风电机组变桨系统分享
SL1500风电机组变桨系统 ppt课件
16
伺服电机
带位置反馈和电热调节器 相关参数:1.5MW 功率: 4.8kW 额定扭矩:23Nm 额定转速:2000rpm
ppt课件
17
制动器
当制动器供电时,叶片能够向两个方向运行; 当制动器断电时,叶片只能向顺桨的方向运动, 不能向工作位置运动。1.5MW变桨制动器都是单向 的,工作时,一直供电,双方向都能运动,只有 出现紧急情况才断电,限制一个方向运动。
变桨限ppt课位件撞块
24
当叶片变桨趋 于顺桨位置时,顺 桨接近撞块就会运 行到接近开关上方, 接近开关接受信号 后会传递给变桨系 统,提示叶片已经 处于顺桨位置。
ppt课变件 (顺)桨接近撞块
25
顺桨接近撞块和变桨限位撞块的基本维护
a.检查变桨接近开关的清洁度,以保证能够 正常接受信号。
b.检查易损件缓冲块,做到及时更换。 c.检查各撞块螺栓的紧固。
ppt课件
4
二、变桨系统工作示意图
变桨调节范围
风向
顺桨位置
极限工作位置
变桨驱动装置
ppt课件
变桨齿轮边缘
5
顺桨位置
停机
启动
变桨保护
满发
ppt课件
6
工作位置
1.5MW轮毂装置示意图
导流帽
轮毂
极限工作位置撞块
轮毂变 桨控制 柜
变桨限 位撞块
轮毂罩 分隔壁
极限工作位置 开关
变桨制动器
ppt课件
缓冲器 变桨接 近开关
ppt课件28Fra bibliotek1.5MW变桨调节范围
ppt课件
29
ppt课件
30
置撞块、接近开关、限位开关、缓冲器
ppt课件
变桨系统原理及维护方案
1.5MW风力发电机组变桨系统原理及维护国电联合动力技术有限公司培训中心(内部资料严禁外泄)UP77/82 风电机组变桨控制及维护目录1、变桨系统控制原理2、变桨系统简介3、变桨系统故障及处理4、LUST与SSB变桨系统的异同5、变桨系统维护定桨失速风机与变桨变速风机之比较定桨失速型风电机组发电量随着风速的提高而增长,在额定风速下达到满发,但风速若再增加,机组出力反而下降很快,叶片呈现失速特性。
优点:机械结构简单,易于制造;控制原理简单,运行可靠性高。
缺点:额定风速高,风轮转换效率低;电能质量差,对电网影响大;叶片复杂,重量大,不适合制造大风机变桨变速型风电机组风机的每个叶片可跟随风速变化独立同步的变化桨距角,控制机组在任何转速下始终工作在最佳状态,额定风速得以有效降低,提高了低风速下机组的发电能力;当风速继续提高时,功率曲线能够维持恒定,有效地提高了风轮的转换效率。
优点:发电效率高,超出定桨机组10%以上;电能质量提高,电网兼容性好;高风速时停机并顺桨,降低载荷,保护机组安全;叶片相对简单,重量轻,利于制造大型兆瓦级风机缺点:变桨机械、电气和控制系统复杂,运行维护难度大。
变桨距双馈变速恒频风力发电机组成为当前国内兆瓦级风力发电机组的主流。
变桨系统组成部分简介变桨控制系统简介✓主控制柜✓轴柜✓蓄电池柜✓驱动电机✓减速齿轮箱✓变桨轴承✓限位开关✓编码器▪变桨主控柜变桨轴柜▪蓄电池柜▪电机编码器GM 400绝对值编码器共10根线,引入变桨控制柜,需按线号及颜色接入变桨控制柜端子排上。
▪限位开关变桨系统工作流程:●机组主控通过滑环传输的控制指令;●将变桨命令分配至三个轴柜;●轴柜通过各自独立整流装置同步变换直流来驱动电机;●通过减速齿轮箱传递扭矩至变桨齿轮带动每个叶片旋转至精准的角度;●将该叶片角度值反馈至机组主控系统变桨系统控制原理风机不同运行状态下的变桨控制1、静止——起动状态2、起动——加速状态3、加速——风机并网状态3.1、低于额定功率下发电运行3.2 达到额定功率后维持满发状态运行4、运行——停机状态1、静止——起动状态下的变桨调节桨距角调节至50°迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;目标:叶轮转速升至3 r/s(低速轴)2、起动——加速状态下的变桨调节桨距角在(50 °,0°)范围内调节迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;目标:叶轮转速升至10 r/s(低速轴)3、加速——并网发电状态下的变桨调节3.1 低于额定功率下的变桨调节桨距角在维持0°迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;变频系统通过转矩控制达到最大风能利用系数, 目标:叶轮转速升至17.5 r/s(低速轴)3.2 达到额定功率后维持满发状态运行桨距角在(90 °,0°)范围内调节;开桨速度不能超过5 