第12章《一次函数》整章水平测试
沪科版八年级上册数学第12章 一次函数含答案(有一套)

沪科版八年级上册数学第12章一次函数含答案一、单选题(共15题,共计45分)1、一次函数y=4x﹣2的图象可以由正比例函数y=4x的图象()得到.A.向上平移2个单位B.向下平移4个单位C.向下平移2个单位 D.向上平移4个单位2、正方体的棱长为x,表面积为y,则y与x之间的函数关系式为()A. B. C. D.3、若一个正比例函数的图象经过A(3,﹣6)、B(m,4)两点,则m的值为()A.﹣2B.2C.﹣8D.84、定义:点为平面直角坐标系内的点,若满足,则把点A 叫做“零点”,例如,都是“零点”.当时,直线上有“零点”,则的取值范围是()A. B. C. D.5、已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 …y1…0 1 3 5 …x …﹣1 1 3 4 …y2…0 ﹣4 0 5 …当y2>y1时,自变量x的取值范围是()A.x<﹣1B.x>4C.﹣1<x<4D.x<﹣1或x>46、设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0B.2a﹣3b=0C.3a﹣2b=0D.3a+2b=07、如图,l1反映了某公司产品的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,根据图像判断该公司盈利时销售量为()A.小于4件B.大于4件C.等于4件D.大于或等于4件8、若点Α 在一次函数y=3x+b的图象上,且3m-n>2,则b的取值范围为()A.b>2B.b>-2C.b<2D.b<-29、关于函数y=-2x+1,下列结论正确的是()A.图象必经过(-2,1)B.y随x的增大而增大C.图象经过第一、二、三象限 D.当x> 时,y<010、在同一平面直角坐标系中,直线=2x+3与y=2x-5的位置关系是()A.平行B.相交C.重合D.垂直11、如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有( )(1)通话时间少于120分,则A方案比B方案便宜20元;(2)若通话时间超过200分,则B方案比A方案便宜12元;(3)若通讯费用为60元,则B方案比A方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A.1个B.2个C.3个D.4个12、已知一次函数y=kx+b中,x取不同值时,y对应的值列表如下:x …-m2-1 2 3 …y …-1 0 n2+1 …则不等式kx+b>0(其中k,b,m,n为常数)的解集为()A.x>2B.x>3C.x<2D.无法确定13、如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时14、关于函数,下列结论正确的是()A.图象必经过点B.图象经过第一、二、三象限C.当时, D. y随x的增大而增大15、若函数y=kx﹣3的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法确定二、填空题(共10题,共计30分)16、圆的面积s与半径r之间的关系式为S=πr2,其中常量是________ ,变量是________ .17、如图,一次函数y=kx+b的图象与x轴交于点(﹣3,0),与y轴交于(0,﹣4),则不等式kx+b0的解集为________.18、已知一个长方形的长为 5cm,宽为 xcm,周长为 ycm,则 y 与 x 之间的函数表达式为________.19、直线与x轴交点的坐标是________.20、若点 P(﹣3,a),Q(2,b)在直线 y=﹣3x+c 的图象上,则 a 与 b 的大小关系是________.21、直线y=2x+b经过点(3,5),则关于x的不等式2x+b≥0的解集为________.22、如果与x成正比例,比例系数是2,且当时,,则y与x的函数关系式为________.23、两条相交直线与的图象如图所示,当________ 时,.24、已知等腰三角形的周长为20,写出底边长关于腰长的函数解析式为________(写出自变量的取值范围)25、一次函数y=kx+b的图象经过点(0,2),且与直线y=x平行,则该一次函数的表达式为________三、解答题(共5题,共计25分)26、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.27、如图,等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分的面积y cm2与MA的长度x cm之间的关系式,并指出其中的常量与变量.28、已知一次函数与反比例函数的图象交于P(2,a)和Q (﹣1,﹣4),求这两个函数的解析式.29、“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?30、直线y=kx﹣3经过点A(﹣1,﹣1),求关于x的不等式kx﹣3≥0的解集.参考答案一、单选题(共15题,共计45分)1、C2、C3、A4、B5、D6、D7、B8、D9、D11、C12、A13、D14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
2020年沪科版八年级数学上学期第12章《一次函数》单元同步试卷及答案

沪科版数学八年级上册第12章《一次函数》单元检测卷[检测内容:第12章 满分:120分 时间:120分钟]一、选择题(每小题3分,共30分)1. 若正比例函数的图象经过点(-1,2),则这个图象必经过点( )A. (1,2)B. (-1,-2)C. (2,-1)D. (1,-2) 2. 函数y =k (x -k )(k <0)的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知函数y =-x +3,当x =a 时,y =5;当x =b 时,y =-5;当x =c 时,y =3,则a ,b ,c 的大小关系是( )A. a >b >cB. a >c >bC. b >a >cD. b >c >a 4. 如图,在下列直角坐标系中,一次函数y =12kx -2k 的图象只可能是( )A BC D5. 一次函数y =kx +b 的图象经过点(m ,1)和(-1,m ),其中m >1,则k ,b 应满足条件( ) A. k >0,b >0 B. k >0,b <0 C. k <0,b >0 D. k <0,b <06. 如图,下列方程组的解可以用两直线l 1,l 2的交点坐标表示的是( )A. ⎩⎪⎨⎪⎧x -y =1,2x -y =1 B. ⎩⎪⎨⎪⎧ x -y =-1,2x -y =1 C. ⎩⎪⎨⎪⎧ x -y =3,2x -y =1 D. ⎩⎪⎨⎪⎧x -y =-3,2x -y =-1第6题第7题7. 如图,函数y1=|x|,y2=13x+43.当y1>y2时,x的取值范围是()A. x<-1B. -1<x<2C. x<-1或x>2D. x>28. 如图所示,是一艘轮船和一艘快艇沿相同路线从甲港出发到乙港的行驶路程随时间变化的图象.根据图象信息,下列结论错误的是()A. 轮船的速度为20km/hB. 快艇的速度为40km/hC. 轮船比快艇先出发2hD. 快艇不能追上轮船第8题第9题9. 小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A. 12分钟B. 15分钟C. 25分钟D. 27分钟10. 如图,平面直角坐标系中,在边长为1的正方形ABCD的边上有一动点P沿A→B→C→D→A 运动一周,则点P的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A B C D11. 已知一次函数y=(4m+1)x-(m+1),当m满足时,直线与y轴的交点在x轴的下方.12. 写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y随着x的增大而减小;(2)图象经过点(1,-3).13. 已知一次函数y=ax+b(a,b是常数),x与y的部分对应值如下表:x -2-1012 3y 6420-2-4的解是;不等式的解集是.14. 已知一支蜡烛长20cm,每小时燃烧4 cm.设剩下的蜡烛的长度为y cm,蜡烛燃烧了x h,则y 关于x的函数表达式是;自变量x的取值范围是.15. 直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是.16. 如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,则不等式-2<kx+b<1的解集为.第16题第17题17. 甲、乙两人按相同路线前往离学校12km的地方参加植树活动,图中l甲,l乙分别表示甲、乙两人前往目的地所行驶的路程s(km)随时间t(min)变化的函数图象,则每分钟乙比甲多行驶.18. 一个装有进水管和出水管的容器,从某时刻起只打开进水管进水.经过一段时间,再打开出水管放水至12分钟时,关闭进水管.在打开进水管到关闭进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关闭进水管后经过分钟,容器中的水恰好放完.三、解答题(共66分)19. (8分)已知函数y=(m+1)x2-|m|+n+4.(1)当m,n为何值时,此函数是一次函数?(2)当m,n为何值时,此函数是正比例函数?20. (8分)已知一次函数图象经过A(-1,2),B(3,-4)两点.