PNP__NPN__三极管测量技术

合集下载

三极管的测量方法

三极管的测量方法

三级管的在路测量,(1).NPN管的电压正常是:VC>VB>VE.其中PN结电压是0.5V左右,也就是:VB>VE的电压是0.5V,明显大于2V或者VB∠VE,三极管是损坏,(注: VC的电压大小是不固定的,看这个管的承受多大的内压)(2).PNP管的电压正常是:VE>VB>VC. 其中PN结电压是0.5V左右, 也就是: VE>VB 的电压是0.5V,明显大于2V或者VE∠VB, 三极管是损坏,( VC的电压大小是不固定的,看偏置电路是要多大的电压,但一定适上面的VE>VB>VC电压的大小)2.拆下来时的三极管测量(R*1K档来测量)根据PN结的原理:和二极管一样,正向电阻一边用万用表测是相通,对调红.黑笔反向来测是不通.拆下来时的三极管,(1) NPN管:任意测三极管的两个脚,当发现固定黑笔接的一脚不动,用红笔分别接另外两脚时,万用表的指针摆动,电阻是相同.反过来对调表笔,红笔固定的一脚不动,用黑笔分别接另外两脚时,万用表的指针不摆动,电阻是无穷大.哪确定;固定的一脚确定是b极(坏的三极管是对调表笔也是相通的). (2) PNP管:任意测三极管的两个脚,当发现固定红笔接的一脚不动, 用黑笔分别接另外两脚时,万用表的指针摆动,电阻是相同.反过来对调表笔,黑笔固定的一脚不动, 用红笔分别接另外两脚时,万用表的指针不摆动,电阻是无穷大.哪确定;固定的一脚确定是b极3(确定C极和E极) 三极管好坏的判断(R*10K档来测量)(1)(确定C极和E极) NPN好坏的判断:上面已确定了B极,R*10K档来测量.用黑笔和红笔分别接触另外两极,保持红笔和黑笔现在状态不变用手指捏b极+红笔接的一极,发现指针摆动的幅度大,放大倍数大,黑笔接的是c极,红笔接的是e极(坏的三极管,用万用表的R*10K档来测量.红,黑笔测量c.e极,接法和二极管测量相同,一边相通,对调表笔另一边是不通,例如;R*10K档的黑笔接C极红笔接E极指针摆动一点,说明是漏电损坏.经验总结:如果是好的三级管,用万用表的R*10K档来测量c.e电阻一边不通,极笔对调后,另一边是相通的有电阻,电阻大的和原来没有用过的同型号的三极管对比.B极E极输出电压偏低的.(2) (确定C极和E极) PNP好坏的判断R*10K档来测量.用黑笔和红笔分别接触另外两极保持红笔和黑笔现在状态不变用手指捏b极+黑笔接的一极,同时捏两极,发现指针摆动的幅度大,放大倍数大,黑笔接的是e极,红笔接的是c极(坏的三极管,用万用表的R*10K档来测量.红,黑笔测量c.e极,接法和二极管测量相同,一边相通,对调表笔另一边是不通,例如:R*10K档的黑笔接E极红笔接极C指针摆动一点如果指针摆动一点,说明了是漏电是坏)注: 可用万用表自带测三极的功能来测。

怎样用万用表辨别三极管的三个极

怎样用万用表辨别三极管的三个极

怎样用万用表辨别三极管的三个极答案数字万用表测试与指针万用表有区别,那么用数字万用表如何测试出三极管的极性呢?首先将万用表打到测试二极管端,用万用表的红表笔接触三极管的其中一个管脚,而用万用表另外的那支表笔去测试其余的管脚,直到测试出如下结果:1、如果三极管的黑表笔接其中一个管脚,而用红表笔测其它两个管脚都导通有电压显示,那么此三极管为PNP三极管,且黑表笔所接的脚为三极管的基极B,用上述方法测试时其中万用表的红表笔接其中一个脚的电压稍高,那么此脚为三极管的发射极E,剩下的电压偏低的那个管脚为集电极C。

2、如果三极管的红表笔接其中一个管脚,而用黑表笔测其它两个管脚都导通有电压显示,那么此三极管为NPN三极管,且红表笔所接的脚为三极管的基极B,用上述方法测试时其中万用表的黑表笔接其中一个脚的电压稍高,那么此脚为三极管的发射极E,剩下的电压偏低的那个管脚为集电极C。

------------------------------------------------------------------------------------------------------1 中、小功率三极管的检测A 已知型号和管脚排列的三极管,可按下述方法来判断其性能好坏(a)测量极间电阻。

将万用表置于R×100或R×1K挡,按照红、黑表笔的六种不同接法进行测试。

其中,发射结和集电结的正向电阻值比较低,其他四种接法测得的电阻值都很高,约为几百千欧至无穷大。

但不管是低阻还是高阻,硅材料三极管的极间电阻要比锗材料三极管的极间电阻大得多。

(b) 三极管的穿透电流ICEO的数值近似等于管子的倍数β和集电结的反向电流ICBO的乘积。

ICBO随着环境温度的升高而增长很快,ICBO的增加必然造成ICEO 的增大。

而ICEO的增大将直接影响管子工作的稳定性,所以在使用中应尽量选用ICEO小的管子。

通过用万用表电阻直接测量三极管e-c极之间的电阻方法,可间接估计ICEO的大小,具体方法如下:万用表电阻的量程一般选用R×100或R×1K挡,对于PNP管,黑表管接e极,红表笔接c极,对于NPN型三极管,黑表笔接c极,红表笔接e极。

贴片三极管引脚_三极管的识别分类及测量

贴片三极管引脚_三极管的识别分类及测量

贴片三极管引脚三极管的识别分类及测量符号:“Q、VT”三极管有三个电极,即b、c、e,其中c为集电极(输入极)、b为基极(控制极)、e为发射极(输出极)三极管实物图:贴片三极管功率三极管普通三极管金属壳三极管二、三级管的分类:按极性划分为两种:一种是NPN型三极管,是目前最常用的一种,另一种是PNP型三极管。