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;通过变桨控制使机组保持额定输出功率不变,目标:叶轮转速保持17.5 r/s(低速轴)4、运行——停机状态4.1 正常停机叶片正常顺桨至89°;变桨主控柜的顺桨命令通过轴柜执行;顺桨速度控制为5° /s;叶轮空转,机械刹车不动作;4.2 快速停机叶片快速顺桨至89°;变桨主控柜的顺桨命令通过轴柜执行;顺桨速度控制为7° /s;叶轮空转,机械刹车不动作;4.3 紧急停机叶片紧急顺桨至91°或96 °限位开关;紧急顺桨命令通过蓄电池柜执行;顺桨速度不受控制;叶轮转速低于5 r/s后,液压机械刹车抱闸,将叶轮转速降至为零;独立变桨:三个叶片通过各自的轴柜和蓄电池柜实现开桨和顺桨的同步调节;如果某一个驱动器发生故障,另两个驱动器依然可以安全地使风机顺桨并安全停机。
风电机组变桨系统PPT演示课件
在安装好控制系统后要设计合理的接线方法,把各控 制系统组件的线固定好,以防止轮毂在转动时发生接 线的故障。
18
变桨系统工作流程: 机组主控通过滑环传输的控制指令; 将变桨命令分配至三个轴柜; 轴柜通过各自独立整流装置同步变换直流
8
9
通过机舱上面的风速仪测量风速,把信息传 送到塔底柜,经过分析信息把变桨的信息传送到 轮毂变桨系统的中心箱,中心箱再把信息转发给3 个轴箱,轴箱在通过变桨驱动来调节叶片的变桨 角度。
变桨角度的信息是通过绝对编码器组件来测 量的。叶片轴承的内齿圈和绝对编码器的测量小 齿轮啮合,测量小齿轮把叶片转动的信息传给绝 对编码器,经过绝对编码器的记数作用把叶片转 动的角度进行测量
6
叶片轴承 变桨齿轮箱 叶片锁组件
7
叶片轴承是连接轮毂和叶片的组件。叶片轴承的内 圈连接叶片,外圈固定在轮毂上。叶片轴承的内齿 与变桨齿轮箱啮合。 变桨齿轮箱固定在轮毂的工艺安装面上,通过变桨 齿轮箱齿轮的转动实现叶片轴承内圈的转动完成叶 片的变桨。 (注意叶片轴承和变桨齿轮箱之间要调整合理的齿 隙) 叶片锁组件是为了对叶片检修或轮毂检修而设计的 防止叶片转动的机械装置。
当电池由于故障导致较长时间未被使用时, 风机主控制器将引发一个充电操作和电池状 况检查以检查电池的功能是否正常。
29
LUST变桨系统故障列表
30
LUST变桨系统故障列表
31
LUST变桨系统故障列表
32
SSB变桨系统故障列表
33
SSB变桨系统故障列表
34
SSB变桨系统故障列表
叶片锁组件:是为了对叶片检修或轮毂检修而设计 的防止叶片转动的机械装置。
变桨系统分析范文
变桨系统分析范文变桨系统是风力发电机组中的一个重要组成部分,其主要功能是控制风力发电机的转动速度以及调整叶片的角度,以最大限度地捕捉风能并转化为电能。
变桨系统的设计和分析对于提高风力发电机组的性能和效率至关重要。
首先,变桨系统的设计要考虑到风力的不稳定性以及不同桨叶之间的协调。
由于风速和风向会不断变化,变桨系统需要能够实时监测风速和风向,并根据这些信息来调整叶片角度。
这样可以确保叶片始终与风的方向保持一致,使得风能能够最大化地被转化为电能。
其次,变桨系统的设计还需要考虑到风力发电机组的安全性和稳定性。
在风力风速超过预设范围或者发生异常情况时,变桨系统需要能够快速响应并采取相应措施,例如自动停机等,以保证风力发电机组的安全运行。
此外,变桨系统还需要考虑到桨叶与风轮之间的匹配,以避免不必要的振动和损耗。
另外,变桨系统的设计还需要考虑到节能和环保的因素。
在设计中需要采用先进的变桨技术和材料,以提高变桨系统的效率并减少能源的消耗。
例如,使用轻量化的材料可以减轻叶片的负荷,从而减少能耗。
同时,变桨系统还可以根据风速和负载状况自动调整变桨角度,以实现最佳风能转化效果。
此外,变桨系统的设计还要考虑到系统的可靠性和可维护性。
风力发电机组通常安装在海上或者偏远地区,维护困难且成本较高。
因此,变桨系统需要具有自动故障检测和诊断功能,并能够通过远程监控进行实时数据传输和维护。
这样可以大大提高系统的可靠性,并减少维护成本和停机时间。
最后,变桨系统的设计还需要兼顾成本的因素。
变桨系统通常占据整个风力发电机组的一定比重,因此需要在设计中考虑到成本效益和性能之间的平衡。
这可能涉及到不同变桨系统的选择和优化,以找到最佳的设计方案。
综上所述,变桨系统的设计和分析需要综合考虑风力的不稳定性、风力发电机组的安全性和稳定性、节能环保、系统可靠性和可维护性以及成本效益等因素。
通过合理的设计和分析,可以提高风力发电机组的性能和效率,从而实现更高效的风能转化。
