解:A 、该方程中的未知数x 的最高次数是1,属于一元一次方程,故本选项不符合题意;B 、该方程中含有两个未知数,不属于一元二次方程,故本选项不符合题意;C 、该方程符合一元二次方程的定义,故本选项符合题意;D 、该方程不属于整式方程,不属于一元二次方程,故本选项不符合题意. 故选:C .【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是(且a≠0).特别要注意a≠0的条件.这20ax bx c ++=是在做题过程中容易忽视的知识点.2. 下列标志中,可以看作是中心对称图形的是( ) A. B.C. D.【答案】B【解析】【分析】据中心对称图形概念,逐项检验作答.【详解】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B 可以看作是中心对称图形.故选:B .【点睛】考查中心对称图形,容易题,错误原因是不会区分轴对称图形和中心对称图形.3. 一元二次方程化为一般形式后,,,的2531x x x -=+()200++=≠ax bx c a a b c 值分别是( )A. ,,B. ,, 5a =4b =-1c =-5a =4b =1c =C. ,,D. ,,4a =5b =-1c =5a =-4b =1c =-【答案】A【解析】【分析】直接利用移项、合并同类项,即可得出a ,b ,c 的值.【详解】一元二次方程化为一般形式后, 2531x x x -=+20ax bx c ++=,25410x x --=则,,.5a =4b =-1c =-故选:A .【点睛】本题主要考查了一元二次方程的一般形式,正确合并同类项是解题关键.4. 一元二次方程可以转化为两个一元一次方程,其中一个一元一次方程为269x +=(),则另一个一元一次方程为( )63x +=A. B. C. D. 63x -=-69x +=-69x +=63x +=-【答案】D【解析】【分析】利用直接开平方法求解可得答案.【详解】解:∵,269x +=()∴x+6=3或x+6=-3,故选:D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5. 用配方法解方程时,配方所得的方程为( )2640x x ++=A. B. C. D. ()235x +=()234-=x ()2313x +=()265x +=【答案】A【解析】【分析】把常数项4移到等号的右边,再在等式的两边同时加上一次项系数6的一半的平方,配成完全平方的形式,从而得出答案.【详解】解:∵,2640x x ++=∴,264x x +=-∴,即.2695x x ++=()235x +=故选:A .【点睛】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6. 已知关于的一元二次方程的两根分别为,,则原方程可x 20x px q ++=12x =23x =-化为( )A.B. ()()230x x ++=()()230+-=x xC.D. ()()230x x --=()()230x x -+=【答案】D【解析】【分析】根据根与系数的关系,直接代入计算即可.【详解】解:∵关于x 的一元二次方程的两根分别为=2,=-3, 20x px q ++=1x 2x ∴2-3=-p,2×(-3)=q ,∴p=1,q=-6,∴原方程为,260x x +-=∴原方程可化为(x-2)(x+3)=0.故选:D .【点睛】本题考查了根与系数的关系,解题的关键是熟练掌握根与系数的字母表达式,并会代入计算.7. 一元二次方程的两个根分别为和,则二次函数 20ax bx c ++=3-1-2y ax bx c =++的对称轴是( )A.B. C. D. 2x =-2x =3x =-1x =-【答案】A【解析】【分析】根据两根之和公式可以求出对称轴公式.【详解】解:∵一元二次方程的两个根为−3和−1, 20ax bx c ++=∴ =−4. 12b x x a-+=∴二次函数的对称轴为x =−=. 2y ax bx c =++2b a ()114222b a ⎛⎫⨯-=⨯-=- ⎪⎝⎭故选:A .【点睛】本题考查了求二次函数的对称轴,要求熟悉二次函数与一元二次方程的关系和两根之和公式,并熟练运用.8. 若点,,都在二次函数的图象上,则,1(3,)A y -()2B 2,y -()32,C y 223y x x =--1y ,的大小关系是( )2y 3y A. B. C. D. 123y y y <<213y y y <<321y y y <<312y y y <<【答案】C【解析】【分析】根据二次函数的解析式得出图象的开口向上,对称轴是直线x=1,根据x <1时,y 随x 的增大而减小,即可得出答案.【详解】解:∵,()222314y x x x =--=--∴图象的开口向上,对称轴是直线x=1,C (2,)关于直线x=1的对称点是(0,),3y 3y ∵-3<-2<0<1,∴<<,3y 2y 1y 故选:C .【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.9. 要组织一次排球邀请赛,参赛的每两个队之间比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A. x (x+1)=28B.12(1)28x x -=C.D. x (x-1)=28 (1)28x x +=12【答案】D【解析】 【分析】根据参赛的每两个队之间都要比赛一场结合总共28场,即可得出关于x 的一元二次方程,此题得解.【详解】解:设比赛组织者应邀请x 个队参赛, 根据题意得:x (x-1)=4×7, 12即x (x-1)=28. 12故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x 的一元二次方程是解题的关键.10. 如图,在Rt△ABC 中,∠BAC=90°.如果将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处.那么旋转的角度等于( )A. 55°B. 60°C. 65°D. 80°【答案】B【解析】 【详解】试题分析:利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB 1是等边三角形,即可得出旋转角度.解:∵在Rt△ABC 中,∠BAC=90°,将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处,∴AB 1=BC ,BB 1=B 1C ,AB=AB 1,12∴BB 1=AB=AB 1,∴△ABB 1是等边三角形,∴∠BAB 1=60°,∴旋转的角度等于60°.故选B .11. 有一个人患了流感,经过两轮传染后共有121人患了流感,则每轮传染中平均一个人传染的人数为( )A.B. C. D. 8101214【答案】B【解析】【分析】患流感的人把病毒传染给别人,自己仍然患病,包括在总数中.设每轮传染中平均一个人传染了x 个人,则第一轮传染了x 个人,第二轮作为传染源的是(x+1)人,则传染x (x+1)人,依题意列方程:1+x+x (1+x )=121,解方程即可求解.【详解】解:设每轮传染中平均一个人传染了x 个人,依题意得1+x+x (1+x )=121,即,2(1)121x +=解方程得=10,=-12(舍去).1x 2x 故选:B .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图所示,正方形ABCD 的边长为1.E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH ,设小正方形EFGH 的面积为S ,AE 为,则S 关于的函数图象大致是( )x xA. B. C. D.【答案】B【解析】【分析】根据条件可知,设为,则,AEH BFE CGF DHG △≌△≌△≌△AE x 1AH x =-根据勾股定理,进而可求出函数解析式,由此可求出答22222(1)EH AE AH x x =+=+-案.【详解】解:四边形ABCD 是正方形,∴,,AB BC CD DA ===90A B C D ∠=∠=∠=∠=︒又∵,AE BF CG DH ===∴,BE CF DG AH ===(SAS ).AEH BFE CGF DHG ∴△≌△≌△≌△设为,则,AE x 1AH x =-根据勾股定理,得,22222(1)EH AE AH x x =+=+-即22(1)s x x =+-2221x x =-+22()1x x =-+ 2112(144x x =-+-+, 2112()22x =-+所求函数图象是一条开口向上的抛物线,对称轴是直线. ∴12x =由题意可知自变量的取值范围是.01x <<故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用以及二次函数的综合运用.关键是根据题意,列出函数关系式,判断二次函数的自变量取值范围,开口方向及对称轴.二、填空题(本大题共6小题,每小题3分,共18分)13. 在平面直角坐标系中,为原点,将点绕点逆时针旋转得点,则点O ()2,0A O 90︒A 'A '的坐标为_____. 【答案】02(,)【解析】【分析】利用图象法,画出图形解决问题即可.【详解】解:如图,观察图象可知,A′(0,2).故答案为:(0,2).【点睛】本题考查坐标与图形变化-旋转,解题的关键是学会利用图象法解决问题,属于中考常考题型.14. 二次函数的最大值为_______.22y x x =-+【答案】1【解析】【分析】根据二次函数的性质直接求解即可.【详解】解:22y x x =-+∵a=-1<0∴当时有最大值 2=--12-2b x a ==即:2=-1211y +⨯=故答案为:1.【点睛】本题考查二次函数的最值,根据抛物线的开口方向,在时,函数有最值. =-2b x a 15. 若一元二次方程可以配方成的形式,则代数式的2610x x -+=()20x p q ++=p q +值为______.【答案】11-【解析】【分析】根据配方法解一元二次方程的步骤得出p 、q 的值,据此可得答案.【详解】解:∵-6x+1=0,2x ∴-6x=-1,2x ∴-6x+9=-1+9,即,2x ()()2380x +-+-=⎡⎤⎣⎦∴p=-3,q=-8,则p+q=-3-8=-11,故答案为:-11.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16. 若,则关于的方程的实数根的个数为_______.2k ≥x 22210x k x k k -+-+=【答案】2【解析】【分析】计算根的判别式,根据k 的取值范围,得到判别式的取值范围,即可得到结论.【详解】解:∵,22210x k x k k -+-+=∴△= 22(2)4(1)k k k ---+=,4(1)k -因为,2k ≥所以,4(1)0k ->故方程有两个不相等的实数根,故答案为:2.【点睛】本题考查了一元二次方程根的判别式的应用,熟练掌握判别式的意义是解题的关键.17. 某村2016年的人均收入为20000元,2018年的人均收入为24200元,则2016年到2018年该村人均收入的年平均增长率为______【答案】10%【解析】【分析】设2016年到2018年该村人均收入的年平均增长率为,根据题意列一元二次方程,x 解方程可得答案.【详解】解:设2016年到2018年该村人均收入的年平均增长率为,则x()220000124200,x +=()21 1.21,x ∴+=或 1 1.1x ∴+=1 1.1,x +=-1210%, 2.1,x x ∴==-经检验:不合题意,舍去,2 2.1x =-答:2016年到2018年该村人均收入的年平均增长率为10%.故答案为:10%.【点睛】本题考查的是一元二次方程的应用,增长率问题,掌握一元二次方程的增长率问题的解答是求解的关键.18. 若抛物线(为常数)与轴的两个交点都在轴的正半轴上,则的取2y x x k =--k x x k 值范围是______.【答案】## 104-<<k 0.250k -<<【解析】【分析】根据题意可得:抛物线与y 轴交于正半轴,从而 且()()2140k ∆=--⨯-> ,即可求解.0k ->【详解】解:设x 1,x 2是抛物线和x 轴的交点横坐标,∵抛物线y =x 2﹣x﹣k 与x 轴的两个交点都在x 轴正半轴上,∴ 且 ,()()2140k ∆=--⨯->12·0x x k =->解得:. 104-<<k 故答案为:. 104-<<k 【点睛】本题主要考查了二次函数的性质和图象,熟练掌握二次函数的性质和图象,运用数形结合思想是解题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19. 在平面直角坐标系中,各顶点的坐标分别为,,. ABC ()50A ,()32B -,()13C --,(1)请在图中作出关于原点对称的,并写出各顶点的坐标;ABC A B C '''V A B C '''V (2)求的面积.A B C '''V S 【答案】(1)见解析 (2)的面积A B C '''V 8S =【解析】【分析】(1)先根据关于原点对称的点的坐标特征求出点A′,点B′,点C′的坐标,然后描出点A′,点B′,点C′,最后顺次连接点A′,点B′,点C′即可;(2)根据△A′B′C′的面积等于其所在的长方形面积减去周围三个小三角形面积求解即可.【小问1详解】关于原点对称的图形如图所示.ABC点A 的对称点的坐标为; A '()50-,点的对称点的坐标为; B B '()32-,点的对称点的坐标为. C C '()13,【小问2详解】解:由题意可得: 11185256382222S =⨯-⨯⨯-⨯⨯-⨯⨯.18=【点睛】本题主要考查了画中心对称图形,关于原点对称的点的坐标特征,三角形面积,解题的关键在于能够熟练掌握关于原点对称的点的坐标特征.20. 解下列关于的方程.x (1);()2130x --=(2).23620x x --=【答案】(1),11x =-21x =(2), 1x =2x =【解析】【分析】(1)直接利用开平方的方法解方程即可;(2)利用公式法求解即可.【小问1详解】解:移项,得. 213x -=()开方得:,1-=x解得,11x =-21x =【小问2详解】解:∵23620x x --=∴,,.3a =6b =-2c =-∴.()()2246432600b ac ∆=-=--⨯⨯-=>∴方程有两个不等的实数根∴ x =解得,. 1x =2x =【点睛】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.21. 已知关于的一元二次方程(为常数).x 220x x m ++=m(1)若是该方程的一个实数根,求的值;1x =m (2)当时,求该方程的实数根;6m =-(3)若该方程有两个不相等的实数根,求的取值范围.m 【答案】(1)3m =-(2), 132x =22x =-(3)的取值范围是 m 18m <【解析】 【分析】(1)代入x=1可得出关于m 的方程,解之即可得出m 的值;(2)代入m=-6,利用因式分解法解一元二次方程,即可得出方程的实数根;(3)根据方程的系数结合根的判别式Δ>0,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围.【小问1详解】解:将x=1代入原方程,得:2+1+m=0,解得:m=-3,∴m 的值为-3;【小问2详解】解:当m=-6时,原方程为,2260x x +-=∴(2x-3)(x+2)=0,解得:=,=-2, 1x 322x ∴该方程得实数根为=,=-2; 1x 322x 【小问3详解】解:∵该方程有两个不相等的实数根,∴,21420m ∆=-⨯⨯>∴m<, 18∴m 的取值范围为m <. 18【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)代入x=1求出m 值;(2)代入m 的值,解一元二次方程;(3)牢记“当Δ>0时,方程有两个不相等的实数根”.22. 已知二次函数的图象为抛物线.243y x x =-+C (1)写出抛物线的开口方向、对称轴和顶点坐标;C (2)当时,求该二次函数的函数值的取值范围;23x -≤≤y (3)将抛物线先向左平移个单位长度,得到抛物线;再将抛物线向上平移个单C 11C 1C 2位长度,得到抛物线.请直接写出抛物线,对应的函数解析式.2C 1C 2C 【答案】(1)抛物线的开口向上,抛物线的对称轴为直线,顶点坐标为C C 2x =()2,1-(2)函数值的取值范围是y 115y -≤≤(3)抛物线对应的函数解析式为;抛物线对应的函数解析式为1C 22y x x =-2C .222y x x -=+【解析】【分析】(1)根据二次函数的性质进行解题即可;(2)根据二次函数的增减性进行解题即可;(3)根据二次函数平移规律:左加右减,上加下减进行解题即可.【小问1详解】解:∵,=10a >∴抛物线的开口向上.C ∵,224321y x x x =-+=--()∴抛物线的对称轴为直线,顶点坐标为.C 2x =21-(,)【小问2详解】解:∵当时,随的增大而减小;当时,随的增大而增大. 22x -≤≤y x 23x ≤≤y x ∵当时,;当时,,x=2时,y=-1,2x =-15y =3x =0y =∴函数值的取值范围是:.y 115y -≤≤【小问3详解】解:∵抛物线向左平移个单位长度:,1222+11=2y x x x =---()∴抛物线对应的函数解析式为;1C 22y x x =-∵再向上平移两个单位:222y x x -=+∴抛物线对应的函数解析式为.2C 222y x x -=+【点睛】本题考查二次函数的性质和平移.熟练掌握二次函数的性质和平移规律是解题的关键.23. 一块三角形材料如图所示,,,.用这块材料剪出一个30A ∠=︒90C ∠=︒12AB =矩形CDEF ,其中,点D ,E ,F ,分别在AC ,AB ,BC 上.设AE 的长为x ,矩形CDEF 的面积为S .(1)写出S 关于x 的函数解析式,并写出x 的取值范围;(2)当矩形CDEF 的面积为AE 的长;(3)当AE 的长为多少时,矩形CDEF 的面积最大?最大面积是多少?【答案】(1) ()2012CDEF S x x =+<<矩形(2)AE 的长为4或8(3)当点E 为AB 的中点时,矩形CDEF 的面积最大,最大面积是【解析】【分析】(1)先确定,再由矩形的性质得到,根据含30°角直角012x <<90AFE ∠=︒三角形的性质解得,,接着由勾股定理得到12EF AE =162BC AB ==,最后根据矩形的面AC ==CF AC AF AE =-=积公式解答即可;(2)由矩形CDEF 的面积为,再)26x -+=利用直接开平方解题;(3)利用配方法得到,据此解答. )26CDEF S x =-+矩形【小问1详解】解:解:∵,,点E 与点A 点B 均不重合,12AB =AE x =∴,012x <<∵四边形CDEF 是矩形,∴,90AFE ∠=︒∵,30A ∠=︒∴, 12EF AE =在中,,,,Rt ABC △90C ∠=︒30A ∠=︒12AB =∴, 162BC AB ==根据勾股定理得:AC ==∴, CF AC AF AE =-=∴; ()210122CDEF S CF EF x x x x ⎛⎫=⋅==+<< ⎪ ⎪⎝⎭矩形【小问2详解】根据题意得,2CDEF S x =+=矩形2(6)36x ⎡⎤--=⎣⎦, )26x -+=()264x -=62x ∴-=±解得:,,14x =28x =∴AE 的长为4或8; 【小问3详解】∵ ()2012CDEF S x =+<<矩形212)x x =-2221266)x x =-+-2(6)36x ⎤=--⎦, )26x =-+∴当时,矩形CDEF 的面积最大,6x =即当点E 为AB 的中点时,矩形CDEF 的面积最大,最大面积是.【点睛】本题考查一元二次方程的应用、二次函数的应用,涉及解一元二次方程、求二次函数的最值、矩形的性质、含30°角直角三角形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.24. 如图,在中,,将绕点顺时针旋转得到,点Rt ABC △90ACB ∠=︒ABC C DEC 的对应点为,点的对应点落在线段上,与相交于点,连接.B E A D AB DE BC F BE(1)求证:平分;DC ADE ∠(2)试判断与的位置关系,并说明理由;BE AB (3)若, 求的大小(直接写出结果即可).BE BD =ABC ∠【答案】(1)见解析 (2),理由见解析BE AB ⊥(3)的大小为ABC ∠22.5︒【解析】【分析】(1)利用等腰三角形的性质以及旋转不变性解决问题即可;(2)结论:AB⊥BE.证明∠DBE+∠DCE=180°,即可解决问题;(3)连接AF .过点B 作BH⊥CD 交CD 的延长线于H ,作BT⊥CE 于T ,证明△BHD≌△BTE,推出CB 是∠DCE 的角平分线,得到∠ACD=45°,据此求解即可解决问题.【小问1详解】证明:∵△DCE 是由△ACB 旋转得到,∴CA=CD,∠A=∠CDE,∴∠A=∠CDA,∴∠CDA=∠CDE,∴CD 平分∠ADE;【小问2详解】解:结论:BE⊥AB.由旋转的性质可知,∠ACD=∠BCE,∵CA=CD,CB=CE ,∴∠CAD=∠CDA=∠CBE=∠CEB,∵∠ABC+∠CAB+∠ACD+∠DCB=180°,∴∠ABC+∠CBE+∠DCB+∠BCE=180°,∴∠DCE+∠DBE=180°,∵∠DCE=90°,∴∠DBE=90°,∴BE⊥AB;【小问3详解】解:如图,连接AF ,过点B 作BH⊥CD 交CD 的延长线于H ,作BT⊥CE 于T ,∵∠H=∠BTC=∠HCT=90°,∴∠HBT=∠DBE=90°,∴∠DBH=∠EBT,∵BD=BE,∠H=∠BTE=90°,∴△BHD≌△BTE(AAS ),∴BH=BT,∵BH⊥CH,BT⊥CE,∴CB 是∠DCE 的角平分线, ∴∠DCB=∠ECB=∠DCE=45°,12∵∠ACB=90°,∴∠ACD=∠FCD=45°,∵AC=CD, ∴∠CAD=∠ADC==67.5°, 180452︒-︒∴∠ABC=90°-∠CAD=22.5°.【点睛】本题属于三角形综合题,考查了旋转变换,全等三角形的判定和性质,角平分线的判定和性质,等腰直角三角形的性质等知识,解题的关键是证明△BHD≌△BTE.25. 已知抛物线(为常数,)交轴于点,点,26y ax bx =++a 0a ≠x ()6,0A ()1,0B -交轴于点.y C (1)求点的坐标和抛物线的解析式;C (2)是抛物线上位于直线上方的动点,过点作轴平行线,交直线于点,P AC P y ACD 当取得最大值时,求点的坐标;PD P(3)是抛物线的对称轴上一点,为抛物线上一点;当直线垂直平分的M l N AC AMN 边时,求点的坐标.MN N【答案】(1)y =−x 2+5x +6,C (0,6);(2)P (3,12);(3)()或72) 72【解析】【分析】(1)当x =0时,y =6,可求点C 坐标,利用待定系数法可求解析式;(2)先求出直线AC 的解析式,再设D (t ,−t +6)(0<t <6),知P (t ,−t 2+5t +6),从而得PD =−(t −3)2+9,据此可得答案;(3)先判断出NF∥x 轴,进而求出点N 的纵坐标,即可建立方程求解得出结论.【详解】解:(1)∵抛物线经过点A (6,0),B (−1,0), 26y ax bx =++∴, 6036660a b a b -+=⎧⎨++=⎩∴, 15a b =-⎧⎨=⎩∴抛物线的解析式为y =−x 2+5x +6,当x =0时,y =6,∴点C (0,6);(2)如图(1),∵A(6,0),C (0,6),∴直线AC 的解析式为y =−x +6,设D (t ,−t +6)(0<t <6),则P (t ,−t 2+5t +6),∴PD=−t 2+5t +6−(−t +6)=−t 2+6t =−(t −3)2+9,当t =3时,PD 最大,此时,−t 2+5t +6=12,∴P(3,12);(3)如图(2),设直线AC 与抛物线的对称轴l 的交点为F ,连接NF ,∵点F 在线段MN 的垂直平分线AC 上,∴FM=FN ,∠NFC=∠MFC,∵l∥y 轴,∴∠MFC=∠OCA=45°,∴∠MFN=∠NFC+∠MFC=90°,∴NF∥x 轴,由(2)知,直线AC 的解析式为y =−x +6,由(1)可知:抛物线的对称轴为直线x= 52当x =时,y =, 5272∴F(,), 5252∴点N 的纵坐标为, 72设N 的坐标为(m ,−m 2+5m +6),∴−m 2+5m +6=, 72或m∴点N ,,). 7272【点睛】本题是二次函数综合题,主要考查了待定系数法,解一元二次方程,(2)中判断出PD =PE,(3)中NF∥x轴是解本题的关键.。