按材料分为两种:一种是硅三极管,目前是最常用的一种,另一种是锗三极管,以前这种三极管用的多。

三极按工作频率划分为两种:一种是低频三极管,主要用于工作频率比较低的地方;另一种是高频三极管,主要用于工作频率比较高的地方。

按功率分为三种:一种是小功率三极管,它的输出功率小些;一种是中功率三极管,它的输出功率大些;另一种是大功率三极管,它的输出功率可以很大,主要用于大功率输出场合。

按用途分为:放大管和开关管。

三、三极管的组成:三极管由三块半导体构成,对于NPN型三极管由两块N型和一块P型半导体构成,如图A所示,P型半导体在中间,两块N型半导体在两侧,各半导体所引出的电极见图中所示。

在P型和N型半导体的交界面形成两个PN结,在基极与集电极之间的PN结称为集电结,在基极与发射极之间的PN结称为发射结。

图B是PNP型三极管结构示意图,它用两块P型半导体和一块N型半导体构成。

AB四、三极管在电路中的工作状态:三极管有三种工作状态:截止状态、放大状态、饱和状态。

当三极管用于不同目的时,它的工作状态是不同的。

1、截止状态:当三极管的工作电流为零或很小时,即IB=0时,IC和IE也为零或很小,三极管处于截止状态。

2、放大状态:在放大状态下,IC=βIB,其中β(放大倍数)的大小是基本不变的(放大区的特征)。

有一个基极电流就有一个与之相对应的集电极电流。

3、饮和状态:在饮和状态下,当基极电流增大时,集电极电流不再增大许多,当基极电流进一步增大时,集电极电流几乎不再增大。

工作状态定义电流特征解流截止状态集电极与发射极之间电阻很大IB=0或很小,IC或IE为零或很小因为IC=βIB利用电流为零或很小特征,可以判断三极管已处于截止状态放大状态集电极与发射极之间内阻受基极电流大小控制,基极电流大,其内阻小IC=βIBIE=(1+β)IB有一个基极电流就有一个对应的集电极电流和发射极电流,基极电流能有效地控制集电极电流和发射极电流饱和状态集电极与发射之间内阻很小各电极电流均很大,基极电流已无法控制集电极电流和发射极电流电流放大倍数β已很小,甚至小于1(用直流电控制信号的一种方式)五、三极管的作用:放大、调制、谐振、开关1、电流放大:三极管是一个电流控制器件,它用基极电流IB来控制集电极电流IC和发射极电流IE,没有IB就没有IC和IE,只要有一个很小的IB,就有一个很大的IC。

PNP与NPN两种三极管使用方法

PNP与NPN两种三极管使用方法

PNP与NPN两种三极管使用方法PNP(正-负-正)与NPN(负-正-负)是两种常见的三极管类型。

它们在电路中的使用方法有所区别,以下是关于这两种三极管的详细说明。

PNP三极管是一种双极性晶体管,由两个P型半导体材料夹着一个N 型半导体材料构成。

NPN三极管则是由两个N型半导体材料夹着一个P型半导体材料构成。

1.工作原理:在PNP三极管中,基极与发射极之间的电流方向是由基极到发射极,而NPN三极管中,电流方向是由基极流向发射极。

2.构成方式:PNP三极管由一个N型材料包围着两个P型材料形成,而NPN三极管则是由两个N型材料夹着一个P型材料形成。

3.极性:PNP三极管的极性是正负正,而NPN三极管的极性是负正负。

4.流程图表示:在电路图中,PNP三极管的符号是一个向内的三角形,而NPN三极管的符号是一个向外的三角形。

5.管脚标记:PNP三极管的管脚分别标记为:发射极(E)、基极(B)和集电极(C)。

NPN三极管的管脚也是类似的,分别标记为:发射极(E)、基极(B)和集电极(C)。

下面是PNP和NPN三极管在电路中的应用方法:PNP三极管的应用:1.开关应用:PNP三极管可以用作开关,当输入信号为高电平时,基极-发射极间会有电流,此时电流无法通过集电极-发射极间,所以负载被断开。

当输入信号为低电平时,基极-发射极间无电流,电流可以通过集电极-发射极间,负载闭合。

PNP三极管的开关应用主要用于高电平控制的逻辑开关电路。

2.放大应用:PNP三极管可以用作放大器,将弱电流放大为强电流。

在放大电路中,输入信号被加载在基极-发射极间,当输入信号为低电平时,基极-发射极间无电流,输出电流小;当输入信号为高电平时,基极-发射极间有电流,输出电流增大。

因此,PNP三极管广泛用于音频放大、功率放大等电子设备中。

NPN三极管的应用:1.开关应用:NPN三极管也可以用作开关。

当输入信号为低电平时,基极-发射极间会有电流,此时电流无法通过集电极-发射极间,负载被断开。

三极管基础知识及测量方法

三极管基础知识及测量方法

三极管基础知识及测量方法三极管基础知识及测量方法一、晶体管基础双极结型三极管相当于两个背靠背的二极管PN 结。

正向偏置的 EB 结有空穴从发射极注入基区,其中大部分空穴能够到达集电结的边界,并在反向偏置的 CB 结势垒电场的作用下到达集电区,形成集电极电流 IC 。

在共发射极晶体管电路中 ,发射结在基极电路中正向偏置 , 其电压降很小。

绝大部分的集电极和发射极之间的外加偏压都加在反向偏置的集电结上。

由于 VBE 很小,所以基极电流约为IB= 5V/50 k Ω = 0.1mA 。

如果晶体管的共发射极电流放大系数β = IC / IB =100, 集电极电流 IC=β*IB=10mA。

在500Ω的集电极负载电阻上有电压降VRC=10mA*500Ω=5V,而晶体管集电极和发射极之间的压降为VCE=5V,如果在基极偏置电路中叠加一个交变的小电流ib,在集电极电路中将出现一个相应的交变电流ic,有c/ib=β,实现了双极晶体管的电流放大作用。

