高中数学统计初步知识点问答练习题配答案

合集下载

(精选试题附答案)高中数学第九章统计经典大题例题

(精选试题附答案)高中数学第九章统计经典大题例题

(名师选题)(精选试题附答案)高中数学第九章统计经典大题例题单选题1、某中学高一年级有400人,高二年级有320人,高三年级有280人,若每人被抽到的可能性都为0.2,用随机数表法在该中学抽取容量为n的样本,则n等于()A.80B.160C.200D.280答案:C分析:每个个体被抽的可能性等于样本容量除以总体数,由此列出关于n的方程并求解出结果.=0.2,解得n=200,由题意可知:n400+320+280故选:C.2、某校为了解学生的课外锻炼身体的情况,随机抽取了部分学生,对他们一周的课外锻炼时间进行了统计,统计数据如下表所示:则该校学生一周进行课外锻炼的时间的第40百分位数是()A.8.5B.8C.7D.9答案:A分析:根据百分位数的求法计算即可.抽取的学生人数为6+10+9+8+7=40.由40%×40=16,故第40百分位数为所有数据从小到大排序的第16项与第17项数据的平均数,=8.5.即8+92故选: A.3、下列调查方式较为合适的是()A.为了了解灯管的使用寿命,采用普查的方式B.为了了解我市中学生的视力状况,采用抽样调查的方式C.调查一万张面值为100元的人民币中有无假币,采用抽样调查的方式D.调查当今中学生喜欢什么体育活动,采用普查的方式答案:B分析:根据实际情况选择合适的调查方式即可判断.对A,为了了解灯管的使用寿命,应采用抽样调查的方式,故A错误;对B,为了了解我市中学生的视力状况,采用抽样调查的方式,故B正确;对C,调查一万张面值为100元的人民币中有无假币,采用抽样普查的方式,故C错误;对D,调查当今中学生喜欢什么体育活动,采用抽样普查的方式,故D错误.故选:B.4、2021年3月,树人中学组织三个年级的学生进行“庆祝中国共产党成立100周年”党史知识竞赛.经统计,得到前200名学生分布的饼状图(如图)和前200名中高一学生排名分布的频率条形图(如图),则下列命题错.误.的是()A.成绩前200名的200人中,高一人数比高二人数多30人B.成绩第1-100名的100人中,高一人数不超过一半C.成绩第1-50名的50人中,高三最多有32人D.成绩第51-100名的50人中,高二人数比高一的多答案:D分析:根据饼状图和条形图提供的数据判断.由饼状图,成绩前200名的200人中,高一人数比高二人数多200×(45%−30%)=30,A正确;=45<50,B 由条形图知高一学生在前200名中,前100和后100人数相等,因此高一人数为200×45%×12正确;成绩第1-50名的50人中,高一人数为200×45%×0.2=18,因此高三最多有32人,C正确;第51-100名的50人中,高二人数不确定,无法比较,D错误.故选:D.5、某射击运动员6次的训练成绩分别为:88,91,89,88,86,85,则这6次成绩的第70百分位数为()A.89B.89.5C.90D.90.5答案:A分析:先将数据按从小到大的顺序排列,计算6×70%=4.2不是整数,则所求的是从小到大排列的第5位数6次考试数学成绩从小到大为:85,86,88,88,89,91,6×70%=4.2,∴这名学生6次训练成绩的第70百分位数为89 .故选:A6、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率直方图如图所示,估计棉花纤维的长度的样本数据的80百分位数是()A.29 mmB.29.5 mmC.30 mmD.30.5 mm答案:A分析:先求得棉花纤维的长度在30 mm以下的比例为85%,在25 mm以下的比例为85%-25%=60%,从而可得80百分位数一定位于[25,30)内,进而可求出答案棉花纤维的长度在30 mm以下的比例为(0.01+0.01+0.04+0.06+0.05)×5=0.85=85%,在25 mm以下的比例为85%-25%=60%,因此,80百分位数一定位于[25,30)内,=29,由25+5×0.80−0.600.85−0.60可以估计棉花纤维的长度的样本数据的80百分位数是29 mm.故选:A7、根据气象学上的标准,连续5天的日平均气温低于10℃即为入冬,将连续5天的日平均温度的记录数据(记录数据都是自然数)作为一组样本,现有4组样本①、②、③、④,依次计算得到结果如下:①平均数x̅<4;②平均数x̅<4且极差小于或等于3;③平均数x̅<4且标准差s≤4;④众数等于5且极差小于或等于4.则4组样本中一定符合入冬指标的共有()A .1组B .2组C .3组D .4组答案:B分析:举反例否定①;反证法证明②符合要求;举反例否定③;直接法证明④符合要求.①举反例:0,0,0,4,11,其平均数x̅=3<4.但不符合入冬指标;②假设有数据大于或等于10,由极差小于或等于3可知,则此组数据中的最小值为10−3=7,此时数据的平均数必然大于7,与x̅<4矛盾,故假设错误.则此组数据全部小于10. 符合入冬指标;③举反例:1,1,1,1,11,平均数x̅=3<4,且标准差s =4.但不符合入冬指标;④在众数等于5且极差小于等于4时,则最大数不超过9.符合入冬指标.故选:B .8、关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(x,y );再统计两数能与1构成钝角三角形三边的数对(x,y )的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( )A .4a mB .a+2mC .a+2m mD .4a+2m m答案:D解析:由试验结果知m 对0~1之间的均匀随机数x,y ,满足{0<x <10<y <1,面积为1,再计算构成钝角三角形三边的数对(x,y),满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计π的值.解:根据题意知,m 名同学取m 对都小于1的正实数对(x,y ),即{0<x <10<y <1, 对应区域为边长为1的正方形,其面积为1,若两个正实数x,y 能与1构成钝角三角形三边,则有{x 2+y 2<1x +y >10<x <10<y <1,其面积S =π4−12;则有a m =π4−12,解得π=4a+2m m故选:D .小提示:本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.9、某校高一共有10个班,编号为01,02,…,10,现用抽签法从中抽取3个班进行调查,设高一(5)班被抽到的可能性为a ,高一(6)班被抽到的可能性为b ,则( )A .a =310,b =29B .a =110,b =19 C .a =310,b =310D .a =110,b =110答案:C分析:根据简单随机抽样的定义,分析即可得答案.由简单随机抽样的定义,知每个个体被抽到的可能性相等,故高一(5)班和高一(6)班被抽到的可能性均为310. 故选:C10、为调查参加考试的高二级1200名学生的成绩情况,从中抽查了100名学生的成绩,就这个问题来说,下列说法正确的是( )A .1200名学生是总体B .每个学生是个体C .样本容量是100D .抽取的100名学生是样本答案:C分析:根据总体、个体、样本容量、样本的定义,结合题意,即可判断和选择.根据题意,总体是1200名学生的成绩;个体是每个学生的成绩;样本容量是100,样本是抽取的100名学生的成绩;故正确的是C.故选:C.填空题11、某市A、B、C三个区共有高中学生20000人,其中A区高中学生7000人,现采用分层抽样的方法从这三个区所有高中学生中抽取一个容量为600人的样本进行学习兴趣调查,则A区应抽取__________________.答案:210分析:根据总体数和要抽取的样本数,得到每个个体被抽到的概率,利用这个概率乘以A区的人数,得到A区要抽取的人数.解:由题意知A区在样本中的比例为700020000∴A区应抽取的人数是700020000×600=210.所以答案是:210.12、某单位有员工900人,其中女员工有360人,为做某项调查,拟采用分层抽样的方法抽取容量为150的样本,则应抽取的男员工人数是_______________________.答案:90分析:按照分层抽样的定义,按照比例抽取即可由题意,设应抽取的男员工人数是x则900−360900=x150解得:x=90所以答案是:9013、已知一组数据:20,30,40,50,50,60,70,80,记这组数据的第60百分位数为a,众数为b,则a和b的大小关系是______________.(用“<”“>”或“=”连接)答案:a=b##b=a分析:由百分位数求法得50为第60百分位数,并确定数据的众数,即可比较它们的大小关系.因为8×60%=4.8,所以这组数据的第5个数:50为第60百分位数.观察易知这组数据的众数为50,所以a和b的大小关系是a=b.所以答案是:a=b14、某校从高一新生中随机抽取了一个容量为20的身高样本,数据从小到大排序如下(单位:cm):152 ,155,158,164,164,165,165,165,166,167,168,168,169,170,170,170 ,171,x,174,175,若样本数据的第90百分位数是173,则x的值为________.答案:172分析:根据百分位数的意义求解.百分位数的意义就在于,我们可以了解的某一个样本在整个样本集合中所处的位置,=173,x=172本题第90百分位数是173,所以x+1742故答案为:172小提示:本题考查样本数据的第多少百分位数的概念.15、气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)①甲地5个数据的中位数为24,众数为22;②乙地5个数据的中位数为27,总体均值为24;③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.则肯定进入夏季的地区有_____.答案:①③分析:根据数据的特点进行估计甲、乙、丙三地连续5天的日平均气温的记录数据,分析数据的可能性进行解答即可得出答案.①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22、22、24、25、26,其连续5天的日平均气温均不低于22;②乙地:5个数据的中位数为27,总体均值为24,当5个数据为19、20、27、27、27,可知其连续5天的日平均温度有低于22,故不确定;③丙地:5个数据中有一个数据是32,总体均值为26,若有低于22,假设取21,此时方差就超出了10.8,可知其连续5天的日平均温度均不低于22,如22、25、25、26、32,这组数据的平均值为26,方差为10.8,但是进一步扩大方差就会超过10.8,故③对.则肯定进入夏季的地区有甲、丙两地,故答案为①③.小提示:本题考查中位数、众数、平均数、方差的数据特征,简单的合情推理,解答此题应结合题意,根据平均数的计算方法进行解答、取特殊值即可.解答题16、为了了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如图所示.(1)求图中a的值;(2)估计这种植物果实重量的平均数x̅(同一组中的数据用该组区间的中点值作代表);(3)已知这种植物果实重量不低于37.5克的即为优质果实,现对该种植物果实的某批10000个果实进行检测.据此估算这批果实中的优质果实的个数.答案:(1)a=0.050(2)40(3)7000分析:(1)由各组频率之和为1(面积之和为1)可求得;(2)频率分布直方图用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和估计平均数;(3)用样本频率估计总体概率进行求解.(1)由题意,有(0.020+0.040+0.075+a+0.015)×5=1,解得a=0.050;(2)这种植物果实重量的平均数约为:30×0.020×5+35×0.040×5+40×0.075×5+45×0.050×5+50×0.015×5=40,∴这种植物果实重量的平均数x̅的估计值约为40.(3)样本中,这种植物果实重量不低于37.5克,即优质果实的频率为0 .075×5+0.050×5+0.015×5=0.7,由此估计某批10000个果实中,重量不低于37.5克,即优质果实的概率为0.7,∴这批果实中的优质果实的个数约为10000×0.7=7000个.17、第24届北京冬季奥林匹克运动会于2022年2月4日至2月20日在北京和张家口联合举办.这是中国历史上第一次举办冬季奥运会,它掀起了中国人民参与冬季运动的大热潮.某市举办了中学生滑雪比赛,从中抽取40名学生的测试分数绘制成茎叶图和频率分布直方图如下,后来茎叶图受到了污损,可见部分信息如图.(1)求频率分布直方图中a的值,并根据直方图估计该市全体中学生的测试分数的平均数(同一组中的数据以这组数据所在区间中点的值作代表,结果保留一位小数);(2)现要对测试成绩在前26%的中学生颁发“滑雪达人”证书,并制定出能够获得证书的测试分数线,请你用样本来估计总体,给出这个分数线的估计值.答案:(1)a=0.02,平均数为74.5(2)82分析:(1)计算出测试分数位于[90,100]个数,可求得测试分数位于[80,90)的个数,由此可求得a的值,将每个矩形底边的中点值乘以对应矩形的面积,将所得结果全加可得样本的平均数;(2)设能够获得证书的测试分数线为x,分析可得80<x<90,根据已知条件可得出关于x的等式,求解即可. (1)解:由频率分布直方图可知,测试分数位于[90,100]的频率为10×0.01=0.1,则测试分数位于[90,100]个数为40×0.1=4,所以,测试分数位于[80,90)的个数为40−(4+10+14+4)=8,÷10=0.02.所以a=840估计平均数为55×0.1+65×0.25+75×0.35+85×0.2+95×0.1=74.5.(2)解:因为测试分数位于[90,100]的频率为0.1,测试分数位于[80,90)的频率为0.2,能够获得“滑雪达人”证书的中学生测试分数要在前26%,故设能够获得证书的测试分数线为x,则80<x<90,由(90−x)×0.02=0.26−0.1,可得x=82,所以分数线的估计值为82.18、某中学要从高一年级甲乙两个班级中选择一个班参加电视台组织的“环保知识竞赛”,该校对甲乙两班的参赛选手(每班7人)进行了一次环保知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是85.(1)求x,y的值;(2)根据茎叶图,求甲乙两班同学方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.答案:(1)x=9,y=5;(2)乙班成绩比较稳定,故应选乙班参加.分析:(1)利用茎叶图,根据甲班7名学生成绩的平均分是85,乙班7名学生成绩的中位数是85.先求出x,y,(2)求出乙班平均分,再求出甲班7名学生成绩方差和乙班名学生成绩的方差,由此能求出结果.解:(1)甲班的平均分为:17(75+78+80+80+x+85+92+96)=85;解得x=9,∵乙班7名学生成绩的中位数是85,∴y=5,(2)乙班平均分为:17(75+80+80+85+90+90+95)=85;甲班7名学生成绩方差S12=17(102+72+52+42+02+72+112)=3607,乙班名学生成绩的方差S22=17(102+52+52+02+52+52+102)=3007,∵两个班平均分相同,S22<S12,∴乙班成绩比较稳定,故应选乙班参加.小提示:本题考查茎叶图的应用,解题时要认真审题,属于基础题.19、2019年下半年以来,各地区陆续出台了“垃圾分类”的相关管理条例,实行“垃圾分类”能最大限度地减少垃圾处置量,实现垃圾资源利用,改善垃圾资源环境,某部门在某小区年龄处于[20,45]岁的人中随机地抽取x人,进行了“垃圾分类”相关知识掌握和实施情况的调查,并把达到“垃圾分类”标准的人称为“环保族”,得到如图示各年龄段人数的频率分布直方图和表中的统计数据.(1)求x、y、z的值;(2)根据频率分布直方图,估计这x人年龄的平均值(同一组数据用该区间的中点值代替,结果按四舍五入保留整数);(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,并在这9人中选取2人作为记录员,求选取的2名记录员中至少有一人年龄在[30,35]中的概率.答案:(1){x=200y=0.625z=6;(2)30.75;(3)1318.分析:(1)由频率分布直方图和频数分布表能求出x、y、z;(2)根据频率分布直方图,能估计这x人年龄的平均值;(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,[25,30)中选5人,分别记为A、B、C、D、E,[30,35]中选4人,分别记为a、b、c、d,在这9人中选取2人作为记录员,利用列举法列举出所有的基本事件,然后利用古典概型的概率公式可求得所求事件的概率.(1)由题意得:{x=450.750.06×5=200y=25200×0.04×5=0.625z=200×0.03×5×0.2=6;(2)根据频率分布直方图,估计这x人年龄的平均值为:x=22.5×0.3+27.5×0.2+32 .5×0.2+37.5×0.15+42.5×0.15=30.75;(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,从[25,30)中选:9×2525+20=5人,分别记为A、B、C、D、E,从[30,35]中选:9×2025+20=4人,分别记为a、b、c、d,在这9人中选取2人作为记录员,所有的基本事件有:(A,B)、(A,C)、(A,D)、(A,E)、(A,a)、(A,b)、(A,c)、(A,d)、(B,C)、(B,D)、(B,E)、(B,a)、(B,b)、(B,c)、(B,d)、(C,D)、(C,E)、(C,a)、(C,b)、(C,c)、(C,d)、(D,E)、(D,a)、(D,b)、(D,c)、(D,d)、(E,a)、(E,b)、(E,c)、(E,d)、(a,b)、(a,c)、(a,d)、(b,c)、(b,d)、(c,d),共36种,选取的2名记录员中至少有一人年龄在[30,35]包含的基本事件有:(A,a)、(A,b)、(A,c)、(A,d)、(B,a)、(B,b)、(B,c)、(B,d)、(C,a)、(C,b)、(C,c)、(C,d)、(D,a)、(D,b)、(D,c)、(D,d)、(E,a)、(E,b)、(E,c)、(E,d)、(a,b)、(a,c)、(a,d)、(b,c)、(b,d)、(c,d),共26种,因此,选取的2名记录员中至少有一人年龄在[30,35]中的概率P=2636=1318.小提示:本题考查频率、平均数、概率的求法,考查频数分布表、频率分布直方图、分层抽样、古典概型的性质等基础知识,考查数据分析能力、运算求解能力,是基础题.。