2020-2021学年人教版第一学期九年级期中考试数学试卷(含答案)
九年级期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.2.若x=1是方程x2+ax-2=0的一个根,则a的值为()A. 0B. 1C. 2D. 33.将二次函数y=2(x-1)2+2的图象向左平移2个单位长度得到的新图象的表达式为()A. B. C. D.4.在平面直角坐标系中,将点P(a,b)关于原点对称得到点P1,再将点P1向左平移2个单位长度得到点P2,则点P2的坐标是()A. (b−2,−a)B. (b+2,−a)C. (−a+2,−b)D. (−a−2,−b)5.同一坐标系中,抛物线y=(x-a)2与直线y=a+ax的图象可能是( )A. B. C. D.6.一元二次方程x2-6x+5=0的两根分别是x1、x2,则x1+x2的值是( )A. 6B. -6C. 5D. -57.如图,已知在△ABC中,∠ABC=90°,AB=8,BC=6,将线段AC绕点A顺时针旋转得到AD,且∠DAC=∠BAC,连接CD,且△ACD的面积为()A. 24B. 30C. 36D. 408.有一人患了流感,经过两轮传染后共有64人患了流感,则每轮传染中平均一个人传染的人数是()A. 5人B. 6人C. 7人D. 8人9.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A. B. C. D. 且10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c >b;④2a+b=0;⑤△=b2-4ac<0;⑥3a+c>0;⑦(m2-1)a+(m-1)b≥0(m为任意实数)中成立式子()A. ②④⑤⑥⑦B. ①②③⑥⑦C. ①③④⑤⑦D. ①③④⑥⑦二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为________.12.某乡村种的水稻2018年平均每公顷产3200kg ,2020年平均每公顷产5000kg ,则水稻每公顷产量的年平均增长率为________.13.一抛物线的形状,开口方向与y=3x2−3x+1相同,顶点在(-2,3),则此抛物线的解析式为2________.14.如图,是抛物线y=ax2+bx+c(a≠0)的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(-1,0),则方程ax2+bx+c=0(a≠0)的两根是________15.如图,四边形ABCD是正方形,P在CD上,△ADP旋转后能够与△ABP′重合,若AB=3,DP=1,则PP′=________.16.如图,已知AB⊥BC,AB=12cm,BC=8cm.一动点N从C点出发沿CB方向以1cm/s的速度向B 点运动,同时另一动点M由点A沿AB方向以2cm/s的速度也向B点运动,其中一点到达B点时另一点也随之停止,当△MNB的面积为24cm2时运动的时间t为________秒.17.如图,在边长为6的等边△ABC中,AD是BC边上的中线,点E是△ABC内一个动点,且DE=2,将线段AE绕点A逆时针旋转60°得到AF,则DF的最小值是________.18.如图,抛物线y=−14x2+12x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于X轴,与拋物线相交于P、Q两点,则线段PQ的长为________.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.20.已知关于x的一元二次方程x2+(k−1)x+k−2=0.(1)求证:方程总有两个实数根;(2)任意写出一个k值代入方程,并求出此时方程的解.21.已知二次函数y=x2-4x+3,设其图象与x轴的交点分别是A、B(点A在点B的左边),与y轴的交点是C,求:(1)A、B、C三点的坐标;(2)△ABC的面积.22.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?23.跳绳时,绳甩到最高处时的形状是抛物线. 正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0. 9米,身高为1. 4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E. 以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果身高为1. 85米的小华也想参加跳绳,问绳子能否顺利从他头顶越过?请说明理由;(3)如果一群身高在1. 4米到1. 7米之间的人站在OD之间,且离点O的距离为t米, 绳子甩到最高处时必须超过他们的头顶,请结合图像,写出t的取值范围________.24.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.25.如图,已知抛物线y=1x2+bx与直线y=2x交于点O(0,0),A(a,12),点B是抛物线上2O、A之间的一个动点,过点B分别作x轴和y轴的平行线与直线OA交于点C、E,(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC、BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m、n之间的关系式.26.在一-次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F 重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4 cm,并进行如下研究活动。
2020—2021年枣庄市滕州市九年级上期中数学试卷及答案解析
2020—2021年枣庄市滕州市九年级上期中数学试卷及答案解析一、选择题(每小题3分,共45分)在每小题的四个选项中,只有一项是符合题目要求的1.下列一元二次方程无解的是( )A.x2﹣2x+1=0 B.x2+3x﹣2=0 C.2x2+x+3=0 D.2x2﹣3x﹣1=02.用配方法解方程x2+4x+1=0,则配方正确的是( )A.(x+2)2=3 B.(x+2)2=﹣5 C.(x+2)2=﹣3 D.(x+4)2=33.若正方形的面积是4cm2,则它的对角线长是( )A.4cm B.cm C.8cm D.2cm4.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根是0,则m的值是( ) A.2 B.﹣2 C.2或﹣2 D.5.假如关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么那个一元二次方程是( )A.x2+3x+4=0 B.x2﹣4x+3=0 C.x2+4x﹣3=0 D.x2+3x﹣4=06.已知,则的值是( )A.B.C.D.7.给出下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④两条对角线互相垂直且平分的四边形是菱形.其中错误命题的个数是( )A.1 B.2 C.3 D.48.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为( )A.3 B.4 C.6 D.89.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为( )A.﹣4 B.6 C.8 D.1210.如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=( )A.7 B.7.5 C.8 D.8.511.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长( )A.4 B.6 C.8 D.1012.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )A.∠ABD=∠C B.∠ADB=∠ABC C.D.13.如图,为了测量一池塘的宽DE,在岸边找到一点C,测得CD=30m,在DC的延长线上找一点A,测得AC=5m,过点A作AB∥DE交EC的延长线于B,测出AB=6m,则池塘的宽DE为( )A.25m B.30m C.36m D.40m14.在一个不透亮的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发觉其中摸到红色球、黑色球的频率稳固在15%和45%,则口袋中白色球的个数可能是( )A.24 B.18 C.16 D.615.如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点动身到B点止,动点E从C点动身到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.假如两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时刻是( )A.3秒或4.8秒B.3秒C.4.5秒D.4.5秒或4.8秒二、填空题(每题3分,共24分)将答案填在题目中的横线上16.已知E,F,G,H是菱形ABCD各边上的中点,则四边形EFGH的形状是__________.17.市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品通过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是__________.18.定义一种运算“*”,其规则为a※b=a2﹣b2,则方程(x+2)*5=0的解为__________.19.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为__________米.20.有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为__________.21.为了估量湖里有多少条鱼,我们先从湖里捕100条鱼做标记,然后放回湖里,通过一段时刻,待带标记的鱼完全混合于鱼群中,再捕200条鱼,若其中带标记的鱼有25条,则估量湖里有__________条鱼.22.已知一本书的宽与长之比为黄金比,且这本书的长是20cm,则它的宽为__________(结果保留根号).23.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有__________个实心圆.三、解答题:共7分,满分51分,解承诺写出文字说明、说理过程或演算步骤24.解方程(1)2x2﹣7x+3=0(2)(x﹣2)2=2x﹣4.25.已知:如图,在菱形ABCD中,分别延长AB、AD到E、F,使得BE=DF,连接EC、FC.求证:EC=FC.26.四张扑克牌的牌面如图①所示,将扑克牌洗平均后,如图②背面朝上放置在桌面上.(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是__________;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负.你认为那个游戏是否公平?请说明理由.27.如图,D、E分别是△ABC的边AC、AB上的点.AE=1.5,AC=2,BC=3,且=,求DE的长.28.为丰富学生的学习生活,某校九年级组织学生参加春游活动,所联系的旅行社收费标准如下:春游活动终止后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动?29.如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB,交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么专门四边形?并证明你的结论.30.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D动身沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点到达所在运动的另一个端点时,运动即停止.已知在相同时刻内,若BQ=xcm(x>0),则AP=2xcm,CM=3xcm,DN=x2cm.当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形.2020-2021学年山东省枣庄市滕州市九年级(上)期中数学试卷一、选择题(每小题3分,共45分)在每小题的四个选项中,只有一项是符合题目要求的1.下列一元二次方程无解的是( )A.x2﹣2x+1=0 B.x2+3x﹣2=0 C.2x2+x+3=0 D.2x2﹣3x﹣1=0【考点】根的判别式.【专题】运算题.【分析】依照一元二次方程的根的判别式与0的大小关系就能够判定各选项的根的情形.【解答】解:A:△=b2﹣4ac=4﹣4=0,方程有相等的两实数根;B:△=b2﹣4ac=9+8>0,方程有不相等的两实数根;C:△=b2﹣4ac=1﹣24=﹣23<0,方程无实数根;D:△=b2﹣4ac=9+8=17>0,方程有两个不相等的实数根.故选C.【点评】考查了根的判别式,一元二次方程根的情形与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2.用配方法解方程x2+4x+1=0,则配方正确的是( )A.(x+2)2=3 B.(x+2)2=﹣5 C.(x+2)2=﹣3 D.(x+4)2=3【考点】解一元二次方程-配方法.【专题】运算题.【分析】把方程两边加上3,然后把方程左边写成完全平方的相似即可.【解答】解:x2+4x+4=3,(x+2)2=3.故选A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直截了当开平方法求解,这种解一元二次方程的方法叫配方法.3.若正方形的面积是4cm2,则它的对角线长是( )A.4cm B.cm C.8cm D.2cm【考点】正方形的性质.【分析】由正方形的性质和已知条件得出正方形的边长,由勾股定理求出对角线长即可.【解答】解:如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=AD,AC=BD,∠ABC=90°,∵正方形ABCD的面积是4cm2,∴正方形ABCD的边长AB=BC=2cm,∴BD=AC==2(cm).故选:D.【点评】本题考查了正方形的性质、勾股定理;熟练把握正方形的性质,运用勾股定理求出对角线长是解决问题的关键.4.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根是0,则m的值是( ) A.2 B.﹣2 C.2或﹣2 D.【考点】解一元二次方程-因式分解法;一元二次方程的解.【分析】一元二次方程的根确实是一元二次方程的解,确实是能够使方程左右两边相等的未知数的值.即用那个数代替未知数所得式子仍旧成立.【解答】解:原方程可变形为(m﹣2)x2+3x+(m+2)(m﹣2)=0,把x=0代入可得到(m+2)(m﹣2)=0,解得m=2或m=﹣2,当m=2时,m﹣2=0,一元二次方程不成立,故舍去,因此m=﹣2.故选B.【点评】本题考查的是一元二次方程的根即方程的解的定义.本题容易显现的错误是忽视二次项系数不等于0这一条件.5.假如关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么那个一元二次方程是( )A.x2+3x+4=0 B.x2﹣4x+3=0 C.x2+4x﹣3=0 D.x2+3x﹣4=0【考点】根与系数的关系.【分析】依照根与系数的关系,直截了当代入运算即可.【解答】解:∵关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,∴3+1=﹣p,3×1=q,∴p=﹣4,q=3,故选:B.【点评】本题考查了根与系数的关系,解题的关键是熟练把握根与系数的字母表达式,并会代入运算.6.已知,则的值是( )A.B.C.D.【考点】比例的性质.【分析】先设出b=5k,得出a=13k,再把a,b的值代入即可求出答案.【解答】解:令a,b分别等于13和5,∵,∴a=13,b=5∴==;故选D.【点评】此题考查了比例的性质.此题比较简单,解题的关键是注意把握比例的性质与比例变形.7.给出下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④两条对角线互相垂直且平分的四边形是菱形.其中错误命题的个数是( )A.1 B.2 C.3 D.4【考点】命题与定理.【分析】分析是否为错误命题,能够举出反例;也能够分别分析各个题设是否能推出结论,从而得出答案.【解答】解:①错误,例如菱形;②错误,例如筝形;③正确,符合矩形的判定定理;④正确,符合、菱形的判定定理.故选B.【点评】要紧考查命题的真假判定,正确的命题叫真命题,错误的命题叫做假命题.判定命题的真假关键是要熟悉课本中的性质定理.8.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为( )A.3 B.4 C.6 D.8【考点】矩形的性质;三角形中位线定理.【分析】阴影部分的面积等于矩形面积减去四个直角三角形的面积.【解答】解:矩形的面积=2×4=8;S△AEF=×1×2=1;∴阴影部分的面积=8﹣1×4=4.故选B.【点评】本题另外的解法是:利用菱形的面积公式运算.9.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为( )A.﹣4 B.6 C.8 D.12【考点】根与系数的关系.【分析】依照(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4,依照一元二次方程根与系数的关系,即两根的和与积,代入数值运算即可.【解答】解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1•x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1•x2=﹣2代入,得(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选C【点评】将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.10.如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=( )A.7 B.7.5 C.8 D.8.5【考点】平行线分线段成比例.【分析】由直线a∥b∥c,依照平行线分线段成比例定理,即可得,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【解答】解:∵a∥b∥c,∴,∵AC=4,CE=6,BD=3,∴,解得:DF=,∴BF=BD+DF=3+=7.5.故选:B.【点评】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.11.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长( )A.4 B.6 C.8 D.10【考点】菱形的判定与性质;矩形的性质.【分析】第一由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD 是矩形,依照矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.【解答】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.12.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )A.∠ABD=∠C B.∠ADB=∠ABC C.D.【考点】相似三角形的判定.【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【解答】解:∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);故A与B正确;当时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);故D正确;当时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误.