金属氧化物半导体场效应三极管的基本工作原理是靠半导体表面的电场效应,在半导体中感生出导电沟道来进行工作的。

当栅 G 电压 VG 增大时,p 型半导体表面的多数载流子棗空穴逐渐减少、耗尽,而电子逐渐积累到反型。

当表面达到反型时,电子积累层将在 n+ 源区 S 和 n+ 漏区 D 之间形成导电沟道。

当VDS ≠ 0 时,源漏电极之间有较大的电流 IDS 流过。

使半导体表面达到强反型时所需加的栅源电压称为阈值电压 VT 。

当 VGS>VT 并取不同数值时,反型层的导电能力将改变,在相同的 VDS 下也将产生不同的 IDS , 实现栅源电压VGS 对源漏电流 IDS 的控制。

二、晶体管的命名方法晶体管:最常用的有三极管和二极管两种。

三极管以符号BG(旧)或(T)表示,二极管以D表示。

按制作材料分,晶体管可分为锗管和硅管两种。

按极性分,三极管有PNP和NPN两种,而二极管有P型和N型之分。

三极管管脚测量

三极管管脚测量

万用表测三极管管脚(简单版)3推荐首先将万用表(数字,本人已经好久没用指针式万用表了)打到测试二极管端,用万用表的红表笔接触三极管的其中一个管脚,而用万用表另外的那支表笔去测试其余的管脚,直到测试出如下结果:1、如果三极管的黑表笔接其中一个管脚,而用红表笔测其它两个管脚都导通有电压显示,那么此三极管为PNP三极管,且黑表笔所接的脚为三极管的基极B,用上述方法测试时其中万用表的红表笔接其中一个脚的电压稍高,那么此脚为三极管的发射极E,剩下的电压偏低的那个管脚为集电极C。

2、如果三极管的红表笔接其中一个管脚,而用黑表笔测其它两个管脚都导通有电压显示,那么此三极管为NPN三极管,且红表笔所接的脚为三极管的基极B,用上述方法测试时其中万用表的黑表笔接其中一个脚的电压稍高,那么此脚为三极管的发射极E,剩下的电压偏低的那个管脚为集电极C。

使用数字万用表判断三极管管脚(图解教程)现在数字式的万用表已经是很普及的电工、电子测量工具了,它的使用方便和准确性受到得维修人员和电子爱好者的喜爱。

但有朋友会说在测量某些无件时,它不如指针式的万用表,如测三极管。

我倒认为数字万用表在测量三极管时更加的方便。

以下就是我自己的一些使用经验,我是通常是这样去判断小型的三极管器件的。

大家不妨试试看是否好用或是否正确,如有意见或问题可以发信给我。

手头上有一些BC337的三极管,假设不知它是PNP管还是NPN管。

图1 三极管我们知道三极管的内部就像二个二极管组合而成的。

其形式就像下图。

中间的是基极(B极)。

图2 三极管的内部形式首先我们要先找到基极并判断是PNP还是NPN管。

看上图可知,对于PNP管的基极是二个负极的共同点,NPN管的基极是二个正极的共同点。

这时我们可以用数字万用表的二极管档去测基极,看图3。

对于PNP管,当黑表笔(连表内电池负极)在基极上,红表笔去测另两个极时一般为相差不大的较小读数(一般0.5-0.8),如表笔反过来接则为一个较大的读数(一般为1)。

三极管的测量方法

三极管的测量方法

三极管的测量方法判断基极和三极管的类型:先假设三极管的某极为“基极”,将黑表笔接在假设基极上,再将红表笔依次接到其余两个电极上,若两次测得的电阻都大(约几K到几十K),都小(几百至几K),对换表笔重复上述测量,若测得两个阻值相反(都很小或都很大),则可确定假设的基极是正确的,否则另假设一极为“基极”,重复上述测试,以确定基极.当基极确定后,将黑表笔接基极,红表笔笔接基它两极若测得电阻值都很少,则该三极管为NPN,反之为PNP.判断集电极C和发射极E,以NPN为例:把黑表笔接至假充的集电极C,红表笔接到假设的发射极E,并用手捏住B和C极,读出表头C,E电阻值,将红,黑表笔反接重测.若第一次电阻比第二次小,说明原假设成立.三极管测量方法2007-04-22 08:40三极管的管脚必须正确辨认,否则,接入电路不但不能正常工作,还可能烧坏晶体管。

己知三极管类型及电极,指针式万用表判别晶体管好坏的方法如下:①测 NPN 三极管:将万用表欧姆挡置 "R × 100" 或 "R × lk" 处,把黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。

②测 PNP 三极管:将万用表欧姆挡置 "R × 100" 或 "R × lk" 处,把红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。

当三极管上标记不清楚时,可以用万用表来初步确定三极管的好坏及类型 (NPN 型还是 PNP 型 ),并辨别出e、b、c三个电极。

测试方法如下 :①用指针式万用表判断基极 b 和三极管的类型:将万用表欧姆挡置 "R ×100" 或"R×lk" 处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧 ),则假设的基极是正确的,且被测三极管为 NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧 ), 则假设的基极是正确的,且被测三极管为 PNP 型管。

三极管的测量方法

三极管的测量方法

三极管的测量方法阅读人数:2546人页数:14页陈开伦881227三极管的测量方法判断基极和三极管的类型:先假设三极管的某极为“基极”,将黑表笔接在假设基极上,再将红表笔依次接到其余两个电极上,若两次测得的电阻都大(约几K到几十K),都小(几百至几K),对换表笔重复上述测量,若测得两个阻值相反(都很小或都很大),则可确定假设的基极是正确的,否则另假设一极为“基极”,重复上述测试,以确定基极.当基极确定后,将黑表笔接基极,红表笔笔接基它两极若测得电阻值都很少,则该三极管为NPN,反之为PNP.判断集电极C和发射极E,以NPN为例:把黑表笔接至假充的集电极C,红表笔接到假设的发射极E,并用手捏住B和C极,读出表头C,E电阻值,将红,黑表笔反接重测.若第一次电阻比第二次小,说明原假设成立.三极管测量方法2007-04-22 08:40三极管的管脚必须正确辨认,否则,接入电路不但不能正常工作,还可能烧坏晶体管。