变桨工作原理
变桨工作原理标题:变桨工作原理引言概述:变桨是现代风力发电机组中重要的组成部分,它通过调整叶片的角度来适应不同的风速和风向,从而优化发电效率。
本文将详细介绍变桨的工作原理,包括传动系统、控制系统、叶片角度调整原理、风速和风向检测以及变桨的效益。
一、传动系统1.1 齿轮箱:变桨系统中的齿轮箱负责将风力转换为机械能,并传递给叶片。
齿轮箱通常由多级齿轮组成,通过传动比例来适应不同的风速。
1.2 转子轴:转子轴是连接齿轮箱和叶片的重要部分,它承受着旋转力和扭矩。
转子轴通常采用高强度合金钢材料制造,以确保其耐用性和可靠性。
1.3 联轴器:联轴器连接转子轴和叶片轴,它能够传递转矩并允许叶片在变桨过程中调整角度。
联轴器的设计要考虑到叶片的旋转速度和扭矩传递的平稳性。
二、控制系统2.1 主控制器:主控制器是变桨系统的核心,它负责监测风速、风向和发电机组的运行状态,并根据预设的参数来调整叶片的角度。
主控制器采用先进的算法和传感器技术,以实现高效的风能利用。
2.2 电动机:电动机是控制叶片角度调整的执行器,主控制器通过电动机来实现叶片的旋转。
电动机的选择要考虑到扭矩输出和响应速度,以确保叶片能够及时调整角度。
2.3 传感器:传感器用于监测风速和风向,以提供准确的数据给主控制器。
常用的传感器包括风速传感器和风向传感器,它们能够实时检测风的变化,以便及时调整叶片的角度。
三、叶片角度调整原理3.1 风速检测:主控制器通过风速传感器获取当前的风速数据。
根据风速的大小,主控制器可以判断是否需要调整叶片的角度。
3.2 风向检测:风向传感器用于检测风的方向,主控制器可以根据风向的变化来调整叶片的角度,使其始终面向风的方向。
3.3 叶片角度调整:主控制器根据风速和风向的数据,通过控制电动机来调整叶片的角度。
当风速增大时,叶片的角度会增加,以提供更大的扭矩;当风速减小时,叶片的角度会减小,以避免过载。
四、风速和风向检测4.1 风速传感器:风速传感器通常采用超声波或热线等技术来测量风速。
风力发电机变桨系统
风力发电机变桨系统1 综述变桨系统的所有部件都安装在轮毂上。
风机正常运行时所有部件都随轮毂以一定的速度旋转。
变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。
风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。
变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。
风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。
任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。
变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。
此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。
由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。
每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。
风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。
2 变浆系统的作用根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。
3 主要部件组成4变桨系统各部件的连接框图图1:各部件间连接框图变桨中央控制箱执行轮毂内的轴控箱和位于机舱内的机舱控制柜之间的连接工作。
风电机组变桨系统介绍
• 变桨距伺服控制控制算法
位置反馈 速度给定
速度反馈 电流 反馈
M
PLC执行位置 环控制,驱动 器实现电流环 和速度环控制
PLC
AC输入
电机驱动器
串励直 编码器 流电机
电机伺服驱动系统结构图
• 变桨距系统电气原理
主控箱
3*400V+N+PE
滑 防 雷 及
控制信号 配 电
环
通信
充电 机
PLC
电源 24V
• 变桨系统的作用
变桨系 统功能
变桨距系统的失 效可导致机组飞
车灾难
调节功率 在较高风速时调 节桨距角,使发 电机输出功率维 持在额定功率附
近。
气动刹车 在机组或电网故 障情况执行顺桨 动作,使机组迅
速停下来。
• 变桨系统分类
变桨系 统分类