高中统计练习题及讲解

高中统计练习题及讲解

高中统计练习题及讲解一、选择题1. 以下哪个选项是描述数据集中趋势的统计量?- A. 方差- B. 标准差- C. 平均数- D. 极差2. 一组数据的中位数是50,众数是60,这组数据的分布可能是怎样的?- A. 正偏态分布- B. 负偏态分布- C. 对称分布- D. 无法确定二、填空题1. 某班级学生数学成绩的平均数为80分,方差为100,如果一个学生的成绩是90分,那么他的标准分是______。

2. 已知一组数据的中位数为40,如果将这组数据的每个数值都增加10,新的中位数为______。

三、解答题1. 某公司员工的月收入数据如下:4000元,5000元,6000元,7000元,8000元。

请计算这组数据的平均数、中位数和众数。

2. 某班学生期末考试成绩如下:70分,80分,90分,100分。

计算这组数据的方差和标准差。

四、数据分析题某市中学生的身高数据如下(单位:厘米):165,170,175,180,185。

请分析这组数据的分布特征,并计算其平均身高、中位数、众数、方差和标准差。

高中统计练习题讲解一、选择题1. C. 平均数是描述数据集中趋势的统计量,它表示数据集中所有数值的算术平均。

2. A. 如果中位数小于众数,通常意味着数据集呈现正偏态分布。

二、填空题1. 标准分是指一个数值与平均数的差除以标准差。

首先计算平均数:(4000 + 5000 + 6000 + 7000 + 8000) / 5 = 6000。

然后计算标准差:√(100) = 10。

最后计算标准分:(90 - 6000) / 10 = -5。

2. 当数据集中的每个数值都增加一个常数时,中位数也会增加相同的常数。

因此,新的中位数为40 + 10 = 50。

三、解答题1. 平均数 = (4000 + 5000 + 6000 + 7000 + 8000) / 5 = 6000元。

中位数 = 6000元(中间的数值)。

众数 = 6000元(出现次数最多的数值)。

高考数学一轮复习《统计》练习题(含答案)

高考数学一轮复习《统计》练习题(含答案)