己知三极管类型及电极,指针式万用表判别晶体管好坏的方法如下:①测NPN 三极管:将万用表欧姆挡置"R × 100" 或"R × lk" 处,把黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。

②测PNP 三极管:将万用表欧姆挡置"R × 100" 或"R × lk" 处,把红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。

1/14当三极管上标记不清楚时,可以用万用表来初步确定三极管的好坏及类型(NPN 型还是PNP 型),并辨别出e、b、c三个电极。

PNP与NPN型传感器其实就是利用三极管的饱和和截止,输出两种状态

PNP与NPN型传感器其实就是利用三极管的饱和和截止,输出两种状态
三线式的接近开关必须联接传感器的正电源和地端!
传感器电源必须与接近开关的电源属同一电源或者应该有电流形成回路才能工作!三菱则不必区别,因为它的开关量输入已经自带电源了!
需要注意:有些接近开关虽然为两线式,但有三根线,其中有一根是屏蔽线,应区别开来!
总结:对于PLC的开关量输入回路。我个人感觉日本三菱的要好得多,甚至比西门子等赫赫大名的PLC都要实用和可靠!其主要原因是三菱等日本PLC从欧美那儿学来技术并优化设计,作到:
对于NPN-NC型,在没有信号触发时,发出与VCC电源线相同的电压,也就是out线和电源线VCC连接,输出高电平VCC。当有信号触发后,输出线是悬空的,就是VCC电源线和out线断开。
对于NPN-NC+NO型,其实就是多出一个输出线OUT,根据需要取舍。2、PNP类
PNP是指当有信号触发时,信号输出线out和0v线连接,相当于输出低电平,ov。
台达DVP28SV型PLC的输出有两种类型:晶体管型输出或继电器型输出。
晶体管型输出的电流、电压规格为:0.3A/每点,30VDC以下;
继电器型输出的电流、电压规格为:1.5A/每点,250VAC以下或者30VDC以下。
设计、使用PLC要符合以上电流、电压规格,否则会损坏PLC输出通道。
首先要看你用什么类型,
4、至于漏型PLC不能直接接PNP型传感器,那是因为驱动电流不够,这个就比较麻烦了,模拟电子的课程。你只要弄懂第3点一般就没什么问题了。总结一下就是
PLC的源型输入————PLC输入点的光电耦合的公共端接0V;外部com口接24V。
PLC的漏型输入————PLC输入点的光电耦合的公共端接24V;外部com口接0V。
PNP与NPN型传感器其实就是利用三极管的饱和和截止,输出两种状态,属于开关型传感器。但输出信号是截然相反的,即高电平和低电平。PNP输出是低电平0,NPN输出的是高电平1。

三极管npn和pnp

三极管npn和pnp

三极管npn和pnp三极管(Transistor)是一种最基本的电子元件,它具有可以放大和开关电流的功能,广泛应用于电子电路中。

三极管可以分为NPN型和PNP型两种。

下面分别介绍NPN型和PNP型三极管的结构、工作原理以及应用。

一、NPN型三极管:NPN型三极管由两个N型半导体和一个P型半导体构成。

其中,N型半导体作为发射极(Emitter),由外界加上正电压。

P型半导体作为基极(Base),控制发射极和集电极(Collector)之间的电流。

另一个N型半导体则构成集电极。

具体来说,当基极与发射极之间的电压大于0.6V时,发射极和集电极之间就会形成一个导通路径,电流可以从发射极流向集电极。

NPN型三极管的工作原理是基于PN结的正向和反向偏置。

当发射极和集电极之间的电压大于0.6V时,PN结就会变为正向偏置,导致大量的电子从N型发射极注入到P型基极,形成发射极电流(Ie)。

同时,这些注入的电子会继续向集电极流动,形成集电极电流(Ic)。

在NPN型三极管中,Ic是由Ie 放大而来的,即放大系数β=Ic/Ie。

NPN型三极管具有放大作用,广泛应用于放大电路。

由于其有一个控制极(基极),可以通过控制电流的大小来控制输出电流,被称为"控制电流小,输出电流大"的电流放大器。

NPN 型三极管还常用于逻辑门电路、计时电路、振荡器电路等。

二、PNP型三极管:PNP型三极管由两个P型半导体和一个N型半导体构成。

其中,P型半导体作为发射极,由外界连结上负电源。

N型半导体作为基极,控制发射极和集电极之间的电流。

另一个P型半导体则构成集电极。

PNP型三极管的工作原理和NPN型三极管相似,区别在于PN结的正向和反向偏置。

当基极与发射极之间的电压小于-0.6V时,PN结就会变为正向偏置,使得发射极电流从发射极流入基极。

同时,由于P型基极中有空穴,这些空穴会向集电极流动,形成集电极电流(Ic)。

在PNP型三极管中,Ic是由发射极电流减少而来的,即放大系数β=Ic/Ie。

NPN与PNP的区别

NPN与PNP的区别

一.PNP与NPN 晶体管的检测方法NPN和PNP主要就是电流方向和电压正负不同,说得“专业”一点,就是“极性”问题。

方法一:鉴别基极B将数字万用表拨至二极管档,红表笔固定任接某个引脚,用黑表笔依次接触另外两个引脚,如果两次显示值均小于1V或都显示溢出符号“1”,则红表笔所接的引脚就是基极B。

如果在两次测试中,一次显示值小于1V,另一次显示溢出符号“1”,表明红表笔接的引脚不是基极B,此时应改换其他引脚重新测量,直到找出基极B为止。

区分NPN管与PNP管使用数字万用表的二极管档。

按上述操作确认基极B之后,将红表笔接基极B,用黑表笔先后接触其他两个引脚。

如果都显示0.500~0.800V,则被测管属于NPN型;若两次都显示溢出符号“1”,则表明被测管属于PNP管。

方法二:判定基极。

用万用表R×100或R×1k挡测量管子三个电极中每两个极之间的正、反向电阻值。

当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。

这时,要注意万用表表笔的极性,如果红表笔接的是基极b。

黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测管子为PNP型三极管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管如9013,9014,9018。