(1)求这个一次函数的表达式;(2)请判断点P(-2,4)是否在这个一次函数的图象上.21. (9分)已知y+2与x-1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)当y=1时,求x的值.22. (9分)一辆汽车的油箱中现有汽油49升,如果不再加油,那么油箱中的油量y(升)随行驶里程x(公里)的增加而减少,平均耗油量为0.07升/公里.(1)写出y与x之间的函数表达式;(2)求自变量x的取值范围.23. (10分)如图所示,设函数y=x+4的图象与y轴交于A点,函数y=-3x-6与y轴交于点B,两个函数的图象交于点C,求通过线段AB的中点D及C点的直线的一次函数表达式.24. (10分)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的表达式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.25. (12分)某文具商店销售功能相同的A,B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价.(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数表达式.(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.参考答案1. D2. A3. D4. B5. C6. B7. C8. D9. B 10. D 11. m >-1且m ≠-1412. y =-x -2(答案不唯一) 13. x =1 x <114. y =-4x +20 0≤x ≤5 15. -1<m <1 16. -1<x <2 17. 0.6km 18. 819. 解:(1)根据一次函数的定义,得2-|m |=1,且m +1≠0,解得m =1.所以当m =1,n 为任意数时,此函数是一次函数.(2)根据正比例函数的定义,得2-|m |=1,n +4=0,且m +1≠0,解得m =1,n =-4.所以当m =1,n =-4时,此函数是正比例函数.20. 解:(1)设这个一次函数的表达式为y =kx +b .因为一次函数图象经过(-1,2),(3,-4)两点,所以有⎩⎪⎨⎪⎧-k +b =2,3k +b =-4.解得⎩⎨⎧k =-32,b =12.所以一次函数的表达式为y =-32x +12.(2)把点P (-2,4)代入y =-32x +12中,得-32×(-2)+12=3+12=312≠4,所以点P 不在这个一次函数的图象上.21. 解:(1)由y +2与x -1成正比例,设y +2=k (x -1),将x =3,y =4代入上式得4+2=k (3-1),解得k =3,所以y +2=3(x -1),即y =3x -5.(2)当y =1时,得1=3x -5,解得x =2,即当y =1时,x =2.22. 解:(1)根据题意,每行驶x 公里,耗油0.07x 升,即总油量减少0.07x 升,则油箱中的油剩下(49-0.07x )升,所以y 与x 的函数表达式为y =49-0.07x . (2)因为x 代表的实际意义为行驶里程,所以x 不能为负数,即x ≥0;又行驶中的耗油量不能超过油箱中现有汽油量的值49升,即0.07x ≤49,解得x ≤700.综上所述,自变量x 的取值范围是0≤x ≤700.23. 解:由题意可知y =x +4与y 轴的交点坐标为A (0,4),y =-3x -6与y 轴的交点坐标为B (0,-6).所以A ,B 的中点坐标为D (0,-1).联立⎩⎪⎨⎪⎧y =x +4,y =-3x -6,得⎩⎨⎧x =-52,y =32,所以点C (-52,32),设直线CD 的函数表达式为y =kx +b ,则有⎩⎪⎨⎪⎧-52k +b =32,b =-1,解得⎩⎪⎨⎪⎧k =-1,b =-1.所以过点C ,D 的直线的表达式为y =-x -1.24. 解:(1)直线y =-x +b 交y 轴于点P (0,b ),由题意,得b >0,t ≥0,b =1+t .当t =3时,b =4,所以y =-x +4.(2)当直线y =-x +b 过点M (3,2)时,2=-3+b ,解得b =5.因为5=1+t ,所以t =4.当直线y =-x +b 过点N (4,4)时,4=-4+b ,解得b =8.因为8=1+t ,所以t =7.所以4<t <7. (3)t =1时,落在y 轴上;t =2时,落在x 轴上.25. 解:(1)设A 品牌计算器的单价为x 元,B 品牌计算器的单价为y 元.根据题意,得⎩⎪⎨⎪⎧2x +3y =156,3x +y =122,解得⎩⎪⎨⎪⎧x =30,y =32.即A ,B 两种品牌计算器的单价分别为30元和32元.(2)根据题意,得y 1=0.8×30x ,即y 1=24x .当0≤x ≤5时,y =32x ;当x >5时,y 2=32×5+32(x -5)×0.7,即y 2=22.4x +48.(3)当购买数量超过5个时,y 2=22.4x +48.①当y 1<y 2时,24x <22.4x +48,所以x <30.故当购买数量超过5个而不足30个时,购买A 品牌的计算器更合算.②当y 1=y 2时,24x =22.4x +48,所以x =30.故当购买数量为30个时,购买A 品牌与B 品牌的计算器花费相同.③当y 1>y 2时,24x >22.4x +48,所以x >30.故当购买数量超过30个时,购买B 品牌的计算器更合算.1、学而不思则罔,思而不学则殆。
沪科版八年级数学上《第12章一次函数》单元测试含答案解析

《第12章一次函数》一.填空题1.关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的坐标为.2.点B(﹣5,﹣2)到x轴的距离是,到y轴的距离是,到原点的距离是.3.以点(3,0)为圆心,半径为5的圆与x轴交点坐标为,与y轴交点坐标为.4.点P(a﹣3,5﹣a)在第一象限内,则a的取值范围是.5.小华用500元去购买单价为3元的一种整体商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是,x的取值范围是.6.已知,一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:.7.一次函数y=(k﹣1)x+k+1经过一、二、四象限,则k的取值范围是.函数y=﹣2x+4的图象经过象限,它与两坐标轴围成的三角形面积为.8.一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k= ,b= .9.若点(m,m+3)在函数y=﹣x+2的图象上,则m= .10.y与3x成正比例,当x=8时,y=﹣12,则y与x的函数解析式为.11.函数y=﹣x的图象是一条过原点及(2,)的直线,这条直线经过第象限,当x增大时,y随之y=kx﹣1.12.函数y=2x﹣4,当x ,y<0.13.若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b= .14.已知函数y=(m﹣1)+1是一次函数,则m= .15.如图,某公用电话亭打电话时,需付电话费y(元)与通话时间x(min)之间的函数关系式用图象表示为折线,小文打了2分钟,需付费元,小文打了8分钟付费元.16.已知一次函数y=kx﹣1,请你补充一个条件,使函数图象经过第二、三、四象限.二.选择题:17.下列说法正确的是()A.正比例函数是一次函数B.一次函数是正比例函数C.正比例函数不是一次函数D.不是正比例函数就不是一次函数18.下面两个变量是成正比例变化的是()A.正方形的面积和它的边长B.变量x增加,变量y也随之增加C.矩形的一组对边的边长固定,它的周长和另一组对边的边长D.圆的周长与它的半径19.直线y=kx+b经过一、二、四象限,则k、b应满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b<0 D.k<0,b>020.已知一次函数y=(m+2)x+m2﹣m﹣4的图象经过点(0,2),则m的值是()A.2 B.﹣2 C.﹣2或3 D.321.若点A(2﹣a,1﹣2a)关于y轴的对称点在第三象限,则a的取值范围是()A.a<B.a>2 C.<a<2 D.a<或a>222.下列关系式中,表示y是x的正比例函数的是()A.y= B.y=1 C.y=x+1 D.y=2x23.函数y=4x﹣2与y=﹣4x﹣2的交点坐标为()A.(﹣2,0)B.(0,﹣2)C.(0,2) D.(2,0)24.在平面直角坐标系中,直线y=kx+b(k<0,b>0)不经过哪一象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限25.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.三、解答题.26.已知一次函数的图象经过点A(﹣1,3)和点(2,﹣3),(1)求一次函数的解析式;(2)判断点C(﹣2,5)是否在该函数图象上.27.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点坐标.(2)求△PAB的面积.28.已知y﹣3与3x+1成正比例,且x=2时,y=6.5.(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a,2)在这个函数的图象上,求a.29.如图,lA ,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B出发后小时与A相遇.(3)B走了一段路后,自行车发生故障,进行修理,所用的时间是小时.(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米.在图中表示出这个相遇点C.