高考数学一轮复习《统计》练习题(含答案)一、单选题1.已知条件p :11x -<<,q :x >m ,若p 是q 的充分不必要条件,则实数m 的取值范围是( ) A .[)1,-+∞B .(),1-∞-C .()1,0-D .(],1-∞-2.下表为随机数表的一部分:08015 17727 45318 22374 21115 78253 77214 77402 43236 00210 45521 64237已知甲班有60位同学,编号为00~59号,规定:利用上面的随机数表,从第1行第4列的数开始,从左向右依次读取2个数,则抽到的第8位同学的编号是( ) A .11B .15C .25D .373.一组数据的方差为()20S S ≥,将该组数据都乘以2,所得到的一组新数据的标准差为( )A .22S B .SC .2SD .2S4.甲、乙两所学校的男女生比例如图所示,已知甲校学生总数为1500,乙校学生总数为1000,下列结论错误的是( )A .甲校女生比乙校女生多B .乙校男生比甲校男生少C .乙校女生比甲校男生少D .甲校女生比乙校男生少5.某校共有学生3000人,为了解学生的身高情况,用分层抽样的方法从三个年级中抽取容量为100的样本,其中高一抽取40人,高二抽取30人,则该校高三学生人数为( ) A .600B .800C .900D .12006.设某高中的男生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据()(12)i i x y i n =,,,,,用最小二乘法建立的回归方程为ˆ0.8580.71y x =-,则下列结论中不正确的是( ) A .y 与x 有正的线性相关关系B .回归直线过样本点的中心(),x yC .若该高中某男生身高增加1cm ,则其体重约增加0.85kgD .若该高中某男生身高为170cm ,则可断定其体重必为63.79kg 7.x 是12100,,,x x x 的平均值,5为4120,,,x x x 的平均值,10为4142100,,,x x x 的平均值,则x =( ) A .8B .9C .15D .1528.某学校有男生400人,女生600人.为调查该校全体学生每天睡眠时间,采用分层抽样的方法抽取样本,计算得男生每天睡眠时间均值为7.5小时,方差为1,女生每天睡眠时间为7小时,方差为0.5.若男、女样本量按比例分配,则可估计总体方差为( ). A .0.45B .0.62C .0.7D .0.769.某样本点)()(,1,2,,i i x y i n =⋅⋅⋅的经验回归方程为ˆ0.50.7yx =+,当8x =时,y 的实际值为4.5,则当8x =时,预测值与实际值的差值为( ). A .0.1B .0.2C .0.3D .0.410.若数据9,m ,6,n ,5的平均数为7,方差为2,则数据11,9,21m -,17,21n -的平均数和方差分别为( ) A .13,4B .14,4C .13,8D .14,811.2021年起,我市将试行“3+1+2”的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是( )A .甲的化学成绩领先年级平均分最多.B .甲有2个科目的成绩低于年级平均分.C .甲的成绩最好的前两个科目是化学和地理.D .对甲而言,物理、化学、地理是比较理想的一种选科结果.12.冬末春初,乍暖还寒,人们容易感冒发热,若发生群体性发热,则会影响到人们的身体健康,干扰正常工作生产,某大型公司规定:若任意连续7天,每天不超过5人体温高于37.3℃,则称没有发生群体性发热,下列连续7天体温高于37.3℃人数的统计特征数中,能判定该公司没有发生群体性发热的为( )(1)中位数为3,众数为2 (2)均值小于1,中位数为1(3)均值为3,众数为4 (4)均值为2 A .(1)(3)B .(3)(4)C .(2)(3)D .(2)(4)二、填空题13.某校高一、高二、高三年级的学生人数之比为5:5:4,现按年级用分层抽样的方法抽取若干人,若抽取的高三年级的学生人数为20,则抽取的样本容量为______.14.已知具有线性相关的变量x 、y ,设其样本点为()(1,2,,,8)i i i A x y i =,回归直线方程为1ˆ2yx b =+,若128(6,2)OA OA OA +++=(O 为原点),则b =_______.15.已知一组数据按顺序排列为:12,16,20,n ,46,51,58,60.若这组数据的第30百分位数的两倍与这组数据的第50百分位数相等,则n 的值为___________.16.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中的数据得线性回归方程为y bx a =+,其中20b =-,预测当产品价格定为9.5(元)时,销量约为__________件.三、解答题17.某区政府组织了以“不忘初心,牢记使命”为主题的教育活动,为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n 名,获得了他们一周参与主题教育活动时间(单位:h )的频率分布直方图如图所示,已知参与主题教育活动时间在(]12,16内的人数为92.(1)求n 的值;(2)以每组数据所在区间的中点值作为本组的代表,估算这些党员干部参与主题教育活动时间的中位数(中位数精确到0.01).(3)如果计划对参与主题教育活动时间在(]16,24内的党员干部给予奖励,且在(]16,20,(]20,24内的分别评为二等奖和一等奖,那么按照分层抽样的方法从获得一、二等奖的党员干部中选取5人参加社区义务宣讲活动,再从这5人中随机抽取2人作为主宣讲人,求这2人均是二等奖的概率.18.由于疫情影响,今年我们学校开展线上教学,高一年级某班班主任为了了解学生上网学习时间,对本班40名学生某天上网学习时间进行了调查,将数据(取整数)整理后,绘制出如图所示频率分布直方图,已知从左到右各个小组的频率分别是0.15,0.25,0.35,0.20,0.05,则根据直方图所提供的信息:(1)这一天上网学习时间在100~119分钟之间的学生有多少人?(2)估计这40位同学的线上平均学习时间(同一组中的数据用该组区间的中点值为代表)以及中位数分别是多少?(精确到0.1)(3)如果只用这40名学生这一天上网学习时间作为样本去推断该校高一年级全体学生该天的上网学习时间,这样推断是否合理?为什么?19.省政府坚持以习近平新时代中国特色社会主义思想为指导,落实全国、全省教育大会部署,坚持社会主义办学方向,落实立德树人根本任务,发展素质教育,推进育人方式变革,引导全社会树立科学的教育质量观和人才培养观,切实减轻有损中小学生身心健康的过重学业负担,遵循教育教学规律,促进中小学生健康成长,培养德智体美劳全面发展的社会主义建设者和接班人.从某市抽取1000名一年级小学生进行调查,统计他们每周做作业的时长(单位:小时),根据结果绘制的频率分布直方图如下:(1)根据频率分布直方图,求所有被抽查小学生每周做作业的平均时长和中位数;(同一组中的数据用该组区间的中点值作代表)(2)①为了进一步了解,现采用分层抽样的方法从[8,10]和[10,12]组中抽取50名学生,则两组各抽取多少人?②再利用分层抽样从抽取的50人中选5人参加一个座谈会.现从参加座谈会的5名学生中随机抽取两人发言,求[8,10]小组中恰有2人发言的概率?20.为了调查某地区高中女生的日均消费情况,研究人员随机抽取了该地区5000名高中女生作出调查,所得数据统计如下图所示.(1)求a 的值以及这5000名高中女生的日均消费的平均数(同一组数据用该组区间的中间值代替);(2)在样本中,现按照分层抽样的方法从该地区消费在[)15,20与[)20,25的高中女生中随机抽取9人,若再从9人中随机抽取3人,记这3人中消费在[)15,20的人数为X ,求X 的分布列以及数学期望.21.道德与法律的联系:法律、道德都是行为规范,都是为规范人们的行为而规定的行动准则.1.法律需要道德的奠基和撑持;2.道德的实施需要法律的强制保障.某校进行了一次道德与法律的相关测试(满分:100分),并随机抽取了50个统计其分数,得到的结果如下表所示: 成绩/分 [)0,20[)20,40[)40,60[)60,80[)80,100人数/个 44102210(1)若同一组数据用该区间中点值作代表,试估计这次测试的平均分和中位数(所得结果四舍五入保留整数);(2)假设处于[)20,40的4个人的成绩分别为20,26,35,38,求表中成绩的10%分位数; (3)以频率估计概率,若在这个学校中,随机挑选3人,记3人的成绩在[)80,100间的数量为随机变量X ,求X 的分布列和数学期望()E X .22.某校从高三年级学生中随机抽取100名学生的某次数学考试成绩,将其成绩分成[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的5组,制成如图所示的频率分布直方图.(1)求图中x 的值;(2)估计这组数据的平均数;(3)若成绩在[)50,60内的学生中男生占40%.现从成绩在[)50,60内的学生中随机抽取2人进行分析,求2人中恰有1名女生的概率.23.某校从高三学生中选取了50名学生参加数学质量检测,成绩(单位:分)分组及各组的频数如下:[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出频率分布表;(2)画出频率直方图及频率折线图.24.某农业科学研究所为检验某农作物种子的培育有效率,进行了如下试验:一是对该农作物的10000粒种子进行培育,发现有20粒种子未发芽;二是将未进行培育的该农作物的2500粒种子种植在5块试验田中,各试验田种植的种子数及未发芽数如下表:(1)求y 关于x 的回归直线方程; (2)在上述试验下,若以1nN-表示该农作物种子的培育有效率,其中n 为进行培育的10000粒种子的未发芽数,N 为依据上述回归方程估算的未进行培育的10000粒种子的未发芽数,请估计该农作物种子的培育有效率(结果保留3位有效数字).参考公式;在回归方程ˆˆˆy bx a =+中,1221ˆni ii nii x y nx ybxnx==-⋅=-∑∑,ˆˆa y bx=-参考答案1.D2.A3.D4.D5.C6.D7.A8.D9.B10.C11.A12.D 13.7014.18-##-0.12515.34 16.6017.(1)由已知可得,0.25(0.02500.04750.05000.0125)0.1150a =-+++=. 则0.1150492n ⨯⨯=,得922000.11504n ==⨯.(2)设中位数为x ,则0.050040.01254(16)0.11500.5x ⨯+⨯+-⨯=,得13.83x ≈.(3)按照分层抽样的方法从(16,20]内选取的人数为0.050540.05000.0125⨯=+,从(20,24]内选取的人数为0.0125510.05000.0125⨯=+.记二等奖的4人分别为a ,b ,c ,d ,一等奖的1人为A ,事件E 为“从这5人中抽取2人作为主宣讲人,且这2人均是二等奖”.从这5人中随机抽取2人的基本事件为(,)a b ,(,)a c ,(,)a d ,(,)a A ,(,)b c ,(,)b d ,(,)b A ,(,)c d ,(,)c A ,(,)d A ,共10种,其中2人均是二等奖的情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,(,)c d ,共6种, 由古典概型的概率计算公式得()63105P E ==. 18.(1)因为频数=样本容量⨯频率,一天上网学习时间在100119分钟之间的学生所占频率为0.35,所以一天上网学习时间在100~119分钟之间的学生人数为400.3514⨯=(人) (2)40位同学的线上学习时间估计值为:0.1569.90.2589.90.35109.90.20129.90.05149.9104.9⨯+⨯+⨯+⨯+⨯=分钟在中位数左边和右边的小长方形的面积和是相等的,设在99.9~119.9靠近左侧长度为x ,则0.15+0.25+0.350.5x =解得0.27x ≈; 所以中位数估计值是99.9+0.27=100.17100.2≈(3)因为该样本的选取只在高一某班,不具有代表性,所以这样推断不合理. 19.(1)设抽查学生做作业的平均时长为x ,中位数为y ,0.0510.130.2550.370.1590.1110.0513 6.8x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 0.050.10.250.15(6)0.5y y =+++⨯-=,解得203y =即抽查学生做作业的平均时长为6.8,中位数为203. (2)①[8,10]组的人数为10000.15150⨯=人,设抽取的人数为a ,[]10,12组的人数为10000.1100⨯=人, 设抽取的人数为b ,则50150100250a b ==,解得30a =,20b = 所以在[8,10]和[]10,12两组中分别抽取30人和20人,②再抽取5人,其中[8,10]和[]10,12两组中分别抽取3人和2人,将[8,10]组中被抽取的工作人员标记为1A ,2A ,3A ,将[]10,12中的标记为1B ,2B . 设事件C 表示从[8,10]小组中恰好抽取2人,则抽取的情况如下:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}23,A A ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B 共10种情况;其中在[8,10]中恰好抽取2人有3种,则3()10P C =. 20.(1)由题意得,()20.040.080.0651a +++⨯=,解得0.01a =,故所求平均数为17.50.427.50.332.50.0537.50.0524.25⨯0.2+22.5⨯+⨯+⨯++=(元); (2)由题意得,消费在[)15,20,[)20,25的高中女生分别有3人和6人,故X 的可能取值为0,1,2,3,∴()6033395021C C P X C ===,()21633915128C C P X C ===,()1263393214C C P X C ===,()0363391384C C P X C ===, 故X 的分布列为:∴()515310123121281484E X =⨯+⨯+⨯+⨯=; 故答案为:1. 21.(1)估计这次测试的平均分为1043045010702290106250x ⨯+⨯+⨯+⨯+⨯==(分);设这次测试的中位数为0x ,显然()060,80x ∈,则060441022200.550x -+++⋅=,解得066x ≈(分). 即估计这次测试的中位数为66.(2)由于5010%5⨯=,所以表中成绩的10%分位数为2026232+=. (3)X 所有可能取值为0,1,2,3.由表中数据可知,任意挑选一人,成绩在[)80,100间的概率为101505=. 所以()346405125P X ⎛⎫=== ⎪⎝⎭,()21341481C 55125P X ⎛⎫=== ⎪⎝⎭, ()122341122C 55125P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()31135125P X ⎛⎫=== ⎪⎝⎭, 故X 的分布列为故X 的数学期望()6448121301231251251251255E X =⨯+⨯+⨯+⨯=. 22.(1)由频率分布直方图得()0.0050.0350.0300.010101x ++++⨯=,解得0.020x =, 所以图中x 的值是0.020.(2)由频率分布直方图得这组数据的平均数: (550.005650.020750.03585x =⨯+⨯+⨯+⨯)0.030950.0101077+⨯⨯=, 所以这组数据的平均数为77.(3)数学成绩在[)50,60内的人数为0. 005101005⨯⨯=(人),其中男生人数为540%2⨯=(人),则女生人数为3人,记2名男生分别为1A ,2A ,3名女生分别为1B ,2B ,3B ,从数学成绩在[)50,60内的5人中随机抽取2人进行分析的基本事件为:121112132122A A A B A B A B A B A B ,,,,,,23121323A B B B B B B B ,,,,共10个不同结果,它们等可能, 其中2人中恰有1名女生的基本事件为111213212223,,,,,A B A B A B A B A B A B ,共6种结果, 所以2人中恰有1名女生的概率为为63105=. 23.(1)解:频率分布表如下:(2) 频率直方图及频率折线图如图所示.24. (1)依题意,3004005006007005005x ++++==,2466755y ++++==, 513002400450066006700713700ii i x y ==⋅+⋅+⋅+⋅+⋅=∑, 52222221(34567)100001350000i i x==++++⋅=∑, 于是得512252113700550051200ˆ0.01213500005500100000i ii i i x y nx y b x nx==-⋅-⋅⋅====-⋅-∑∑,ˆˆ50.0125001ay bx =-=-⨯=-, 所以y 关于x 的回归直线方程为ˆ0.0121yx =-; (2)由(1)知,估计未进行培育的10000粒种子的未发芽数N 约为:ˆ0.012100001119y =⨯-=,而已培育的10000粒种子有20粒种子未发芽,即20n =, 所以该农作物种子的培育有效率为209910832119119-=≈。

(压轴题)高中数学必修三第一章《统计》测试(有答案解析)

(压轴题)高中数学必修三第一章《统计》测试(有答案解析)

一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某校举行演讲比赛,9位评委给选手A 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若统计员计算无误,则数字x 应该是( )A .5B .4C .3D .23.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s <>4.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+5.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18556.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③B .①③④C .①②④D .②③④7.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,88.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为A .y = x-1B .y = x+1C .y =88+12x D .y = 1769.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .16010.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( ) A .60B .50C .40D .3011.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变12.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .18二、填空题13.东汉·王充《论衡·宜汉篇》:“且孔子所谓一世,三十年也.”,清代·段玉裁《说文解字注》:“三十年为一世.按父子相继曰世”.“一世”又叫“一代”,到了唐朝,为了避李世民的讳,“一世”方改为“一代”,当代中国学者测算“一代”平均为25年.另据美国麦肯锡公司的研究报告显示,全球家庭企业的平均寿命其实只有24年,其中只有约30%的家族企业可以传到第二代,能够传到第三代的家族企业数量为总量的13%,只有5%的家族企业在第三代后还能够继续为股东创造价值.根据上述材料,可以推断美国学者认为“一代”应为__________年.14.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=15.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份A 的含量x (单位:g )与药物功效y (单位:药物单位)之间具有关系:(20)y x x =-.检测这种药品一个批次的5个样本,得到成份A 的平均值为8g ,标准差为2g ,估计这批中成药的药物功效的平均值为__________药物单位.16.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..17.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.18.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.19.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。