故选C.【点评】此题考查了相似三角形的判定.此题难度不大,注意把握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.13.如图,为了测量一池塘的宽DE,在岸边找到一点C,测得CD=30m,在DC的延长线上找一点A,测得AC=5m,过点A作AB∥DE交EC的延长线于B,测出AB=6m,则池塘的宽DE为( )A.25m B.30m C.36m D.40m【考点】相似三角形的应用.【专题】方程思想;转化思想.【分析】将原题转化为相似三角形,依照相似三角形的性质解答,即可得出DE的宽.【解答】解:∵AB∥DE∴AB:DE=AC:CD∴∴DE=36m.故选C.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出池塘的宽度,表达了方程的思想.14.在一个不透亮的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发觉其中摸到红色球、黑色球的频率稳固在15%和45%,则口袋中白色球的个数可能是( )A.24 B.18 C.16 D.6【考点】利用频率估量概率.【专题】应用题;压轴题.【分析】先由频率之和为1运算出白球的频率,再由数据总数×频率=频数运算白球的个数.【解答】解:∵摸到红色球、黑色球的频率稳固在15%和45%,∴摸到白球的频率为1﹣15%﹣45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选C.【点评】大量反复试验下频率稳固值即概率.关键是算出摸到白球的频率.15.如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点动身到B点止,动点E从C点动身到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.假如两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时刻是( )A.3秒或4.8秒B.3秒C.4.5秒D.4.5秒或4.8秒【考点】相似三角形的性质.【专题】压轴题;动点型;分类讨论.【分析】依照相似三角形的性质,由题意可知有两种相似形式,△ADE∽△ABC和△ADE∽△ACB,可求运动的时刻是3秒或4.8秒.【解答】解:依照题意得:设当以点A、D、E为顶点的三角形与△ABC相似时,运动的时刻是x秒,①若△ADE∽△ABC,则,∴,解得:x=3;②若△ADE∽△ACB,则,∴,解得:x=4.8.∴当以点A、D、E为顶点的三角形与△ABC相似时,运动的时刻是3秒或4.8秒.故选A.【点评】此题考查了相似三角形的性质,解题时要注意此题有两种相似形式,别漏解;还要注意运用方程思想解题.二、填空题(每题3分,共24分)将答案填在题目中的横线上16.已知E,F,G,H是菱形ABCD各边上的中点,则四边形EFGH的形状是矩形.【考点】中点四边形.【分析】依照三角形中位线定理和矩形的判定:有一角为90°的平行四边形是矩形,得出菱形中点四边形的形状.【解答】解:∵四边形ABCD是菱形,E、F、G、H分别是各边的中点,∴EH=BD,EH∥BD,FG=BD,FG∥BD,∴EH=FG,EH∥FG,∴四边形EFGH为平行四边形;又因为菱形的对角线互相垂直平分,可求得四边形的一角为90°,因此连接菱形各边中点的四边形是矩形,即四边形EFGH的形状是矩形,故答案为:矩形.【点评】本题考查的是矩形的判定,把握矩形的判定定理:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形是解题的关键.17.市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品通过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是20%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】这是增长率类的一个问题,设这种药品每次降价的百分率是x,因为是连续两次降价因此可列方程为200(1﹣x)2=128求解即可.【解答】解:设这种药品平均每次降价的百分率为x,则第一次下调后的价格为200(1﹣x),第二次下调的价格为200(1﹣x)2,依照题意列得:200(1﹣x)2=128,解得:x=0.2=20%,或x=1.8=180%(舍去),则这种药品平均每次降价的百分率为20%.故答案为:20%【点评】本题考查是增长率问题,由200元经两次下调至128元,设出降价的百分率为x列式求解即可.18.定义一种运算“*”,其规则为a※b=a2﹣b2,则方程(x+2)*5=0的解为x1=3,x2=﹣7.【考点】解一元二次方程-直截了当开平方法.【专题】新定义.【分析】第一依照a※b=a2﹣b2,可得(x+2)*5=(x+2)2﹣52,然后解方程(x+2)2﹣52=0,第一把﹣52移到方程右边,然后再利用直截了当开平方法解方程即可.【解答】解:由题意得:(x+2)*5=(x+2)2﹣52,(x+2)2﹣52=0,(x+2)2=25,两边直截了当开平方得:x+2=±5,x+2=5,x+2=﹣5,解得:x1=3,x2=﹣7.故答案为:x1=3,x2=﹣7.【点评】此题要紧考查了直截了当开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直截了当求解.19.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为9.6米.【考点】相似三角形的应用.【专题】转化思想.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,通过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设树高为x米,因为,因此=,=2.35x=4.8×2=9.6.答:这棵树的高度为9.6米.【点评】本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后依照对应边成比例列出方程,建立适当的数学模型来解决问题.20.有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为.【考点】列表法与树状图法.【专题】运算题.【分析】列表得出所有等可能的情形数,找出差为负数的情形数,即可求出所求的概率.【解答】解:列表得:2 3 43 (2,3)(3,3)(4,3)4 (2,4)(3,4)(4,4)5 (2,5)(3,5)(4,5)所有等可能的情形有9种,其中差为负数的情形有6种,则P==.故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情形数与总情形数之比.21.为了估量湖里有多少条鱼,我们先从湖里捕100条鱼做标记,然后放回湖里,通过一段时刻,待带标记的鱼完全混合于鱼群中,再捕200条鱼,若其中带标记的鱼有25条,则估量湖里有800条鱼.【考点】用样本估量总体.【分析】可依照“第二次捕得的带标记的鱼数量÷第二次捕鱼的数量=被标记的鱼所占的比例”来列等量关系式,其中“被标记的鱼所占的比例=被标记的鱼总数量÷湖里总鱼数”.【解答】解:设湖里大约有x条鱼.依照公式得:=,解得:x=800.经检验x=800是方程的解.答:湖里大约有800条鱼.故答案为800.【点评】此题要紧考查了用样本估量总体,关键是正确明白得题意,找出题目中的等量关系.22.已知一本书的宽与长之比为黄金比,且这本书的长是20cm,则它的宽为(10﹣10)cm(结果保留根号).【考点】黄金分割.【分析】依照黄金比值和题意列出关系式,运算即可得到答案.【解答】解:设宽为xcm,由题意得,x:20=,解得x=10﹣10.故答案为:(10﹣10)cm.【点评】本题考查的是黄金分割的概念和性质,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,如此的线段分割叫做黄金分割,他们的比值叫做黄金比.23.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有42个实心圆.【考点】规律型:图形的变化类.【专题】压轴题.【分析】依照图形中实心圆的数量变化,得出变化规律,进而求出即可.【解答】解:∵第1个图形中有4个实心圆,第2个图形中有6个实心圆,第3个图形中有8个实心圆,…∴第n个图形中有2(n+1)个实心圆,∴第20个图形中有2×=42个实心圆.故答案为:42.【点评】此题要紧考查了图形的变化类,依照已知得出图形中的实心圆变化是解题关键.三、解答题:共7分,满分51分,解承诺写出文字说明、说理过程或演算步骤24.解方程(1)2x2﹣7x+3=0(2)(x﹣2)2=2x﹣4.【考点】解一元二次方程-因式分解法.【分析】(1)本题能够运用因式分解法解方程.因式分解法解一元二次方程时,应使方程的左边为两个一次因式相乘,右边为0,再分别使各一次因式等于0即可求解.(2)通过移项,提公因式分解因数,使方程的左边为两个一次因式相乘,右边为0,再分别使各一次因式等于0即可求解.【解答】解:(1)2x2﹣7x+3=0原方程可变形为(2x﹣1)(x﹣3)=0∴2x﹣1=0或x﹣3=0,∴x1=,x2=3.(2)(x﹣2)2=2x﹣4.原方程可变形为(x﹣2)2=2(x﹣2),移项得,(x﹣2)2﹣2(x﹣2)=0,提公因式得(x﹣2)(x﹣2﹣2)=0,∴x﹣2=0或x﹣4=0,∴x1=2,x2=4.【点评】本题考查了一元二次方程解方程﹣因数分解法,依照方程的特点,灵活选择解方程的方法,一样能用因式分解法的要用因式分解法,难以用因式分解法的再用公式法.25.已知:如图,在菱形ABCD中,分别延长AB、AD到E、F,使得BE=DF,连接EC、FC.求证:EC=FC.【考点】菱形的性质;全等三角形的判定与性质.【专题】证明题.【分析】要证EC=FC,只要证明三角形BCE和DCF全等即可,两三角形中已知的条件有BE=DF,CB=CD,那么只要证得两组对应边的夹角相等即可得出结论,依照四边形ABCD 是菱形我们可得出∠ABC=∠ADC,因此∠EBC=∠FDC.如此就构成了三角形全等的条件.因此两个三角形就全等了.【解答】证明:∵四边形ABCD是菱形,∴BC=DC,∠ABC=∠ADC,∴∠EBC=∠FDC.在△EBC和△FDC中,,∴△EBC≌△FDC(SAS),∴EC=FC.【点评】本题考查了菱形的性质和全等三角形的判定,求简单的线段相等,能够通过全等三角形来证明,要注意利用此题中的图形条件,如等角的补角相等.26.四张扑克牌的牌面如图①所示,将扑克牌洗平均后,如图②背面朝上放置在桌面上.(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负.你认为那个游戏是否公平?请说明理由.【考点】游戏公平性;概率公式.【分析】游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判定双方取胜的概率是否相等,即转化为在总情形明确的情形下,判定双方取胜的情形数目是否相等.【解答】解:(1)四张牌中,有二张“5”,故其概率为=.故答案为:.(2)不公平.画树状图如图所示:∴P(和为偶数)=,P(和为奇数)=;∵P(和为偶数)≠P(和为奇数),∴游戏不公平.【点评】本题考查的是游戏公平性的判定.判定游戏公平性就要运算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情形数与总情形数之比.27.如图,D、E分别是△ABC的边AC、AB上的点.AE=1.5,AC=2,BC=3,且=,求DE的长.【考点】相似三角形的判定与性质.【分析】由条件可得=,可证明△AED∽△ACB,再利用相似三角形的性质可得到DE.【解答】解:∵AE=1.5,AC=2,∴===,且∠EAD=∠CAB,∴△AED∽△ACB,∴=,即=,解得DE=.【点评】本题要紧考查相似三角形的判定和性质,把握相似三角形的判定方法是解题的关键.28.为丰富学生的学习生活,某校九年级组织学生参加春游活动,所联系的旅行社收费标准如下:春游活动终止后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动?【考点】一元二次方程的应用.【专题】阅读型.【分析】先要依照付给旅行社的费用来判定这次春游人数的大致范畴.然后依照相应范畴的不同的费用基数按方法来列出方程,求出符合题意的值.【解答】解:∵25人的费用为2500元<2800元∴参加这次春游活动的人数超过25人.设该班参加这次春游活动的人数为x名,依照题意得[100﹣2(x﹣25)]x=2800整理得x2﹣75x+1400=0解得x1=40,x2=35当x1=40时,100﹣2(x﹣25)=70<75,不合题意,舍去.当x2=35时,100﹣2(x﹣25)=80>75,符合题意.答:该班参加这次春游活动的人数为35名.【点评】可依照题意列出方程,判定所求的解是否符合题意,舍去不合题意的解.本题中依照工费用判定人数的大致范畴是解题的基础.29.如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB,交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么专门四边形?并证明你的结论.【考点】平行四边形的性质;全等三角形的判定与性质;菱形的性质.【分析】(1)由平行四边形的性质得出AD=CB,AD∥CB,∠DAE=∠BCF,AB=CD,再由已知条件得出AE=CF,由SAS证明△ADE≌△CBF即可;(2)先证明四边形AGBD是平行四边形,再由菱形的性质得出DE=BE,因此DE=AB,得出△ABD是直角三角形,∠ADB=90°,即可得出四边形AGBD是矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∠DAE=∠BCF,AB=CD,∵E、F分别为边AB、CD的中点,∴AE=BE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)解:四边形AGBD是矩形;理由如下:∵AD∥CB,AG∥DB,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴DE=BE,∴DE=AB,∴△ABD是直角三角形,∠ADB=90°,∴四边形AGBD是矩形.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定、菱形的性质、矩形的判定方法;熟练把握平行四边形的判定与性质,并能进行推理论证是解决问题的关键.30.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D动身沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点到达所在运动的另一个端点时,运动即停止.已知在相同时刻内,若BQ=xcm(x>0),则AP=2xcm,CM=3xcm,DN=x2cm.当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形.。
湖北省武汉市汉阳区2019-2020学年九年级上学期期中数学试卷 (含答案解析)
湖北省武汉市汉阳区2019-2020学年九年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.方程2x2=3(x−6)化为一般形式后二次项系数、一次项系数、常数项分别是()A. 2,3,−6B. 2,−3,18C. 2,−3,6D. 2,3,62.用配方法解一元二次方程x2−6x−10=0时,下列变形正确的为()A. (x+3)2=1B. (x−3)2=1C. (x+3)2=19D. (x−3)2=193.下列四幅图案中,属于中心对称图形的是()A. B. C. D.4.若x1、x2是方程x2+3x−5=0的两个根,则x1⋅x2的值为()A. −3B. −5C. 3D. 55.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A. 8B. 10C. 4√3D. 4√56.某商品原售价250元,经过连续两次降价后售价为200元.设平均每次降价的百分率为x,则下面所列方程中正确的是()A. 200(1+x)2=250B. 250(1−x)2=200C. 250(1+x)2=200D. 200(1−x)2=250.7.如图,将△ABC绕点A逆时针旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠C1B1B的度数为()A. 70°B. 80°C. 84°D. 86°8.如图,在⊙O中,BC是弦,OA⊥BC交⊙O于点A,∠BDA=40°,则∠AOC的度数是()A. 40°B. 80°C. 20°D. 60°9.如图,抛物线y=−x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列三个判断中,①当x>0时,y>0;②若a=−1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;正确的是()A. ①B. ②C. ③D.①②③都不对10.已知点A(−5,y1),B(3,y2)均在二次函数y=x2+ax+b的图象上,且在其对称轴的两侧,若y2<y1,则a的取值范围是A. a<2B. −6<a<2C. a<3D. −2<a<3二、填空题(本大题共6小题,共18.0分)11.在直角坐标系中,点(2,5)关于原点对称的坐标是________.12.将长为5,宽为4的矩形,沿四个边剪去宽为x的4个小正方形,剩余部分的面积为12,则剪去小正方形的边长x为_________.13.把二次函数y=2x2向左平移3个单位长度,再向下平移4个单位长度得到的解析式为______.14.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为______米.15.如图,Rt△OAB的顶点A(−2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为______.16.如图,在等腰直角三角形△ABC中,AC=6√2,∠C=90°,∠DCE=45°,AD=3,则BE的长为______.三、计算题(本大题共1小题,共8.0分)17.解方程:x2+6x+4=0.四、解答题(本大题共7小题,共64.0分)18.已知二次函数y1=x2+2x+m−5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.19.如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,那么道路的宽度应该是多少?20.如图,在平面直角坐标系中,ABC的三个顶点坐标为A(−3,4),B(−4,2),C(−2,1),△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2;(2)P(a,b)是AABC的AC边上一点,△ABC经旋转、平移后点P的对应点分别为P1、P2,请写出点P1、P2的坐标.⏜的中点,连接CA、CD.21.如图AB为⊙O的直径,点D为AB下方圆上一点,点C为ACD(1)求证:∠ABD=2∠BDC;(2)连AD,过点C作CE⊥AB交AB于H,交AD于点E,若OH=5,AD=24,求线段DE的长度.22.银隆百货大楼服装柜在销售中发现:“COCOTREE”牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五⋅一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.23.(1)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,请你直接写出∠AFC的度数和FE与FD之间的数量关系(不需证明)(2)如图2,在中,如果∠ACB不是直角,而(1)中的其它条件不变,请问你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由24.如图,抛物线y=a(x−2)2−1过点C(4,3),交x轴于A,B两点(点A在点B的左侧).(1)求抛物线的解析式,并写出顶点M的坐标;(2)连接OC,CM,求tan∠OCM的值;(3)若点P在抛物线的对称轴上,连接BP,CP,BM,当∠CPB=∠PMB时,求点P的坐标.-------- 答案与解析 --------1.答案:B解析:解:方程2x2=3(x−6),去括号,得2x2=3x−18,整理,得2x2−3x+18=0,所以,二次项系数、一次项系数、常数项分别是2,−3,18,故选B.要确定二次项系数、一次项系数和常数项,首先要把方程化成一般形式,即可解答.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.答案:D解析:此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.解:方程移项得:x2−6x=10,配方得:x2−6x+9=19,即(x−3)2=19.故选D.3.答案:B解析:本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据中心对称图形的概念判断.解:A、不是中心对称图形;B、是中心对称图形;C、不是中心对称图形;D、不是中心对称图形.故选:B.4.答案:B解析:解:∵x1、x2是方程x2+3x−5=0的两个根,∴x1⋅x2=ca=−5,故选:B.根据根与系数的关系可得出x1⋅x2=ca,再计算即可.本题考查了根与系数的关系,掌握x1+x2=−ba ,x1⋅x2=ca是解题的关键.5.答案:D解析:解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD=√BO2−BD2=√52−42=3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB=√82+42=4√5,故选:D.根据垂径定理求出BD,根据勾股定理求出OD,得到AD,再根据勾股定理求出AB即可.本题考查了垂径定理和勾股定理,能根据垂径定理求出BD长是解此题的关键.6.答案:B解析:可先表示出第一次降价后的价格,那么第一次降价后的价格×(1−降低的百分率)=200,把相应数值代入即可求解.