(5)求出A行走的路程S与时间t的函数关系式.(写出过程)30.有一个带有进出水管的容器,每单位时间内进出的水量是一定的.设从某时刻开始的4分钟内只进水,不出水,在随后的8分钟内既进水又出水,得到x(分)与水量y(升)之间的关系如图:(1)每分钟进水多少?(2)0<x≤4时,y与x的函数关系式是什么?(3)4<x≤12时,函数关系式是什么?(4)你能求每分钟放水多少升吗?31.某单位急需用车,但又不想买车,他们准备和一个私营车主或一个国营出租车公司签订月租车合同.设汽车每月行驶x千米,应付给私营车主的月费用是y1元,应付给国营出租车公司的月费用是y2元.y1,y2分别与x之间的函数关系如图所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?《第12章一次函数》参考答案与试题解析一.填空题1.关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的坐标为.【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【解答】解:∵在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,∴点A关于x轴对称的点的坐标是(﹣3,﹣4),∵关于y轴对称时,横坐标为相反数,纵坐标不变,∴点A关于y轴对称的点的坐标是(3,4),∵关于原点对称时,横纵坐标都为相反数,∴点A关于原点对称的点的坐标是(3,﹣4).故答案为:(﹣3,﹣4),(3,4),(3,﹣4).【点评】本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标的符号,难度适中.2.点B(﹣5,﹣2)到x轴的距离是,到y轴的距离是,到原点的距离是.【考点】勾股定理;点的坐标.【分析】根据坐标的表示方法可得到点A到x轴的距离为2,到y轴的距离为5,然后根据勾股定理计算点A到原点的距离.【解答】解:∵点A坐标为(﹣5,﹣2),∴点A到x轴的距离为2,到y轴的距离为5,到原点的距离==.故答案为2,5,.【点评】本题考查了点的坐标:过一个点分别作x轴和y轴的垂线,垂足在x轴的坐标表示这个点的横坐标,垂足在y轴上的坐标表示这个点的纵坐标.也考查了勾股定理.3.以点(3,0)为圆心,半径为5的圆与x轴交点坐标为,与y轴交点坐标为.【考点】直线与圆的位置关系;坐标与图形性质.【分析】根据A的坐标和半径即可求出圆和x轴的交点坐标,根据勾股定理求出OD、OE,即可求出圆和y 轴的交点坐标.【解答】解:∵⊙A的半径为5,A(3,0),∴5﹣3=2,5+3=8,即⊙A和x轴的交点坐标为(﹣2,0)和(8,0);连接AD、AE,由勾股定理得:OD==4,同理OE=4,即⊙A和y轴的交点坐标为(0,4)和(0,﹣4);故答案为:(﹣2,0)或(8,0);(0,4)或(0,﹣4).【点评】本题考查了直线与圆的位置关系,坐标与图形性质,勾股定理的应用,题目比较好,难度不大.4.点P(a﹣3,5﹣a)在第一象限内,则a的取值范围是.【考点】点的坐标;解一元一次不等式组.【分析】根据第一象限内点的横坐标与纵坐标都是正数列出不等式组,然后求解即可.【解答】解:∵点P(a﹣3,5﹣a)在第一象限内,∴,解不等式①得,a>3,解不等式②得,a<5,所以,a的取值范围是3<a<5.故答案为:3<a<5.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.小华用500元去购买单价为3元的一种整体商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是,x的取值范围是.【考点】根据实际问题列一次函数关系式.【专题】经济问题.【分析】剩余的钱数=总钱数500﹣x件这种商品的总价格,根据x应是正整数,且商品的总价不能超过500可得x的取值范围.【解答】解:x件这种商品的总价格为3x,∴y=500﹣3x,∵500﹣3x≥0,解得x≤166,∴0≤x≤166,且x为整数.故答案为:y=500﹣3x;0≤x≤166,且x为整数.【点评】本题考查了列一次函数关系式,得到剩余的钱数的等量关系是解决本题的关键;注意商品的件数应为正整数;所买商品的总价钱不能超过所带的总钱数.6.已知,一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:.【考点】一次函数的性质.【专题】开放型.【分析】根据题意可知k<0,这时可任设一个满足条件的k,则得到含x、y、b三求知数的函数式,将(0,2)代入函数式,求得b,那么符合条件的函数式也就求出.【解答】解:∵y随x的增大而减小∴k<0∴可选取﹣1,那么一次函数的解析式可表示为:y=﹣x+b把点(0,2)代入得:b=2∴要求的函数解析式为:y=﹣x+2.【点评】本题需注意应先确定x的系数,然后把适合的点代入求得常数项.7.一次函数y=(k﹣1)x+k+1经过一、二、四象限,则k的取值范围是.函数y=﹣2x+4的图象经过象限,它与两坐标轴围成的三角形面积为.【考点】一次函数图象与系数的关系.【分析】根据一次函数y=(k﹣1)x+k+1的图象经过第一、二、四象限判断出k的取值范围即可;求得直线y=﹣2x+4与坐标轴的交点坐标即可求得围成的三角形的面积.【解答】解:∵一次函数y=(k﹣1)x+k+1经过一、二、四象限,∴k﹣1<0,k+1>0,解得:﹣1<k<1;∵函数y=﹣2x+4中﹣2<0,4>0,∴函数y=﹣2x+4的图象经过一、二、四象限,∵令y=﹣2x+4=0,解得:x=2,∴与x轴交于(2,0),令x=0,解得:y=4,故与y轴交于(0,4),∴与两坐标轴围成的面积为×2×4=4,故答案为:﹣1<k<1,一、二、四,4.【点评】考查了一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.8.一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k= ,b= .【考点】待定系数法求一次函数解析式.【分析】将(1,5),(0,3)代入一次函数的解析式,利用待定系数法求该函数的解析式的系数.【解答】解:∵一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),∴,解得.故答案为:2,3.【点评】本题考查了待定系数法求一次函数的解析式.9.若点(m,m+3)在函数y=﹣x+2的图象上,则m= .【考点】一次函数图象上点的坐标特征.【分析】直接把点(m,m+3)代入直线y=﹣x+2进行计算即可.【解答】解:∵点(m,m+3)在函数y=﹣x+2的图象上,∴m+3=﹣m+2,解得m=﹣.故答案为:﹣.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键.10.y与3x成正比例,当x=8时,y=﹣12,则y与x的函数解析式为.【考点】待定系数法求一次函数解析式.【专题】待定系数法.【分析】因为y与3x成正比例,所以可设y=k•3x即y=3kx,又因为当x=8时,y=﹣12,则有﹣12=3×8×k.从而可求出k的值,进而解决问题.【解答】解:∵y与3x成正比例∴设y=k•3x即y=3kx又∵当x=8时,y=﹣12∴﹣12=3×8×k∴k=﹣∴y与x的函数解析式为y=﹣x.【点评】此类题目可根据题意,利用待定系数法建立函数关系式,然后利用方程解决问题.11.函数y=﹣x的图象是一条过原点及(2,)的直线,这条直线经过第象限,当x增大时,y随之y=kx﹣1.【考点】一次函数的性质.【分析】把x=2代入y=﹣x得到y=﹣2,然后根据一次函数性质确定直线y=﹣x所经过的象限和增减性.【解答】解:函数y=﹣x的图象是一条过原点及(2,﹣2)的直线,这条直线经过第二、四象限,当x增大时,y随之减小.故答案为﹣2;二、四;减小.【点评】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.12.函数y=2x﹣4,当x ,y<0.【考点】一次函数与一元一次不等式.【分析】求出一次函数与x轴的交点,然后根据k>0,y随x的增大而增大解答即可.【解答】解:当y=0时,2x﹣4=0,解得x=2,∵k=2>0,∴y随x的增大而增大,∴当x<2时,y<0.故答案为:<2.【点评】本题考查了一次函数的增减性,熟记一次函数y=kx+b,当k>0时,y随x的增大而增大;当k <0时,y随x的增大而减小是解题的关键.13.若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b= .【考点】一次函数图象上点的坐标特征.【分析】先令x=0,求出y的值,再令y=0求出x的值即可得出直线与坐标轴的交点,再利用三角形的面积公式求解即可.【解答】解:∵令x=0,则y=b;令y=0,则x=﹣,∴函数y=4x+b与xy轴的交点分别为(﹣,0)(0,b).∵函数y=4x+b的图象与两坐标轴围成的三角形面积为6,∴|b|•|﹣|=6,解得b=±4.故答案为:±4.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.已知函数y=(m﹣1)+1是一次函数,则m= .【考点】一次函数的定义.【专题】计算题.【分析】根据一次函数的定义,令m2=1,m﹣1≠0即可解答.【解答】若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).因而有m2=1,解得:m=±1,又m﹣1≠0,∴m=﹣1.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.