小注:使用数字万用表的二极管档测量二极管的正向压降,这时读数的单位是mV。

例如,用该档检测2AP3型二极管的正向压降,显示为“352”,即表示352mV或0.352V(此管为锗管)。

用该档检测IN4007型二极管时,正向显示为“509”,即表示正向压降为509mV或0.509V (此管为硅管)。

数字万用表的二极管档,还可以用来检测电路是否短路。

二、常见三极管之——9013 、 90129013三极管9013是一种NPN型硅小功率的三极管它是非常常见的晶体三极管,在收音机以及各种放大电路中经常看到它,应用范围很广,它是NPN型小功率三极管。

PNP NPN 三极管

PNP  NPN  三极管

结构与操作原理三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn 两种组合。

三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集极(collector, C),名称来源和它们在三极管操作时的功能有关。

图中也显示出npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体,和二极管的符号一致。

在没接外加偏压时,两个pn接面都会形成耗尽区,将中性的p型区和n型区隔开。

图1 pnp(a)与npn(b)三极管的结构示意图与电路符号。

三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里我们先讨论最常用的所谓”正向活性区”(forward active),在此区EB极间的pn接面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管都以此方式偏压。

图2(a)为一pnp三极管在此偏压区的示意图。

EB接面的耗散区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基极的电子也会注入到射极;而BC 接面的耗尽区则会变宽,载体看到的位障变大,故本身是不导通的。

图2(b)画的是没外加偏压,和偏压在正向活性区两种情况下,电洞和电子的电位能的分布图。

三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在于三极管的两个接面相当接近。

以上述之偏压在正向活性区之pnp三极管为例,射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极方向扩散,同时也被电子复合。

当没有被复合的电洞到达BC接面的耗尽区时,会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流到达连结外部的欧姆接点,形成集电极电流IC。

IC的大小和BC间反向偏压的大小关系不大。

基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入射极的电子流InB?E(这部分是三极管作用不需要的部分)。

(整理)数字万用表判别三极管类型方法-很简单

(整理)数字万用表判别三极管类型方法-很简单

1、三极管类型的判别:三极管只有两种类型,即PNP型和NPN型。

判别时只要知道基极是P型材料还N型材料即可。

用数字万用表红笔(代表电源正极)接基极与其他两极测量时导通,则说明三极管的基极为P型材料,三极管即为NPN型。

如果红表笔接基极与其他两极测量不导通,则说明三极管基极为N型材料,三极管即为PNP型。

2、2、3DD15D三极管的引脚是怎么区分的1是基极b,2是发射极e,外壳是集电极c不用测,面对管脚,管脚靠上,左面是b,石面是e,只要结构相同的,不分型号,都一样。

3、PNP三极管图集电极C发射极E识别方法:直线的是基极,有箭头的是发射极,剩下就是集电极。

箭头朝向代表电流方向,PNP管箭头指向内,NPN管箭头指向外。

4、PNP管包含3AG,3AX,3AK,3AD,3CG,3CX等。

NPN管包含3DG,3DX,3DK,3DD,3DA,3BX等。

3AX 为PNP型低频小功率管3BX 为NPN型低频小功率管3CG 为PNP型高频小功率管3DG 为NPN型高频小功率管3AD 为PNP型低频大功率管3DD 为NPN型低频大功率管3CA 为PNP型高频大功率管3DA 为NPN型高频大功率管6、知道三极管各电极对地的电压值,判断管子工作状态:NPN:VC>VB>VE:发射结正偏,集电结反偏,放大状态VB>VE,VB>VC:发射结正偏,集电结正偏,饱和状态VB<VE,VB<VC:发射结反偏,集电结反偏,截止状态VB<VE,VB>VC:发射结反偏,集电结正偏,反向运用状态PNP:VB<VE,VB>VC:发射结正偏,集电结反偏,放大状态VB<VE,VB<VC:发射结正偏,集电结正偏,饱和状态VB>VE,VB>VC:发射结反偏,集电结反偏,截止状态VB>VE,VB<VC:发射结反偏,集电结正偏,反向运用状态7、三极管的结构与分类晶体三极管晶体三极管又称半导体三极管,简称晶体管或三极管。

三极管之——PNP与NPN

三极管之——PNP与NPN

一.PNP与NPN 晶体管的检测方法NPN和PNP主要就是电流方向和电压正负不同,说得“专业”一点,就是“极性”问题。

方法一:鉴别基极B将数字万用表拨至二极管档,红表笔固定任接某个引脚,用黑表笔依次接触另外两个引脚,如果两次显示值均小于1V或都显示溢出符号“1”,则红表笔所接的引脚就是基极B。

如果在两次测试中,一次显示值小于1V,另一次显示溢出符号“1”,说明红表笔接的引脚不是基极B,此时应改换其他引脚重新测量,直到找出基极B为止。

区分NPN管与PNP管使用数字万用表的二极管档。

按上述操作确认基极B之后,将红表笔接基极B,用黑表笔先后接触其他两个引脚。

如果都显示0.500~0.800V,则被测管属于NPN型;若两次都显示溢出符号“1”,则说明被测管属于PNP管。

方法二:判定基极。

用万用表R×100或R×1k挡测量管子三个电极中每两个极之间的正、反向电阻值。

当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。

这时,要注意万用表表笔的极性,如果红表笔接的是基极b。

黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测管子为PNP型三极管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管如9013,9014,9018。

小注:使用数字万用表的二极管档测量二极管的正向压降,这时读数的单位是mV。

例如,用该档检测2AP3型二极管的正向压降,显示为“352”,即表示352mV或0.352V(此管为锗管)。

用该档检测IN4007型二极管时,正向显示为“509”,即表示正向压降为509mV或0.509V (此管为硅管)。

数字万用表的二极管档,还可以用来检测电路是否短路。

二、常见三极管之——9013 、 90129013三极管9013是一种NPN型硅小功率的三极管它是非常常见的晶体三极管,在收音机以与各种放大电路中经常看到它,应用围很广,它是NPN型小功率三极管。