电动变桨距系统 电动机作为执行 机构。
液压变桨系统 采用液压系统作 为执行机构。不 需要配备后备电 源;存在漏油问
2、编码器故障
• 现象: 编码器跳变,或者编码器通讯不正常
• 原因: 1)编码器受到强电磁干扰引起跳变,尤其是磁感应式编码器;
2)机械振动或者受力过大导致损坏;3)编码器电源没电(对于 电子式绝对值编码器而言)。 解决方案:更换编码器,如果是强电磁干扰引起的跳变解决干扰 源问题,也可以更换光电式编码器。
题。
• 变桨系统分类
变桨电 机类型
直流变桨系统
优点:故障情况可 直接通过后备电源 供电顺桨,可靠性 高
缺点:电机成本高 ,碳刷需要维护; 体积较大,维护不 方便。
交流变桨系统 优点:电机体积小 ,维护量小;电机 成本低; 缺点:故障情况时 必须通过伺服驱动 器驱动电机顺桨, 不能通过后备电源
风力发电机组变桨系统的优化设计
风力发电机组变桨系统的优化设计一、引言风力发电是一种清洁、可再生的能源,受到越来越多国家的重视和广泛应用。
在风力发电站中,风力发电机组的变桨系统是其中一个重要部分,它负责调整叶片的角度来适应不同的风速和风向,以获取最大的风能转换效率。
本文将针对风力发电机组的变桨系统进行优化设计,以实现更高的发电效率。
二、变桨系统的工作原理风力发电机组的顶部装有三个或更多的叶片,在风的作用下转动。
为了在不同的风速和风向下都能高效转换风能,变桨系统起到重要作用。
变桨系统通常由电机、控制器和叶片构成,通过控制器感知风速、方向的变化,然后通过电机调整叶片的角度来获得最佳的风能转换效率。
三、优化设计方案1. 变桨系统感知风速和风向的精准度为了获得最佳的发电效率,变桨系统需要精确感知风速和风向的变化。
目前常用的风速传感器包括热线式、超声波式和激光式等。
优化设计中,可以选择合适的传感器,提高其精准度和可靠性,以确保系统能够准确感知风速和风向的变化。
2. 变桨系统叶片的材料选择和结构设计叶片的材料和结构对风能转换效率有着重要影响。
在优化设计中,可以选择轻量化材料和优化的叶片结构,以减小叶片的质量和空气阻力,提高风能的转换效率。
3. 变桨系统的控制策略变桨系统的控制策略直接影响到发电效率。
一种常见的控制策略是根据风速和风向的变化来调整叶片的角度,使其始终能够处于最佳的风能转换状态。
在优化设计中,可以改进控制器的算法和响应速度,提高系统的控制精度和响应性能。
4. 变桨系统的安全性设计在风力发电站中,变桨系统需要能够在恶劣的天气条件下工作,并保持良好的可靠性和安全性。
在优化设计中,需要考虑系统的抗风性能和抗冰性能,确保系统能够正常工作并不会受到外部环境的影响。
5. 变桨系统的维护和保养优化设计还需要考虑到变桨系统的维护和保养成本。
设计合理的结构和材料,以降低维护和保养的频率和成本,并提高系统的可靠性和寿命。
四、优化设计的效益通过对风力发电机组的变桨系统进行优化设计,可以实现以下几方面的效益:1. 提高发电效率优化设计可以使变桨系统更加灵敏和准确地感知风速和风向的变化,并通过调整叶片的角度来获得最佳的风能转换效率,从而提高发电效率。
金风1.5MW风力发电机组Vensys变桨系统介绍
名称
开关电源
型号
ZIVAN
功能及端口定义
功能:将50HZ线电压400V(三相)交流电输入转换为60V直流电输出。 AUX1 C\AUX1 NO=开关电源正常输出信号
额定60V/80A
ON/OFF=开关电源工作/停止工作信号 LSENSE 电流检测通道
变频器
SW:AC2T2IFWMF145_HYSO4
功能:采集超级电容高低电压; X4:4=/X4:3分别采集电容高低60V/30V直流输入电压; X4:5=模块24V电源的接口;X4:9/X4:10=电压检测模拟量输出; X4:11=电流检测模拟量输出
A10自制模块
旋转编码器
1=旋边电源;3/7=正/负向SSI脉冲输入;5=清零端;8/9=速度和位移 反馈;10=反馈旋边工作正常信号;
功能:将60VDC转换成三相频率可变的29VAC BATT/-BATT为直流输入,U V W为交流电输出;
额定48V/450A
F3/F9控制变桨电机刹车电磁阀; E5=自动变桨控制信号;F4=自动变桨使能; E12=叶片向0度方向变桨信号;E13=叶片向90度方向变桨信号; F6/F12外部过载信号;
0° 接近开关
电机控制 及信号线
电机控制 及信号线
电机控制 及信号线
3.1 变桨系统驱动原理