如图,某公用电话亭打电话时,需付电话费y(元)与通话时间x(min)之间的函数关系式用图象表示为折线,小文打了2分钟,需付费元,小文打了8分钟付费元.【考点】一次函数的应用.【分析】通话时间小于3分钟时,需付0.7元,故小文打了2分钟,需付费0.7;通过A点和B点坐标分别为(3,0.7)和(4,1)用待定系数法列方程,求函数关系式.再将x=8代入得出y.【解答】解:根据图形可知,当通话时间小于3分钟时,需付电话费话0.7元.故小文打了2分钟,需付费0.7元.设需付电话费y(元)与通话时间x(min)之间的函数关系式为:y=kx+b.因为点A(3,0.7)和点B(4,1)都在y=kx+b上,代入得:0.7=3k+b,1=4k+b.解得:k=0.3,b=﹣0.2.故需付电话费y(元)与通话时间x(min)之间的函数关系式为:y=0.3x﹣0.2 (x≥3).当x=8时,y=0.3×8﹣0.2=2.4﹣0.2=2.2(元).【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.注意自变量的取值范围不能遗漏.16.已知一次函数y=kx﹣1,请你补充一个条件,使函数图象经过第二、三、四象限.【考点】一次函数的性质.【专题】开放型.【分析】要使一次函数的图象经过第二、三、四象限,又知b<0,故只需k<0即可.【解答】解:因为要使函数图象经过第二、三、四象限,必须k<0,b<0,而y=kx﹣1中,b=﹣1<0,所以只需添加条件k<0即可.故答案为:k<0【点评】能够根据k,b的符号正确判断直线所经过的象限.二.选择题:17.下列说法正确的是()A.正比例函数是一次函数B.一次函数是正比例函数C.正比例函数不是一次函数D.不是正比例函数就不是一次函数【考点】一次函数的定义;正比例函数的定义.【专题】常规题型.【分析】根据一次函数和正比例函数的定义条件判断各选项即可.【解答】解:A、正比例函数是一次函数,故本选项正确;B、一次函数不一定是正比例函数,故本选项错误;C、正比例函数是一次函数,故本选项错误;D、不是正比例函数有可能是一次函数,如y=x+1,故本选项错误.故选A.【点评】本题主要考查了一次函数和正比例函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k ≠0,自变量次数为1;正比例函数的定义是形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.18.下面两个变量是成正比例变化的是()A.正方形的面积和它的边长B.变量x增加,变量y也随之增加C.矩形的一组对边的边长固定,它的周长和另一组对边的边长D.圆的周长与它的半径【考点】正比例函数的定义.【专题】常规题型.【分析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.【解答】解:A、正方形的面积=边长的平方,故本选项错误;B、变量x增加,变量y也随之增加,如y=2x,但不是正比例函数,故本选项错误;C、矩形的一组对边的边长固定,则另一组对边的边长也固定,其周长也一定,故本选项错误;D、圆的周长=2π×半径,符合正比例函数的定义,故本选项正确.故选D.【点评】本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.19.直线y=kx+b经过一、二、四象限,则k、b应满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b<0 D.k<0,b>0【考点】一次函数图象与系数的关系.【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又由k<0时,直线必经过二、四象限,故知k<0.再由图象过一、二象限,即直线与y轴正半轴相交,所以b>0.故选:D.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.20.已知一次函数y=(m+2)x+m2﹣m﹣4的图象经过点(0,2),则m的值是()A.2 B.﹣2 C.﹣2或3 D.3【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把x=0,y=2代入所给函数解析式,得到关于m的方程,求解即可,注意x的系数应不为0.【解答】解:∵y=(m+2)x+m2﹣m﹣4的图象经过点(0,2),∴m2﹣m﹣4=2,解得m=﹣2或3,∵m+2≠0,解得m≠﹣2,∴m=3,故选D.【点评】考查一次函数图象上的点的坐标的特点;用到的知识点为:点在函数解析式上,点的横纵坐标适合该函数解析式.注意一次函数中的比例系数应不为0.21.若点A(2﹣a,1﹣2a)关于y轴的对称点在第三象限,则a的取值范围是()A.a<B.a>2 C.<a<2 D.a<或a>2【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的性质横坐标互为相反数,纵坐标相等,进而求出点A(2﹣a,1﹣2a)关于y轴的对称点,再利用第三象限点的性质,即可得出答案.【解答】解:∵点A(2﹣a,1﹣2a)关于y轴的对称点为:(a﹣2,1﹣2a),且此点在第三象限,∴解得:.故选:C.【点评】此题主要考查了关于y轴对称点的性质以及一元一次不等式组的解法,得出关于a的不等式组是解题关键.22.下列关系式中,表示y是x的正比例函数的是()A.y= B.y=1 C.y=x+1 D.y=2x【考点】正比例函数的定义.【分析】根据形如y=kx (k是常数,k≠0)是正比例函数,可得答案.【解答】解:A、是反比例函数,故A错误;B、是常函数,故B错误;C、是一次函数,故C错误;D、是正比例函数,故正确;故选:D.【点评】本题考查了正比例函数,利用了正比例函数的定义.23.函数y=4x﹣2与y=﹣4x﹣2的交点坐标为()A.(﹣2,0)B.(0,﹣2)C.(0,2) D.(2,0)【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题,解方程组的解即为两直线的交点坐标.【解答】解:解方程组得,所以直线y=4x﹣2与y=﹣4x﹣2的交点坐标为(0,﹣2).故选B.【点评】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.24.在平面直角坐标系中,直线y=kx+b(k<0,b>0)不经过哪一象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【分析】根据一次函数的性质求解.【解答】解:∵k<0,b>0,∴直线经过第一、二、四象限.故选C.【点评】掌握根据k,b的符号正确判断一次函数图象经过的象限.25.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.【考点】一次函数的图象.【分析】因为a的符号不确定,故应分两种情况讨论,再找出符合任一条件的函数图象即可.【解答】解:分两种情况:(1)当a>0时,一次函数y=ax﹣a经过第一、三、四象限,选项A符合;(2)当a<0时,一次函数y=ax﹣a图象经过第一、二、四象限,无选项符合.故选A.【点评】本题考查了一次函数的性质,根据图象能正确判断一次项系数以及常数项的符号;根据符号判断判断图经过的象限.三、解答题.26.已知一次函数的图象经过点A(﹣1,3)和点(2,﹣3),(1)求一次函数的解析式;(2)判断点C(﹣2,5)是否在该函数图象上.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)根据一次函数图象过A(﹣1,3)和点B(2,﹣3),然后将其代入一次函数的解析式,利用待定系数法求该函数的解析式;(2)把)把x=﹣2代入y=﹣2x+1,得出y的值,和C的纵坐标进行比较即可判断.【解答】解:(1)设直线AB的函数解析式为y=kx+b(k、b为常数且k≠0)∵一次函数的图象经过点A(﹣1,3)和点(2,﹣3),∴解得.∴直线AB的函数解析式为y=﹣2x+1.(2)把x=﹣2代入y=﹣2x+1,得y=﹣2×(﹣2)+1=5,所以点C(﹣2,5)在该函数图象上.【点评】本题综合考查了待定系数法求一次函数的解析式、一次函数图象上的点的坐标特征.解答此题时,采用了“数形结合”的数学思想,使问题变得形象、直观,降低了题的难度.27.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点坐标.(2)求△PAB的面积.【考点】两条直线相交或平行问题.【分析】(1)根据x轴上点的坐标特征把y=0分别代入y=x+1和y=﹣2x+2,求出对应的自变量的值即可得到A和B点坐标;通过解方程组可确定P点坐标;(2)利用三角形面积公式计算.【解答】解:(1)把y=0代入y=x+1得x+1=0,解得x=﹣1,则A点坐标为(﹣1,0);把y=0代入y=﹣2x+2得﹣2x+2=0,解得x=1,则B点坐标为(1,0);解方程组得,所以P点坐标为(,);=×(1+1)×=.(2)S△PAB【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.28.已知y﹣3与3x+1成正比例,且x=2时,y=6.5.(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a,2)在这个函数的图象上,求a.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【专题】计算题.【分析】(1)根据正比例函数的定义可设y﹣3=k(3x+1),再把x=2,y=6.5代入可计算出k=,则y=x+,然后根据一次函数的定义进行判断;(2)根据一次函数图形上点的坐标特征,把(a,2)代入(1)中的解析式中即可得到a的值.