NPN和PNP作为开关管的设计技巧以及全系列三极管参数

NPN和PNP作为开关管的设计技巧以及全系列三极管参数

NPN和PNP作为开关管的设计技巧以及全系列三极管参数2.1 NPN与PNP的区别NPN和PNP主要是电流方向和电压正负不同。

NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。

PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC<VB<VE。

2.2 NPN和PNP作为开关的使用三极管做开关时,工作在截至和饱和两个状态。

一般是通过控制三极管的基极电压Ub 来控制三极管的导通与断开。

图1 NPN与PNP工作状态PNP NPN截止Ueb<Uon Ube<UonUb>Uc Uc>Ub放大Ueb>Uon Ube>UonUb>Uc Uc>Ub饱和Ueb>Uon Ube>UonUb<Uc Uc<Ub如上图1所示,对于NPN来说,使Ube<Uon,三极管断开,Ube>Uon,三极管导通,其中一般Ue接地,则只需控制Ub,使Ub>Uon即可使之导通。

对于PNP来说,使Ueb<Uon,三极管断开,Ueb>Uon,三极管导通,其中一般Uc接地,所以要使三极管导通既要控制Ue又要控制Ub使Ueb>Uon才行。

所以一般是Ue为某个固定电压值,只通过控制Ub来就可以控制三极管的导通与断开。

对比NPN与PNP可知:NPN做开关时,适合放在电路的接地端使用,如图2里面Q6; PNP 做开关时,适合放在电路的电源端使用,如图3。

我们一般使用芯片I/O口来控制LED灯,I/O口的逻辑电平一般为高电平3 V左右,低电平为0.3V左右。

因此可以直接控制NPN管开关,如图2里面的Q6;一般不直接控制PNP 管,如图3。

我们前控板设计LED的控制电路采用如下图2的NPN三极管对地较为合适,并且双色灯最好是使用共阳双色灯。

三极管pnp和npn

三极管pnp和npn

三极管PNP和NPN1. 介绍三极管是一种半导体器件,用于放大电信号、开关电路和稳压电路等应用。

其中,PNP和NPN是最常见的两种三极管类型。

它们在结构、工作原理和应用方面有所区别,但都具有重要的功能和应用。

2. PNP三极管2.1 结构PNP三极管由两个P型半导体夹着一个N型半导体构成。

中间的N型区域称为基区,两侧的P型区域称为发射区和集电区。

发射区连接到P型外接电源,集电区连接到P型负载电阻。

2.2 工作原理当发射区的P型外接电源为正电压时,电子从N型基区注入到发射区,形成发射电流。

同时,集电区的P型外接电源为负电压,形成集电电流。

基区处于发射区和集电区之间,起到控制电流的作用。

2.3 特点和应用•PNP三极管常用于负极性电源电路和高电压应用。

•它的电流流向与NPN相反,因此在电路设计中需要注意极性。

•PNP三极管可以用于放大电路、开关电路和稳压电路。

3. NPN三极管3.1 结构NPN三极管由两个N型半导体夹着一个P型半导体构成。

中间的P型区域称为基区,两侧的N型区域称为发射区和集电区。

发射区连接到N型外接电源,集电区连接到N型负载电阻。

3.2 工作原理当发射区的N型外接电源为负电压时,电子从发射区注入到N型基区,形成发射电流。

同时,集电区的N型外接电源为正电压,形成集电电流。

基区处于发射区和集电区之间,起到控制电流的作用。

3.3 特点和应用•NPN三极管常用于正极性电源电路和低电压应用。

•它的电流流向与PNP相反,因此在电路设计中需要注意极性。

•NPN三极管可以用于放大电路、开关电路和稳压电路。

4. PNP和NPN的比较特性PNP NPN极性负极性正极性电流电流流向与NPN相反电流流向与PNP相反电压极性集电区负,发射区正集电区正,发射区负适用场景负极性电源和高电压应用正极性电源和低电压应用放大电路应用负极性输入,负极性输出正极性输入,正极性输出开关电路应用负极性输入,正极性输出正极性输入,负极性输出稳压电路应用降压稳压电路,负极性输出升压稳压电路,正极性输出5. 总结PNP和NPN三极管是常见的半导体器件,用于放大电路、开关电路和稳压电路等应用。

三极管PNP NPN

三极管PNP NPN

三极管按材料分为锗管和硅管.不只是锗管有PNP结构的.国产的3BX,3BA系列的都是锗NPN管.硅材料的也有PNP结构的.如A1015就是一个硅PNP三极管.国产的3CD,3CX,系列的都是硅PNP管.PNP型与NPN型三极管在电路中的作用是一样的.主要区别是电源极性相反. 电流方向相反,截止电压不同.锗管的导通电压一般是0.2V,硅管是0,75V.锗管的穿透电流大,热稳定性差.硅管的穿透电流小热稳定性好.锗管的结温低一般为90度.硅管的结温高为175度一、三极管的电流放大原理晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。

而每一种又有NPN和PNP 两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。

图1、晶体三极管(NPN)的结构图一是NPN管的结构图,它是由2块N型半导体中间夹着一块P型半导体所组成,从图可见发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。

当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。

在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。

由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:Ie=Ib+Ic这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β= △Ic/△Ib式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。