此题主要考查了一元二次方程的应用中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.解:第一次降价后的价格为250(1−x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为250(1−x)×(1−x),则列出的方程是250(1−x)2=200.故选:B.7.答案:B解析:本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键.由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.解:由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选B.8.答案:B解析:此题主要考查了垂径定理和圆周角定理及圆心角、弧、弦的关系等知识,属于基础题,熟练掌握这些知识,根据垂径定理得出AC弧等于AB弧是解决问题的关键.先由垂径定理得出AC⏜=AB⏜,再根据圆周角定理得出AB⏜的度数,即可解答.解:∵点A、B、C、D都在⊙O上,OA⊥BC,∴AC⏜=AB⏜,∵∠BDA=40°,∴∠AOB=2∠BDA=80°,∴∠AOC=80°,故选B.9.答案:C解析:解:当a<x<b时,y>0,所以①错误;当a=−1时,A点坐标为(−1,0),把A(−1,0)代入y=−x2+2x+m+1得−1−2+m+1=0,解得m=2,则抛物线解析式为y=−x2+2x+3,解方程−x2+2x+3=0得x1=−1,x2=3,则B(3,0),即b=3,所以②错误;=1,因为x1<1<x2,所以点P和点Q在对称轴两侧,点P到抛物线的对称轴为直线x=−22×(−1)直线x=1的距离为1−x1,点Q到直线x=1的距离为x2−1,则x2−1−(1−x1)=x2+x1−2,而x1+x2>2,所以x2−1−(1−x1)>0,所以点Q到对称轴的距离比点P到对称轴的距离要大,所以y1>y2,所以③正确.故选:C.观察函数图象可直接得到抛物线在x轴上方所对应的自变量的范围,从而可对①进行判断;把A点坐标代入y=−x2+2x+m+1中求出m,确定抛物线解析式,再通过解方程−x2+2x+3=0得到B点坐标,从而可对②进行判断;先确定抛物线的对称轴为直线x=1,则点P和点Q在对称轴两侧,所以点P到直线x=1的距离为1−x1,点Q到直线x=1的距离为x2−1,然后比较点Q到对称轴的距离和点P到对称轴的距离的大小,再根据二次函数的性质可对③进行判断.本题考查了抛物线与x轴的交点问题:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.判断点P、点Q到对称轴的距离的大小是判断③正误的关键.10.答案:B解析:本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质.根据二次函数的图象与性质即可求出答案.解:由题意可知:二次函数的开口向上,其对称轴为:x=−a2当y1=y2时,此时−a2=−5+32,解得:a=2,∴当y2<y1时,∴−a2>−1∴a<2,∵A、B在其对称轴的两侧,∴−a2<3,∴a>−6,∴−6<a<2故选B.11.答案:(−2,−5)解析:本题考查的是中心对称中的坐标变换,根据该点关于原点对称可知:纵坐标为相反数,横坐标为相反数,即可解答.解:∵所求点与点(2,5)关于原点对称,∴对称点为(−2,−5).故答案为(−2,−5).12.答案:√2解析:本题考查了一元二次方程的应用,读懂题意,找到等量关系准确的列出式子是解题的关键,注意:剩余部分面积用原矩形面积减去4个小正方形面积,用长方形的面积减去四个小正方形的面积即为剩余部分面积,根据已知可列出方程求解.解:如图,矩形ABCD的长为5,宽为4,沿四个边剪去宽为x的4个小正方形后,剩余部分如图,依题意得5×4−4x2=12,解之得x=√2,x=−√2(不合题意,舍去).所以剪去小正方形的宽x为√2故答案为√2.13.答案:y=2(x+3)2−4解析:解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移3个单位,再向下平移4个单位得到的图象表达式为y=2(x+3)2−4,故答案为:y=2(x+3)2−4.根据“上加下减,左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.14.答案:2√6解析:解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(−2,0),到抛物线解析式得出:a=−0.5,所以抛物线解析式为y=−0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=−1时,对应的抛物线上两点之间的距离,也就是直线y=−1与抛物线相交的两点之间的距离,可以通过把y=−1代入抛物线解析式得出:−1=−0.5x2+2,解得:x=±√6,所以水面宽度增加到2√6米,故答案为:2√6.根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=−1代入抛物线解析式得出水面宽度,即可得出答案.此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.15.答案:(√2,2)解析:解:∵Rt△OAB的顶点A(−2,4)在抛物线y=ax2上,∴4=4a,解得a=1,∴抛物线为y=x2,∵点A(−2,4),∴B(−2,0),∴OB=2,∵将Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴D点在y轴上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC//x轴,∴P点的纵坐标为2,代入y=x2,得2=x2,解得x=±√2,∴P(√2,2).故答案为(√2,2).先根据待定系数法求得抛物线的解析式,然后根据题意求得D(0,2),且DC//x轴,从而求得P的纵坐标为2,代入求得的解析式即可求得P的坐标.本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,根据题意求得P的纵坐标是解题的关键.16.答案:4解析:解:如图,将△BCE绕点C逆时针旋转90°得到△ACF,连接DF,∵∠ACB=90°,AC=BC=6√2,∴AB=12,∠CAB=∠ABC=45°,∵AD=3,∴BD=9=DE+BE,∵将△BCE绕点C逆时针旋转90°得到△ACF∴△AFC≌△BEC∴AF=BE,CF=CE,∠FAC=∠ABC=45°=∠CAB,∠ACF=∠BCE,∴∠FAD=90°∵∠DCE=45°,∠ACB=90°,∴∠ACD+∠BCE=45°,∴∠ACD+∠FCA=45°=∠DCE,且CF=BC,CD=CD,∴△FCD≌△ECD(SAS)∴DE=DF,在Rt△ADF中,DF2=AD2+AF2,∴(9−BE)2=9+BE2,∴BE=4故答案为:4将△BCE绕点C逆时针旋转90°得到△ACF,连接DF,由旋转的性质可得AF=BE,CF=EC,∠FAC=∠ABC=45°=∠CAB,∠ACF=∠BCE,即可证△FCD≌△ECD,可得DE=DF,根据勾股定理可求BE的长度.本题考查了全等三角形判定和性质,等腰三角形的性质,旋转的性质,添加恰当的辅助线构造全等三角形是本题的关键.17.答案:解:这里a=1,b=6,c=4,∵△=b2−4ac=36−16=20>0,=−3±√5,∴x=−6±2√52则x1=√5−3,x2=−√5−3.解析:找出a,b及c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.此题考查了解一元二次方程−公式法,利用公式法解方程时,首先将方程整理为一般形式,找出a,b及c的值,计算出根的判别式的值,当根的判别式的值大于等于0时,代入求根公式即可求出解.18.答案:解:(1)∵二次函数y1=x2+2x+m−5的图象与x轴有两个交点,∴Δ>0,∴22−4(m−5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m−5的图象经过点(1,0),∴1+2+m−5=0,解得:m=2,∴它的表达式是y1=x2+2x−3,∵当x=0时,y=−3,∴C(0,−3);(3)由图象可知:当y2<y1时,x的取值范围是x<−3或x>0.解析:本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.(1)由二次函数的图象与x轴有两个交点得出判别式Δ>0,得出不等式,解不等式即可;(2)把点B坐标代入二次函数解析式求出m的值,即可得出结果;(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.19.答案:解:设道路的宽应为x米,由题意有(22−x)(17−x)=300,解得:x1=37(舍去),x2=2.答:修建的路宽为2米.解析:把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的种植花草部分是一个长方形,根据长方形的面积公式列方程求解即可.此题主要考查了一元二次方程的应用,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.20.答案:解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)由图可得:P1(b,−a),P2(b−2,−a−5).解析:(1)根据△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(2)根据旋转和平移后的点P的位置,即可得出点P1、P2的坐标.本题主要考查了利用平移变换以及旋转变换进行作图,解题时注意:确定平移后图形的基本要素有两个:平移方向、平移距离.决定旋转后图形位置的因素为:旋转角度、旋转方向、旋转中心.21.答案:(1)证明:如图:连接CO并延长交AD于K.⏜的中点,所以AC⏜=CD⏜,因为点C为ACD所以CA=CD.因为O为圆O的圆心,所以ΔCOA≅ΔCOD(SSS).所以∠ACO=∠DCO=∠CAO.又因为∠ABD=∠ACD,∠CAB=∠BDC,而∠ACD=2∠CAB,所以∠ABD=2∠BDC.(2)解:由(1)知CO⊥AD,∠CAD=∠CDA,AK=DK.又因为CE⊥AB交AB于H,交AD于点E,所以∠ACH+∠CAH=90°=∠ADC+∠BDC.又因为∠CAH=∠BDC,所以∠ACH=∠ADC=∠CAD,EC=EA.因此∠OAK=∠OCH,所以ΔAOK≅ΔCOH(ASA).所以OH=OK=5,AK=DK=12.所以AO=√52+122=13,AE=13+5=18=CE,设EK=x,则CE=AE=12+x,在RtΔCKE中,182+x2=(12+x)2,解得x=7.5,所以DE=12−7.5=4.5.解析:本题考查了圆心角、弧、弦的关系,全等三角形的判定与性质,圆周角定理及其推论,等腰三角形的性质和解直角三角形.(1)利用弧与弦的关系得CA=CD,再利用全等三角形的判定与性质得∠ACO=∠DCO=∠CAO,再利用圆周角定理得∠ABD=∠ACD,∠CAB=∠BDC,最后计算得结论;(2)利用等腰三角形的性质得CO⊥AD,∠CAD=∠CDA,AK=DK,再利用圆周角定理和全等三角形的判定与性质得OH=OK,AK=DK,最后利用解直角三角形计算得结论.22.答案:解:(1)设每件童装应降价x元,由题意得:(100−60−x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,∴每件童装应定价为:100−20=80(元).答:每件童装应定价80元;(2)1200不是最高利润,y=(100−60−x)(20+2x)=−2x2+60x+800=−2(x−15)2+1250∵−2<0,∴当x=15时,y有最大值为1250元,故当降价15元,即以85元销售时,最高日利润值达1250元.解析:此题考查了二次函数的应用以及一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售这种童装利润,进而列方程用函数关系解决实际问题.(1)首先设每件降价x元,则每件实际盈利为(100−60−x)元,销售量为(20+2x)件,用每件盈利×销售量=每天盈利,列方程求解.为了扩大销售量,x应取较大值;(2)设每天销售这种童装利润为y,利用(1)中的关系列出函数关系式,利用二次函数的性质解决问题.23.答案:解:(1)∠AFC=120°,FE与FD之间的数量关系为:FE=FD.理由:如图②,在AC上截取AG=AE,连结FG,∵AD是∠BAC的平分线,∴∠1=∠2,在△AEF与△AGF中{AG=AE ∠1=∠2 AF=AF,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,FE=FG,∵∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,∴2∠2+2∠3+∠B=180°,∴∠2+∠3=60°,∴∠AFC=120°,又∵∠AFE为△AFC的外角,∴∠AFE=∠CFD=∠AFG=∠2+∠3=60°,∴∠CFG=180°−60°−60°=60°,∴∠GFC=∠DFC,在△CFG与△CFD中,{∠GFC=∠DFCFC=FC∠3=∠4,∴△CFG≌△CFD(ASA),∴FG=FD,∴FE=FD;(2)结论∠AFC=120°,FE=FD仍然成立.证法1:如图③,过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,∵∠B=60°,且AD,CE分别是∠BAC,∠BCA的平分线,∴∠2+∠3=60°,F是△ABC的内心,∴∠AFC=120°,∴∠GEF=∠BAC+∠3=∠1+∠2+∠3=60°+∠1,∵F是△ABC的内心,即F在∠ABC的角平分线上,∴FG=FH,又∵∠HDF=∠B+∠1=60°+∠1,∴∠GEF=∠HDF,在△EGF与△DHF中,{∠GEF=∠HDF∠FGE=∠FHD=90°FG=FH,∴△EGF≌△DHF(AAS),∴FE=FD.解析:本题属于三角形综合题,主要考查了全等三角形的判定与性质,三角形外角性质,角平分线的性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.(1)先在AC上截取AG=AE,连结FG,利用SAS判定△AEF≌△AGF,得出∠AFE=∠AFG,FE=FG,再利用ASA判定△CFG≌△CFD,得到FG=FD,进而得出FE=FD;(2)先过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,根据已知条件得到∠GEF=∠HDF,进而判定△EGF≌△DHF(AAS),即可得出FE=FD.24.答案:解:(1)由抛物线y=a(x−2)2−1过点C(4,3),得3=a(4−2)2−1,解得a=1,抛物线的解析式为y=(x−2)2−1,顶点M的坐标为(2,−1);(2)如图1,连接OM,OC2=32+42=25,OM2=22+12=5,CM2=22+42=20,∴CM2+OM2=OC2,∴∠OMC=90°,OM=√5,CM=2√5,tan∠OCM=OMCM =√52√5=12;(3)如图2,过C作CN⊥对称轴,垂足N在对称轴上,取一点E,使EN=CN=2,连接CE,EM=6.当y=0时,(x−2)2−1=0,解得的x1=1,x2=3,A(1,0),B(3,0).∵CN=EN,∴∠CEP=∠PMB=∠CPB=45°,∵∠EPB=∠EPC+∠CPB=∠PMB+∠PBM,∴∠EPC=∠PBM∴△CEP∽△PMB,∴EPMB =CEPM,解得MB=√2,CE=2√2,∴√2=2√2PM,解得PM=3±√5,P点坐标为(2,2+√5)或(2,2−√5).解析:(1)根据待定系数法,可得函数解析式;根据顶点式解析式,可得顶点坐标;(2)根据勾股定理及逆定理,可得∠OMC=90°,根据正切函数,可得答案;(3)根据相似三角形的判定与性质,可得PM的值,可得M点坐标.本题考查了二次函数综合题,利用待定系数法求函数解析式;利用相似三角形的判定与性质得出PM 的值是解题关键.。
(含答案)江苏省常州市武进区2020-2021学年九年级上学期期中考试数学试题
江苏省常州市武进区2020~2021学年度九年级上学期期中考试数学试题一、选择题(每小题2分,共16分)1.下列各图形中,是轴对称图形的是 --------------------------------------------------------- 【 】A .B .C .D .2.下列将一元二次方程5)3()2(=-+x x 化成一般形式正确的是 ---------------------- 【 】 A .2110x x +-= B .2110x x --=C .260x x --=D .260x x +-=3.下列一元二次方程有两个异号的实数根的是 --------------------------------------------- 【 】 A .2310x x --= B .212202x x -+=C .2440x x -+=D .2102x x -+-= 4.已知⊙O 的半径为6cm ,OP =7cm ,则点P 与⊙O 的位置关系是 ---------------- 【 】A .点P 在圆内B .点P 在圆上C .点P 在圆外D .无法确定5.正九边形的每个内角的度数为 ---------------------------------------------------------------- 【 】A .40B .80C .120D .1406.某电动自行车厂四月份的产量为1000辆,由于市场需求量不断增大,六月份的产量提高到1210辆,则该厂五、六月份的月平均增长率为 ----------------------------------------- 【 】A .10%B .11%C .12.1%D .21%7.已知关于x 的方程290x kx -+=可以配方成2()0x m -=的形式,则k 的值为 - 【 】 A .3B .6C .6-D .6±8. 如图,60MPN ∠=︒,点O 是∠MPN 的角平分线上的一点,半径为4的⊙O 经过点P ,将⊙O 向左平移,当⊙O 与射线PM 相切时,⊙O 平移的距离是 ------------------------------------------------------ 【 】A .2B .334C .323D .32 2020.11OPNM二、填空题(每小题2分,共20分) 9.一元二次方程22=x 的根是 .10.已知1-=x 是方程032=-+mx x 的一个根,则m 的值为 . 11.圆锥的高为3cm ,底面半径为2cm ,则圆锥的侧面积是 2cm . 12.当x= 时,代数式(1)(5)x x +-与31)(1)x x -+(的值相等. 13.四边形ABCD 是⊙O 的内接四边形,∠A ∶∠C =4∶1,则∠A = °. 14.在Rt △ABC 中,∠C =90°,AC =5,BC =3,则其外接圆的直径为 .15.一个两位数等于它的两个数字的积的3倍,十位上的数字比个位上的数字小2,设个位上的数字为x ,根据题意,可以列出方程 .16.如图,AB 是⊙O 的直径,点C 、D 是AB 两侧⊙O 上的点,若∠CAB =34°,则∠ADC = °.16题图 17题图 18题图17.如图,△ABC 中,AB =AC ,点M 是AB 上一点,AM =3,以AM 为半径的⊙A 与BC 相切于点D ,交AC 于点N ,劣弧MN 长为2π,则BC 的长为 .18.如图,⊙O ,以⊙O 的内接正八边形的一边向⊙O 内作正方形ABCD ,则正方形ABCD 的面积为 . 三、解下列方程(每题4分,共16分) 19.⑴ 05)2(2=--x ⑵ 0652=+-x x⑶ x x x -=-+3)3()1( ⑷ 09)1(422=--x xB四、尺规作图题(共6分)20.如图,点A 是⊙O 上一点.请利用直尺和圆规完成下列作图.(不写作法,保留作图痕迹)⑴ 画出⊙O 的内接正△ABC .⑵ 在⊙O 上画出M 、N 两点,使得∠MAN =30°.(画一种即可)五、解答题(共42分,其中第21、22、23题各6分,第24、25、26题8分) 21.(6分)已知关于x 的一元二次方程2210(0)nx x n -+=≠有实数根.⑴ 求n 的取值范围;⑵ 当n 取最大值时,求方程)0(0122≠=+-n x nx 的根.22.(6分)如图,⊙O 的半径为2,△ABC 是⊙O 的内接三角形,22=AB .⑴ 求∠C 的度数;⑵ 求图中阴影部分的面积.23.(6分)如图,矩形ABCD 中,AB =2cm ,BC =3cm ,点E 从点B 沿边BC 以2cm /s 的速度向点C 移动,同时点F 从点C 沿边CD 以1cm /s 的速度向点D 移动,当E 、F 两点中有一点到达终点时,则另一点也停止运动.当△AEF 是以AF 为底的等腰三角形时,求点E 运动的时间.24.(8分)某商店进了一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,使库存减少最快,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,当每件衬衫降价多少元时,商场平均每天盈利达到1200元?A BCDEF25.(8分)国庆假期,小明做数学题时遇到了如下问题:如图1,四边形ABCD 是⊙O 的内接四边形,BC 是⊙O 的直径,直线l 经过点A ,∠ABD =∠DAE =30°.试说明直线l 与⊙O 相切.小明添加了适当的辅助线后,得到了图2的图形,并利用它解决了问题.⑴ 请你根据小明的思考,写出解决这一问题的过程; ⑵ 图2中,若AD =7,AB =4,求DC 的长.ElElF26. (8分)如图,在平面直角坐标系xOy 中,点A (-3,0),B (1,1),C (0,3).过点B 作BD⊥x 轴,垂足为点D .连接CD .⑴ 若点M 是y 轴上一点,当AM ⊥CD 时,点M 的坐标为 ; ⑵ 若点P 是△ABC 的外心,求点P 的坐标;⑶ 在x 轴上是否存在点Q ,使得∠BQD =∠ACB ,若存在,直接写出....点Q 的坐标;若不存在,说明理由.yxABC DOy xA BCDO备用图九年级数学参考答案及评分意见一、选择题(每小题2分,共16分)二、填空题(每小题2分,共20分)9.2±=x10.-211.π13212.-1或-2 13.144° 14.34 15.x x x x +-=-)2(10)2(3 16.5617.3618.224-三、解下列方程(每题4分,共16分) 19.