【解答】解:(1)设y﹣3=k(3x+1),把x=2,y=6.5代入得6.5﹣3=k(6+1),解得k=,所以y﹣3=(3x+1),所以y=x+,y是x的一次函数;(2)把(a,2)代入y=x+得a+=2,解得a=﹣1.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.29.如图,lA ,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B出发后小时与A相遇.(3)B走了一段路后,自行车发生故障,进行修理,所用的时间是小时.(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米.在图中表示出这个相遇点C.(5)求出A行走的路程S与时间t的函数关系式.(写出过程)【考点】一次函数的应用.【分析】(1)从图上可看出B出发时与A相距10千米;(2)从图象看出3小时时,两个图象相交,所以3小时时相遇;(3)修理的时间就是路程不变的时间是1.5﹣0.5=1小时;(4)不发生故障时,B的行走的路程和时间是正比例关系,设函数式为y=kx,过(0.5,7.5)点,求出函数式,从而求出相遇的时间,从而求出路程;(5)S和t的函数关系是一次函数,设函数是为S=kx+t,过(0,10)和(3,22.5),从而可求出关系式.【解答】解:(1)B出发时与A相距10千米.(2)3小时时相遇.(3)修理自行车的时间为:1.5﹣05=1小时.(4)设B修车前的关系式为:y=kx,过(0.5,7.5)点.7.5=0.5kk=15.y=15x.相遇时:S=yx+10=15xx=.y=×15=.小时时相遇,此时B走的路程是千米.(5)设函数是为S=kx+t,且过(0,10)和(3,22.5),,解得.∴S=x+10.【点评】本题考查一次函数的应用,关键从图象上获取信息,根据图象的确定函数形式,设出函数式,代入已知点确定函数式,求变量或函数值或交点.30.有一个带有进出水管的容器,每单位时间内进出的水量是一定的.设从某时刻开始的4分钟内只进水,不出水,在随后的8分钟内既进水又出水,得到x(分)与水量y(升)之间的关系如图:(1)每分钟进水多少?(2)0<x≤4时,y与x的函数关系式是什么?(3)4<x≤12时,函数关系式是什么?(4)你能求每分钟放水多少升吗?【考点】一次函数的应用.【专题】数形结合.【分析】(1)根据等量关系:水量=单位时间内进水量×时间,可得出每分钟进水多少.(2)设出x、y的关系式,把(4,20)代入求出即可.(3)设出x、y的关系式,把(4,20)(12,30)代入求出即可.(4)根据等量关系:放水量=单位时间放水量×时间,代入求出即可.【解答】解:(1)如图:当x=4时,y=20∴每分钟进水量是:20÷4=5(升)(2)y与x的函数关系式是y=kx,把(4,20)代入得20=4k,解得:k=5,∴y与x的函数关系式是y=5x(0<x≤4)(3)设y与x的函数关系式是y=kx+b,把(4,20)(12,30)代入得∴k=,b=15∴y与x的函数关系式是y=x+15(4<x≤12)精品Word 可修改欢迎下载(4)由图知:当4<x≤12时,进水量是5×8=40(升),放水量是40﹣10=30(升),∴每分钟放水量是:30÷8=3.75(升)【点评】本题重点考查了一次函数图象和实际应用相结合的问题.能够根据题意中的等量关系建立函数关系式,能够根据函数解析式求得对应的x的值,渗透了函数与方程的思想.31.某单位急需用车,但又不想买车,他们准备和一个私营车主或一个国营出租车公司签订月租车合同.设汽车每月行驶x千米,应付给私营车主的月费用是y1元,应付给国营出租车公司的月费用是y2元.y1,y2分别与x之间的函数关系如图所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?【考点】一次函数的应用.【专题】图表型.【分析】因给出了两个函数的图象可知一个是一次函数,一个是一次函数的特殊形式正比例函数,两条直线交点的横坐标为1500,表明当x=1500时,两条直线的函数值y相等,并且根据图象可以知道x>1500时,y2在y1上方;0<x<1500时,y2在y1下方.利用图象,三个问题很容易解答.【解答】解:(1)每月行驶的路程小于1500千米时,租国营公司的车合算;(2)每月行驶的路程等于1500千米时,租两家车的费用相同;(3)每月行驶的路程为2300千米时,那么这个单位租私营车主的车合算.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.。
八年级数学上册 第12章 一次函数 单元测试卷(沪科版 2024年秋)

八年级数学上册第12章一次函数单元测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1. 司机王师傅到加油站加油,如图是所用的加油机上的数据显示牌,其中的常量是()(第1题)A.金额B.数量C.单价D.金额和数量2.下列不能表示y是x的函数的是()A. B.C.D.y=2x+13.函数y=x+1x中的自变量x的取值范围是()A.x>0 B.x≥-1C.x>0且x≠-1 D.x≥-1且x≠04.某登山队大本营所在地的气温为5 ℃,海拔每升高1 km气温下降6 ℃,登山队员由大本营向上登高x km时,他们所在位置的气温为y℃,则y与x的函数关系式为()A.y=5+6x B.y=5-6x C.y=5-x6D.y=5-6 x5.要得到函数y=3x+5的图象,只需将函数y=3x的图象() A.向左平移5个单位B.向右平移5个单位C.向下平移5个单位D.向上平移5个单位6.点A(-2,y1),B(-1,y2)都在直线y=-x+b上,则y1与y2的大小关系为()A.y1=y2B.y1>y2 C.y1<y2D.不能确定7.下列关于一次函数y=-4x-8的说法中,正确的是()A.该函数图象不经过第三象限B.该函数图象经过点(2,0)C.该函数值y随x的增大而增大D.该函数图象与坐标轴围成的三角形面积为88.已知直线y=kx+b不经过第二象限,那么k,b的取值范围分别是() A.k>0,b<0 B.k<0,b<0 C.k>0,b≤0 D.k<0,b≤0 9.若直线y=-x+m与直线y=2x+4的交点在第二象限,则m的取值范围是()A.-2<m<4 B.-2<m<3 C.-1<m<3 D.1<m<4 10.如图,在长方形OABC中,已知B(8,6), 动点P从点A出发,沿A-B -C-O的路线匀速运动,设动点P的运动时间为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()(第10题) (第12题) (第13题) 二、填空题(本大题共4小题,每小题5分,满分20分)11.若正比例函数y=(m-1)x的图象从左到右逐渐上升,则m的取值范围是______________.12.如图,一次函数y=kx+b与y=-x+4的图象相交于点P(m,1),则关于x,y的二元一次方程组{x+y=4,kx-y+b=0的解是____________.13.李老师开车从甲地到相距240 km的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是________L.14.已知一次函数y=ax+8-2a(a为常数,且a≠0).(1)若该一次函数图象经过点(-1,2),则a=________;(2)当-2≤x≤5时,y有最大值11,则a的值为________.三、(本大题共2小题,每小题8分,满分16分)15.小明从家出发骑单车去上学,他骑了一段路时想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校,如图是他本次上学离家距离s(m)与所用的时间t(min)的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是________m,本次上学途中,小明一共行驶了________m.(2)小明在书店停留了________min,本次上学,小明一共用了________min.(3)在整个上学的途中哪个时间段小明骑车速度最快?最快的速度是多少?(第15题)16.已知y与3x-2成正比例,且当x=2时,y=8.(1)求y与x的函数关系式;(2)求当x=-2时,y的值.四、(本大题共2小题,每小题8分,满分16分)17.已知一次函数y=2kx+b的图象与直线y=-3x-7平行,且经过点(2,-11).(1)求一次函数y=2kx+b的表达式;(2)判断点A ⎝ ⎛⎭⎪⎫16,-112是否在一次函数y =2kx +b 的图象上.18.水是生命之源,节约用水是每位公民应尽的义务.水龙头关闭不严会造成滴水,为了调查漏水量V (mL)与漏水时间t (min)的关系,某同学在滴水的水龙头下放置了一个能显示水量的容器,每5 min 记录一次容器中的水量,如下表:漏水时间t /min 0 5 10 15 20 … 漏水量V /mL255075100…(1)请在图中描出以表中数据为坐标的各点;(2)根据(1)中各点的分布规律,求出V 关于t 的函数表达式; (3)请估算这种漏水状态下一天的漏水量.(第18题)五、(本大题共2小题,每小题10分,满分20分)19.如图,直线l 2:y =kx +b 与x 轴交于点A ,且经过点B (3,1),直线l 1:y =2x -2与l 2交于点C (m ,2). (1)求m 的值;(2)求直线l2的表达式;(3)根据图象,直接写出关于x的不等式组1<kx+b<2x-2的解集.(第19题)20.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮一年内来此游泳馆游泳的次数为x,选择方式一的总费用为y1元,选择方式二的总费用为y2元.