高中数学选修1-2第一章课后习题解答

高中数学选修1-2第一章课后习题解答

新课程标准数学选修1—2第一章课后习题解答第一章统计案例1.1回归分析的基本思想及其初步应用练习(P8)1、画散点图的目的是通过变量的散点图判断两个变量更近似于什么样的函数关系,以确定是否直接用线性回归模型来拟合原始数据.说明:学生在对常用的函数图象比较了解的情况下,通过观察散点图可以判断两个变量的关系更近似于哪种函数.2、分析残差可以帮助我们解决以下两个问题:(1)寻找异常点,就是残差特别大的点,考察相应的样本数据是否有错.(2)分析残差图可以发现模型选择是否合适.说明:分析残差是回归诊断的一部分,可以帮助我们发现样本数据中的错误,分析模型选择是否合适,是否有其他变量需要加入到模型中,模型的假设是否正确等. 本题只要求学生能回答上面两点即可,主要让学生体会残差和残差图可以用于判断模型的拟合效果.3、(1)解释变量和预报变量的关系式线性函数关系.R=.(2)21说明:如果所有的样本点都在一条直线上,建立的线性回归模型一定是该直线,所以每个=+,没有随机误差项,是严样本点的残差均为0,残差平方和也为0,即此时的模型为y bx aR=.格的一次函数关系. 通过计算可得21习题1.1 (P9)1、(1)由表中数据制作的散点图如下:从散点图中可以看出GDP值与年份近似呈线性关系.y表示GDP值,t表示年份. 根据截距和斜率的最小二乘计算公式,得(2)用tˆ14292537.729a≈-,ˆ7191.969b≈从而得线性回归方程ˆ7191.96914292537.729=-.y t残差计算结果见下表.GDP 值与年份线性拟合残差表(年实际GDP 值为117251.9,所以预报与实际相差4275.540-.(4)上面建立的回归方程的20.974R =,说明年份能够解释约97%的GDP 值变化,因此所建立的模型能够很好地刻画GDP 和年份的关系.说明:关于2003年的GDP 值的来源,不同的渠道可能会有所不同.2、说明:本题的结果与具体的数据有关,所以答案不唯一.3、由表中数据得散点图如下:从散点图中可以看出,震级x 与大于或等于该震级的地震数N 之间不呈线性相关关系,随着x 的减少,所考察的地震数N 近似地以指数形式增长. 做变换lg y N =,得到的数据如下表所示.x 和y 的散点图如下:从这个散点图中可以看出x 和y 之间有很强的线性相关性,因此可以用线性回归模型拟合它们之间的关系. 根据截距和斜率的最小二乘计算公式,得ˆ 6.704a≈,ˆ0.741b ≈-, 故线性回归方程为 ˆ0.741 6.704y x =-+. 20.997R ≈,说明x 可以解释y 的99.7%的变化.因此,可以用回归方程 0.741 6.704ˆ10x N-+= 描述x 和N 之间的关系. 1.2独立性检验的基本思想及其初步应用练习(P15)列联表的条形图如图所示.由图及表直观判断,好像“成绩优秀与班级有关系”. 因为2K 的观测值0.653 6.635k ≈<,由教科书中表1-11克重,在犯错误的概率不超过0.01的前提下,不能认为“成绩与班级有关系”.说明:(1)教师应要求学生画出等高条形图后,从图形上判断两个分类变量之间是否有关系. 这里通过图形的直观感觉的结果可能会出错.(2)本题与例题不同,本题计算得到的2K 的观测值比较小,所以没有理由说明“成绩优秀与班级有关系”. 这与反证法也有类似的地方,在使用反证法证明结论时,假设结论不成立的条件下如果没有推出矛盾,并不能说明结论成立也不能说明结论不成立. 在独立性检验中,没有推出小概率事件发生类似于反证法中没有推出矛盾.习题1.2 (P16)1、假设“服药与患病之间没有关系”,则2K 的值应该比较小;如果2K 的值很大,则说明很可能“服药与患病之间没有关系”. 由列联表中数据可得2K 的观测值 6.110 5.024k ≈>,而由教科书表1-11,得2( 5.024)0.025P K ≥≈,所以在犯错误的概率不超过0.025的前提下可以认为“服药与患病之间有关系”. 又因为服药群体中患病的频率0.182小于没有服药群体中患病的频率0.400,所以“服药与患病之间关系”可以解释为药物对于疾病有预防作用. 因此在犯错误的概率不超过0.025的前提下,可以认为药物有效.说明:仿照例1,学生很容易完成此题,但希望学生能理解独立性检验在这里的具体含义,即“服药与患病之间关系”可以解释为“药物对于疾病有预防作用”.2、如果“性别与读营养说明之间没有关系”,由题目中所给数据计算,得2K 的观测值为8.416k ≈,而由教科书中表1-11知2(7.879)0.005P K ≥≈,所以在犯错误的概率不超过0.005的前提下认为“性别与读营养说明之间有关系”.3、说明:需要收集数据,所有没有统一答案. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.4、说明:需要从媒体上收集数据,学生关心的问题不同,收集的数据会不同. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.第一章 复习参考题A 组(P19)根据散点图,可以认为中国人口总数与年份呈现很强的线性相关关系,因此选用线性回归模型建立回归方程.由最小二乘法的计算公式,得 2095141.503a ≈-,1110.903b ≈,则线性回归方程为 ˆ1110.9032095141.503yx =-. 由2R 的计算公式,得 20.994R ≈,明线性回归模型对数据的拟合效果很好.根据回归方程,,预计2003年末中国人口总数约为129997万人,而实际情况为129227万人,预测误差为770万人;预计2004年末中国人口总数约为131108万人,而实际情况为129988万人,预测误差为1120万人.说明:数据来源为《中国统计年鉴》(2003). 由于人数为整数,所以预测的数据经过四舍五入的取整运算.2、(1)将销售总额作为横轴,利润作为纵轴,根据表中数据绘制散点图如下:由于散点图中的样本点基本上在一个带形区域内分布,猜想销售总额与利润之间呈现线性相关关系.(2)由最小二乘法的计算公式,得 ˆ1334.5a≈,ˆ0.026b ≈, 则线性回归方程为 ˆ0.0261334.5yx =+ 其残差值计算结果见下表:(3)对于(2)中所建立的线性回归方程,20.457R ≈,说明在线性回归模型中销售总额只能解释利润变化的46%,所以线性回归模型不能很好地刻画销售总额和利润之间的关系. 说明:此题也可以建立对数模型或二次回归模型等,只要计算和分析合理,就算正确.3、由所给数据计算得2K 的观测值为 3.689k ≈,而由教科书中表1-11知2( 2.706)0.10P K ≥=所以在犯错误的概率不超过0.10的前提下认为“婴儿的性别与出生的时间有关系”.第一章 复习参考题B 组(P19)1、因为 21(,)()ni i i Q a b y a bx ==--∑21(()())n i i i y bx y bx a y bx ==--+--+∑ 2211()()n n i i i i y bx y bx a y bx ===--++-+∑∑12()()ni i i y bx y bx a y bx =---+-+∑ 并且221()()n i a y bx n a y bx =-+=-+∑,12()()n i i i y bx y bx a y bx =--+-+∑ 1()(())ni i i a y bx y bx ny nbx ==-+--+∑ ()()0a y b x n y n b xn y n b x=-+--+= 所以 221(,)()()ni i i Q a b y bx y bx n a y bx ==--++-+∑.考察上面的等式,等号右边的求和号中不包含a ,而另外一项非负,所以ˆa和ˆb 必然使得等号右边的最后一项达到最小值,即 ˆˆ0ay bx -+=, 即ˆˆy a bx =+. 2、总偏差平方和21()n i i y y =-∑表示总的效应,即因变量的变化效应;残差平方和21ˆ()ni i y y =-∑表示随机误差的效应,即随机误差的变化效应;回归平方和21ˆ()ni yy =-∑表示表示变量的效应,即自变量的变化效应. 等式 222111ˆˆ()()()n n n i ii i i y y y y y y ===-=-+-∑∑∑ 表示因变量的变化总效应等于随机误差的变化效应与自变量的变化效应之和.3、说明:该题主要是考察学生应用回归分析模型解决实际问题的能力,解答应该包括如何获取数据,如何根据散点图寻找合适的模型去拟合数据,以及所得结果的解释三方面的内容.。

高中数学统计试题及答案

高中数学统计试题及答案

高中数学统计试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项是描述统计学中的“总体”概念?A. 某班级所有学生的身高B. 某次考试全班学生的成绩C. 某城市所有居民的年收入D. 某次抽样调查中的样本数据答案:C2. 某班级有50名学生,随机抽取5名学生进行身高测量,这个抽样方法属于:A. 简单随机抽样B. 分层抽样C. 系统抽样D. 整群抽样答案:A3. 某次考试的平均分是85分,标准差是10分,那么这次考试的成绩分布:A. 呈正态分布B. 呈均匀分布C. 呈指数分布D. 呈二项分布答案:A4. 以下哪个统计量是衡量数据集中趋势的指标?A. 方差B. 标准差C. 均值D. 极差答案:C5. 某工厂生产的产品合格率为90%,那么不合格率是:A. 10%B. 90%C. 50%D. 70%答案:A二、填空题(每题2分,共10分)6. 一组数据的平均数是50,中位数是45,众数是30,这组数据的分布情况是________。

答案:右偏7. 某班学生数学成绩的方差是25,这表明该班学生成绩的________。

答案:波动较大8. 某次调查中,样本容量为100,样本均值为80,样本方差为16,那么样本的标准差是________。

答案:49. 某次考试中,有30%的学生成绩在80分以上,70%的学生成绩在80分以下,这符合________分布。

答案:正态分布10. 某商品的销售额为10000元,销售量为200件,那么该商品的平均单价是________。

答案:50元三、简答题(每题7分,共14分)11. 什么是统计中的“样本”和“总体”?请简述它们的区别。

答案:样本是指从总体中随机抽取的一部分个体,用于代表总体进行研究。

总体是指研究对象的全部个体。

区别在于样本是总体的一部分,而总体包含了所有研究对象。

12. 请简述什么是正态分布,并说明其特点。

答案:正态分布是一种连续概率分布,其形状呈钟形曲线,也称为高斯分布。

高中数学统计初步知识点问答

高中数学统计初步知识点问答

一、什么是众数。

一组数据中出现次数最多的那个数据,叫做这组数据的众数。

众数的特点。

①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。

但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。

此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。

3.众数与平均数的区别。

众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。

二、.中位数的概念。

一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。

三 .众数、中位数及平均数的求法。

①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。

③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。

四、中位数与众数的特点。

⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据;⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数;⑶中位数的单位与数据的单位相同;⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同;(6)众数可能是一个或多个甚至没有;(7)平均数、众数和中位数都是描述一组数据集中趋势的量。

五.平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响; ⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。

(压轴题)高中数学必修三第一章《统计》检测题(含答案解析)(1)

(压轴题)高中数学必修三第一章《统计》检测题(含答案解析)(1)

一、选择题1.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件2.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .163.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .724.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生5.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④6.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为37.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .918.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位9.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .1810.已知某企业上半年前5个月产品广告投入与利润额统计如下:由此所得回归方程为7.5ˆyx a =+,若6月份广告投入10(万元)估计所获利润为( ) A .97万元B .96.5万元C .95.25万元D .97.25万元11.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .1112.从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为( ) A .112种B .100种C .90种D .80种二、填空题13.用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为1~400,按编号顺序平均分为20个组.若第1组中用抽签的方法确定抽出的号码为11,则第17组抽取的号码为________.14.对具有线性相关关系的变量x ,y 有一组观测数据()(),1,2,3,,8i i x y i =,其回归直线方程是12y x a =+,且8116i i x ==∑,8148i i y ==∑,则实数a =__________.15.通过市场调查,得到某种产品的资金投入x (单位:万元)与获得的利润y (单位:万元)的数据,如表所示:根据表格提供的数据,用最小二乘法求线性回归直线方程为0.36ˆˆybx =-,现投入资金15万元,求获得利润的估计值(单位:万元)为_____________.16.已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.17.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.18.总体由编号为01,02,⋅⋅⋅,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.19.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.20.已知一组数据x ,8,7,9,7,若这组数据的平均数为8,则它们的方差为______.三、解答题21.2020年1月末,新冠疫情爆发,经过全国人民的努力,2月中旬,疫情得到了初步的控制,湖北省以外地区的每日新增确诊人数开始减少,某同学针对这个问题,选取他在统计学中学到的一元线性回归模型,作了数学探究:他于2月17日统计了2月7日至16日这十天湖北省以外地区的每日新增确诊人数,表格如下: 日期 2.7 2.8 2.9 2.10 2.11 2.12 2.132.14 2.15 2.16代号x 123 45 6 78910新增确诊人数y558 509444381 377 312 267221166 115y x y x 计算出: 5.5,335x y ==,()()1013955iii x x y y =--=-∑,()210182.5ii x x =-=∑(1)请你帮这位同学计算出y 与x 的线性回归方程(精确到0.1),然后根据这个方程估计湖北省以外地区新增确诊人数为零时的大概日期;附:回归方程y bx a =+中斜率和截距的最小二乘法估计公式分别为:()()()1012101iii ii x x y y b x x ==--=-∑∑,a y bx =-(2)实际上2月17日至2月22日的新增确诊人数如下:出评价.22.据统计某品牌服装专卖店一周内每天获取得纯利润y (百元)与每天销售这种服装件数x (百件)之间有如下一组数据.该专卖店计划在国庆节举行大型促销活动以提高该品牌服装的知名度,为了检验服装的质量,现从厂家购进的500件服装中抽取60件进行检验,(服装进货编号为001-500). (1)利用随机数表抽样本时,如果从随机数表第8行第2列的数开始按三位数连贯向右读取,试写出最先检测的5件服装的编号;(2)求该专卖店每天的纯利y 与每天销售件数x 之间的回归直线方程.(精确到0.01) (3)估计每天销售1200件这种服装时获多少纯利润? 附表:(随机数表第7行至第9行)84421 75331 57245 50688 77047 44767 21763 35025 83921 20676 63016 47859 16955 56719 98105 07185 12867 35807 44395 23879 33211 23429 78645 60782 52420 74438 15510 01342 99660 27954 参考数据:721280i i x==∑,72145309i i y ==∑,713487i i i x y ==∑.参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-23.某市为了解疫情过后制造业企业的复工复产情况,随机调查了100家企业,得到这些企业4月份较3月份产值增长率x 的频率分布表如下:企业数13 40 35 8 4(1)估计制造业企业中产值增长率不低于60%的企业比例及产值负增长的企业比例; (2)求制造业企业产值增长率的平均数与方差的估计值(同一组中的数据用该组区间的中点值为代表).24.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表: 气温()x ℃ 27 29 30 32 33 35 数量y121520272836(1)画出散点图,并求出y 关于x 的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据11(,)x y ,22(,)x y ,,(,)n n x y 的回归直线y a bx =+的斜率和截距的最小二乘估计为()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆa y bx=- 25.某学校高一100名学生参加数学竞赛,成绩均在40分到100分之间.学生成绩的频率分布直方图如图:(1)估计这100名学生分数的中位数与平均数;(精确到0.1)(2)某老师抽取了10名学生的分数:12310,,,...,x x x x ,已知这10个分数的平均数90x =,标准差6s =,若剔除其中的100和80两个分数,求剩余8个分数的平均数与标准差.(参考公式:221nii xnx s n=-=∑(3)该学校有3座构造相同教学楼,各教学楼高均为20米,东西长均为60米,南北宽均为20米.其中1号教学楼在2号教学楼的正南且楼距为40米,3号教学楼在2号教学楼的正东且楼距为72米.现有3种型号的考试屏蔽仪,它们的信号覆盖半径依次为35,55,105米,每个售价相应依次为1500,2000,4000元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为100元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:22221044100,19236864,11012100===)26.在社会实践活动中,“求知”小组为了研究某种商品的价格x (元)和需求量y (件)之间的关系,随机统计了11月1日至11月5日该商品价格和需求量的情况,得到如下资料: 日期 11月1日 11月2日 11月3日 11月4日 11月5日 x (元) 14 16 18 20 22 y (件)1210743该小组所确定的研究方案是:先从这五天中选取2天数据,用剩下的3天数据求线性回归方程,再对被选取的2天数据进行检验.(1)若选取的是11月1日与11月5日两天数据,请根据11月2日至11月4日的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2件,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?参考公式:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.2.A解析:A 【分析】先弄清楚程序框图中是统计成绩不低于90分的学生人数,然后从茎叶图中将不低于90分的个数数出来,即为输出的结果. 【详解】176A =,1i =,16i ≤成立,190A ≥不成立,112i =+=; 279A =,2i =,16i ≤成立,290A ≥不成立,112i =+=;792A =,7i =,16i ≤成立,790A ≥成立,011n =+=,718i =+=;依此类推,上述程序框图是统计成绩不低于90分的学生人数,从茎叶图中可知,不低于90分的学生数为10,故选A . 【点睛】本题考查茎叶图与程序框图的综合应用,理解程序框图的意义,是解本题的关键,考查理解能力,属于中等题.3.B解析:B 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.4.C解析:C 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.5.B解析:B 【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯,故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③. 故选B. 【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.6.D解析:D 【详解】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差7.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.8.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C.【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.9.C解析:C【解析】【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在高三年级中抽取的人数.【详解】 根据题意得,用分层抽样在各层中的抽样比为421105020=, 则在高三年级抽取的人数是14001625⨯=人, 故选C.【点睛】该题所考查的是有关分层抽样的问题,在解题的过程中,需要明确无论采用哪种抽样方法,都必须保证每个个体被抽到的概率是相等的,所以注意成比例的问题. 10.C解析:C【解析】【分析】首先求出x y ,的平均数,将样本中心点代入回归方程中求出a 的值,然后写出回归方程,然后将10x =代入求解即可【详解】()19.59.39.18.99.79.35x =⨯++++= ()19289898793905y =⨯++++= 代入到回归方程为7.5ˆyx a =+,解得20.25a = 7.25ˆ50.2yx ∴=+ 将10x =代入7.50.5ˆ22yx =+,解得ˆ95.25y = 故选C【点睛】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。