⑴ 05)2(2=--x52±=-x---------------------------- 2分 52±=x------------------------------ 4分 ⑵ 0652=+-x x 0)3()2(=--x x --------------------------- 2分3,221==x x --------------------------------- 4分⑶ x x x -=-+3)3)(1(0)2)(3(=+-x x ---------------------- 2分2321-==x x , ----------------------- 4分⑷ 09)1(422=--x x 0]3)1(2][3)1(2[=--+-x x x x ---------- 2分2,5221-==x x ----------------------------- 4分四、尺规作图题(共6分)20.⑴ 如图,△ABC 为求作的图形 ----------------------------------------------------------------------- 4分⑵ 作等边△MON ,则∠MAN =30°(作法不唯一,画对即可) -------------------------- 2分五、解答题(共42分,其中第21、22、23题各6分,第24、25、26题8分)21.⑴ n n ac b 44142422-=⋅⋅-=- -------------------------------------------------------------------- 1分由“关于x 的方程有实数根”得:b 2-4ac ≥0,即:4-4n ≥0 ------------------------- 2分解得:1≤n --------------------------------------------------------------------------------------------- 3分∴ n 的取值范围是01≠≤n n 且 -------------------------------------------------------------------- 4分⑵ 由01≠≤n n 且得:n 的最大值为1 ------------------------------------------------------------- 5分把n =1代入原方程得:化简得:0122=+-x x 解得:121==x x ------------------ 6分22.⑴ 连接OA ,OB .△OAB 中,OA =OB =2,AB =22∴ 8222222=+=+OB OA ,8)22(22==AB∴ 222AB OB OA =+----------------------------------------------------- 2分 ∴ ∠AOB =90°---------------------------------------------------------- 3分∴ ︒=∠=∠4521AOB C -------------------------------------------------4分 ⑵ ππ=⨯⨯=436090OAB S 扇形,22221=⨯⨯=∆OAB S ------------------ 5分∴ 2-=π阴影S----------------------------------------------------------- 6分 23.解:设点E 运动的时间是x 秒.根据题意可得:2222)23()2(2x x x +-=+----------------------------------------------------3分解这个方程得:31631621+=-=x x , --------------------------------------------------- 4分)(5.123s =÷, )(212s =÷ ∴ 两点运动了1.5s 后停止运动. 由6315<<得:2313160<<-<,2311316>>+ ---------------------------------5分答:当△AEF 是以AF 为底的等腰三角形时,点E 运动的时间是)316(-秒 ---- 6分24.解:当每件衬衫应降价x 元时,商场平均每天盈利达到1200元.根据题意得:(40-x )(20+2x )=1200 -------------------------------------------------- 3分解得:x 1=10,x 2=20 ---------------------------------------------------------------------------- 5分当10=x 时,平均每天售出: 20+2×10=40 ---------------------------------------------- 6分当20=x 时,平均每天售出: 20+2×20=60 ---------------------------------------------- 6分要使库存减少最快,则x =20 ------------------------------------------------------------------ 7分答:当每件衬衫应降价20元时,商场平均每天盈利达到1200元. ----------------- 8分25.⑴ ∵ AE 是⊙O 的直径∴ ∠ADE =90°∴ ∠AED +∠EAD =90° --------------------------------------------- 1分 ∵ ∠ABD =∠AED ,∠ABD =∠DAE ---------------------------- 2分 ∴ ∠DEA =∠AED∴ ∠EAD +∠DAE =90° 即:OA ⊥AE --------------------------- 3分 ∵ 点A 是半径OA 的外端∴ 直线l 与⊙O 相切 ---------------------------------------------------- 4分 ⑵ 过点A 点AF ⊥BD ,垂足为点F ,∴ ∠AFB =∠AFD =90° ∵ ∠ABD =30° ∴ ∠AED =30°lA E∴ 直径AE =2AD =72=BC ---------------------------------------- 5分 ∵ ∠ABD =30°,AB =4 ∴ AF =AB 21=2 ----------------- 6分 ∴ 32242222=-=-=BF AB BF32)7(2222=-=-=AF AD DF∴ BD =BF+DF =33 --------------------------------------------------- 7分 ∵ BC 是直径 ∴ ∠BDC =90°∴ 1)33()72(2222=-=-=BD BC CD -------------------- 8分26.⑴ M (0,1) ---------------------------------------------------------------------------------------------- 1分⑵ 过点O 作直线MN ⊥AC ,垂足为点E . ∵ 点C (0,3),点A (-3,0) ∴ OA =OC =3∴ MN 垂直平分AC ,∠COE =∠AOE =45° ∴ △ABC 的外心P 在直线MN 上直线MN 的表达式为:y =-x --------------------------------------------------------------------- 2分设P (a ,-a )由PA =PB 可得:2222)1()1()3()(-+--=--+-a a a a解得:67-=a ------------------------------------------------------------------------------------------3分∴ 点P 的坐标为(67-,67) -------------------------------------------------------------------4分⑶ 1Q (32,0),2Q (34,0)分。
2020-2021学年重庆市渝中区巴蜀中学九年级上学期期中数学试卷(含解析)
2020-2021学年重庆市渝中区巴蜀中学九年级上学期期中数学试卷一、选择题(本大题共12小题,共48.0分)1.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|b−c|−2|c+a|−3|a−b|=()A. −5a+4b−3cB. 5a−2b+cC. 5a−2b−3cD. a−2b−3c2.如图,由5个相同正方体组成的几何体,它的俯视图是()A.B.C.D.3.如图,在矩形ABCD中,AD=2√2AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的MP;对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC=√62④BP=√2AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()2A. 2个B. 3个C. 4个D. 5个4.下列每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是()A. B. C. D.5.下列命题正确的是()A. 对于函数y=−1,y随x的增大而增大xB. 对角线互相垂直的四边形是菱形C. 任意三点可以确定一个圆D. 对于任意的实数b,方程x2−bx−3=0有两个不相等的实数根6.下列计算正确的是()A. √8=±2√2B. √4−√3=1C. √2×√1=1 D. √6÷√3=227.qq好友的等级会用一些图标表示,根据图中的示例,一个表示的等级是()A. 14B. 15C. 16D. 178.若抛物线y=x2−bx+9的顶点在x的负半轴上,则b的值为[]A. ±3B. 6C. −6D. ±69.下列说法正确的是()A. 任意两个矩形相似B. 任意两个菱形相似C. 任意两个正方形相似D. 任意两个平行四边形相似10.如图,从A处观测铁塔顶部的仰角是30°,向前走30米到达B处,观测铁塔的顶部的仰角是45°,则铁塔高度是()米A. 15√3+1B. 30√3+12C. 30√3−12D. 15√3+1511.对于不等式组{x≤2x+3>0,下列说法正确的是()A. 此不等式组无解B. 此不等式组有5个整数解C. 此不等式组的解集是2≤x<3D. 此不等式组的负整数解是−3,−2,−112.如图1是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE度数是()A. 160°B. 150°C. 120°D. 110°二、填空题(本大题共6小题,共24.0分))−1+(−2)0−3=______.13.计算(1214.用科学记数法表示:2100000=______ .15.抛物线y=x2−2x−3的对称轴是直线______ .16.如图,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC绕顶点C按顺时针方向旋转45°至△A1B1C的位置,则线段AB扫过区域(图中的阴影部分)的面积为______ .17.汽车燃油价税费改革从2009年元旦起实施:取消养路费,同时汽油消费税每升提高0.8元.若某车一年的养路费是1440元,百公里耗油8升,在“费改税”前后该车的年支出与年行驶里程的关系分别如图中的l1、l2所示,则l1与l2的交点的横坐标m= ______ (不考虑除养路费和燃油费以外的其它费用).18.A、B、C三瓶不同浓度的酒精,A瓶内有酒精2kg,浓度x%,B瓶有酒精3kg,浓度y%,C瓶有酒精5kg,浓度z%,从A瓶中倒出10%,B瓶中倒出20%,C瓶中倒出24%,混合后测得浓度33.5%,将混合后的溶液倒回瓶中,使它们恢复原来的质量,再从A瓶倒出30%,B瓶倒出30%,C瓶倒出30%,混合后测得浓度为31.5%,测量发现20≤x≤30,20≤y≤30,35≤z≤45,且x、y、z均为整数,则把起初A、B两瓶酒精全部混合后的浓度为______.三、解答题(本大题共8小题,共78.0分)19.化简:(2a−ba+b −ba−b)÷a−2ba+b.20.如图1,在△ABC中,AB=AC,D是底边BC上的一点,BD>CD,将△ABC沿AD剪开,拼成如图2的四边形ABDC′.(1)四边形ABDC′具有什么特点?(2)请同学们在图3中,用尺规作一个以MN,NP为邻边的四边形MNPQ,使四边形MNPQ具有上述特点(要求:写出作法,但不要求证明).21.为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:一周诗词诵3首4首5首6首7首8首背数量人数13561015请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为______;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.22.如图,在同一平面直角坐标系xOy中,A、B两点的坐标分别为A(3,0),B(2,2),直线y1=k1x+b经过A,B两点,且与直线y2=k2x交于点B.(1)求这两条直线的函数表达式;(2)根据图象直接写出当y1<y2时x的取值范围.)−3;23.(1)计算:(−1)2021×(π−3)0−|−5|−(−12(2)化简:(2x−y)(2x+y)+(x−y)(x+2y).24.狮子岩某酒店有三人间、双人间客房,平时收费数据如下表:普通客房(元/间/天)豪华客房(元/间/天)三人间150380双人间140300“五⋅一”期间,为了吸引游客,实施团体入住五折优惠措施。
山西省太原市2019-2020学年九年级上学期期中数学试卷 (含答案解析)
山西省太原市2019-2020学年九年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.一元二次方程x2−3x=−2的解是()A. x1=1,x2=2B. x1=−1,x2=2C. x1=−1,x2=−2D. 方程无实数解2.如图,在△ABC中,点D在边AB上,BD=2AD,DE//BC交AC于点E,若线段DE=5,则线段BC的长为()A. 7.5B. 10C. 15D. 203.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为()A. 14B. 15C. 16D. 174.如图,在菱形ABCD中,对角线AC、BD交于点O.若∠ABC=60°,OA=1,则CD的长为()A. 1B. √3C. 2D. 2√35.如图,有一块直角三角形余料ABC,∠BAC=90°,D是AC的中点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,点G在AB上.若BF=4.5cm,CE=2cm,则纸条GD的长为()A. 3cmB. 2√13cmC. 132cm D. 133cm6.关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则()A. k=−4B. k=4C. k≥−4D. k≥47.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为()A. 5B. 10C. 12D. 138.温州某服装店十月份的营业额为8000元,第四季度的营业额共40000元.如果平均每月的增长率为x,则由题意可列方程为()A. 8000(1+x)2=40000B. 8000+8000(1+x)2=40000C. 8000+8000×2x=40000D. 8000[1+(1+x)+(1+x)2]=400009.从1、2、3、4中任取两个不同的数,其和大于6的概率是()A. 23B. 12C. 13D. 1610.如图,在菱形ABCD中,∠B=60∘,AB=4,则以AC为边的正方形的周长为()A. 14B. 15C. 16D. 17二、填空题(本大题共5小题,共10.0分)11.(1)已知a6=b5=c4,且a+b−2c=6,则a的值为;(2)如图,ADBD =AEEC,AD=10,AB=30,AC=24,则AE的长为.12.2018年5月12日是第107个国际护士节,从数串“2018512”中随机抽取一个数字,抽到数字2的概率是______.13.用配方法解x2−4x+1=0时,配方后所得到的方程是.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为______.15.如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=70°,则∠ECF的度数是_________.三、解答题(本大题共7小题,共50.0分)16.解方程:(1)2(x−2)=3x(2−x)(2)x2−x−1=017.有三张正面分别标有数字−1、1、2的卡片,它们除数字不同外其余均相同现将它们背面朝上洗匀后,从中抽出一张记下数字,放回后,再从中随机抽出一张记下数字.(1)将第一次抽到的数字记为x,第二次抽到的数字记为y,令M=x y,请借助画树状图或列表的方法,写出所有可能的M值;(2)求M是负数的概率.18.如图,已知菱形ABCD,AB=AC,E,F分别是BC,AD的中点,连接AE,CF.求证:四边形AECF是矩形.19.如图,在所给的方格纸中,每个小正方形边长都是1,△ABC是格点三角形(顶点在方格顶点处).(1)在图中画格点△A1B1C1,使△A1B1C1与△ABC相似,相似比为2:1.(2)在图中画格点△A2B2C2,使△A2B2C2与△ABC相似,面积比为2:1.20.为丰富学生的学习生活,某校八年级某班组织学生参加素质拓展活动,所联系的旅行社收费标准如下:如果人数超过25人,每增加1人,人均活动费用降低2元,但人均活动费用不得低于75元.如果人数不超过25人,人均活动费用为100元.活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次素质拓展活动?21.如图,已知△ABC.(1)按如下步骤尺规作图(保留作图痕迹):①作AD平分∠BAC,交BC于D;②作AD的垂直平分线MN分别交AB、AC于点E、F;(2)连接DE、DF.若BD=12,AF=8,CD=6,求BE的长.22.如图,在矩形ABCD中,AB=8,BC=4,过对角线BD的中点O的直线分别交AB、CD于点E、F,连接DE,BF.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.-------- 答案与解析 --------1.答案:A解析:解:x2−3x=−2,x2−3x+2=0,∵(x−1)(x−2)=0,∴x−1=0,x−2=0,即:x1=1,x2=2.故选:A.先把方程化为一般式x2−3x+2=0,左边因式分解得到(x−1)(x−2)=0,这样一元二次方程转化为两个一元一方程x−1=0或x−2=0,然后解一元一次方程即可.本题考查了解一元二次方程−因式分解法:先把方程化为一般式,再把方程左边因式分解,然后把一元二次方程转化为两个一元一方程,再解一元一次方程即可得到原方程的解.2.答案:C解析:本题考查了平行线分线段成比例定理,理解定理内容是关键.根据平行线分线段成比例定理即可直接求解.解:∵DE//BC,∴ADAB =DEBC=AEAC,∵BD=2AD,DE=5,∴ADAD+2AD =5BC,解得BC=15.故选C.3.答案:C解析:解:画树状图为:共有36种等可能的结果数,其点数之和是7的结果数为6,所以其点数之和是7的概率=636=16.故选C.画树状图展示所有36种等可能的结果数,再找出点数之和是7的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.4.答案:C解析:解:∵四边形ABCD是菱形,∴AD=DC,OD⊥AC,OA=OC=1,∴AC=2OA=2,∵∠ABC=∠ADC=60°,∴△ADC是等边三角形,∴CD=AC=2,故选:C.首先求出AC的长,只要证明△ADC是等边三角形即可解决问题.本题主要考查了菱形的性质和等边三角形的判定以及性质等知识,解题的关键是熟练掌握菱形的性质和等边三角形的判定以及性质.5.答案:C解析:本题主要考查了相似三角形的应用和矩形的性质.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.根据题意推知△AGD∽△ABC,由该相似三角形的对应边成比例求得GD的长度即可.解:∵矩形EFGD,∴GD//BC,∴△AGD∽△ABC,∴GDBC =ADAC,即GD4.5+GD+2=12,解得GD=132(cm).故选C.6.答案:B解析:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.根据判别式的意义得到△=42−4k=0,然后解一次方程即可得到结果.解:∵一元二次方程x2+4x+k=0有两个相等的实根,∴△=42−4k=0,解得k=4.故选B.7.答案:B解析:解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD.∴OA=OB.∵∠BOC=120°,∴∠AOB=60°.∴△AOB是等边三角形.∴OB=AB=5.∴BD=2BO=10.故选:B.根据矩形性质求出BD=2BO,OA=OB,求出∠AOB=60°,得出等边三角形AOB,求出BO=AB,即可求出答案.本题考查了等边三角形的性质和判定,矩形性质的应用,证得△AOB是等边三角形是解题的关键.8.答案:D解析:【分析】本题主要考查从实际问题中抽象出一元二次方程,掌握公式:“a(1+x)n=b”,理解公式是解决本题的关键.本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果平均每月的增长率为x,根据题意即可列出方程.解:由题意得十一月份的营业额为8000(1+x)元,十二月份的营业额为8000(1+x)2元,由此列出方程:8000[1+(1+x)+(1+x)2]=40000.故选D.9.答案:D解析:本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其和大于6的情况,再利用概率公式即可求得答案.解:画树状图得:,∴所以机会均等的结果有12种,其中和大于6有2种,∴P(和大于6)=212=16,故选D.10.