(1)请分别写出y1,y2与x之间的函数表达式;(2)请根据小亮一年内的游泳次数确定选择哪种方式比较划算;(3)若小亮计划拿出1 400元用于一年内在此游泳馆游泳,采用哪种方式比较划算?六、(本题满分12分)21.如图,直线l 1的表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A (4,0),B ⎝ ⎛⎭⎪⎫3,-32,直线l 1,l 2交于点C .(1)点D的坐标为________,直线l 2的表达式为_____________________________________________; (2)求三角形ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得三角形ADP 与三角形ADC 的面积相等,请直接写出点P 的坐标.(第21题)七、(本题满分12分)22.某商店购进A ,B 两种礼盒进行销售.A 种礼盒每个进价160元,售价220元;B 种礼盒每个进价120元,售价160元.现计划购进两种礼盒共100个,其中A 种礼盒不少于60个.设购进A 种礼盒x 个,两种礼盒全部售完,该商店获利y 元.(1)求y 与x 之间的函数关系式;(2)若购进100个礼盒的总费用不超过15 000元,求最大利润;(3)在(2)的条件下,该商店对A 种礼盒以每个优惠m (0<m <20)元的价格进行优惠促销活动,B 种礼盒每个进价减少n 元,售价不变,且m -n =4,若最大利润为4 900元,请直接..写出m 的值.八、(本题满分14分)23.甲、乙两车分别从相距480 km的A,B两地相向而行,乙车比甲车先出发1 h,并以各自的速度匀速行驶,途经C地,甲车到达C地后停留1 h,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车到各自出发地的距离y(km)与甲车出发后所用的时间x(h)之间的关系如图,结合图象信息解答下列问题.(1)乙车的速度是________km/h,t=________,a=________;(2)求甲车到它出发地的距离y(km)与它出发后所用的时间x(h)之间的函数表达式,并写出自变量x的取值范围;(3)求乙车出发多久后两车相距120 km.(第23题)答案一、1.C 2.A 3.D 4.B 5.D 6.B 7.D 8.C 9.A 10.C二、11.m >1 12.⎩⎨⎧x =3,y =113.2014.(1)2 (2)1或-34 点拨:当a >0时,y 随x 增大而增大,则当x =5时,y有最大值,所以5a +8-2a =11,解得a =1;当a <0时,y 随x 增大而减小,则当x =-2时,y 有最大值,所以-2a +8-2a =11,解得a =-34.综上所述,a 的值为1或-34.三、15.解:(1)1 500;2 700 (2)4;14(3)折回之前的速度为1 200÷6=200(m/min),折回去书店时的速度为(1 200-600)÷(8-6)=300(m/min),买书后从书店到学校的速度为(1 500-600)÷(14-12)=450(m/min),经过比较可知,小明在买书后从书店到学校的时间段速度最快,最快的速度是450 m/min.16.解:(1)由题意知,y 与3x -2成正比例,则设出关系式为y =k (3x -2)(k ≠0),把x =2,y =8代入,得8=k (3×2-2),所以k =2.所以y 与x 之间的函数关系式为y =2(3x -2)=6x -4.(2)把x =-2代入y =6x -4,得y =6×(-2)-4=-16. 四、17.解:(1)由题意可知⎩⎨⎧2k =-3,4k +b =-11,所以⎩⎨⎧2k =-3,b =-5.所以所求一次函数的表达式为y =-3x -5. (2)当x =16时,y =-3x -5=-112.所以点A ⎝ ⎛⎭⎪⎫16,-112在此一次函数的图象上.18.解:(1)如图所示.(第18题)(2)根据(1)中各点的分布规律,可知V 是关于t 的正比例函数,设所求函数表达式为V =kt (k ≠0).因为当t =5时,V =25,所以5k =25,解得k =5.所以V 关于t 的函数表达式为V =5t .(3)由(2)可知,在这种状态下一天的漏水量为5×60×24=7 200(mL). 五、19.解:(1)把C (m ,2)的坐标代入y =2x -2,得2m -2=2,解得m =2.(2)把C (2,2),B (3,1)的坐标代入y =kx +b ,得⎩⎨⎧2k +b =2,3k +b =1,解得⎩⎨⎧k =-1,b =4,所以直线l 2的表达式为y =-x +4. (3)解集是2<x <3.20.解:(1)y 1=30x +200,y 2=40x .(2)当y 1<y 2,即30x +200<40x 时,解得x >20,所以当小亮一年内的游泳次数大于20时,选择方式一比较划算;当y 1=y 2,即30x +200=40x 时,解得x =20,所以当小亮一年内的游泳次数等于20时,选择两种方式的总费用相同;当y 1>y 2,即30x +200>40x 时,解得x <20,所以当小亮一年内的游泳次数小于20时,选择方式二比较划算.(3)当y 1=1 400时,1 400=30x +200,解得x =40;当y 2=1 400时,1 400=40x ,解得x =35,40>35,故采用方式一比较划算. 六、21.解:(1)(1,0);y =32x -6(2)解⎩⎪⎨⎪⎧y =-3x +3,y =32x -6,得⎩⎨⎧x =2,y =-3,所以C (2,-3).因为AD =4-1=3,所以S 三角形ADC =12×3×|-3|=92. (3)P (6,3).七、22.解:(1)根据题意得,购进A 种礼盒x 个,且x ≥60,则购进B 种礼盒(100-x )个,且100-x >0,故y =(220-160)x +(160-120)(100-x ),整理得,y =20x +4 000.故y 与x 之间的函数关系式为y =20x +4 000(60≤x <100).(2)根据题意得,160x +120(100-x )≤15 000,整理得,x ≤75,故60≤x ≤75,因为y =20x +4 000,且20>0,所以y 随着x 的增大而增大,所以当x =75时,y 取得最大值,此时y =20×75+4 000=5 500.所以最大利润为5 500元. (3)m =10.八、23.解:(1)60;3;7(2)①当0≤x ≤3时,设y =k 1x ,把点(3,360)的坐标代入,可得3k 1=360,解得k 1=120,所以y =120x . ②当3<x ≤4时,y =360.③当4<x ≤7时,设y =k 2x +b ,把点(4,360)和(7,0)的坐标分别代入,可得⎩⎨⎧4k 2+b =360,7k 2+b =0,解得⎩⎨⎧k 2=-120,b =840, 所以y =-120x +840.综上可得,y =⎩⎨⎧120x (0≤x ≤3),360(3<x ≤4),-120x +840(4<x ≤7).(3)①当甲车朝B 地,乙车朝A 地行驶时,(480-60-120)÷(120+60)+1=300÷180+1=53+1=83(h).②当甲车停留在C 地时,(480-360+120)÷60=240÷60=4(h).③两车都朝A 地行驶时,设乙车出发m h 后两车相距120 km ,则60m -{480-[-120(m -1)+840]}=120, 解得m =6.综上可得,乙车出发83h ,4 h ,6 h 后两车相距120 km.。
八年级数学上册《第十二章一次函数》单元测试卷-附答案(沪科版)

八年级数学上册《第十二章一次函数》单元测试卷-附答案(沪科版)一、选择题1.利用太阳能热水器加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题的因变量是( ) A .太阳光强弱B .水的温度C .所晒时间D .热水管2.下列图象中,表示y 是x 的一次函数的是( )A .B .C .D .3.一次函数1y x =+的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.在同一平面直角坐标系中,若一次函数5y x =-+与31y x =+的图象交于点M ,则点M 的坐标为( )A .()14,B .()16-,C .()14-,D .()12--, 5.在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中(如图),然后匀速向上提起,直至铁块完全露出水面一定高度,则能反映弹簧秤的读数y (单位:N )与铁块被提起的高度x (单位:cm )之间的函数关系的图象大致是( )A .B .C .D .6.如图为一次函数y=kx+b (k 和b 为常数且00)k b ≠≠,的图象,则一次函数y bx k =+的图象大致是( )A .B .C .D .7.一次函数1y mx n =+与2y kx a =+的图象如图所示,则mx n kx a +>+的解集为( )A .2x <B .2x >C .1x >D .1x <8.若直线y =2x+n 与y =mx ﹣1相交于点(1,﹣2),则() A .m =12,n =﹣52 B .m =12,n =﹣1C .m =﹣1,n =﹣52D .m =﹣3,n =﹣329.已知点()P a b ,在一次函数2y x =-+的图象上,且在一次函数y x =图象的下方,则符合条件的a b -值可能是( ) A .-2B .-1C .0D .110.如图,直线1l y x m =+:与直线2l y x n =-+:相交于点()12P ,,则关于x y ,的方程组y x my x n =+⎧⎨=-+⎩的解为( )A .11x y =⎧⎨=-⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .11x y =-⎧⎨=⎩二、填空题11.