高中数学统计试题及答案

高中数学统计试题及答案

高中数学统计试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是描述数据集中趋势的统计量?A. 方差B. 中位数C. 众数D. 标准差答案:B2. 在一组数据中,如果所有数据都相等,则该组数据的方差为:A. 0B. 1C. 无法确定D. 一个正数答案:A3. 以下哪个选项是描述数据离散程度的统计量?A. 平均数B. 众数C. 标准差D. 中位数答案:C4. 一组数据的众数是指:A. 数据中出现次数最多的数B. 数据中最小的数C. 数据中最大的数D. 数据中的平均数答案:A5. 在统计学中,标准差是用来衡量:A. 数据的集中程度B. 数据的离散程度C. 数据的对称性D. 数据的偏态答案:B6. 如果一组数据的平均数是10,标准差是2,则这组数据的方差是:A. 2B. 4C. 10D. 20答案:B7. 以下哪个选项不是描述数据分布的统计量?A. 平均数B. 标准差C. 众数D. 相关系数答案:D8. 一组数据的中位数是:A. 数据中最大的数B. 数据中最小的数C. 数据中居于中间位置的数D. 数据中的平均数答案:C9. 如果一组数据的方差是0,则这组数据的特点是:A. 所有数据都相等B. 所有数据都大于0C. 所有数据都小于0D. 无法确定答案:A10. 在统计学中,相关系数是用来衡量:A. 数据的集中程度B. 数据的离散程度C. 两个变量之间的相关性D. 数据的对称性答案:C二、填空题(每题4分,共20分)1. 一组数据的众数是______,即数据中出现次数最多的数。

答案:众数2. 如果一组数据的方差是4,则这组数据的标准差是______。

答案:23. 在统计学中,数据的中位数是将数据从小到大排序后,位于中间位置的数,如果数据个数为奇数,则中位数是______。

答案:中间的数4. 当一组数据的方差为0时,说明这组数据的特点是所有数据都______。

答案:相等5. 相关系数的取值范围在______之间。

高中数学统计练习题

高中数学统计练习题

高中数学统计练习题一、选择题1. 某班级有50名学生,随机抽取5名学生进行数学成绩调查,这种抽样方法属于:A. 简单随机抽样B. 分层抽样C. 系统抽样D. 分群抽样2. 下列哪个选项不是描述统计量?A. 平均数B. 中位数C. 众数D. 方差3. 一组数据的方差是20,如果每个数据都增加10,新的方差是:A. 20B. 30C. 40D. 50二、填空题4. 在一组数据中,如果所有数据都乘以一个常数k,则新的方差是原来的________倍。

5. 某班有30名学生,数学成绩的平均分为80分,标准差为10分。

假设成绩分布接近正态分布,那么成绩在70分到90分之间的学生大约有________人。

三、简答题6. 解释什么是标准差,并说明它在统计学中的作用。

7. 什么是正态分布?请简述其特点。

四、计算题8. 某工厂生产一批零件,测量了10个零件的直径,数据如下(单位:毫米):20.1, 20.2, 20.3, 20.1, 20.4, 20.2, 20.3, 20.2, 20.1, 20.5请计算这组数据的平均数、中位数、众数和标准差。

9. 某学校对100名学生进行了身高测量,得到平均身高为170厘米,标准差为8厘米。

如果将所有数据向上平移10厘米,新的平均身高和标准差是多少?五、应用题10. 某公司对员工的月收入进行调查,得到以下数据(单位:千元): 4, 5, 6, 7, 8, 9, 10, 11, 12, 13请计算这组数据的平均数、中位数、众数,并画出频率分布直方图。

11. 假设某地区有1000名学生参加高考,其中数学成绩的平均分为60分,标准差为15分。

如果一个学生的成绩是75分,请问这个成绩在所有学生中的百分位数是多少?六、论述题12. 论述统计学在现实生活中的应用,并给出至少两个具体的例子。

通过这些练习题,学生可以加深对高中数学统计部分的理解,包括抽样方法、统计量、正态分布等概念,并通过实际计算和应用题来提高解决实际问题的能力。

高一年级数学统计初步练习题及答案

高一年级数学统计初步练习题及答案

统计初步练习题及答案一. 选择题(每题4分)1.在用样本频率估计总体分布的过程中:下列说法正确的是( C ) A:总体容量越大:估计越精确 B:总体容量越小:估计越精确 C:样本容量越大:估计越精确 D:样本容量越小:估计越精确 2.刻画数据的离散程度的度量,下列说法正确的是( )(1) 应充分利用所得的数据,以便提供更确切的信息; (2) 可以用多个数值来刻画数据的离散程度;(3) 对于不同的数据集,其离散程度大时,该数值应越小;A :(1)和(3)B :(2)和(3)C : (1)D :都正确3.数据5:7:7:8:10:11的标准差是( C ) A :8 B :4 C :2 D :14.某公司现有职员160人:中级管理人员30人:高级管理人员10人:要从其中抽取 20个人进行身体健康检查:如果采用分层抽样的方法:则职员:中级管理人员和高 级管理人员各应该抽取多少人( )A :8:15:7B :16:2:2C :16:3:1D :12:3:55.比较甲乙两种机器的使用寿命:下列情况中:甲好于乙时最理想的是( B ) A :平均数甲略小于平均数乙:且方差甲大于方差乙: B :平均数甲略大于平均数乙:且方差甲小于方差乙: C :平均数甲略小于平均数乙:且方差甲小于方差乙: D :平均数甲略大于平均数乙:且方差甲大于方差乙:6.已知两组样本数据xx x x n,,,,321的平均数为h :yy y y m,,,,321的平均数为k, 则把两组数据合并成一组以后:这组样本的平均数为:( B ) A :2k h + B :n m mk nh ++ C :n m nh mk ++ D :nm kh ++ 7.某商场一天中售出李宁牌运动鞋12双:其中各种尺码的鞋的销售量如下表所示:则A :25:25B :24:24.25C :24.5:25D :25:24.58.从162人中抽取一个样本容量为16的样本:采用系统抽样的方法则必须从这162人中剔除( B )人A :1B :2C :3D :49.在下列各图中:每个图的两个变量具有相关关系的图是( D )(1) (2) (3) (4)A :(1)(2)B :(1)(3)C :(2)(4)D :(2)(3)10.一个容量为20的样本数据:分组后:组距与频数如下:2),70,60[;4),60,50[;5),50,40[;4),40,30[;3),30,20[;2),20,10[:则样本在)50,0[上的频率为( D ) A :201 B :41 C :21 D :10711.观察新生婴儿的体重:其频率分布直方图如下图所示:则新生婴儿体重在[2800:3200]的频率为( C )0.002 频率/组距婴儿体重2400 2700 3000 3300 3600 390012.在样本方差的计算公式中)30(301252222212⨯-+⋅⋅⋅++=n x x x s中:数字30和25分别表示样本的( A )A:容量:平均数 B:标准差:平均数 C:容量:方差 D:平均数:容量二. 填空题(每题3分)13.系统抽样与简单随机抽样的联系在于:将总体均分后对第一部分进行抽样采用的是_____简单随机抽样________;14.已知xx x x n321,,的平均数为a,则2,,2,233321+++xx x n的平均数是_3a+2____________;15.已知样本7,10,14,8,7,12,11,10,8,10,13,10,8,11,8,9,12,9,13,12,那么这组数据在8.5至15内的频率为__________;16.实验测得四组(x,y )人值为(1:2):(2:3.5):(4:6.5):(6:9.5),测y 与x 之间的线性回归方程为____5.05.1ˆ+=x y_______________:当x 为5时:估算y 的值为___8________:二.填空题答案:16.____________________ ___________________ 三.解答题(共40分)17某班4个小组的人数分别为10:10:x :8:已知这组数据的中位数和平均数相等:求这组数据的中位数。