Profibus DP 状态 自动/手动切换 Beckhoff I/O system 向0度变桨 向90度变桨 手动 控制 状 态 信 息 控 制 命 令 A10电压/ 电流转换 电压 电流 信号 DC 24V DC/DC 变换 风扇 温 度 信 号 Pt100 状 态 信 号 控 制 命 令 变 桨 速 度
20
发电机转速 (Ω—rpm)
风电机组变桨系统
变桨距风力发电机风轮气流特性
变桨系统: 变桨系统: 轮毂(铸钢件) 楔形盘 变桨轴承 大约90度的调节范围 变桨电机 变桨控制柜 各种限位开关、撞块等
风向 顺桨位置
工作位置
变桨电机小齿轮 变桨齿轮边缘
轮毂主要
变桨限 位撞块
轮毂罩 分隔壁 缓冲器 极限工作位置 开关 变桨接 近开关
风速过大,超过额定风速时,如果叶片迎角 不变,机组将受到的过大的风力载荷,发电机等 零部件也将过载。
变桨系统
变桨机构就是在额定风速附近(以上),依据风速的 变化随时调节桨距角,控制吸收的机械能,一方面保 证获取最大的能量(与额定功率对应),同时减少风力对 风力机的冲击。在并网过程中,变桨距控制还可实现 快速无冲击并网。变桨距控制系统与变速恒频技术相 配合,最终提高了整个风力发电系统的发电效率和电 能质量。
主要在中小型风电机组上有应用
缺点: 1.刹车可靠但昂贵 2.叶片、机舱、塔架上有很高的动态载荷 3.常需刹车,在叶片和传动系统中产生很高的机械载荷 4.独立于行时如果没有附属设施,无法进行功率调节 5.启动性差 6.与轻型结构比,相对承受很大的风载荷 7.在低空气密度地区难于达到额定功率
变桨系统
定桨距风电机组
失速调节: 在一般运行情况下,叶轮上的动力来源于气流在翼型 上流过产生的升力。 由于叶轮转速的恒定风速增加,叶片上的攻角随之增 加,知道最后气流偏离到无法在背弧上流过而在上面 产生脱落的现场,称为失速。
失速调节风力发电机风轮气流特性
失速调节风电机组的优缺点
优点: 1.无运动构件,轮毂结构简单,费用低 2.无功率调节系统的维护费 3.时速时的功率波动相对小
变桨电机
变桨轴承
变桨轴承采用双排深沟球轴承,深沟球轴承主要承受 纯径向载荷,也可承受轴向载荷。承受纯径向载荷时,接 触角为零。
变桨培训(MOOG)知识讲解
采集转换 5秒吸合一次 采集轴三 和轮毂温度
26
温度变送器
Pitchmaster X2:3、4
Pitchmaster X2:5、6
电压检测模块
电池柜:蓄电池
直流回路 供230V直流电
轴柜:Pitchmaster正常 轴柜:安全链闭合接触器 17
4、变桨回路
国电联合动力技术有限公司 国电风电设备调试所
直流回路
分流电阻 主控柜:主电400V
18
变桨电机
正常变桨
AC500输出直流电
国电联合动力技术有限公司 国电风电设备调试所
Pitchmaster: 主电断,维持一段时间
Pitchmaster 电子刹车
5
变桨系统结构原理图
国电联合动力技术有限公司 国电风电设备调试所
6
三、电气原理讲解
1、供电回路 2、PLC及通讯回路 3、安全链回路 4、变桨回路 5、其它重要电气回路
国电联合动力技术有限公司 国电风电设备调试所
7
1、供电回路
国电联合动力技术有限公司 国电风电设备调试所
滑环-轮毂400V
充电器AC500
4
二、变桨系统整体结构组成
国电联合动力技术有限公司 国电风电设备调试所
MOOG公司风力发电机组的变桨系统采用最先进电 动变桨控制,提高了系统的可靠性,降低了维护成本 。变桨的控制系统由七个柜体组成:三个轴柜,三个 蓄电池柜和一个主控柜,他们不仅实现风机启动和运 行时的桨距调节,而且能够在事故情况下担负起安全 保护作用,完成叶片顺桨操作,同时还完成故障诊断 、状态监测、故障状态下的安全复位功能、雷电保护 控制、电池管理功能等,确保了系统的高可靠性。
轴柜:变桨驱动器 pitchmaster
风力发电机组变桨系统分析
目录摘要: (1)一、变桨系统论述 (1)(一)变桨距机构 (1)(二)电动变桨距系统 (2)1. 机械部分 (3)2. 气动制动 (4)二、变桨系统 (4)(一)变桨系统的作用 (4)1. 功率调节作用 (4)2. 气动刹车作用 (4)(二)变桨系统在轮毂内的拓扑结构与接线图 (6)三、变桨传感部分 (8)(一)旋转编码器 (8)(二)接近开关 (9)四、变桨距角的调节 (10)(一)变桨距部分 (10)(二)伺服驱动部分 (11)总结 (13)参考文献: (13)致谢 (14)风力发电机组変桨系统分析摘要:风能是一种清洁而安全的能源,在自然界中可以不断生成并有规律得到补充,所以风能资源的特点十分明显,其开发利用的潜力巨大。
本文对大型的兆瓦级风力发电机变桨系统做简单的介绍。