饮食店里快餐每盒10元,买n 盒需付s 元,则其中因变量是 . 12.已知函数1()1f x x =-,那么(2)f = . 13.已知一次函数y kx k =-,当0k <时,图像不过第 象限.14.已知一次函数3y x =-与y kx =(k 是常数,0k ≠)的图像的交点坐标是()21-,,则方程组30x y kx y -=⎧⎨-=⎩的解是 . 三、解答题15.如图,正方形ABCD 的边长为2,P 为DC 上的点(不与C ,D 点重合).设线段DP 的长为x ,求梯形ABCP 的面积y 关于x 的函数关系式,并写出自变量x 的取值范围.16.如图,直线AB 分别与x 轴、y 轴交于点()20A -,,()03B ,直线CD 分别与x 轴、y 轴交于点()10C ,和()01D ,,与直线AB 交于点E .求四边形AODE 的面积.17.一次函数的图象经过点(35)-,且与直线13y x =-平行,求这个函数表达式. 四、综合题18.小南一家到度假村度假,小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发,爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村,(取东西的时间忽略不计),如下图是他们离家的距离s (km )与小南离家的时间t (h )的关系图,请根据图回答下列问题:(1)图中的自变量是 ,因变量是 ,小南家到该度假村的距离是km(2)小南出发 小时后爸爸驾车出发,爸爸驾车的平均速度为 km /h (3)小南从家里到度假村的路途中,当他与爸爸相遇时,离家的距离是多少km ?19.如图,在平面直角坐标系中,O 为坐标原点,一次函数2y kx =+(k 为常数,0)k ≠的图象经过(21)A --,,并且交x 轴于点B ,交y 轴于点C .(1)求k 的值; (2)求BOC 的面积.20.网上购物快捷、简便,受到人们的广泛喜爱.小明家装修要用某种环保装饰材料,两个商家的原价相同.购物节优惠促销,甲店打9折,乙店不超过3件不打折,实际付费金额y甲(元),y乙(元)和x(件)(x为非负整数)的关系如图所示,小明家需要这种装饰材料6件,发现两家的付费金额恰好相同.(1)写出y甲(元)与x(件)的函数关系式,并求出a的值;(2)写出y乙(元)和x(件)的函数关系式,并写出乙店实际的优惠方案;(3)小宇家也需要这种装饰材料,按照上述的优惠方案,已知甲店比乙店付费金额高60元,求小宇家购买的件数.参考答案与解析1.【答案】B【解析】【解答】根据题意可得:因变量是水的温度。
《一次函数》整章测试题及答案

《一次函数》整章测试题班级_________ 姓名__________ 一、精心选一选,慧眼识金!(每小题3分,共24分)1.被誉为“沙漠之舟”的骆驼,其体温随着气温的变化而变化.在这个问题中,自变量是( ) A.骆驼 B.沙漠 C.气温 D.体温2.下列函数(1)y=3πx (2)y=8x -6 (3)y=1x (4)y=12 -8x (5)y=5x 2-4x+1中,是一次函数的有( )A.4个B.3个C.2个D.1个 3.函数282-+--=x x x y 的自变量x 的取值范围为( ) A .x ≥2且 x ≠8 B .x >2 C .x ≥2 D .x ≠8. 4.在下列各图象中,y 不是x 函数的是( )5.已知点(-6,y 1),(8,y 2)都在直线y= - 12 x -6上,则y 1 y 2大小关系是( )A.y 1 >y 2B.y 1 =y 2C.y 1 <y 2D.6.已知一次函数y=kx+b 的图象如图所示,则k,b 的符号是( )A.k>0,b>0B.k>0,b<0C.k<0,b>0 7.如果弹簧的长度y cm 与所挂物体的质量x(kg)图象如图所示,那么弹簧不挂物体时的长度是( ) A.9 cm B.10cm C.10.5cmD.11cm8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M的坐标为【 】 A .(1-,4) B .(1-,2) C .(2,1-) D .(2,1)题图AB 9.如图,点P 是等边△ABC 的边上的一个作 匀速运动的动点,其由点A 开始沿AB 边运动到 B 再沿BC 边运动到C 为止,设运动时间为t , △ACP 的面积为S ,S 与t 的大致图象是【 】二、耐心填一填,一锤定音!(每小题3分,共24分)9. 一次函数(26)5y m x =-+中,y 随x 增大而减小,则m 的取值范围是 . 10.在平面直角坐标系中,将直线y=2x -1向上平移动4个单位长度后,所得直线的解析式为 .11.若点A (m ,3)在函数y=5x -7的图象上,则m 的值为 .12.一次函数y= -4x+12的图象与x 轴交点坐标是 ,与y 轴交点坐标是 ,图象与坐标轴所围成的三角形面积是 .13.请你写出同时具备下列两个条件的一次函数表达式(写出一个即可) . ⑴ y 随着x 的增大而减小; ⑵ 图象经过点(2,-8). 三、用心做一做,马到成功!(本大题共52分)18.(本题9分)右图是某汽车行驶的路程S(km)与时间t(分钟) 的函数关系图。
沪科版八年级上册第12章一次函数单元测试卷-(含答案解析)

一次函数单元测试卷考试范围:12章;考试时间:120分钟;一、单选题(每题4分,共40分)1.下列图象中,表示y是x的函数的是()A.B.C.D.2.下面两个变量是成正比例变化的是()A.正方形的面积和它的边长B.变量x增加,变量y也随之增加!C.矩形的一组对边的边长固定,它的周长和另一组对边的边长D.圆的周长与它的半径3.已知一次函数y=(a+1)x+b的图象如图所示,那么a,b的取值范围分别是()A.a>-1,b>0B.a>-1,b<0C.a<-1,b>0D.a<-1,b<0$4.已知A,B两地相距80km,甲,乙两人沿同一条公路从A地出发到B地,乙骑自行车,甲骑摩托车.图中DE,OC分别表示甲,乙离开A地的路程s(km)与时间t(h)的函数关系,根据图象得出的下列信息错误的是()A.乙到达B地时甲距A地120km.B.乙出发小时被甲追上.C.甲,乙相距20km时,t为.D.甲的速度是乙的速度的倍.5.若函数y=kx+b(k<0),过(0,1),(2,0)两点,那么当y>0时,x的取值范围是()A .x>1B .x>2C .x<1D .x<26.一个正比例函数的图象经过(2,-1),则它的表达式为( )A .y=-2xB .y=2xC .12y x =-D .12y x = )7.已知()113,P y -、()222,P y 是一次函数2y x b =-+图象上的两个点,则1y 与2y 的大小关系为( )A .12y y <B .12y y ≥C .12y y >D .不能确定1y 与2y 的大小8.有一种手持烟花,点然后每隔1.4秒发射一发花弹。
要求每一发花弹爆炸时的高度要超过15米,否则视为不合格,在一次测试实验中,该烟花发射出的第一发花弹的飞行高度(米)随飞行时间(秒)变化的规律如下表所示.下列这一变化过程中说法正确的是( )A .飞行时间t 每增加0.5秒,飞行高度h 就增加5.5米B .飞行时间t 每增加0.5秒,飞行高度h 就减少5.5米C .估计飞行时间t 为5秒时,飞行高度h 为11.8米D .只要飞行时间t 超过1.5秒后该花弹爆炸,就视为合格:9.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0:③b >0;④x <2时,kx+b <x+a 中,正确的个数是( )A .110.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A→B→C→D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A .B .C .D .二、填空题(每题5分,共20分)&11.正比例函数y kx =经过点(2,-4),则k =______.12.把直线1y x =-+沿着y 轴向下平移4个单位,得到新直线的解析式是____. 13.已知,一次函数y=kx+b (k≠0)的图象经过点(0,2),且y 随x 的增大而减小,请你写出一个符合上述条件的函数关系式:__.14.如图,直线AB 的解析式为y=x+4,与y 轴交于点A ,与x 轴交于点B ,点P 为线段AB 上的一个动点,作PE ⊥y 轴于点E ,PF ⊥x 轴于点F ,连接EF ,则线段EF 的最小值为_____.三、解答题(15、16、17、18每题8分,19、20每题10分,21、22每题12分、23题14分,满分90)15.下图是某个学校一电热水器水箱的水量y (升)与供水时间x (分)的函数图像 》求:(1)y 与x 之间的函数关系式;(2)在(1)的条件下,30分钟时水箱中的水量是多少16.某市出租车收费标准如下:3km以内(含3km)收费8元,超过3km的部分每千米收费元,回答下列问题:(1)写出应收车费y(元)与出租车行驶路程x(km)之间的函数关系式(2)小明乘车行驶4km需要付多少钱(3)小华若付车费元,则出租车行驶了多少千米17.如图,在直角坐标系中,已知点A(6,0),又点B(x,y)在第一象限内,且x+y=8,设△AOB的面积是S.(1)写出S与x之间的函数解析式,并求出x的取值范围;|(2)画出(1)中所求函数的图象.18.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元).(1)求a,c的值;(2)当x≤6,x≥6时,分别写出y与x的函数关系式;(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元{19.