答案:C解析:本题主要考查菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.根据菱形的性质可得AB=BC,得出△ABC是等边三角形,求出AC的长,根据正方形的性质得出AF= EF=EC=AC=4,求出正方形ACEF的周长即可.解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16.故选C.11.答案:(1)12;(2)8解析:(1)本题考查比例的性质,掌握比例的性质是解题关键.首先设a6=b5=c4=k,得出a=6k,b=5k,c=4k,然后代入a+b−2c=6求出k的值,再求a的值即可.解:设a6=b5=c4=k,∴a=6k,b=5k,c=4k,代入a+b−2c=6,可得6k+5k−8k=6,解得k=2,∴a=12.故答案为12;(2)本题考查了比例线段,根据已知线段的比,将已知数值代入到等式中即可求出AE的长.解:∵ADBD =AEEC,且AD=10,AB=30,AC=24,∴1030−10=AE24−AE,解得AE=8.故答案为8.12.答案:27解析:解:由题意可得,从数串“2018512”中随机抽取一个数字,抽到数字2的概率是:27;故答案为:27.直接利用2的个数除以总数字的个数即可得出抽到数字2的概率.本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.答案:(x−2)2=3解析:【分析】本题考查解一元二次方程−配方法,先把常数项移到等号的右边,再在等式的两边同时加上一次项系数的一半,配成完全平方的形式,即可得出答案.【解答】解:∵x2−4x+1=0,∴x2−4x=−1,x2−4x+4=−1+4,∴(x−2)2=3.14.答案:√2解析:本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到AE=EP,再证明△ABE≌△EMP(AAS),推出BE=PM=1,EM=AB=3,即可解决问题;解:在AB上取BN=BE,连接EN,作PM⊥BC于M.∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°,∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°,∵PC平分∠DCM,∴∠PCM=45°,∠ECP=135°,∵AB=BC,BN=BE,∴AN=EC,∵∠AEP=90°,∴∠AEB+∠PEC=90°,∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴AE=PE,∵∠B=∠PME=90°,∠BAE=∠PEM,∴△ABE≌△EMP(AAS),∴BE=PM=1,EM=AB=3,∴CM=1,∴PC=√2,故答案为√215.答案:35°解析:【分析】本题考查了翻折变换,菱形的性质,熟练运用折叠的性质是本题的关键.由折叠的性质可得∠BCE=∠FCE,BC=CF,由菱形的性质可得BC//AD,BC=CD,可求∠BCF=∠CFD=70°,即可求解.【解答】解:∵将菱形纸片ABCD折叠,使点B落在AD边的点F处,∴∠BCE=∠ECF,BC=CF,∵四边形ABCD是菱形∴BC//AD,BC=CD∴CF=CD∴∠CFD=∠D=70°∵BC//AD∴∠BCF=∠CFD=70°∴∠ECF=12∠BCF=35°故答案为:35°16.答案:解:(1)∵2(x−2)=3x(2−x),∴2(x−2)+3x(x−2)=0,∴(x−2)(3x+2)=0,∴x=2或x=−23(2)∵x2−x−1=0,∴a=1,b=−1,c=−1,∴△=1+4=5,∴x=1±√52;解析:(1)根据因式分解法即可求出答案;(2)根据公式法即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.17.答案:解:(1)画树状图为:共有9种等可能的结果数,所有可能的M的值为−1,1,12,2,4;(2)共有9种等可能的结果数,M是负数的结果数为2,所以M是负数的概率=29解析:(1)画树状图展示所有9种等可能的结果数,根据乘方的意义和负整数指数幂计算出所有可能的M的值;(2)根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.18.答案:证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD//BC且AD=BC,∴AF//EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠AEC=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形).解析:根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,然后根据等腰三角形三线合一的性质可得AE⊥BC,∠AEC=90°,再根据菱形的对边平行且相等以及中点的定义求出AF与EC平行且相等,从而判定出四边形AECF是平行四边形,再根据有一个角是直角的平行四边形是矩形即可得证.本题考查了矩形的判定,菱形的性质,平行四边形的判定的应用,等边三角形的判定与性质,证明得到四边形AECF是平行四边形是解题的关键,也是突破口.19.答案:解:(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:解析:本题主要考查了相似变换,根据题意得出对应边的长是解题关键.(1)根据相似比进而得出各边扩大2倍得出答案;(2)根据相似比进而得出各边扩大√2倍得出答案.20.答案:解:∵25人的费用为2500元<2800元,∴参加这次春游活动的人数超过25人,设该班参加这次春游活动的人数为x名,由题意得[100−2(x−25)]x=2800,整理,得x2−75x+1400=0,解得x1=40,x2=35,当x1=40时,100−2(x−25)=70<75,不合题意,舍去;当x2=35时,100−2(x−25)=80>75,答:该班共有35人参加这次春游活动.解析:此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.判断得到这次春游活动的人数超过25人,设人数为x名,根据题意列出方程,求出方程的解即可得到结果.21.答案:解:(1)①∠BAC的平分线AD如图所示.②线段AD的垂直平分线MN,分别交AB、AC于点E、F,如图所示.(2)∵EA=ED,FA=FD,∴∠EAD=∠EDA,∠FAD=∠FDA,∵∠EAD=∠FAD,∴∠EDA=∠FAD,∠EAD=∠FDA,∴DE//AF,AE//DF,∴四边形AEDF是平行四边形,∵EA=ED,∴四边形AEDF是菱形,∴EA=ED=AF=DF=4,∵DE//AC,∴BEEA =BDDC,∴BE4=123,∴BE=16.解析:本题考查复杂作图、线段的垂直平分线的性质、菱形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)①∠BAC的平分线AD如图所示.②线段AD的垂直平分线MN,分别交AB、AC于点E、F,如图所示.(2)首先证明四边形AEDF是菱形,推出AE=DE=AF=DF=4,由DE//AC,推出BEEA =BDDC,由此即可解决问题.22.答案:(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB//DC,OB=OD,∴∠OBE=∠ODF.在△BOE和△DOF中,{∠OBE=∠ODF OB=OD∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形.(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=8−x.在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(8−x)2,解得x=5,即BE=5.∵BD=√AD2+AB2=√82+42=4√5,∴OB=12BD=2√5.∵BD⊥EF,∴EO=√BE2−OB2=√52−(2√5)2=√5,∴EF=2EO=2√5.解析:(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.。
2020-2021学年江苏省徐州市九年级(上)期中数学试卷-解析版
2020-2021学年江苏省徐州市九年级(上)期中数学试卷1.方程x(x−1)=0的根是()A. x=0B. x=1C. x1=0,x2=1D. x1=0,x2=−12.下列一元二次方程没有实数根的是()A. x2+x+1=0B. x2+x−1=0C. x2−2x−1=0D. x2−2x+1=03.把一元二次方程x2−6x−3=0配方后可变形为()A. (x+3)2=12B. (x−3)2=12C. (x+3)2=6D. (x−3)2=64.二次函数y=−(x+1)2−2的顶点是()A. (−1,2)B. (−1,−2)C. (1,2)D. (1,−2)5.若二次函数y=ax2+1的图象经过点(−2,0),则关于x的方程a(x−2)2+1=0的实数根是()A. x1=−2,x2=6B. x1=2,x2=−6C. x1=0,x2=4D. x1=0,x2=−46.若A(−4,y1),B(−1,y2),C(2,y3)在二次函数y=−(x+2)2+3的图象上,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y3<y1<y2C. y2<y1<y3D. y3<y2<y17.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°.下列结论:①AD=CD;②BD=BC;③AB=2BC.其中正确结论的个数是()A. 0B. 1C. 2D. 38.如图,Rt△OAB的顶点A(−2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A. (√2,√2)B. (2,2)C. (√2,2)D. (2,√2)9.若二次函数y=ax2的图象过点(1,−2),则a的值是______.10.关于x的一元二次方程kx2−x+1=0有两个不相等的实数根,则k的取值范围是______.11.已知关于x的方程x2−3x+m−1=0的一个根是1,则它的另一个根是______.12.将二次函数y=x2+1图象向右平移1个单位,则平移后的二次函数的解析式为______.13.若点A到圆O上的点的最大距离为5cm,最小距离为3cm,则圆O的半径为______cm.14.如图,AB是圆O的直径,CD是圆O的弦,连接AC,AD,若∠BAC=35°,则∠ADC=______.15.如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为______.16.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为______cm.17.如图,AB是圆O的弦,AB=2√3,点C是圆O上的一个动点,且∠ACB=60°,若点M、N分别是AB、BC的中点,则MN长度的最大值是______.18.若点P(a,b)在抛物线y=−2x2+2x+1上,则a−b的最小值为______.19.计算:)−1;(1)计算:20200−|−2|+√(−3)2−(14(2)解方程:2x2−x−3=0.20.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求BC⏜的长.21.如图,已知一次函数y1=ax+b的图象上有两点A、B,它们的横坐标分别是2、−1,若二次函数y2=x2的图象经过A、B两点.(1)完成下表并画出二次函数y2=x2的图象;x…______ ______ ______ ______ ______ …y2=x2…______ ______ ______ ______ ______ …(2)y1>y2时x的取值范围是______.22.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.23.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,且交⊙O于点E.连接OC,BE,相交于点F.(1)求证:EF=BF;(2)若DC=4,DE=2,求直径AB的长.24.如图,小李从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为35m3的无盖长方体箱子,且此长方体箱子的底面长比宽多2m,现已知购买这种铁皮每平方米需30元钱,问小李购回这张矩形铁皮共花了多少元钱?25.某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=−x+ 60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?26.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(−1,0)、B(4,0)、C(0,2).(1)求该二次函数的表达式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于第一象限内的一动点,直线PA分别交BC,y轴于点E、F,若△BPE、△BEF的面积分别为S1、S2,是否存在点P,使得S1=S2.若存在,请求出点P的坐标,若不存在,请说明理由.答案和解析【解析】解:∵x(x−1)=0,∴x1=0,x2=1,故选:C.由题意推出x=0,或(x−1)=0,解方程即可求出x的值.本题主要考查解一元二次方程,关键在于根据题意推出x=0,或(x−1)=0即可.2.【答案】A【解析】解:A、在方程x2+x+1=0中,△=12−4×1×1=−3<0,∴该方程没有实数根;B、在方程x2+x−1=0中,△=12−4×1×(−1)=5>0,∴该方程有两个不相同的实数根;C、在方程x2−2x−1=0中,△=(−2)2−4×1×(−1)=8>0,∴该方程有两个不相同的实数根;D、在方程x2−2x+1=0中,△=(−2)2−4×1×1=0,∴该方程有两个相等的实数根.故选:A.根据方程的系数结合根的判别式△=b2−4ac,逐一分析四个选项方程根的判别式的符号,由此即可得出结论.本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根”是解题的关键.3.【答案】B【解析】解:x2−6x−3=0,x2−6x=3,x2−6x+9=3+9,∴(x−3)2=12.故选:B.先把常数项移到方程右侧,然后把方程两边加上9即可.本题考查了解一元二次方程−配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.【解析】解:二次函数y=−(x+1)2−2的图象的顶点坐标是(−1,−2).故选:B.根据顶点式的意义直接解答即可.本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:y=a(x−ℎ)2+k(a≠0)的顶点坐标为(ℎ,k).5.【答案】C【解析】解:∵二次函数y=ax2+1的图象经过点(−2,0),∴4a+1=0,∴a=−1,4(x−2)2+1=0,∴方程a(x−2)2+1=0可化为−14解得:x1=0,x2=4,故选:C.,代入方程二次函数y=ax2+1的图象经过点(−2,0),得到4a+1=0,求得a=−14a(x−2)2+1=0即可得到结论.本题考查了二次函数与x轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.6.【答案】B【解析】解:∵y=−(x+2)2+3,∴图象的开口向下,对称轴是直线x=−2,∵A(−4,y1)关于直线x=−2的对称点是(0,y1),∵−1<0<2,∴y3<y1<y2,故选:B.根据二次函数的解析式得出图象的开口向下,对称轴是直线x=−2,根据x>−2时,y 随x的增大而减小,即可得出答案.本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.【解析】解:如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,∴△OBD是等边三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,②成立;∴AB=2BC,③成立;∴∠A=∠C,∴DA=DC,①成立;综上所述,①②③均成立,故选:D.连接OD,CD是⊙O的切线,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB 是等边三角形,∠C=∠BDC=30°,再结合在直角三角形中300所对的直角边等于斜边的一半,继而得到结论①②③成立.本题考查了圆的有关性质的综合应用,在本题中借用切线的性质,求得相应角的度数是解题的关键.8.【答案】C【解析】解:∵Rt△OAB的顶点A(−2,4)在抛物线y=ax2上,∴4=a×(−2)2,解得:a=1∴解析式为y=x2,∵Rt△OAB的顶点A(−2,4),∴OB=OD=2,∵Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴CD//x轴,∴点D和点P的纵坐标均为2,∴令y=2,得2=x2,解得:x=±√2,∵点P在第一象限,∴点P的坐标为:(√2,2)故选C.首先根据点A在抛物线y=ax2上求得抛物线的解析式和线段OB的长,从而求得点D 的坐标,根据点P的纵坐标和点D的纵坐标相等得到点P的坐标即可;本题考查了二次函数的综合知识,解题过程中首先求得直线的解析式,然后再求得点D 的纵坐标,利用点P的纵坐标与点D的纵坐标相等代入函数的解析式求解即可.9.【答案】−2【解析】解:把(1,−2)代入y=ax2得−2=a,即a=−2.故答案为−2.把已知点的坐标代入y=ax2即可得到a的值.本题考查了二次函数图象上点的坐标特征:二次函数图象上的点的坐标满足该二次函数的解析式.10.【答案】k<1且k≠04【解析】解:∵kx2−x+1=0有两个不相等的实数根,∴△=1−4k>0,且k≠0,且k≠0;解得,k<14且k≠0.故答案是:k<14根据一元二次方程kx2−x+1=0有两个不相等的实数根,知△=b2−4ac>0,然后据此列出关于k的方程,解方程即可.本题主要考查了一元二次方程的根的判别式.解题时,注意一元二次方程的“二次项系数不为0”这一条件.11.【答案】2【解析】解:设方程的另一个根为t,根据题意得1+t=3,解得t=2,即方程的另一个根为2.故答案为2.设方程的另一个根为t,利用根与系数的关系得到1+t=3,然后解关于t的方程即可.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.也考查了一元二次方程的解.12.【答案】y=(x−1)2+1【解析】解:将二次函数y=x2+1图象向右平移1个单位,则平移后的二次函数的解析式为:y=(x−1)2+1.故答案为:y=(x−1)2+1.直接利用二次函数的平移规律进而得出答案.此题主要考查了二次函数图象与几何变换,正确掌握平移规律是解题关键.13.【答案】4或1【解析】解:点A应分为位于圆的内部于外部两种情况讨论.当点A在圆内时,直径是5+3=8(cm),因而半径是4cm;当点A在圆外时,直径是5−3=2(cm),因而半径是1cm.故答案为:4或1.只要分清点A应分为位于圆的内部于外部两种情况讨论:当点A在圆内,当点A在圆外,本题易解.此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.14.【答案】55°【解析】解:连接BC.∵AB是直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∵∠CAB=35°,∴∠B =55°, ∴∠ADC =∠B =55°, 故答案为:55°.连接BC ,由圆周角定理求出∠ABC 即可解决问题.本题考查圆周角定理,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【答案】54【解析】解:根据勾股定理得,OA =OB =√32+42=5,AB =√12+72=5√2, ∴OA 2+OB 2=AB 2, ∴△AOB 为直角三角形, ∴∠AOB =90°,设这个圆锥的底面半径为r , 根据题意得2πr =90⋅π⋅5180,解得r =54,即这个圆锥的底面半径为54. 故答案为54.利用勾股定理的逆定理证明△AOB 为直角三角形,则∠AOB =90°,设这个圆锥的底面半径为r ,利用这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr =90⋅π⋅5180,然后解方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.【答案】2√3【解析】解:过点O 作OD ⊥AB 交AB 于点D ,连接OA , ∵OA =2OD =2cm ,∴AD =√OA 2−OD 2=√22−12=√3cm , ∵OD ⊥AB ,∴AB =2AD =2√3cm . 故答案为:2√3.通过作辅助线,过点O 作OD ⊥AB 交AB 于点D ,根据折叠的性质可知OA =2OD ,根据勾股定理可将AD 的长求出,通过垂径定理可求出AB 的长. 本题综合考查垂径定理和勾股定理的运用.17.【答案】2【解析】解:连接AO 并延长交圆O 于点D ,连接BD ,如图,∴∠ADB =∠ACB =60°, ∵AD 为圆O 的直径, ∴∠ABD =90°, ∴AD =ABsin60∘=√3√32=4,∵点M 、N 分别是AB 、BC 的中点, ∴MN =12AC ,当AC 为直径时,AC 的值最大, ∴MN 的最大值为2. 故答案为:2.如图,连接AO 并延长交圆O 于点D ,连接BD ,根据圆周角定理得到∠ADB =∠ACB =60°,求出AD =4,再根据三角形中位线性质得到MN =12AC ,然后利用AC 为直径时,AC 的值最大可确定MN 的最大值.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形中位线性质.18.【答案】−98【解析】解:∵点P(a,b)在抛物线y =−2x 2+2x +1上, ∴b =−2a 2+2a +1,∴a −b =a −(−2a 2+2a +1)=2a 2−a −1, ∵a −b =2a 2−a −1=2(a −14)2−98, ∴a −b 的最小值为−98,故答案为−98.