变速恒频技术于20世纪90年代开始兴起,其中较为成功的有丹麦VESTAS的V39/V42-600KW机组和美国的Zand的Z-40-600KW机组。
变速恒频风力发电机组风轮转速随着风速的变化而变化,可以更有效地利用风能,并且通过变速恒频技术可得到恒定频率的电能。
变速恒频机组的显著优点已得到风力机生产厂和研究机构的普遍承认,将成为未来的主流机型。
但变速恒频风力机组仅通过电机自身调节要达到减小风速波动冲击的目的是很困难的,因为自然界中风速瞬息万变,特别是在额定风速以上工况,风力机有可能受到很大的静态或动态冲击。
但是变桨风机不会产生此类情况,变桨距是指大型风力发电机安装在轮毂上的叶片借助控制技术和动力系统改变桨距角的大小从而改变叶片气动特性,使桨叶和整机的受力状况大为改善。
近年来,电动变桨距系统越来越多的应用到风力发电机组当中,直驱型风力发电机组为变桨距调节型风机,叶片在运行期间,它会在风速变化的时候绕其径向轴转动。
因此,在整个风速范围内可能具有几乎最佳的桨距角和较低的切入风速,在高风速下,改变桨距角以减少功角,从而减小了在叶片上的气动力。
风电机组变桨系统介绍
二、常见问题、解决方案及工作成果
3、变桨驱动器OK信号丢失
如东32#,16#机组,通过对两台机组的故障文件分析发现,导致 叶片不能完成收桨的故障原因相同——变桨驱动器检测到电机加速 度异常。 变桨驱动器通过采集编码器的增量通道信号来检测变桨电机的速 度。 通过复位将叶片收回的事实表明编码器没有损坏,造成变桨驱动 器检测到电机加速度异常的原因可能是增量编码器通道受干扰导 致的。
二、常见问题、解决方案及工作成果
5、变桨柜内干燥剂问题 问题描述: 变桨柜内存在袋装颗粒干燥剂,机组吊装时这样的干燥剂在
运行的过程极易破损,颗粒撒落到变桨柜内,可能导致变桨系统 Q1断路器卡死、手动/自动旋钮失灵、柜内循环风扇被卡死等情况。
二、常见问题、解决方案及工作成果
5、变桨柜内干燥剂问题
解决方案及工作成果 : (1)机组吊装时,要求必须取出变桨柜内的干燥剂,工程技术部 完善吊装工艺文件。 (2)变桨柜内干燥剂使用固态干燥剂,取代颗粒干燥剂,由总装 工艺人员配合对此干燥剂进行更换。
一、变桨调试中需要注意的地方
5、叶片变桨时,人员需要知道叶片转动的方向,方向不能变反, 还要注意接近开关和限位开关的位置,防止器件被撞坏。 6、调试限位开关时,既要保证限位开关触发,也要保证限位开关 冲过挡块斜坡后触头不被撞坏,限位开关的高度要合适。 7、变桨调试时,如果发现柜体内部有杂质或出现凝露、水珠,此 时禁止对变桨柜进行上电调试操作,必须清理杂质或烘干柜体。 8、超级电容电压大于35V时,运行驱动器复位。 9、目前2.5变桨柜配变桨电机为8.6KW。当标准变桨柜配置6KW 变桨电机系统,则驱动器刷入的参数版本为:20130408 ending version。
风力发电机组系统学习之变桨系统
变桨控制原理与功能
导流帽
轮毂
轮毂变 桨控制 柜
变桨限 位撞块
15:36
轮毂罩 分隔壁
极限工作位置 开关
变桨制动器
缓冲器 变桨接 近开关
4
变桨控制原理与功能
变桨系统是如何实现的?
- 从站PLC控制操作 - 电气变桨系统,3个通过变频器控制的辅助马
达间接变速装置(伺服电机)。 - 机舱内的电池系统。
15:36
15:36
22
电缆固定的不好
变桨电机
电缆固定的好
刹车继电器
15:36
23
60 0° position
50
叶片垂直向下是,变桨从0度转向86度
(Nm) (A)
40
86° position
变桨力矩
30
电流
20
10
0 0
15:36
5000
10000
15000
20000
(ms)
25000
30000
35000
15:36
39
快速停机fast stop
15:36
40
安全停机safety stop
15:36
41
紧急停机emergency stop
15:36
42
超速停机over speed stop
15:36
43
完
谢谢
15:36
44
• 电网掉电的应急措施
– 为控制回路提供电源 – 为变桨系统提供电源
电池系统
15:36
29
电池系统
15:36
30
电池系统
15:36
31
电池系统
变桨系统设计范文
变桨系统设计范文变桨系统是风力发电机组的重要组成部分,它能够根据风速的变化自动调整桨叶角度,以优化风能的转化效率。
本文将介绍一个基于传感器和控制器的变桨系统设计方案。
1.引言变桨系统是风力发电机组的核心部件之一,通过调整桨叶角度,使其能够在不同风速下获取最大的风能,实现风力发电的最优效果。