PNP与NPN两种三极管使用方法

PNP与NPN两种三极管使用方法

PNP与NPN两种三极管使用方法PNP和NPN是两种常见的三极管类型,它们在电子工程中起到重要的作用。

在本文中,我们将详细讨论PNP和NPN三极管的使用方法以及相关的应用。

PNP三极管是一种双向晶体管,它由两个P型半导体材料夹着一个N型半导体材料组成。

NPN三极管则是由两个N型半导体材料夹着一个P型半导体材料组成。

PNP和NPN三极管中的三个端口分别是发射极(Emitter)、基极(Base)和集电极(Collector)。

发射极和基极之间的电压关系决定了三极管的工作状态。

三极管通常用于放大和开关电路中。

首先让我们来看一下PNP三极管的使用方法。

PNP三极管的发射极接在基极之前,当发射极与基极之间的电压大于零时,PNP三极管就被激活,并且电流从发射极流向基极。

当基极电流大于发射极电流时,发射极和基极之间的电压差会产生一个负电压。

这种负电压会控制集电极和发射极之间的电流流动。

当集电极和发射极之间的电压小于零时,PNP三极管是关闭的状态。

对于NPN三极管,其使用方法与PNP相反。

NPN三极管是基极接在发射极之前,当基极和发射极之间的电压大于零时,NPN三极管被激活,电流从集电极流向基极。

当基极电流大于集电极电流时,发射极和基极之间的电压差会产生一个正电压。

这种正电压会控制集电极和发射极之间的电流流动。

当集电极和发射极之间的电压小于零时,NPN三极管是关闭的状态。

PNP和NPN三极管的使用方法在放大和开关电路中具有广泛的应用。

在放大电路中,三极管被用来放大电压和电流。

PNP三极管在负电源上,NPN三极管在正电源上提供电流放大。

在开关电路中,三极管被用来控制其他电路或设备的开关状态。

通过控制基极电流,可以使三极管处于导通或截止状态,以改变电路的行为。

此外,PNP和NPN三极管还经常用于模拟和数字电路中。

在模拟电路中,三极管被用来控制电流和电压信号的放大和调节。

在数字电路中,三极管可以作为开关器件,用于控制逻辑门的输出信号。

三极管PNP、NPN及极性测量方法

三极管PNP、NPN及极性测量方法
万用表测判三极管
三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面让我们逐句进行解释吧。
一、 三பைடு நூலகம்倒,找基极
大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极。
二、 PN结,定管型
找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。
三、 顺箭头,偏转大
四、 测不出,动嘴巴
若在“顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。具体方法是:在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e。其中人体起到直流偏置电阻的作用,目的是使效果更加明显。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构与操作原理三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn两种组合。

三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集极(collector, C),名称来源和它们在三极管操作时的功能有关。

图中也显示出npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体,和二极管的符号一致。

在没接外加偏压时,两个pn接面都会形成耗尽区,将中性的p型区和n型区隔开。

图1 pnp(a)与npn(b)三极管的结构示意图与电路符号。

三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里我们先讨论最常用的所谓”正向活性区”(forward active),在此区EB极间的pn接面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管都以此方式偏压。

图2(a)为一pnp三极管在此偏压区的示意图。

EB接面的耗散区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大,故本身是不导通的。

图2(b)画的是没外加偏压,和偏压在正向活性区两种情况下,电洞和电子的电位能的分布图。

三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在于三极管的两个接面相当接近。

以上述之偏压在正向活性区之pnp三极管为例,射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极方向扩散,同时也被电子复合。

当没有被复合的电洞到达BC接面的耗尽区时,会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流到达连结外部的欧姆接点,形成集电极电流IC。

IC的大小和BC间反向偏压的大小关系不大。

基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入射极的电子流InB? E(这部分是三极管作用不需要的部分)。

InB? E在射极与与电洞复合,即InB? E=I Erec。

pnp三极管在正向活性区时主要的电流种类可以清楚地在图3(a)中看出。

图2 (a)一pnp三极管偏压在正向活性区;(b)没外加偏压,和偏压在正向活性区两种情况下,电洞和电子的电位能的分布图比较。

图3 (a) pnp三极管在正向活性区时主要的电流种类;(b)电洞电位能分布及注入的情况;(c)电子的电位能分布及注入的情况。

一般三极管设计时,射极的掺杂浓度较基极的高许多,如此由射极注入基极的射极主要载体电洞(也就是基极的少数载体)IpE? B电流会比由基极注入射极的载体电子电流InB? E大很多,三极管的效益比较高。

图3(b)和(c)个别画出电洞和电子的电位能分布及载体注入的情况。

同时如果基极中性区的宽度WB愈窄,电洞通过基极的时间愈短,被多数载体电子复合的机率愈低,到达集电极的有效电洞流IpE? C愈大,基极必须提供的复合电子流也降低,三极管的效益也就愈高。

集电极的掺杂通常最低,如此可增大CB极的崩溃电压,并减小BC间反向偏压的pn接面的反向饱和电流,这里我们忽略这个反向饱和电流。

由图4(a),我们可以把各种电流的关系写下来:射极电流I E=IpE? B+ IErec = IpE? B+ InB? E =IpE? C+ I Brec + InB? E (1a)基极电流IB= InB? E + I Brec= I Erec + I Brec (1b)集电极电流I C =IpE? C= I E - I Erec - I Brec= I E - I B (1c)式1c也可以写成I E = IC+ IB射极注入基极的电洞流大小是由EB接面间的正向偏压大小来控制,和二极管的情况类似,在启动电压附近,微小的偏压变化,即可造成很大的注入电流变化。

更精确的说,三极管是利用V EB(或V BE)的变化来控制IC,而且提供之IB远比IC小。

npn三极管的操作原理和pnp三极管是一样的,只是偏压方向,电流方向均相反,电子和电洞的角色互易。

pnp三极管是利用VEB控制由射极经基极、入射到集电极的电洞,而npn三极管则是利用V BE控制由射极经基极、入射到集电极的电子,图4是二者的比较。

经过上面讨论可以看出,三极管的效益可以由在正向活性区时,射极电流中有多少比例可以到达集电极看出,这个比例习惯性定义作希腊字母α图4 pnp三极管与npn三极管在正向活性区的比较。

而且a一定小于1。

效益高的三极管,a可以比0.99大,也就是只有小于1%的射极电流在基极与射极内与基极的主要载体复合,超过99%的射极电流到达集电极了解正向活性区的工作原理后,三极管在其他偏压方式的工作情况就很容易理解了。

表1列出三极管四种工作方式的名称及对应之BE和BC之pn接面偏压方式。

反向活性区(reverse active)是将原来之集电极用作射极,原来的射极当作集电极,但由于原来集电极之掺杂浓度较基极低,正向偏压时由原基极注入到原集电极之载体远较原集电极注入基极的多,效益很差,也就是说和正向活性区相比,提供相同的基极电流,能够开关控制的集电极电流较少,a较小。

在饱和区(saturation),两个接面都是正向偏压,射极和集电极同时将载体注入基极,基极因此堆积很多少数载体,基极复合电流大增,而且射极和集电极的电流抵销,被控制的电流量减小。