把点P(a,b)代入y =−2x 2+2x +1求得b =−2a 2+2a +1,进而即可求得a −b =2a 2−a −1,化成顶点式a −b =2a 2−a −1=2(a −14)2−98,根据二次函数的性质即可求得.本题考查了二次函数图象上点的坐标特征,二次函数的最值,熟练掌握二次函数的性质是解题的关键.19.【答案】解:(1)原式=1−2+3−4=−2;(2)2x 2−x −3=0, (x +1)(2x −3)=0, x +1=0或2x −3=0, 解得x 1=−1,x 2=32.【解析】(1)根据二次根式的化简,零指数幂和负整数指数幂即可进行计算; (2)利用因式分解法解方程即可.本题考查了解一元二次方程、实数的运算,解决本题的关键是掌握解一元二次方程的方法和二次根式化简.20.【答案】【解答】(1)证明:∵四边形ABCD 内接于圆O , ∴∠DCB +∠BAD =180°, ∵∠BAD =105°,∴∠DCB =180°−105°=75°, ∵∠DBC =75°, ∴∠DCB =∠DBC =75°, ∴BD =CD ;(2)解:∵∠DCB =∠DBC =75°, ∴∠BDC =30°,由圆周角定理,得,BC ⏜的度数为:60°, 故BC ⏜=nπR 180=60π×3180=π, 答:BC⏜的长为π.【解析】【分析】此题主要考查了弧长公式应用以及圆周角定理等知识,根据题意得出∠DCB的度数是解题关键.(1)直接利用圆周角定理得出∠DCB的度数,再利用∠DCB=∠DBC求出答案;(2)首先求出BC⏜的度数,再利用弧长公式直接求出答案.21.【答案】−1<x<2【解析】解:(1)完成表格如下:x…−2−1012…y2=x2…41014…函数图象如下:(2)由函数图象可知,当−1<x<2时y1>y2时.(1)将x=−1,−2,0,1,2分别代入y2=x2中,求出对应的值,根据表格找出5个点的坐标,描在平面直角坐标系中,然后用平滑的曲线作出函数图象即可;(2)结合两个函数图象解答可得到y1>y2时x的取值范围本题主要考查二次函数与不等式,解题的关键是熟练将不等式的解集转化为二次函数的图象问题解决.22.【答案】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1−x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1−5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【解析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1−下降率),即可得出结论.本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.23.【答案】(1)证明:∵OC⊥CD,AD⊥CD,∴OC//AD,∠OCD=90°,∴∠OFE=∠OCD=90°,∵OB=OE,∴EF=BF;(2)∵AB为⊙O的直径,∴∠AEB=90°,∵∠OCD=∠CFE=90°,∴四边形EFCD是矩形,∴EF=CD,DE=CF,∵DC=4,DE=2,∴EF=4,CF=2,设⊙O的为r,∵∠OFB=90°,∴OB2=OF2+BF2,即r2=(r−2)2+42,解得,r=5,∴AB=2r=10,即直径AB的长是10.【解析】(1)根据题意和平行线的性质、垂径定理可以证明结论成立;(2)根据题意,利用矩形的性质和勾股定理可以解答本题.本题考查切线的性质、垂径定理、矩形的判定与性质、勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.【答案】解:设长方体箱子宽为x 米,则长为(x +2)米.依题意,有x(x +2)×1=35. 整理,得x 2+2x −35=0, 解得x 1=−7(舍去),x 2=5,∴这种运动箱底部长为7米,宽为5米. 由长方体展开图可知,所购买矩形铁皮面积为 (7+2)×(5+2)=63,∴做一个这样的运动箱要花63×30=1890(元). 答:小李购回这张矩形铁皮共花了1890元.【解析】本题可设无盖长方体箱子宽为x 米,则长为(x +2)米,根据刚好能围成一个容积为35m 3的无盖长方体箱子,结合图形可列出方程,求出答案.本题主要考查一元二次方程的应用,解答时由长方体的体积公式建立方程求解是关键. 25.【答案】解:(1)w =(x −30)⋅y =(−x +60)(x −30)=−x 2+30x +60x −1800=−x 2+90x −1800,w 与x 之间的函数解析式w =−x 2+90x −1800;(2)根据题意得:w =−x 2+90x −1800=−(x −45)2+225, ∵−1<0,当x =45时,w 有最大值,最大值是225.(3)当w =200时,−x 2+90x −1800=200,解得x 1=40,x 2=50, ∵50>48,x 2=50不符合题意,舍去,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【解析】(1)每天的销售利润w =每天的销售量×每件产品的利润; (2)根据配方法,可得答案;(3)根据自变量与函数值的对应关系,可得答案.本题考查了二次函数的应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.26.【答案】解:(1)将点A 、B 、C 的坐标代入抛物线表达式得{a −b +c =016a +4b +c =0c =2,解得{a =−12b =32c =2, 故抛物线的表达式为y =−12x 2+32x +2①;(2)由点A 、C 的坐标知,OA =1,OC =2,则tan∠CAO =OCOA =2=tan∠DBA , 当点D 在AB 上方时, 延长BD 交y 轴于点R ,过点D 作DH ⊥x 轴于点H , ∵tan∠DBA =2=tan∠DBH ,设点D 的坐标为(m,n),tan∠DBH =2=OROB =OR 4,则OR =8,故点R 的坐标为(0,8),由点R 、B 的坐标知,直线BD 的表达式为y =−2x +8②, 联立①②并解得{x =3y =2或{x =4y =0(舍去), 故点D 的坐标为(3,2); 当点D(D′)在AB 下方时,同理可得BD′的表达式为y =2x −8③, 联立①③可求得点D′(−5,−18), 综上,点D 的坐标为(3,2)或(−5,−18);(3)存在,理由:设直线BC 的表达式为y =sx +t ,则{0=4s +t t =2,解得{s =−12t =2, 故直线BC 的表达式为y =−12x +2, 设点P 的坐标为(m,−12m 2+32m +2),同理可得直线AP 的表达式为y =12(4−m)x +2−12m , ∵S 1=S 2,故点F 的坐标为(0,2−12m),则点E 是PF 的中点, 根据中点公式得,点E 的坐标为(12m,−14m 2+12m +2),将点E 的坐标代入直线BC 的表达式得,−14m 2+12m +2=−12×12m +2, 解得m =0(舍去)或3, 故点P 的坐标为(3,2).【解析】(1)用待定系数法即可求解;(2)分点D 在AB 上方、点D 在AB 下方两种情况,求出BD 的表达式,进而求解; (3)由S 1=S 2得点E 是PF 的中点,再求出点E 的坐标,最后将点E 的坐标代入直线BC 的表达式,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、中点公式的运用、三角形面积公式的运用、解直角三角形等,其中(2),要注意分类求解,避免遗漏.。
2020-2021学年山东省烟台市芝罘区九年级(上)期中数学试卷(五四学制)(附答案详解)
2020-2021学年山东省烟台市芝罘区九年级(上)期中数学试卷(五四学制)一、选择题(本大题共12小题,共36.0分)1.在Rt△ABC,∠C=90°,sinB=35,则sin A的值是()A. 35B. 45C. 53D. 542.若抛物线y=ax2+c(a≠0)过点P(−2,3),则该抛物线必过下列点()A. (0,3)B. (−2,−3)C. (3,−2)D. (2,3)3.若sin(70°−α)=cos50°,则α的度数是()A. 20°B. 30°C. 40°D. 50°4.将抛物线y=x2−6x+10向左平移2个单位后,得到新抛物线解析式为()A. y=(x−5)2+1B. y=(x−1)2+1C. y=(x−3)2+3D. y=(x−3)2−15.已知sinA=0.9816,运用科学计算器求锐角A时(在开机状态下),按下的第一个键是()A. B. C. D.6.如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为()A. (1.5+150tanα)米B. (1.5+150tanα)米C. (1.5+150sinα)米D. (1.5+150sinα)米7.已知(−3,y1),(−2,y2),(1,y3)是抛物线y=−3x2−12x+m上的点,则()A. y3<y2<y1B. y3<y1<y2C. y2<y3<y1D. y1<y3<y28.如图,一艘轮船在A处测得灯塔C在北偏西15°的方向上,该轮船又从A处向正东方向行驶40海里到达B处,测得灯塔C在北偏西60°的方向上,则轮船在B处时与灯塔C之间的距离(即BC的长)为()A. 40√3海里B. (20√3+20)海里C. 80海里D. (20√3+20√2)海里9.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D,则AD的长为()是AC上一点,若tan∠DBA=15A. 2B. √3C. √2D. 110.如图,函数y=ax2−2x+1和y=ax−a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A. B.C. D.11.如图①,Rt△ABC的边BC与矩形DEFG的边DE都在直线l上,且点C与点D重合,AB=DG,将△ABC沿着射线DE方向移动至点B与点E重合时停止,设△ABC 与矩形DEFG重叠部分的面积是y,CD的长度为x,y与x之间的关系图象如图②所示,则矩形DEFG的周长为()A. 14B. 12C. 10D. 712.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=−1,下列结论()3①abc>0;②a−b+c>0;③b+2c<0;④a+4c>2b,其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)13.函数y=√x+3中,自变量x的取值范围是______.x−114.如图,将一副三角尺按如图所示叠放在一起,若AC=14cm,则阴影部分的面积是______ cm2.15.已知关于x的二次函数y=(a−1)x2−2x+3的图象与坐标轴有两个交点,则a的取值范围是______ .16.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=______.17.如图,在正方形网格中,小正方形的边长为1,点A,B,C,D都在格点上,AB与CD相交于点O,则∠AOC的正切值是______ .18.当1≤x≤2时,二次函数y=(x−ℎ)2+3有最小值4,则h的取值为______ .三、解答题(本大题共7小题,共66.0分)19.计算:|1−sin30°|+tan30°⋅cos30°−1.cos45∘x2+bx+c的图象经过A(0,−8),B(−2,−20)两点.20.已知二次函数y=−12(1)求b,c的值;x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐(2)二次函数y=−12标;若没有,请说明理由.21.如图,在矩形ABCD中,AB=4,∠ADB=30°,AE⊥BD于点E,连接CE.(1)求线段AE的长度;(2)求tan∠CED的值.22.如图,隧道的截面由抛物线和长方形构成.长方形的长为16m,宽为6m,抛物线的最高点C离路面AA1的距离为8m.(1)建立适当的坐标系,求出表示抛物线的函数表达式;(2)一大型货车装载设备后高为7m,宽为4m.如果隧道内设双向行驶车道,那么这辆货车能否安全通过?23.在“停课不停学”期间,小明用电脑在线上课,图①是他的电脑液晶显示器的侧面图,显示屏AB可以绕O点旋转一定角度,图②是平面示意图.研究表明:当眼睛E与显示屏顶端A在同一水平线上(AE//CD),且望向显示器屏幕中心形成一个18°俯角(即点P是AB中点,∠AEP=18°)时,对保护眼睛比较好,而且显示屏顶端A与底座C的连线AC与水平线CD垂直时,观看屏幕最舒适,此时测得∠BCD= 30°,∠APE=90°,液晶显示屏的宽AB为32cm.(参考数据:sin18°≈0.31,cos18°≈0.95,√2≈1.41,√3≈1.73)(1)求眼睛E与显示屏顶端A的水平距离AE;(结果精确到0.1cm)(2)求显示屏顶端A与底座C的距离AC.(结果精确到0.1cm)24.某商场试销一种成本为每件60元的T恤,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)之间的函数图象如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围.(2)若商场销售这种T恤获得利润为W(元),求出利润W(元)与销售单价x(元)之间的函数关系式;并求出当销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?25.如图①,抛物线y=ax2+bx+3交x轴点A、B,连接AC、BC,tan∠ABC=1,tan∠BAC=3.(1)求抛物线关系式;(2)点D是第一象限抛物线上的点,连接CD、BD,若点D的横坐标为t,△DBC的面积是S.当t为何值时,△DBC的面积最大?最大面积是多少?(3)如图②,设点M是抛物线上一点,点N是直线BC上一点,是否存在点M、N的位置,使以点O、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出相对应的点M和点N的坐标;如果不存在,请说明理由.答案和解析1.【答案】B【解析】解:∵在Rt △ABC ,∠C =90°,∴∠A +∠B =90°,∴sin 2A +sin 2B =1,sinA >0,∵sinB =35, ∴sinA =√1−(35)2=45.故选B .根据互余两角三角函数的关系:sin 2A +sin 2B =1解答.本题考查了互余两角三角函数的关系,掌握sin 2A +sin 2B =1是解题的关键. 2.【答案】D【解析】解:∵抛物线y =ax 2+c 的对称轴是y 轴,又∵点P(−2,3)是抛物线y =ax 2+c 上一点,∴点P(−2,3)关于y 轴的对称点(2,3)一定在抛物线图象上,故选:D .根据解析式求出对称轴是y 轴,然后由对称的性质求的点P(−2,3)关于y 轴的对称点(2,3). 本题考查了二次函数图象上点的坐标特征.抛物线的对称性是解题的关键.3.【答案】B【解析】解:∵sin(70°−α)=cos50°,∴70°−α+50°=90°,解得α=30°.故选:B .一个角的正弦值等于这个角的余角的余弦值,依此可得70°−α+50°=90°,解方程即可求解.考查了互余两角三角函数的关系,关键是根据互余两角三角函数的关系得到关于α的方程.4.【答案】B【解析】解:∵y=x2−6x+10=(x−3)2+1,∴顶点为(3,1),向左平移2个单位后的抛物线的顶点坐标为(1,1),所以,平移后的抛物线的解析式为y=(x−1)2+1,故选:B.先求出平移后的抛物线的顶点坐标,再利用顶点解析式写出即可.本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.5.【答案】D【解析】解:∵已知sinA=0.9816,运用科学计算器求锐角A时(在开机状态下)的按键顺序是:2ndF,sin,0,∴按下的第一个键是2ndF.故选:D.根据计算器求锐角的方法即可得结论.本题考查了计算器−三角函数,解决本题的关键是熟练利用计算器.6.【答案】A【解析】解:过点A作AE⊥BC,E为垂足,如图所示:则四边形ADCE为矩形,AE=150,∴CE=AD=1.5,在△ABE中,∵tanα=BEAE =BE150,∴BE=150tanα,∴BC=CE+BE=(1.5+150tanα)(m),故选:A.过点A作AE⊥BC,E为垂足,再由锐角三角函数的定义求出BE的长,由BC=CE+BE 即可得出结论.本题考查的是解直角三角形的应用−仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.【答案】B【解析】解:抛物线的对称轴为直线x=−−122×(−3)=−2,∵a=−3<0,∴x=−2时,函数值最大,又∵−3到−2的距离比1到−2的距离小,∴y3<y1<y2.故选:B.求出抛物线的对称轴为直线x=−2,然后根据二次函数的增减性和对称性解答即可.本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性和对称性,求出对称轴是解题的关键.8.【答案】B【解析】【分析】本题考查了解直角三角形的应用−方位角问题,正确的作出辅助线是解题的关键.过A作AD⊥BC于D,解直角三角形即可得到结论.【解答】解:过A作AD⊥BC于D,在Rt△ABD中,∠ABD=30°,AB=40,∴AD=12AB=20,BD=√32AB=20√3,在Rt△ACD中,∵∠C=45°,∴CD=AD=20,∴BC=BD+CD=(20√3+20)海里,故选:B.9.【答案】A【解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=√2AC=6√2,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=√2x,在Rt△BED中,tan∠DBE=DEBE =15,∴BE=5x,∴x+5x=6√2,解得x=√2,∴AD=√2×√2=2.故选:A.作DE⊥AB于E,先根据等腰直角三角形的性质得到AB=√2AC=6√2,∠A=45°,设AE=x,则DE=x,AD=√2x,在Rt△BED中,利用∠DBE的正切得到BE=5x,然后由AE+BE=AB可计算出x=√2,再利用AD=√2x进行计算.本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质.10.【答案】B【解析】【分析】本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax−a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正【解答】解:A、由一次函数y=ax−a的图象可得:a<0,此时二次函数y=ax2−2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax−a的图象可得:a>0,此时二次函数y=ax2−2x+1的图象应该开口向上,对称轴x=−−22a>0,故选项正确;C、由一次函数y=ax−a的图象可得:a>0,此时二次函数y=ax2−2x+1的图象应该开口向上,对称轴x=−−22a>0,故选项错误;D、由一次函数y=ax−a的图象可得:a>0,此时二次函数y=ax2−2x+1的图象应该开口向上,故选项错误.故选:B.11.【答案】A【解析】解:从图②看,△ABD向右平移2个单位时,两个图形完全重合,故BD=2,由图②知,点B运动到点D时,S=12BD⋅AB=12×2×AB=2,∴AB=2,△ABD再向右平移3个单位时,点E、D重合,故DE=5,故矩形DEFG的周长为2(2+5)=14,故选:A.从图②看,△ABD向右平移2个单位时,两个图形完全重合,故BD=2=AB,△ABD 再向右平移3个单位时,点E、D重合,故DE=5,即可求解.本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.12.【答案】C【解析】解:①∵抛物线的对称轴为直线x=−13,∴−b2a<0,∴a、b同号,即ab>0,∵抛物线交y轴的正半轴,∴abc >0,①正确;②∵当x =−1时,y >0,∴a −b +c >0,②正确;③∵抛物线的对称轴为直线x =−13,∴−b 2a =−13,∴a =32b. ∵a −b +c >0,即32b −b +c >0,∴b +2c >0,③错误;④∵当x =−12时,y >0,∴14a −12b +c >0,∴a −2b +4c >0,即a +4c >2b ,④正确.故选:C .①由抛物线的对称轴为负可得出a 、b 同号,由抛物线交y 轴的正坐标可得出c >0,进而可得出abc >0;②由当x =−1时y >0,可得出a −b +c >0;③根据抛物线的对称轴为直线x =−13,可得出a =b 2b ,结合a −b +c >0,可得出32b −b +c >0,即b +2c >0;④由当x =−12时y >0,可得出14a −12b +c >0,即a +4c >2b ,综上即可得出结论.本题考查了二次函数图象与系数的关系,观察函数图象,逐一分析四个选项的正误是解题的关键.13.【答案】x ≥−3且x ≠1【解析】解:根据题意得:x +3≥0且x −1≠0,解得:x ≥−3且x ≠1.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可知:x +3≥且x −1≠0,解得自变量x 的取值范围.本题考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.【答案】98【解析】解:∵△ABC与△ADE是直角三角形,∴∠ACF=∠AED=90°,∴BC//DE,∴∠AFC=∠D=45°,∴△ACF是等腰直角三角形,∴AC=CF=14,×14×14=98cm2.∴阴影部分的面积是=12故答案为:98.根据BC//DE得出△ACF是等腰直角三角形解答即可.此题考查等腰直角三角形问题,关键是根据等腰直角三角形的性质解答.15.【答案】a=43【解析】解:∵x=0时,y=3,∴二次函数的图象与y轴的交点为(0,3),根据题意二次函数y=(a−1)x2−2x+3的图象与x轴有一个交点,∴a−1≠0,△=(−2)2−4(a−1)×3=0,.解得a=43.故答案为a=43利用二次函数的定义和判别式的意义得到a−1≠0且△=(−2)2−4(a−1)×3=0,然后解得即可.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.