传统的变桨系统多采用机械传动方式,但这种方式需要频繁的维护和调整,并且效率较低。
为了提高风力发电的效率和可靠性,现代变桨系统大多采用传感器和控制器的方式,实现自动化调整和控制。
2.传感器的选择和布置变桨系统主要依赖于风速传感器和桨叶位置传感器来获取相关的参数。
首先,风速传感器应该能够精确地测量风速,并具有较高的可靠性和稳定性。
在选择传感器时,需要考虑到其动态响应能力和测量范围,以确保在不同风速下都能准确测量。
其次,桨叶位置传感器应该能够准确地捕捉到桨叶的位置,并及时反馈给控制器。
传感器的布置应该能够覆盖到所有的桨叶,以确保整个系统的稳定性和可靠性。
3.控制器的设计控制器是变桨系统的核心,它通过接收传感器反馈的参数,计算出最优的桨叶角度,并控制桨叶的调整。
控制器的设计需要考虑到以下几个方面。
首先,需要选择合适的控制算法,以使得系统能够在不同的风速下快速而稳定地响应。
常用的控制算法有PID控制和模糊控制。
其次,需要选择合适的控制器硬件,以保证控制器具有足够的计算能力和稳定性。
最后,控制器还应该具备故障诊断和容错能力,能够及时检测和处理系统故障,保证风力发电机组的正常运行。
4.电动机和传动系统的设计通过控制器的信号,变桨系统将调整桨叶角度。
为了实现桨叶角度的调整,需要选择合适的电动机和传动系统。
电动机应该具有足够的转矩和速度调节范围,以满足不同风速下的调整需求。
传动系统应该具有足够的刚性和精度,以确保桨叶角度的准确调整。
5.故障检测和维护为了确保变桨系统的稳定性和可靠性,需要设计相应的故障检测和维护功能。
系统应该能够检测到传感器和控制器的故障,并进行相应的报警和处理。
风电 变桨系统简介解析
• 统一变桨系统主要部件
2020/10/26
• 变桨中央控制箱执行轮毂内的轴控箱和位于机舱 内的机舱控制柜之间的连接工作。中央控制箱与 机舱控制柜的连接通过滑环实现。通过滑环机舱 控制柜向变桨中央控制柜提供电能和控制信号。
• 另外风机控制系统和变桨控制器之间用于数据交 换的 Profibus-DP 的连接也通过这个滑环实现。 变桨控制器位于变桨中央控制箱内,用于控制叶 片的位置。另外,三个电池箱内的电池组的充电 过程由安装在变桨中央控制箱内的中央充电单元 控制。
2020/10/26
• (2)偏航
偏航的定义是航空器的实际飞行路线(航迹 线)偏离预定航线的现象。
偏航系统是风力发电机组特有的控制系统。 偏航控制系统主要由偏航测量、偏航驱动 传动部分、纽缆保护装置三大部分组成。 主要实现两个功能:一是使机舱跟踪变化稳 定的风向;二是由于偏航的作用导致机舱内 部电缆发生缠绕而自动解除缠绕
• 滑环实物图
2020/10/26
• 编码器
每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电 机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承 内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码 器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统 应用冗余编码器的信号。
注:变桨中央控制箱也叫轮毂控制柜,其安装在轮 毂内的固ቤተ መጻሕፍቲ ባይዱ支架上。
2020/10/26
• 轴控箱
2020/10/26
• 电池柜
每个叶片分配一个电池箱。在供电故障或 EFC 信号(紧急顺桨控制信号) 复位的情况下,电池供电控制每个叶片转动到顺桨位置。
风电机组变桨系统分享共28页文档
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
风电机组变桨系统分享
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当绝对编码器组件不起作用时通过限位开关来保证变 桨角度不会过大。 在安装好控制系统后要设计合理的接线方法,把各控 制系统组件的线固定好,以防止轮毂在转动时发生接 线的故障。
变桨系统工作流程: 机组主控通过滑环传输的控制指令; 将变桨命令分配至三个轴柜; 轴柜通过各自独立整流装置同步变换直流 来驱动电机; 通过减速齿轮箱传递扭矩至变桨齿轮带动 每个叶片旋转至精准的角度; 将该叶片角度值反馈至机组主控系统;
电控变桨
控制原理 系统组成和主要器件介绍 故障列表
一、控制原理