在截止区(cut off),BE和BC接面均不导通,各极间只有很小的反向饱和电流,三极间可视作开路,也就是开关在关的状态。

表中同时列出了四种工作方式的主要用途。

三极管在数字电路中的用途其实就是开关,利用电信号使三极管在正向活性区(或饱和区)与截止区间切换,就开关而言,对应开与关的状态,就数字电路而言则代表0与1(或1与0)两个二进位数字。

若三极管一直维持偏压在正向活性区,在射极与基极间微小的电信号(可以是电压或电流)变化,会造成射极与集电极间电流相对上很大的变化,故可用作信号放大器。

下面在介绍完三极管的电流电压特性后,会再仔细讨论三极管的用途。

三极管截止与饱合状态截止状态三极管作为开关使用时,仍是处于下列两种状态下工作。

1.截止(cut off)状态:如图5所示,当三极管之基极不加偏压或加上反向偏压使BE极截止时(BE极之特性和二极管相同,须加上大于0.7V之正向偏压时才态导通),基极电流IB=0,因为IC=βIB,所以IC=IE=0,此时CE极之间相当于断路,负载无电流。

饱合状态饱合(saturation)状态:如图6所示,当三极管之基极加入驶大的电流时,因为IC≒IE=β×IB,射极和集极的电流亦非常大,此时,集极与射极之间的电压降非常低(VCE为0.4V以下),其意义相当于集极与射极之间完全导通,此一状态称为三极管饱合。

图6 (a)基极加上足够的顺向 (b)此时C-E极之间视同偏压使IB足够大导通状态晶体管的电路符号和各三个电极的名称如下图7 PNP型三极管图8 NPN型三极管三极管的特性曲线1、输入特性图2 (b)是三极管的输入特性曲线,它表示Ib随Ube的变化关系,其特点是:1)当Uce在0-2伏范围内,曲线位置和形状与Uce有关,但当Uce高于2伏后,曲线Uce基本无关通常输入特性由两条曲线(Ⅰ和Ⅱ)表示即可。

2)当Ube<UbeR时,Ib≈O称(0~UbeR)的区段为“死区”当Ube>UbeR时,Ib随Ube增加而增加,放大时,三极管工作在较直线的区段。

3)三极管输入电阻,定义为:rbe=(△Ube/△Ib)Q点,其估算公式为:rbe=rb+(β+1)(26毫伏/Ie毫伏)rb为三极管的基区电阻,对低频小功率管,rb约为300欧。

2、输出特性输出特性表示Ic随Uce的变化关系(以Ib为参数)从图9(C)所示的输出特性可见,它分为三个区域:截止区、放大区和饱和区。

截止区当Ube<0时,则Ib≈0,发射区没有电子注入基区,但由于分子的热运动,集电集仍有小量电流通过,即Ic=Iceo称为穿透电流,常温时Iceo约为几微安,锗管约为几十微安至几百微安,它与集电极反向电流Icbo的关系是:Icbo=(1+β)Icbo常温时硅管的Icbo小于1微安,锗管的Icbo约为10微安,对于锗管,温度每升高12℃,Icbo数值增加一倍,而对于硅管温度每升高8℃, Icbo数值增大一倍,虽然硅管的Icbo随温度变化更剧烈,但由于锗管的Icbo值本身比硅管大,所以锗管仍然受温度影响较严重的管,放大区,当晶体三极管发射结处于正偏而集电结于反偏工作时,Ic随Ib近似作线性变化,放大区是三极管工作在放大状态的区域。

饱和区当发射结和集电结均处于正偏状态时,Ic基本上不随Ib而变化,失去了放大功能。

根据三极管发射结和集电结偏置情况,可能判别其工作状态。

图9三极管的主要参数1、直流参数(1)集电极一基极反向饱和电流Icbo,发射极开路(Ie=0)时,基极和集电极之间加上规定的反向电压Vcb时的集电极反向电流,它只与温度有关,在一定温度下是个常数,所以称为集电极一基极的反向饱和电流。

良好的三极管,Icbo很小,小功率锗管的Icbo约为1~10微安,大功率锗管的Icbo 可达数毫安培,而硅管的Icbo则非常小,是毫微安级。

(2)集电极一发射极反向电流Iceo(穿透电流)基极开路(Ib=0)时,集电极和发射极之间加上规定反向电压Vce时的集电极电流。

Iceo大约是Icbo的β倍即Iceo=(1+β)Icbo o Icbo和Iceo受温度影响极大,它们是衡量管子热稳定性的重要参数,其值越小,性能越稳定,小功率锗管的Iceo比硅管大。

(3)发射极---基极反向电流Iebo集电极开路时,在发射极与基极之间加上规定的反向电压时发射极的电流,它实际上是发射结的反向饱和电流。

(4)直流电流放大系数β1(或hEF)这是指共发射接法,没有交流信号输入时,集电极输出的直流电流与基极输入的直流电流的比值,即:β1=Ic/Ib2、交流参数(1)交流电流放大系数β(或hfe)这是指共发射极接法,集电极输出电流的变化量△Ic与基极输入电流的变化量△Ib之比,即:β= △Ic/△Ib一般电晶体的β大约在10-200之间,如果β太小,电流放大作用差,如果β太大,电流放大作用虽然大,但性能往往不稳定。

(2)共基极交流放大系数α(或hfb)这是指共基接法时,集电极输出电流的变化是△Ic与发射极电流的变化量△Ie之比,即:α=△Ic/△Ie因为△Ic<△Ie,故α<1。

高频三极管的α>0.90就可以使用α与β之间的关系:α= β/(1+β)β= α/(1-α)≈1/(1-α)(3)截止频率fβ、fα当β下降到低频时0.707倍的频率,就什发射极的截止频率fβ;当α下降到低频时的0.707倍的频率,就什基极的截止频率fαo fβ、 fα是表明管子频率特性的重要参数,它们之间的关系为:fβ≈(1-α)fα(4)特征频率fT因为频率f上升时,β就下降,当β下降到1时,对应的fT是全面地反映电晶体的高频放大性能的重要参数。

相关文档
最新文档