△=b2−4ac决定抛物线与x 轴的交点个数.16.【答案】12 【解析】解:连接CG , 在正方形ACDE 、BCFG 中, ∠ECA =∠GCB =45°, ∴∠ECG =90°, 设AC =2,BC =1,∴CE =2√2,CG =√2,∴tan∠GEC =CG EC =12,故答案为:12.根据正方形的性质以及锐角三角函数的定义即可求出答案.本题考查正方形,解题的关键是熟练运用正方形的性质以及锐角三角函数的定义,本题属于基础题型.17.【答案】23【解析】解:如图取格点K ,连接BK ,过点K 作KH ⊥AB于H ,如图所示:∵DB =CK =2,DB//CK ,∴四边形CDBK 是平行四边形,∴CD//BK ,∴∠AOC =∠ABK ,过点K 作KH ⊥AB 于H .∵AB =√42+72=√65,S △ABK =12⋅AK ⋅4=12⋅AB ⋅KH =20,∴HK =20√65=4√6513, ∵BK =√22+42=2√5,∴BH =√BK 2−HK 2=√(2√5)2−(4√6513)2=6√6513, ∴tan∠AOC =tan∠ABK =HK BH =4√65136√6513=23,故答案为:23.取格点K,连接BK,过点K作KH⊥AB于H,先证四边形CDBK是平行四边形,则CD//BK,得∠AOC=∠ABK,再利用面积法求出HK,然后利用勾股定理求出BH的长,即可解决问题.本题考查了解直角三角形,平行线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.18.【答案】0或3【解析】解:∵当x>ℎ时,y随x的增大而增大,当x<ℎ时,y随x的增大而减小,∴①若ℎ<1≤x≤2,x=1时,y取得最小值4,可得:(1−ℎ)2+3=4,解得:ℎ=0或ℎ=2(舍);②若1≤x≤2<ℎ,当x=2时,y取得最小值4,可得:(2−ℎ)2+3=4,解得:ℎ=3或ℎ=1(舍);③若1<ℎ<3时,当x=ℎ时,y取得最小值为3,不是4,∴此种情况不符合题意,舍去.综上,h的值为0或3,故答案为:0或3.由解析式可知该函数在x=ℎ时取得最小值3,x>ℎ时,y随x的增大而增大;当x<ℎ时,y随x的增大而减小;根据1≤x≤2时,函数的最小值为4可分如下两种情况:①若ℎ< 1≤x≤2,x=1时,y取得最小值4;②若1≤x≤2<ℎ,当x=2时,y取得最小值4,分别列出关于h的方程求解即可.本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.19.【答案】解:原式=1−12+√33×√32−√22=1−12+12−√2=1−√2.【解析】直接利用特殊角的三角函数值代入得出答案.此题主要考查了实数运算,正确记忆相关数据是解题关键.20.【答案】解:(1)将点A 、B 的坐标代入函数表达式得:{c =−8−20=−12×4−2b +c ,解得{b =5c =−8;(2)有,理由:由(1)知,抛物线的表达式为y =−12x 2+5x −8,则△=52−4×(−12)×(−8)=9>0,故抛物线与x 轴有两个公共点,令y =−12x 2+5x −8=0,解得x =2或8,故公共点坐标为(2,0)和(8,0).【解析】(1)将点A 、B 的坐标代入函数表达式,即可求解;(2)△=52−4×(−12)×(−8)=9>0,故抛物线与x 轴有两个公共点,令y =−12x 2+5x −8=0,解得x =2或8,即可求解.本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征. 21.【答案】解:(1)∵在矩形ABCD 中,AE ⊥BD 于点E ,∴∠BAE +∠ABD =∠ADB +∠ABD =90°,∴∠BAE =∠ADB =30°,∵AB =4,∴BE =12AB =2,∴AE =√AB 2−BE 2=√42−22=2√3;(2)如图,过点C 作CF ⊥BD 于点F ,在△ABE 与△CDF 中,{∠AEB =∠CFD ∠ABE =∠CDF AB =CD ,∴△ABE≌△CDF(AAS),∴AE=CF=2√3,BE=FD=2,∵∠BAD=90°,∠ADB=30°,∴BD=2AB=8,∴EF=BD−BE−DF=8−2−2=4,∴tan∠DEC=CFEF =2√34=√32.【解析】(1)依据含30°角直角三角形的性质,即可得到BE的长,再根据勾股定理即可得到AE的长;(2)过点C作CF⊥BD于点F,依据全等三角形的性质,即可得到DF,CF的长,再根据EF的长,即可得出tan∠CED的值.本题考查了矩形的性质以及全等三角形的判定与性质,熟练掌握含30°角直角三角形的性质是解题的关键.22.【答案】解:(1)如图,以AA1所在直线为x轴,以线段AA1的中点为坐标原点建立平面直角坐标系,根据题意得A(−8,0),B(−8,6),C(0,8),设抛物线的解析式为y=ax2+8,把B(−8,6)代入,得:64a+8=6,解得:a=−132.∴抛物线的解析式为y=−132x2+8.(2)根据题意,把x=±4代入解析式y=−132x2+8,得y=7.5m.∵7.5m>7m,∴货运卡车能通过.【解析】本题考查了二次函数在实际问题中的应用,恰当地建立平面直角坐标系、利用待定系数法求得二次函数的解析式是解题的关键.(1)根据抛物线在坐标系中的特殊位置,可以设抛物线的解析式为y=ax2+8,再把B(−8,6)代入,求出a的值即可;(2)隧道内设双行道后,求出纵坐标与7m作比较即可.23.【答案】解:(1)由已知得AP=BP=12AB=16cm,在Rt△APE中,∵sin∠AEP=APAE,∴AE=APsin∠AEP =16sin18∘≈160.31≈51.6cm,答:眼睛E与显示屏顶端A的水平距离AE约为53.3cm;(2)如图,过点B作BF⊥AC于点F,∵∠EAB+∠BAF=90°,∠EAB+∠AEP=90°,∴∠BAF=∠AEP=18°,在Rt△ABF中,AF=AB⋅cos∠BAF=32×cos18°≈32×0.95≈30.4,BF=AB⋅sin∠BAF=32×sin18°≈32×0.31≈9.92,∵BF//CD,∴∠CBF=∠BCD=30°,∴CF=BF⋅tan∠CBF=9.92×tan30°=9.92×√33≈5.72,∴AC=AF+CF=30.4+5.72≈36.1(cm).答:显示屏顶端A与底座C的距离AC约为36.1cm.【解析】(1)由已知得AP =BP =12AB =16cm ,根据锐角三角函数即可求出眼睛E 与显示屏顶端A 的水平距离AE ;(2)如图,过点B 作BF ⊥AC 于点F ,根据锐角三角函数求出AF 和BF 的长,进而求出显示屏顶端A 与底座C 的距离AC .本题考查了解直角三角形的应用−仰角俯角问题,解决本题的关键是掌握仰角俯角定义. 24.【答案】解:(1)由题意得:{63k +b =5770k +b =50, 解得:{k =−1b =120, 故y 与x 之间的函数关系式为:y =−x +120,∵成本为每件60元的T 恤,销售单价不低于成本单价,且获利不得高于40%, ∴60≤x ≤84;(2)w =(x −60)(−x +120)=−x 2+180x −7200=−(x −90)2+900,∵抛物线开口向下,∴当x <90时,w 随x 的增大而增大,而60≤x ≤84,故当x =84时,w =(84−60)×(120−84)=864.答:当销售价定为84元/件时,商场可以获得最大利润,最大利润是864元.【解析】(1)可用待定系数法来确定y 与x 之间的函数关系式,再利用试销期间销售单价不低于成本单价,且获利不得高于40%得出x 的取值范围即可;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润.本题考查了一次函数的应用以及用待定系数法求一次函数的综合应用和主要结合一次函数的性质,求出二次函数的最值问题;在本题中,还需注意的是自变量的取值范围,否则容易按照“顶点式”的做法,求出误解.25.【答案】解:(1)由抛物线的表达式知,c =3=CO ,在Rt △BOC 中,OC =3,tan∠ABC =1,则OB =3,在Rt △AOC 中,OC =3,tan∠ABC =1,则OA =1,故点A 、B 、C 的坐标分别为(−1,0)、(3,0)、(0,3),将点A 、B 的坐标代入抛物线表达式得{0=a −b +30=9a +3b +3,解得{a =−1b =2, 故抛物线的表达式为y =−x 2+2x +3;(2)过点D 作y 轴的平行线交BC 于点H ,由点B 、C 的坐标得,直线BC 的表达式为y =−x +3,设点D(t,−t 2+2t +3),则点H(t,−t +3),则S =S △DHC +S △DHB =12×DH ×OB =12×3×(−t 2+2t +3+t −3)=−32t 2+92t , ∵−32<0,故S 有最大值,当t =32时,S 的最大值为278;(3)设点M 的坐标为(m,−m 2+2m +3),①当OC 是边时,∵OC//MN ,OC =MN ,则N(m,−m +3).∴|−m 2+2m +3+m −3|=3,解得m =3−√212或3+√212, ∴M(3−√212,−3+√212)或(3+√212,−3+√212),②当OC 是对角线时,OM//BC ,由{y =−x y =−x 2+2x +3, 解得{x =3−√212y =−3+√212或{x =3+√212y =−3−√212(舍弃), ∴M(3−√212,−3−√212)或(3+√212,−3−√212) 综上所述,点M 的坐标为(3−√212,−3+√212)或(3+√212,−3+√212)或(3−√212,−3−√212)或(3+√212,−3−√212),点N 的坐标为(−√21+32,9+√212)或(√21−32,9−√212)或(3+√212,3−√212)或(3−√212,3+√212).【解析】(1)在Rt△BOC中,OC=3,tan∠ABC=1,则OB=3,在Rt△AOC中,OC=3,tan∠ABC=1,则OA=1,故点A、B、C的坐标分别为(−1,0)、(3,0)、(0,3),将点A、B的坐标代入抛物线表达式,即可求解;(2)由S=S△DHC+S△DHB=12×DH×OB,即可求解;(3)分OC是边、OC是对角线两种情况,分别即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质、解直角三角形、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
2020-2021学年山东省菏泽市牡丹区九年级上期中数学试卷及答案解析
第 1 页 共 20 页
2020-2021学年山东省菏泽市牡丹区九年级上期中数学试卷
一.选择题(共8小题,满分24分,每小题3分)
1.(3分)已知b a =59,则a−b a
的值是( ) A .23 B .32 C .94 D .49 2.(3分)一元二次方程2x 2﹣7x +k =0的一个根是x 1=2,则另一个根和k 的值是( )
A .x 2=1,k =4
B .x 2=﹣1,k =﹣4
C .x 2=32,k =6
D .x 2=−32,k =﹣6 3.(3分)菱形具有而平行四边形不具有的性质是( )
A .对角线互相垂直
B .对边平行
C .对边相等
D .对角线互相平分
4.(3分)春节期间,《中国诗词大会)节目的播出深受观众喜爱,进一步激起了人们对古
诗词的喜爱,现有以下四句古诗词:①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光,甲、乙两名同学从中各随机选取了一句写在了纸上,则他们选取的诗句恰好相同的概率为( )
A .16
B .14
C .13
D .12 5.(3分)已知x =2是一元二次方程x 2﹣ax +6=0的解,则a 的值为( )
A .﹣5
B .﹣4
C .4
D .5
6.(3分)某市决定改善城市容貌,绿化环境,计划经过两年时间,绿地面积增加44%,这
两年平均每年绿地面积的增长率是( )
A .20%
B .11%
C .22%
D .44% 7.(3分)如图,函数y =kx +b (k ≠0)与y =m x (m ≠0)的图象相交于点A (﹣2,3),B
(1,﹣6)两点,则不等式kx +b >m x 的解集为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:C 【解析】 【分析】 根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案. 【详解】
解:∵点 Pm 1,5 与点 Q3, 2 n 关于原点对称,
∴ m 1 3, 2 n 5, 解得: m 2 , n 7 , 则 m n 2 7 5
故选 C. 【点睛】
A.1
B.3
C.5
D.7
7.如图,将三角尺 ABC(其中∠ABC=60°,∠C=90°)绕点 B 按逆时针方向转动一个角度到
△A1BC1 的位置,使得点 A1、B、C 在同一条直线上,那么旋转角等于( )
A.30°
B.60°
C.90°
D.120°
8.将函数 y=kx2 与 y=kx+k 的图象画在同一个直角坐标系中,可能的是( )
2.方程 x2+x-12=0 的两个根为( )
A.x1=-2,x2=6
B.x1=-6,x2=2
C.x1=-3,x2=4
D.x1=-4,x2=3
3.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二
个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )
A. 1 6
B. 2 9
y1、y2 的大小关系(直接写出结果).
24.为满足市场需求,新生活超市在端午节前夕购进价格为 3 元/个的某品牌粽子,根据市 场预测,该品牌粽子每个售价 4 元时,每天能出售 500 个,并且售价每上涨 0.1 元,其销 售量将减少 10 个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价 的 200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为 800 元. 25.关于 x 的一元二次方程 mx2﹣(2m﹣3)x+(m﹣1)=0 有两个实数根. (1)求 m 的取值范围;
一共有 6 种情况,“一红一黄”的情况有 2 种,
∴P(一红一黄)= 2 = 1 .故选 C. 63
4.A
解析:A 【解析】 【分析】 此方程已经配方,根据解一元二次方程的步骤解方程即可. 【详解】
x 22 =9 ,故 x-2=3 或 x-2=-3,解得:x1=5,x2=-1,故答案选 A.
【点睛】 本题主要考查了解一元二次方程的基本解法,这是很简单的解方程,难度不大.
(2)若 m 为正整数,求此方程的根.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D 解析:D 【解析】 【详解】 ∵二次函数 y=x2+bx 的图象的对称轴是经过点(2,0)且平行于 y 轴的直线, ∴抛物线的对称轴为直线 x=2,
则− b =− b =2, 2a 2
解得:b=−4, ∴x2+bx=5 即为 x2−4x−5=0, 则(x−5)(x+1)=0, 解得:x1=5,x2=−1. 故选 D. 【点睛】 本题考查了抛物线与 x 轴的交点:把二次函数 y=ax2+bx+c(a、b、c 是常数,a≠0)与 x 轴 的交点坐标问题转化为关于 x 的一元二次方程的问题.
C.75°
D.60°
11.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透
空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )
A.
B.
C.
D.
12.用配方法解方程 x2 8x 9 0 ,变形后的结果正确的是( )
A. x 42 9 B. x 42 7 C. x 42 25 D. x 42 7
二、填空题
13.如图,在 Rt△ABC 中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC 绕点 B 顺时针旋 转 60°,得到△BDE,连接 DC 交 AB 于点 F,则△ACF 与△BDF 的周长之和为_______cm.
14.圆锥的底面半径为 14cm,母线长为 21cm,则该圆锥的侧面展开图的圆心角为_____ 度. 15.如图,五边形 ABCD 内接于⊙O,若 AC=AD,∠B+∠E=230°,则∠ACD 的度数是 __________.
点评:本题考查了弧长的计算公式:l= n R ,其中 l 表示弧长,n 表示弧所对的圆心角的 180
度数.
8.C
解析:C 【解析】 【分析】 根据题意,利用分类讨论的方法,讨论 k>0 和 k<0,函数 y=kx2 与 y=kx+k 的图象,从而 可以解答本题. 【详解】 当 k>0 时, 函数 y=kx2 的图象是开口向上,顶点在原点的抛物线,y=kx+k 的图象经过第一、二、三象 限,是一条直线,故选项 A、B 均错误, 当 k<0 时, 函数 y=kx2 的图象是开口向下,顶点在原点的抛物线,y=kx+k 的图象经过第二、三、四象 限,是一条直线,故选项 C 正确,选项 D 错误, 故选 C. 【点睛】 本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合 的思想解答.
12.D
解析:D
【解析】 【分析】 先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可. 【详解】
x2 8x 9 0, x2 8x 9 , x2 8x 42 9 42 ,
所以 x 42 7 ,
故选 D. 【点睛】 本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关 键.
5.B
解析:B 【解析】 【分析】 根据轴对称图形与中心对称图形的概念逐一判断即可得答案. 【详解】 A.不是中心对称图形,是轴对称图形,不符合题意, B.是中心对称图形,不是轴对称图形,符合题意, C.不是中心对称图形,是轴对称图形,不符合题意, D.是中心对称图形,也是轴对称图形,不符合题意. 故选:B. 【点睛】 本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图 形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转 180 度后与原图 重合.
9.D
解析:D 【解析】 【分析】 移项后两边配上一次项系数一半的平方即可得. 【详解】 解:∵x2-8x=5, ∴x2-8x+16=5+16,即(x-4)2=21, 故选 D.
【点睛】 本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种 常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简 便的方法.
________. 19.在 10 个外观相同的产品中,有 2 个不合格产品,现从中任意抽取 1 个进行检测,抽 到合格产品的概率是 . 20.如图,AB 是⊙O 的直径,BD,CD 分别是过⊙O 上点 B,C 的切线,且∠BDC=110°.连 接 AC,则∠A 的度数是_____°.
三、解答题
21.一商店销售某种商品,平均每天可售出 20 件,每件盈利 40 元.为了扩大销售、增加盈 利,该店采取了降价措施,在每件盈利不少于 25 元的前提下,经过一段时间销售,发现销 售单价每降低 1 元,平均每天可多售出 2 件. (1)若降价 3 元,则平均每天销售数量为________件; (2)当每件商品降价多少元时,该商店每天销售利润为 1200 元? 22.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如 表所示的关于该奖品的销售信息,便用 1400 元买回了奖品,求王老师购买该奖品的件数.
∴∠APB= 1 ∠AOB=60°.(圆周角等于圆心角的一半) 2
故选 D.
11.B
解析:B 【解析】 【分析】 根据中心对称图形的概念对各选项分析判断即可得解. 【详解】 解:A、不是中心对称图形,故本选项不符合题意; B、是中心对称图形,故本选项符合题意; C、不是中心对称图形,故本选项不符合题意; D、不是中心对称图形,故本选项不符合题意. 故选 B. 【点睛】 本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 180 度后两部分 重合.
10.D
解析:D 【解析】 【分析】 【详解】 作半径 OC⊥AB 于点 D,连结 OA,OB, ∵将 O 沿弦 AB 折叠,圆弧较好经过圆心 O,
∴OD=CD,OD= 1 OC= 1 OA, 22
∴∠OAD=30°(30°所对的直角边等于斜边的一半),同理∠OBD=30°, ∴∠AOB=120°,
2020 年九年级数学上期中试卷(带答案)
一、选择题 1.若二次函数 y x2 bx 的图象的对称轴是经过点 (2, 0) 且平行于 y 轴的直线,则关于 x
的方程 x2 bx 5的解为( ).
A. x1 0 , x2 4 B. x1 1 , x2 5 C. x1 1 , x2 5 D. x1 1 , x2 5
购买件数
销售价格
不超过 30 件
单价 40 元
超过 30 件
每多买 1 件,购买的所有物品单价将降低 0.5 元,但单价不得低于 30 元
23.已知二次函数 y x2 4x 3 .
(1)求函数图象的顶点坐标,对称轴和与坐标轴的交点坐标,并画出函数的大致图象.
(2)若 A(x1, y1), B(x2, y2 ) 是函数 y x2 4x 3 图象上的两点,且 x1 x2 1,请比较
16.若圆锥的底面周长为 4 ,母线长为 6,则圆锥的侧面积等于________.(结果保留 π) 17.关于 x 的方程的 x2 6x m 0 有两个相等的实数根,则 m 的值为________.
18.若抛物线的顶点坐标为 (2, 9) ,且它在 x 轴截得的线段长为 6 ,则该抛物线的表达式为
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互 为相反数.
7.D
解析:D 【解析】 根据题意旋转角为∠ABA1,由∠ABC=60°,∠C=90°,A、B、C1 在同一条直线上,得到∠ ABA1=180°-∠A1BC1=180°-60°=120° 解:旋转角为∠ABA1,∵∠ABC=60°,∠C=90°, ∴∠ABA1=180°-∠A1BC1=180°-60°=120°; 故答案为 D