通过机舱上面的风速仪测量风速,把信息传送到塔底柜, 经过分析信息把变桨的信息传送到轮毂变桨系统的中心箱, 中心箱再把信息转发给3个轴箱,轴箱在通过变桨驱动来 调节叶片的变桨角度。 变桨角度的信息是通过绝对编码器组件来测量的。叶片轴 承的内齿圈和绝对编码器的测量小齿轮啮合,测量小齿轮 把叶片转动的信息传给绝对编码器,经过绝对编码器的记 数作用把叶片转动的角度进行测量
变桨控制原理
二、系统组成和主要器件介绍
叶片轴承:是连接轮毂和叶片的组件。叶片轴承的 内圈连接叶片,外圈固定在轮毂上。叶片轴承的内 齿与变桨齿轮箱啮合。 变桨齿轮箱:固定在轮毂的工艺安装面上,通过变 桨齿轮箱齿轮的转动实现叶片轴承内圈的转动完成 叶片的变桨。 叶片锁组件:是为了对叶片检修或轮毂检修而设计 的防止叶片转动的机械装置。
轮毂罩主体 轮毂罩顶盖 轮毂罩前支撑 轮毂罩前后撑 支撑环
轮毂罩前支撑通过固定的变桨轴承的部分螺 栓进行固定,轮毂罩后支撑安装在轮毂前部, 轮毂罩后支撑将会有润滑组件安装。支撑环 固定在轮毂罩前支撑上。轮毂罩顶盖是方便 了安装好的轮毂的吊装。整个轮毂罩组件在 一定程度上起到了防尘、防雨、防紫外线的 作用,从而保护了轮毂内的电器元件和润滑 组件。
风力发电机组的调桨控制是根据风速来确 定桨叶的角度的(全叶面调桨) ,通过改 变桨叶的角度来改变功率因数。通过改变 桨叶的角度,桨叶转子的转速和功率将受 到影响。如果通过桨叶,对风机的受力过 大,经过调整后,可以减少过大的受力。 风机的转速和桨叶的扭曲程度可以通过电 信号反馈给控制系统,这样使得每个桨叶 的角度独自的调整。
通过机舱上面的风速仪测量风速,把信息传 送到风机主控,经过分析信息把变桨的信息传送 到轮毂变桨系统的中心箱,中心箱再把信息转发 给3个轴箱,轴箱在通过变桨驱动来调节叶片的变 桨角度。 变桨角度的信息是通过绝对编码器组件来测 量的。叶片轴承的内齿圈和绝对编码器的测量小 齿轮啮合,测量小齿轮把叶片转动的信息传给绝 对编码器,经过绝对编码器的记数作用把叶片转 动的角度进行测量 当绝对编码器组件不起作用时通过限位开关 来保证变桨角度不会过大。 在安装好控制系统后要设计合理的接线方法, 把各控制系统组件的线固定好,以防止轮毂在转 动时发生接线的故障。
蓄电池柜功能
风机在紧急停机程序中要求蓄电池给变桨电 机提供动力。 蓄电池在充电后必须能够保证最不利情况下 的一次停机过程。 蓄电池直接与电机相连,没有同步动作, 要求 有第二个限位开关(96°),在主限位开关 (91°)失灵时仍可以切断驱动系统。 当电池由于故障导致较长时间未被使用时, 风机主控制器将引发一个充电操作和电池状 况检查以检查电池的功能是否正常。
变桨电机 变桨驱动齿轮
电池柜
变桨轴承
轮毂示意图
轴箱
编码器 风机主控系统分析每个叶片的两个编码器的信 号的平均值。 变桨驱动控制系统通常只使用电机N端编码器的 信号。只有在检测编码器失灵的情况下,风机 的控制器将使得变桨控制器从叶片轴承的编码 器取信号。
电池箱—3组电池 12V*6/组
叶片轴承
变桨齿轮箱
叶片锁组件
叶片轴承是连接轮毂和叶片的组件啮合。 变桨齿轮箱固定在轮毂的工艺安装面上,通过变桨 齿轮箱齿轮的转动实现叶片轴承内圈的转动完成叶 片的变桨。 (注意叶片轴承和变桨齿轮箱之间要调整合理的齿 隙) 叶片锁组件是为了对叶片检修或轮毂检修而设计的 防止叶片转动的机械装置。
调桨系统也可以用来在风机处于紧急情况下实现 煞车作用。在电动能源-蓄电池的作用下桨叶可 以从工作角度转动至刹车角度。
电动调桨系统的动作速度快而且准确。在正常工 作情况下如果风机遭遇强阵风,调桨系统可以迅 速地调整桨叶工作角度,使风机工作在额定值范 围内。
变桨系统
变桨控制系统
变桨中心自动润滑系统 轮毂罩组件
润滑泵 主分配器 二级分配器 油管 进油口 集油瓶。
自动润滑原理: 变桨自动润滑系统是由一个集中润滑泵,一 个(或两个)主分配器,三个二级分配器和 三个润滑小齿轮组成。当泵工作时,润滑油 被输送到主分配器,在那润滑油以合适的比 例分配到二级分配器,然后二级分配器把润 滑油以合适的比例供应到润滑点,系统由一 个带回油装置的安全阀保护。轮毂的润滑主 要是叶片轴承内的滚动体和叶片轴承与变桨 齿轮箱的啮合齿部分。叶片轴承的废油通过 集油瓶来收集。
顺桨0度
开桨90度
桨叶调桨旋转角度在0°到90°之间。在桨 叶位于做功位置时桨叶最大的面积几乎是朝着 风向的,着风面积最大。当利用桨叶刹车时, 桨叶的前端是是朝着风向的,着风面积最小。 三个桨叶当中的每一个都是通过直流电机 和一个齿轮箱来驱动的。控制器驱动电机,从 而使齿轮箱转动,带动调桨轴承,使桨叶的角 度改变。