高中数学课本必修三例习题精选

高中数学课本必修三例习题精选

必修三课本习题精编版一、统计初步1. 总体有编号为01,02,…,19,20的20个个体组成。

利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为【】A.08 B.07 C.02 D.012. 参加英语口语测试的1000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个编号为【】A.700 B.669 C.695 D.6763. 若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为【】A.3B.4C.5D.64. 一个总体中有90个个体,随机编号0,1,2,…,89,以从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.5.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为【】. A.25,17,8 B.25,16,9 C.26,16,8 D.24,17,96.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.②、③都不能为系统抽样 B.②、④都不能为分层抽样C.①、④都可能为系统抽样 D.①、③都可能为分层抽样7.我们对50人的智商情况进行了调查,如果按照区间[)[)80,85,85,90,,[)115,120进行分组,得到的分布情况如图所示.(1)有多少人的智商在90105?(2)有多少人的智商低于100?(3)有多少人的智商不低于100?你还能从图中获得其他的信息吗?8.如图为某个人口为300000人的城市的人口分布:(1)甲县有多少人?(2)乙县和丁县共有多少人?(3)甲县和丙县相差多少人?9.1994年美国家庭收入(单位:美元)的百分比分布如下表:请将上面的数据用统计图表示出来,你觉得哪种统计图更合适?10.有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下上午8:00—11:00各自的销售情况(单位:元).甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41;乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.你能用不同的方式分别表示上面的数据吗?11.某公司员工的月工资情况如下表所示.(1)分别计算该公司员工月工资的平均数、中位数和众数.(2)公司经理会选取上面哪个数来代表该公司员工的月工资情况?税务官呢?工会领导呢?12.从甲、乙两个城市随机抽取的16台自动售货机的销售额可以用茎叶图表示,如右图所示. (1)甲、乙两组数据的中位数、众数、极差分别是多少?(2)你能从图中分别比较甲、乙两组数据平均数和方差的大小吗?13.为了了解面包的销售情况,面包店随机选取了24个营业日,分别记录下每天销售的新鲜面包的数量(个):53 49 27 48 60 52 44 38 47 52 82 4655 31 39 54 51 47 50 45 50 61 43 64(1)请用不同的方式分别表示上面的数据;(2)分别计算以上数据的平均数、中位数和众数;(3)根据以上结果,你认为该面包店每天应该生产多少新鲜的面包?14.为了解某种干电池的寿命,电池厂随机抽取了50节进行测试,下面列出了每一节电池的使用寿命(单位:h).11 14 25 13 11 20 15 30 9 16 13 10 14 11 10 1619 12 0 20 16 10 15 14 22 19 10 33 3 12 16 19 1723 15 20 11 17 14 23 15 12 15 12 10 13 11 9 8 13(1)完成下表,并画出相应的频率分布直方图和频率折线图;(2)以上电池使用寿命的平均数、中位数、众数分别是多少?(3)由此,你能估计这种干电池的使用寿命吗?15.某小卖部6天卖出热茶的杯数(y)与当天气温(x)之间是线性相关的.数据如下表所示:(1)试用最小二乘法求出线性回归方程;(2)如果某天的气温是03C -,请预测这天可能会卖出热茶多少杯?16.设有n 个数据:12,,,n x x x ,利用二次函数的性质,试求当a 取何值时,22212()()()n x a x a x a -+-++-达到最小值.17. 在一组样本数据1122(,),(,),,(,)n n x y x y x y 12(2,,,,n n x x x ≥不全相等)的散点图中,若所有样本点(,)(1,2,,)i i x y i n =都在直线112y x =+上,则这组样本数据的样本相关系数为( ) A.-1 B.0 C.12 D.1 二、程序框图1. 执行如图所示的程序框图,若任意输入区间[]1,19中的实数x ,则输出的x 大于49的概率为( ) A.12 B.13 C.23 D.13192.根据右边框图,当输入为6时,输出的( )A .B .C .D .3. 某程序框图如图所示,若该程序运行后输出的值是59,则( ) A .4=a B .5=a C .6=a D .7=a4. 根据下列算法语句, 当输入x 为60时, 输出y 的值为( )A. 25B. 30C. 31D. 61x y =12510三、概率初步1.一家保险公司想了解汽车的挡风玻璃破碎的概率.公司收集了20000部汽车的信息,时间从某年的7月1日到下一年的7月1日,共发现有600部汽车的挡风玻璃破碎.在一年时间里,一部汽车的挡风玻璃破碎的概率近似是多少?2.总数为10万张的彩票,中奖率为11000,买1000张一定中奖吗?买10000张呢?与同学交流你的看法.3.气象台常常用概率的语言刻画未来天气的变化情况,比如“今天的降水概率是60%”.你对这句话是如何理解的?对你身边的人进行调查,看看他们是如何理解的.4.在一个健身房里,用拉力器进行锻炼时,需要选取2个质量盘装在拉力器上.有2个装质量盘的箱子,每个箱子中都装有4个不同的质量盘:2.5kg ,5,10kg kg 和20kg ,每次都随机地从2个箱子中各取一个质量盘装在拉力器上后,再拉动这个拉力器.(1)随机地从2个箱子中各取1个质量盘,共有多少种可能的结果?用表格列出所有可能结果.(2)计算选取的2个质量盘的总质量分别是下列质量的概率:① 20kg ;②30kg ;③不超过10kg ;④超过10kg .(3)如果一个人不能拉动超过22kg 的质量,那么他不能拉开拉力器的概率是多少?5.掷一对不同颜色均匀的骰子.(1)用列表的方法列出所有可能结果,共有多少种可能结果?(2)两粒骰子向上的点数之和有多少种可能?出现那种点数和的可能性最大?其概率是多少?(3)计算下列事件的概率:①点数和不大于7; ②点数和大于7; ③点数和为6或7; ④点数和不小于6;⑤点数和是奇数; ⑥点数和是偶数; ⑦点数和等于3的倍数.6.口袋装有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出1个球.计算第二个人摸到白球的概率.7.从一箱产品中随机地抽取一件产品,设事件A =“抽到的是一等品”,事件B =“抽到的是二等品”,事件C =“抽到的是三等品”,且已知()0.7P A =,()0.1,()0.05P B P C ==,求下列时间的概率:(1)事件D =“抽到的是一等品或三等品”;(2)事件E =“抽到的是二等品或三等品”.8.某地政府准备对当地的农村产业结构进行调整,为此政府进行了一次民意调查.100个人接受了调查,他们被要求在赞成调整、反对调整、对这次调整不发表看法中任选一项.调查结果如下表所示:随机选取一个被调查者,他对这次调整表示反对或不发表看法的概率是多少?9.小明的自行车用的是密码锁,密码锁的四位数密码由4个数字2,4,6,8按一定顺序构成.小明不小心忘记了密码中4个数字的顺序,试问:随机地输入由2,4,6,8组成的一个四位数,不能打开的概率是多少?10.我国西部一个地区的年降水量在下列区间内的概率如下表所示:(1)计算年降水量在[]200,300范围内的概率;(2)计算年降水量在[)100,250范围内的概率.11. 在长为12 cm 的线段AB 上任取一点M ,并且以线段AM 为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为【 】A.14B.13C.427D.415 12. 如图, 在矩形区域ABCD 的,A C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是【 】 A .14π- B .12π- C .22π- D .4π13. 现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算机给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 46980371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据统计该运动员射击4次至少击中3次的概率为【 】A.0.852B.0.8192C.0.8D.0.7514. 右图是用模拟方法估计圆周率值的程序框图,表示估计结果,则图中空白框内应填入【 】A. B. C. D.πP 1000N P =41000N P =1000M P =41000MP=。

新人教版高中数学统计全套教案试题练习题及答案解析

新人教版高中数学统计全套教案试题练习题及答案解析

§9.1线性回归分析9.1.1变量的相关性学习目标 1.结合实例,体会两个变量间的相关关系.2.掌握相关关系的判断,能根据散点图对线性相关关系进行判断.3.了解两个变量间的相关系数r,能利用相关系数r判断两个变量线性相关程度的大小.导语你知道“名师出高徒”的意思吗?——高明的师傅一定能教出技艺高的徒弟,比喻学识丰富的人对于培养人才的重要性.也就是说,高水平的老师往往能教出高水平的学生.那么老师的水平与学生的水平之间具有怎样的关系呢?这种关系是确定的吗?一、相关关系问题1俗话说“庄稼一枝花,全靠肥当家”,这说明施肥的多少对粮食的产量影响很大,那么施肥量和粮食的产量是确定的函数关系吗?两个变量间的关系除了可能是函数关系外,还可能是其他关系吗?提示农作物的产量与施肥量有关,一般来说,在一定范围内,施肥量越多,农作物的产量就越高,但不能用一个函数来准确地表示产量与施肥量之间的关系,故两者之间不是函数关系,我们称这种不确定的变量关系为相关关系.知识梳理像这样,两个变量之间具有一定的联系,但又没有确定性函数关系,这种关系称为相关关系(correlativity).注意点:相关关系与函数关系的异同点:相同点:均是指两个变量的关系.不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系.例1判断以下两个变量之间是否具有相关关系?(1)正方形的面积与其周长之间的关系;(2)父母的身高与子女的身高之间的关系;(3)学生的学号与身高;(4)汽车匀速行驶时的路程与时间的关系.解(1)设正方形的面积为S,周长为C,则S,即正方形的面积由其周长唯一确定,因此二者是函数关系,不是相关关系.(2)子女身高除了与父母的身高有一定关系外,还与其他因素有关,即子女的身高并不是由其父母的身高唯一确定的,因此二者之间具有相关关系.(3)学生的学号与身高之间没有任何关系,不具有相关关系.(4)若汽车匀速行驶时的速度为v,行驶的路程为s,时间为t,则有s=v t,因此当速度一定时,路程由时间唯一确定,二者之间具有函数关系,而不是相关关系.反思感悟函数关系是一种确定的关系,而相关关系是非随机变量与随机变量的关系.函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.跟踪训练1(多选)下列说法正确的是()A.闯红灯与交通事故发生率的关系是相关关系B.同一物体的加速度与作用力是函数关系C.产品的成本与产量之间的关系是函数关系D.广告费用与销售量之间的关系是相关关系答案ABD解析闯红灯与发生交通事故之间不是因果关系,但具有相关性,是相关关系,所以A正确;物体的加速度与作用力的关系是函数关系,B正确;产品的成本与产量之间是相关关系,C 错误;广告费用与销售量之间是相关关系,D正确.二、散点图与相关性问题2在一次对人体脂肪含量和年龄之间关系的研究中,研究人员获得了一组样本数据如下表.年龄/岁23273941454950脂肪含量/%9.517.821.225.927.526.328.2年龄/岁53545657586061脂肪含量/%29.630.231.430.833.535.234.6其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.根据上述数据,你能推断出人体的脂肪含量与年龄之间存在怎样的关系吗?提示画出散点图,散点图中的点散布在从左下角到右上角的区域,散点图成线性,即大致分布在一条直线附近,推断脂肪含量变量和年龄变量之间存在着相关关系.知识梳理1.散点图为直观地描述样本数据中两个变量间的关系,用横坐标表示其中的一个变量,纵坐标表示另一个变量,则样本数据都可以用直角坐标系中的点表示出来,由这些点组成的统计图叫作散点图.2.线性相关关系散点落在一条直线附近,我们称这两个变量线性相关.3.相关关系的分类具有相关关系的两个变量的散点图:(1)如果散点呈从左下向右上方向发展的趋势,称这两个变量之间正相关.(2)如果散点呈从左上向右下方向发展的趋势,则称这两个变量之间负相关.注意点:散点图的作用(1)散点图具有直观、简明的特点,能体现样本数据的密切程度,可以根据散点图判断变量间是否具有相关关系.(2)通过散点图不但可以从点的位置判断测量值的大小、高低、变动范围与趋势,还可以通过观察剔除异常数据,提高估计相关程度的准确性.例2(1)(多选)某中学的兴趣小组在某座山测得海拔高度、气压和沸点的六组数据绘制成散点图如图所示,则下列说法正确的是()A.沸点与海拔高度呈正相关B.沸点与气压呈正相关C.沸点与海拔高度呈负相关D.气压与海拔高度呈负相关答案BCD解析由左图知气压随海拔高度的增加而减小,由右图知沸点随气压的升高而升高,所以气压与海拔高度呈负相关,沸点与气压呈正相关,沸点与海拔高度呈负相关.(2)某种木材体积与树木的树龄之间有如下的对应关系:树龄2345678体积30344060556270①请作出这些数据的散点图;②你能由散点图发现木材体积与树木的树龄近似成什么关系吗?解①以x轴表示树木的树龄,y轴表示树木的体积,可得相应的散点图如图所示:②由散点图发现木材体积随着树龄的增加而呈增加的趋势,且散点落在一条直线附近,所以木材的体积与树龄成相关关系且呈正相关.延伸探究对于本例(2),若近似成线性相关关系,请画出一条直线来近似地表示这种线性相关关系.解近似拟合直线如图所示.反思感悟两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.跟踪训练2(多选)在下列所示的四个图中,每个图的两个变量具有相关关系的图是()答案BC解析图A 的两个变量具有函数关系;图BC 的两个变量具有相关关系;图D 的两个变量之间既不是函数关系,也不是相关关系.三、相关系数问题3散点图可以说明变量间有无线性相关关系,但无法量化两个变量之间的相关程度的大小,更不能精确地说明样本数据之间关系的密切程度,那么我们如何才能寻找到这样一个合适的量来对样本数据的相关程度进行定量分析呢?提示一般地,对于n 对数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),设点A 1(x 1,y 1),A 2(x 2,y 2),…,A n (x n ,y n ),取点M (x ,y )(其中x =x 1+x 2+…+x n n ,y =y 1+y 2+…+y nn).构造向量a 与b ,a =(x 1-x ,x 2-x ,…,x n -x ),b =(y 1-y ,y 2-y ,…,y n -y ),并记〈a ,b 〉=θ,则cos θ=错误!.(*)当|cos θ|越大(越接近于1)时,a ,b 的夹角θ就越接近于0或π,这时,向量a ,b 趋于共线.当a ,b 共线时,存在非零实数λ,使得b =λa1-y =λ(x 1-x ),2-y =λ(x 2-x),n -y =λ(x n -x ).这说明,向量MA 1→,MA 2→,…,MA n →趋于共线,即点A 1,A 2,…,A n ,M 这n +1个点接近于共线.知识梳理1.相关系数r 的公式计算:r =错误!=错误!=错误!.2.相关系数r 具有下列性质:(1)-1≤r ≤1;(2)r>0时y与x呈正相关关系,r<0时y与x呈负相关关系;(3)|r|越接近1,y与x相关的程度就越强,|r|越接近0,y与x相关的程度就越弱.通常情况下,当|r|>0.5时,认为线性相关关系显著;当|r|<0.3时,认为几乎没有线性相关关系.注意点:当r=1时,两个变量完全正相关;当r=-1时,两个变量完全负相关.角度1相关系数的性质例3(多选)对两个变量的相关系数r,下列说法正确的是()A.|r|越大,相关程度越大B.|r|越小,相关程度越大C.|r|趋近于0时,没有线性相关关系D.|r|越接近1时,线性相关程度越强答案AD解析对于A,|r|越大,相关程度越大,A正确;对于B,|r|越小,相关程度越小,B错误;对于C,|r|趋近于0时,线性相关关系越弱,C错误;对于D,|r|越接近1时,线性相关程度越强,D正确.综上,正确的是AD.反思感悟相关系数的性质(1)r的绝对值越接近0,相关性越弱.(2)r的绝对值越接近1,相关性越强.角度2相关系数的计算及判断例4某厂的生产原料耗费x(单位:百万元)与销售额y(单位:百万元)之间有如下的对应关系:x2468y30405070(1)画出(x,y)的散点图;(2)计算x与y之间的相关系数,并刻画它们的相关程度.解(1)(x,y)的散点图如图所示.(2)x=5,y=47.5,错误!2i=120,错误!2i=9900,错误!i y i=1080,故相关系数r=错误!=1080-4×5×47.5(120-4×52)(9900-4×47.52)0.9827.由相关系数r≈0.9827,可以推断生产原料耗费与销售额这两个变量正线性相关,且相关程度很高.反思感悟线性相关强弱的判断方法(1)散点图:散点图只是粗略作出判断,其图象越接近直线,相关性越强.(2)相关系数:相关系数能够较准确地判断相关的程度,其绝对值越大,相关性越强.跟踪训练3(1)甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性做试验,并分别求得相关系数r如下表:甲乙丙丁r0.820.780.690.85则哪位同学的试验结果体现A,B两变量有更强的线性相关性?()A.甲B.乙C.丙D.丁答案D解析|r|越接近1,相关性越强,故选D.(2)关于两个变量x和y的7组数据如下表所示:x21232527293235y711212466115325求变量y与x的相关系数,并判断变量y与x之间是正相关还是负相关.解x=17(21+23+25+27+29+32+35)≈27.4,y=17(7+11+21+24+66+115+325)≈81.3,错误!2i=212+232+252+272+292+322+352=5414,错误!i y i=21×7+23×11+25×21+27×24+29×66+32×115+35×325=18542,错误!2i=72+112+212+242+662+1152+3252=124393,∴r=错误!=18542-7×27.4×81.3 (5414-7×27.42)(124393-7×81.32)≈2948.66 3520.92≈0.8375.∵r>0,∴变量y与x之间是正相关关系.1.知识清单:(1)相关关系.(2)散点图,正相关、负相关.(3)相关系数的计算公式及相关系数的性质.2.方法归纳:数形结合.3.常见误区:相关关系与函数关系不分,相关系数绝对值的大小与相关程度的关系.1.(多选)下列两个变量之间的关系不是函数关系的是()A.角度和它的余弦值B.眼睛的近视程度与看手机的时间C.正n边形的边数和内角和的度数D.人的年龄和身高答案BD解析函数关系就是变量之间的一种确定性关系.A,C两项中的两个变量之间都是函数关系,可以写出相应的函数表达式,分别为f(θ)=cosθ,h(n)=(n-2)π.B选项中的两个变量之间不是函数关系,眼睛的近视程度受很多因素影响.D选项中的两个变量之间不是函数关系,对于年龄确定的人群,仍可以有不同的身高,故选BD.2.已知某产品产量与产品单位成本之间的线性相关系数为-0.97,这说明二者之间存在着()A.高度相关B.中度相关C.弱度相关D.极弱相关答案A解析由|-0.97|比较接近1知选A.3.根据两个变量x,y之间的样本数据画出散点图如图,这两个变量是否具有线性相关关系______.(填“是”或“否”)答案否解析图中的点分布杂乱,两个变量不具有线性相关关系.4.某部门所属的10个工业企业生产性固定资产价值与工业增加值资料如下表(单位:百万元):固定资产价值33566789910工业增加值15172528303637424045根据上表资料计算的相关系数约为________.答案0.9918解析x =3+3+5+6+6+7+8+9+9+1010=6.6,y =15+17+25+28+30+36+37+42+40+4510=31.5.∴r =错误!≈0.9918.课时对点练1.(多选)给出下列关系,其中有相关关系的是()A .人的年龄与他(她)拥有的财富之间的关系B .曲线上的点与该点的坐标之间的关系C .苹果的产量与气候之间的关系D .森林中的同一种树木,其截面直径与高度之间的关系答案ACD2.(多选)对于线性相关系数r ,以下说法错误的是()A .r 只能是正值,不能为负值B .|r |≤1,且|r |越接近于1,相关程度越大;相反则越小C .|r |≤1,且|r |越接近于1,相关程度越小;相反则越大D .r <0时表示两个变量无相关关系答案ACD解析由相关系数的性质知B正确,其余均错误.3.对于散点图下列说法正确的是()A.一定可以看出变量之间的变化规律B.一定不可以看出变量之间的变化规律C.可以看出正相关与负相关有明显区别D.看不出正相关与负相关有什么区别答案C解析给出一组样本数据,总可以作出相应的散点图,但不一定能分析出两个变量的关系,不一定存在回归直线来模拟数据,但是通过散点图可以看出正相关与负相关有明显区别,故选C.4.(多选)下面的各图中,散点图与相关系数r符合的是()答案ACD解析因为相关系数r的绝对值越接近1,线性相关程度越高,且r>0时正相关,r<0时负相关,故观察各选项,易知B不符合,A,C,D均符合.5.变量x与y相对应的一组样本数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量u 与v相对应的一组样本数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量y与x 之间的相关系数,r2表示变量v与u之间的相关系数,则()A.r2<r1<0B.0<r2<r1C.r2<0<r1D.r1=r2答案C解析由已知中的数据可知:第一组的样本数据正相关,则相关系数大于零,第二组的样本数据负相关,则相关系数小于零,故选C.6.某商家今年上半年各月的人均销售额(单位:千元)与利润率统计表如下:月份123456人均销售额658347利润率(%)12.610.418.5 3.08.116.3根据表中数据,下列说法正确的是()A.利润率与人均销售额呈正比例函数关系B.利润率与人均销售额呈反比例函数关系C.利润率与人均销售额呈正相关关系D.利润率与人均销售额呈负相关关系答案C解析根据题意,画出利润率与人均销售额的散点图,如图所示.由散点图可知,利润率与人均销售额呈正相关关系.故选C.7.已知某个样本点中的变量x,y线性相关,相关系数r>0,平移坐标系,则在以(x,y)为坐标原点的坐标系下的散点图,大多数的点都落在第________象限.答案一、三解析因为r>0,所以大多数的点都落在第一、三象限.8.给出下列x,y值的数据如下:x1248y35917则根据数据可以判断x和y的关系是________.(填“确定关系”“相关关系”或“没有关系”)答案确定关系解析由表中数据可以得到x,y之间是一种函数关系:y=2x+1,所以x,y是一种确定的关系,即函数关系.9.某个男孩的年龄与身高的统计数据如下表所示:年龄x(岁)123456身高y(cm)788798108115120(1)画出散点图;(2)判断y与x是否具有线性相关关系,如果相关,是正相关还是负相关.解(1)散点图如图所示.(2)由图知,所有数据点接近一条直线排列,因此,认为y与x具有线性相关关系,且是正相关关系.10.某商店经营一批进价为每件4元的商品,在市场调查时发现,此商品的销售单价x与日销售量y之间有如下关系:x5678y10873试计算x,y之间的相关系数.参考数据:错误!(x i-x)(y i-y)=-11,错误!(x i-x)2=5,错误!(y i-y)2=26.解根据参考数据,得相关系数r=错误!=-115×26≈-0.9648.11.下列两个变量相关程度最高的是()A.商品销售额和商品销售量的相关系数是0.9B.商品销售额和商业利润率的相关系数是0.84C.平均流通费用率和商业利润率的相关系数是-0.94D.商品销售价格和商品销售量的相关系数是-0.91答案C解析当|r|越接近1时,样本数据的线性相关程度越强;当|r|越接近0时,样本数据的线性相关程度越弱,-0.94的绝对值最大,故选C.12.两个变量x,y的相关系数r1=0.7859,两个变量u,v的相关系数r2=-0.9568,则下列判断正确的是()A.变量x与y正相关,变量u与v负相关,变量x与y的线性相关性较强B.变量x与y负相关,变量u与v正相关,变量x与y的线性相关性较强C.变量x与y正相关,变量u与v负相关,变量u与v的线性相关性较强D .变量x 与y 负相关,变量u 与v 正相关,变量u 与v 的线性相关性较强答案C解析由相关系数r 1=0.7859>0知x 与y 正相关,由相关系数r 2=-0.9568<0知u ,v 负相关,又|r 1|<|r 2|,∴变量u 与v 的线性相关性比x 与y 的线性相关性强.故选C.13.为考察两个变量x ,y 的相关性,搜集数据如表,则两个变量的线性相关程度()x 510152025y103105110111114A.很强B .很弱C .无相关D .不确定答案A解析错误!i =75,错误!i =543,错误!2i =1375,错误!i y i =8285,错误!2i =59051,x =15,y =108.6,r =错误!=8285-5×15×108.61375-5×152×59051-5×108.62≈0.9826,故相关程度很强.14.若已知错误!(y i -y )2是错误!(x i -x )2的4倍,错误!(x i -x )·(y i -y )是错误!(x i -x )2的1.5倍,则相关系数r 的值为________.答案34解析由r =错误!,得r =34.15.(多选)如图所示是某市2020年4月至2021年3月每月最低气温与最高气温的折线统计图,已知每月最低气温与最高气温的相关系数r =0.83,则下列结论正确的是(若|r |>0.75,则线性相关程度较强)()A.每月最低气温与最高气温有较强的线性相关性,且二者为正线性相关B.月温差(月最高气温-月最低气温)的最大值出现在10月C.9~12月的月温差相对于5~8月,波动性更大D.每月最高气温与最低气温的平均值在所统计的前6个月里逐月增加答案ABC解析每月最低气温与最高气温的相关系数r=0.83,可知每月最低气温与最高气温有较强的线性相关性,且二者为正线性相关.由所给的折线图可以看出月温差(月最高气温-月最低气温)的最大值出现在10月.9~12月的月温差相对于5~8月,波动性更大.每月的最高气温与最低气温的平均值在所统计的前5个月里逐月增加,在第6个月开始减少,所以A,B,C 正确,D错误.16.为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得x=116错误!i=9.97,s=错误!=错误!≈0.212,错误!≈18.439,错误!(x i-x)(i-8.5)=-2.78,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)求(x i,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).附:样本(x i,y i)(i=1,2,…,n)的相关系数r=错误!.解由样本数据得(x i,i)(i=1,2,…,16)的相关系数为r=错误!≈-2.780.212×16×18.439≈-0.18.由于|r|<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.§9.2独立性检验学习目标 1.掌握分类变量和列联表的概念,并会依据列联表判断两个分类变量是否独立.2.理解统计量χ2的意义和独立性检验的基本思想.导语有关法律规定:香烟盒上必须印上“吸烟有害健康”的警示语,那么吸烟和健康之间有因果关系吗?每一个吸烟者的健康问题都是由吸烟引起的吗?“如果你认为健康问题不一定是由吸烟引起的,那么可以吸烟”的说法对吗?要回答这个问题,我们先一起来学习本课时的知识吧!一、2×2列联表问题某医疗机构为了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调查了515个成年人,其中吸烟者220人,不吸烟者295人.调查结果是:吸烟的220人中,有37人患呼吸道疾病(以下简称患病),183人未患呼吸道疾病(以下简称未患病);不吸烟的295人中,有21人患病,274人未患病.根据这些数据能否断定:患呼吸道疾病与吸烟有关?提示为了研究这个问题,我们将上述数据用表表示如下:患病未患病合计吸烟37183220不吸烟21274295合计58457515由此表可以粗略地估计出在吸烟的人中,有37220≈16.82%的人患病;在不吸烟的人中,有21295≈7.12%的人患病.因此,从直观上可以得到结论:吸烟者与不吸烟者患病的可能性存在差异.知识梳理一般地,对于两个分类变量Ⅰ和Ⅱ,Ⅰ有两类取值,即类A和类B(如吸烟与不吸烟);Ⅱ也有两类取值,即类1和类2(如患呼吸道疾病和未患呼吸道疾病).我们得到如下列联表所示的抽样数据:Ⅱ合计类1类2Ⅰ类Aa b a +b 类B c d c +d 合计a +cb +da +b +c +d上述表格称为2×2列联表.注意点:列联表是两个或两个以上分类变量的汇总统计表,现阶段我们仅研究两个分类变量的列联表,并且每个分类变量只取两个值,这样的列联表称为2×2列联表.例1(1)某校为了检验高中数学新课程改革的成果,在两个班进行教学方式的对比试验,两个月后进行一次检测,试验班与对照班成绩统计如2×2列联表所示(单位:人),则其中m =________,n =________.80分及80分以上80分以下合计试验班321850对照班24m 50合计5644n答案26100解析+m =50+44=n ,=26,=100.(2)在一项有关医疗保健的社会调查中,发现调查的男性有530人,女性有670人,其中男性中喜欢吃甜食的有117人,女性中喜欢吃甜食的有492人,请作出性别与是否喜欢吃甜食的2×2列联表.解2×2列联表如下:喜欢吃甜食不喜欢吃甜食合计男117413530女492178670合计6095911200反思感悟2×2列联表是对两个分类变量的汇总统计表,列表时关键是对涉及的变量分清类别.制作2×2列联表的基本步骤:第一步,合理选取两个变量,且每一个变量都可以取两个值;第二步,抽取样本,整理数据;第三步,画出2×2列联表.跟踪训练1在调查的480名男性中有38名患有色盲,520名女性中有6名患有色盲,试作出性别与色盲的列联表.解根据题目所给的数据作出如下的列联表.色盲患色盲不患色盲合计性别男38442480女6514520合计449561000二、独立性检验知识梳理独立性检验1.定义:用χ2统计量研究两个变量X和Y是否有关的方法称为独立性检验.2.χ2统计量:.χ2=n(ad-bc)2(a+c)(b+d)(a+b)(c+d)3.独立性检验的步骤要推断“Ⅰ与Ⅱ有关系”,可按下面的步骤进行:(1)提出假设H0:Ⅰ与Ⅱ没有关系;(2)根据2×2列联表及χ2公式,计算χ2的值;(3)根据临界值,作出判断.其中临界值如表所示:P(χ2≥x0)0.500.400.250.150.100.050.0250.0100.0050.001 x00.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.87910.828例如:(1)若χ2>10.828,则有99.9%的把握认为“Ⅰ与Ⅱ有关系”;(2)若χ2>6.635,则有99%的把握认为“Ⅰ与Ⅱ有关系”;(3)若χ2>2.706,则有90%的把握认为“Ⅰ与Ⅱ有关系”;(4)若χ2≤2.706,则认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,但也不能作出结论“H0成立”,即Ⅰ与Ⅱ没有关系.注意点:独立性检验的基本思想类似于反证法,我们可以利用独立性检验来考察两个对象是否有关,并且能较精确地给出这种判断的把握程度.角度1对独立性检验的理解例2在吸烟与患肺癌是否相关的研究中,下列说法正确的是()A.若χ2>6.635,我们有99%的把握认为吸烟与患肺癌有关,则在100个吸烟的人中必有99个人患肺癌B.由独立性检验可知,当有99%的把握认为吸烟与患肺癌有关时,若某人吸烟,则他有99%的可能患有肺癌C.通过计算得到χ2>3.841,是指有95%的把握认为吸烟与患肺癌有关联D.以上三种说法都不正确答案C解析若χ2>6.635,我们有99%的把握认为吸烟与患肺癌有关,而不是在100个吸烟的人中必有99个人患肺癌,故A不正确;99%是指吸烟与患肺癌有关的概率,而不是吸烟的人有99%的可能患有肺癌,故B不正确.C显然正确,D不正确.反思感悟χ2≥x0的实质就是两个变量相关的概率为1-P(χ2≥x0).角度2由χ2进行独立性检验例3某矿石粉厂当生产一种矿石粉时,在数天内即有部分工人患职业性皮肤炎,在生产季节开始,随机抽取75名车间工人穿上新防护服,其余仍穿原用的防护服,生产进行一个月后,检查两组工人的皮肤炎患病(阳性是指工人患皮肤病)人数如下:阳性例数阴性例数合计新防护服57075旧防护服101828合计1588103问这种新防护服对预防工人患职业性皮肤炎是否有效?并说明你的理由.解提出假设H0:新防护服对预防皮肤炎没有明显效果.根据列联表中的数据可求得χ2=103×(5×18-70×10)275×28×15×88≈13.826.因为H0成立时,χ2≥10.828的概率约为0.001,而这里χ2≈13.826>10.828,所以我们有99.9%的把握认为新防护服比旧防护服对预防工人患职业性皮肤炎有效.反思感悟解决独立性检验问题的基本步骤(1)根据已知的数据作出列联表.(2)求χ2的值.(3)判断可能性:与临界值比较,得出事件有关的可能性大小.跟踪训练2(1)为了判断高中三年级学生选修文科是否与性别有关,现随机抽取50名学生,得到如下2×2列联表:理科文科合计。

(完整版)高一数学必修三《统计》知识点+练习+答案(最新整理)

(完整版)高一数学必修三《统计》知识点+练习+答案(最新整理)

三、
⑥控制图
总体特征的估计
中心线——y=μ 上界线——y=μ+3σ 下界线——y=μ-3σ
1、特征数:总体平均数 μ
总体方差 2 总体标准差
样本平均数 x
样本方差 s2 或 s*2
样本标准差
s 或 s*
1 2、有关公式:样本平均数 : x = (x1+x2 +...+xn)
n
样本方差
1 : s2 或 s*2 s 2= n [(x1- x )2+(x2+ x )2+...+(xn- x )2]
样本,则抽取的 m 个个体中带有标记的个数估计为( )
m
A. N·
M
M
B. m·
N
M
C. N·
D. N
m
8.从 60 件产品中抽取 10 件进行检查,写出抽取样本的过程.
9.某车间工人已加工一种轴 100 件,为了了解这种轴的直径,要从中抽出 10 件在同一条件 下测量(轴的直径要求为 20 mm±0.5 mm),如何采用简单随机抽样法抽取上述样本?
当总体由差异 明显的几部分 组成时,常将 总体分成几部 分,然后按照 各部分所占的 比进行抽样, 这样的抽样叫 ∽。其中分成 的各部分叫做 层。
各自
要点
从总 体中 逐个 抽取
总体 均分 成几 部分 按事 先确 定的 规则 在各 部分 抽取 将总 体分 成几 层, 分层 进行 抽取
方法步骤
1、 抽签法: ①编②放③抽
必修三统计知识点
一、
类 别 内 容 名 称
简 单 随 机 抽 样
系 统 抽 样
分 层 抽 样
抽样方法
定义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 体育老师对九年级(1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成频数分布直方图(如图).由图可知,最喜欢篮球的频率是( D )A .0.16B .0.24C .0.3D .0.42 下列命题是真命题的是( A )A .对于给定的一组数据,它的平均数一定只有一个B .对于给定的一组数据,它的中位数可以不只一个C .对于给定的一组数据,它的众数一定只有一个D .对于给定的一组数据,它的极差就等于方差3 . 某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为: 25,23,25,23,27,30,25, 这组数据的中位数和众数分别是(D )A. 23,25B. 23,23C. 25,23D. 25,254 .在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中8位工作者的捐款分别是5万,10万,10万,10万,20万,20万,50万,100万.这组数据的众数和中位数分别是( C )A .20万,15万B .10万,20万C .10万,15万D .20万,10万5 .某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( B )A .0.6小时B .0.9小时C .1.0小时D .1.5小时人数(人)20 10 15 九年级(1)班学生最喜欢体育项目的频数分布直方图 频数(人) 24 20 16 12 8 4 O4 12 6 20 8 体育项目 羽毛球 乒乓球 跳绳 篮球 其它6 .若一组数据2,4,x ,6,8的平均数是6,则这组数据的方差是( B ) A .22 B .8C .210D .407 .某住宅小区六月份中1日至6日每天用水量变化情况如折线图 所示,那么这6天的平均用水量是( C )(A) 30吨. (B) 31 吨. (C) 32吨. (D) 33吨.8 .(08厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示: 型号 22 22.5 23 23.5 24 24.5 25 数量(双) 3 5 10 15 8 3 2 鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是( B ) A .平均数 B .众数 C .中位数 D .方差9 .某地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37(单位:℃),则这组数据的中位数和众数分别是(A )A .36,37B .37,36C .36.5,37D .37,36.510 .下列调查方式中适合的是(C )A .要了解一批节能灯的使用寿命,采用普查方式B .调查你所在班级同学的身高,采用抽样调查方式C .环保部门调查沱江某段水域的水质情况,采用抽样调查方式D .调查全市中学生每天的就寝时间,采用普查方式11.如图是根据某地某段时间的每天最低气温绘成的折线图,那么这段时间最低气温的极差、众数、平均数依次是( A )A .5°,5°,4°B .5°,5°,4.5°2830 31 32 34 37 4 6 5 用水量/吨1 2 3 日期/日C .2.8°,5°,4°D .2.8°,5°,4.5°12 某商场为了解本商场的服务质量,随机调查了本商场的200名顾客,调查的结果如图所示.根据图中给出的信息,这200名顾客中对该商场的服务质量表示不满意的有 14 人.13.为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.(到5)14.(学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投井篮框的球数由小到大排序后这6、7、8、9、9、9、9、10、10、10、12.这组数据的众数和中位数分别是 9 , 97 6 5 4 3 2 1 01日 2日 3日 4日 5日 6日 7日 8日 9日 10日2008年4月上旬最低气温统计图温度(℃)AC D B 48% 9%36% A :满意 B :基本满意C :说不清D :不满意 篮球 乒乓球 足球 其他510 1520 兴趣爱好图1足球 篮球40%其它乒 乓 球图2人数15 .(2008佛山)下列说法中,不正确...的是( A ).A.为了解一种灯泡的使用寿命,宜采用普查的方法B.众数在一组数据中若存在,可以不唯一C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差16 .要反映长沙市一周内每天的最高气温的变化情况,宜采用( C )A、条形统计图B、扇形统计图C、折线统计图D、频数分布直方图17 .某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点。

公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②。

则完成①、②这两项调查宜采用的抽样方法依次是( B )A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法18.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为5:3:2,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n= .8019.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从女学生中抽取的人数为80人,则n= 192 .20.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=6,则在第7组中抽取的号码是 63 .21 .某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样解:①②不是系统抽样,可能为分层抽样; ③可能为系统抽样,也可能为分层抽样:④既非系统抽样也不是分层抽样,综上选 ( D )22 为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁- 18岁的男生体重(kg),得到频率分布直方图如下:根据上图可得这100名学生中体重在[)5.64,5.56的学生人数是( C )(A)20 (B)30 (C)40 (D)50(23)某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家。

为了掌握各商店的营业情况,要从中抽取一个容量为20的样本。

若采用分层抽样的方法,抽取的中型商店数是(C)(A)2 (B)3 (C)5 (D)1324.一工厂生产了某种产品16800件,它们来自甲.乙.丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲.乙.丙三条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件产品...答案:5600 [解析]:由题意设从甲,乙,丙三条生产线抽取的产品分别为x-a,x,x+a 件. 则(x-a)+x+(x+a)=16800,求得x=5600(件).25 某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A )1 (B )2 (C )3 (D )4【思路点拨】本题考查统计的基本知识,样本平均数与样本方差的概念以及求解方程组的方法【正确解答】由题意可得:x+y=20,(x-10)2+(y-10)2=8,解这个方程组需要用一些技巧,因为不要直接求出x 、y ,只要求出y x -,设x=10+t, y=10-t, 24x y t -==,选D 26 . 某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是 85 分.27 .某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .1528 某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是(D )(A)简单随机抽样法(B)抽签法(C)随机数表法(D)分层抽样法29 已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是10.5,10.5a b==30 .一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工 10 人.31.(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(I)在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(II)估计纤度落在[1.381.50),中的概率及纤度小于1.40的概率是多少?(III)统计方法中,同一组数据常用该组区间的中点值(例如区间[1.301.34),的中点值是1.32)作为代表.据此,估计纤度的期望.解:本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力.解:(Ⅰ)分组频数频率[)1.301.34, 4 0.04[)1.341.38,25 0.25[)1.381.42,30 0.30[)1.421.46,29 0.29[)1.461.50,10 0.10[)1.501.54, 2 0.02合计100 1.00分组频数[1.301.34),4 [1.341.38),25 [1.381.42),30 [1.421.46),29 [1.461.50),10 [1.501.54),2合计100(Ⅱ)纤度落在[)1.381.50,中的概率约为0.300.290.100.69++=,纤度小于1.40的概率约为10.040.250.300.442++⨯=. (Ⅲ)总体数据的期望约为1.320.04 1.360.25 1.400.30 1.440.29 1.480.10 1.520.02 1.4088⨯+⨯+⨯+⨯+⨯+⨯=32.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表123s s s ,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有(B )A.312s s s >>B.213s s s >> C.123s s s >>D.231s s s >>33.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测。

相关文档
最新文档