如图,已知一次函数y=mx+3的图象经过点A(2,6),B(n,-3).求:(1)m,n的值;(2)△OAB的面积.20.甲、乙两辆汽车沿同一路线从A地前往B地,甲以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙在甲出发2小时后匀速前往B地,设甲、乙两车与A地的路程为s(千米),甲车离开A地的时间为t(时),s与t之间的函数图象如图所示.(1)求a和b的值.(2)求两车在途中相遇时t的值.(3)当两车相距60千米时,t= 时.-21.如图,在平面直角坐标系中,一次函数y=-x+b的图象与正比例函数y=kx的图象都经过点B(3,1)(1)求一次函数和正比例函数的表达式;(2)若直线CD与正比例函数y=kx平行,且过点C(0,-4),与直线AB相交于点D,求点D的坐标.(3)连接CB,求三角形BCD的面积.22.某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订月租车合同.设汽车每月行驶xkm,应付给个体车主的月租费用是y1元,应付给出租公司的月租费用是y2元,y1、y2分别与x之间的函数关系图像(两条射线)如图所示,观察图像回答下列问题:((1)每月行驶的路程在什么范围内时,租国有公司的车合算(2)每月行驶的路程等于多少时,租两家车的费用相同(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家的车合算23.某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购买4套A型和6套B型课桌凳共需1820元。
沪科版八年级数学上册《第十二章一次函数》单元测试卷带答案

沪科版八年级数学上册《第十二章一次函数》单元测试卷带答案一、单选题1.将一次函数23y x =+的图像向下平移4个单位得到的函数表达式为( )A .27y x =+B .21y x =-C .21y x =--D .211y x =+2.点()15,A y -和()22,B y -都在直线12y x =-上,则1y 与2y 的关系是( ) A .12y y ≤ B .12y y = C .12y y < D .12y y >3.关于一次函数24y x =+,下列说法正确的是( )A .图象经过第一、三、四象限B .图象与y 轴交于点()0,2-C .函数值y 随自变量x 的增大而增大D .当1x >-时2y <4.在平面直角坐标系中,一次函数()0y ax a a =-≠的图象不可能是( )A .B .C .D .5.周末,自行车骑行爱好者甲、乙相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度骑行,乙比甲早出发5分钟,乙骑行25分钟后,甲以原速度的85继续骑行,经过一段时间,甲先到达B 地.在此过程中,甲、乙两人相距的路程y (单位:米)与乙骑行的时间(单位:分钟)之间的关系如图所示.以下说法中错误的是( )A .点()5,1500指甲从A 开始出发B .甲的原速度为250m/minC .甲与乙相遇时,甲出发了45分钟D .乙比甲晚13分钟到达B 地6.某水果超市以每千克3元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额 y (元)与销售量x (千克)之间的关系如图所示.若该水果超市销售此种水果的利润为110元,则销售量为( )A .130千克B .120千克C .100千克D .80千克7.点A(x 1,y 1)、B(x 2,y 2)都在直线y =kx+2(k <0)上,且x 1<x 2则y 1、y 2的大小关系是( ) A .y 1 =y 2 B .y 1 <y 2 C .y 1 >y 2 D .y 1 ≥y 28.一次函数()1y k x k =-+中,y 随着x 的增大而减小,那么k 的取值范围是( )A .0k <B .1k <C .0k >D .1k >9.为了奖励在学校运动会中的优胜者,李老师准备用400元钱去买单价为12元的某种笔记本,则他剩余的钱y (元)与购买的笔记本的数量x (本)之间的关系是( )A .y =12xB .y =12x +400C .y =12x ﹣400D .y =400﹣12x10.快车和慢车同时从A 地出发,分别以速度v 1、v 2(v 1>2v 2)匀速向B 地行驶,快车到达B 地后停留了一段时间,沿原路仍以速度v 1匀速返回,在返回途中与慢车相遇.在上述过程中,两车之间的距离y 与慢车行驶时间x 之间的函数图象大致是( )A .B .C .D .11.将直线4y x =的图象向下平移3个单位长度,所得直线的函数解析式是( )A .43y x =+B .43y x =-C .()43y x =+D .()43y x =-二、填空题12.已知一次函数y kx b =+,当02x ≤≤时,对应的函数值y 的取值范围是26y -≤≤,则kb 的值为 . 13.已知一次函数y =kx +b (k 、b 是常数)的图象如图所示,那么关于x 的不等式kx +b ≥0的解集是 .14.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y 与年数x 之间的函数关系为 ,五年后产值是 .15.若一次函数y kx b =+的图象上有两点A (x 1,y 1),点B (x 2,y 2),若123x x -=,则12y y -= . 16.已知(),P a b 是一次函数24y x =-+图像上一点,则22a b +的最小值是 .17.已知将直线y kx =向上平移2个单位后,恰好经过点(1,0)-,则不等式42x kx -<+的解集为 . 18.1号探测气球从海拔10m 处出发,以1m/min 的速度竖直上升.与此同时,2号探测气球从海拔20m 处出发,以m/min a 的速度竖直上升.两个气球都上升了1h .1号、2号气球所在位置的海拔1y ,2y (单位:m )与上升时间x (单位:min )的函数关系如图所示.当气球上升 min 时,两个气球的海拔竖直高度差为5m .19.表1、表2分别给出了两条直线111l y k x b =+:与222l y k x b =+:上部分点的横坐标x 和纵坐标y 的对应值. 表1 x 4- 3- 2- 1- y 1- 2- 3- 4-表2 x4- 3- 2- 1- y 9- 6- 3- 0则方程组1122y k x b y k x b =+⎧⎨=+⎩的解是三、解答题20.合肥某校有3名教师准备带领部分学生(不少于3人)参观野生动物园.经洽谈,野生动物园的门票价格为教师票每张36元,学生票半价,且有两种购票优惠方案.方案一:购买一张教师票赠送一张学生票;方案二,按全部师生门票总价的80%付款,只能选用其中一种方案购买.假如学生人数为x (人),师生门票总金额为y (元).(1)分别写出两种优惠方案中y 与x 的函数表达式;(2)请通过计算回答,选择哪种购票方案师生门票总费用较少;(3)若选择最优惠的方案后,共付款288元,则学生有多少人?21.A 、B 两个通讯公司推出新的通话收费方案.A 公司方案:每月的通话费用y (元)与通话时间x (分钟)之间的关系如图所示.B 公司方案:每月在收取固定话费18元的基础上每分钟收取0.2元.(1)分别求A 、B 公司每月的通话费用y (元)与通话时间x (分钟)之间的函数关系式.(2)如果小明一个月的通话时间为130分钟,试通过计算说明,小明选择哪个通讯公司每个月的费用较少?22.已知一次函数y =kx +b 的图象经过点A (0,2)和点B (-a ,3),且点B 在正比例函数y =-3x 的图象上.(1)求a 的值;(2)求一次函数的表达式并画出它的图象;(3)若P (m ,y 1),Q (m -1,y 2)是这个一次函数图象上的两点,试比较y 1与y 2的大小.23.快车和慢车同时从甲、乙两地出发开往乙地和甲地,匀速行驶,快车到达乙地后休息一个小时按原速返回,慢车在快车前一个小时到达甲地.如图表示慢车行驶过程中离甲地的路程y (km )与出发时间x (h )的函数图象,请结合图中的信息,解答下列问题:(1)甲、乙两地的距离为 km ,慢车的速度为 km/h ,快车的速度为 km/h ;(2)在图①中画出快车离甲地的路程y (km )与出发时间x (h )的函数图象(坐标轴标注相关数值); (3)求出发多长时间,两车相距150km .24.某储水塔在工作期间,每小时的进水量和出水量都是固定不变的.每日从凌晨4点到8点只进水,不出水;8点到12点既进水又出水;14点至次日凌晨只出水不进水.经测定,水塔中储水量()3my 与时间()h x 的函数关系如图.(1)求每小时的进水量;(2)当812x ≤≤时,求y 与x 的函数关系式;(3)当1418x ≤≤时,求y 与x 的函数关系式.25.已知一次函数()1121y k x k =-+-.(1)若点(2,1)-在1y 的图象上,求k 的值;(2)当53x -≤≤时,若函数的最大值3,求1y 的函数表达式;(3)对于一次函数2(3)(1)4y a x =+--,若对一切实数x ,12y y >都成立,求k 、a 满足的数量关系及k 的取值范围.参考答案1.B2.D3.C4.D5.D6.A7.C8.B9.D10.C11.B12.8-或24-13.2x ≤14. 215y x =+ 25万元15.3k16.16517.6x >-18.10或3019.23x y =-⎧⎨=-⎩ 20.(1)方案一:1854y x =+;方案二:14.486.4y x =+(2)当9x =时,两种方案一样多;当39≤<x 时,方案一更优惠;当9x >时,方案二更优惠(3)学生人数为14人21.(1)0.120A y x =+ 0.218B y x =+(2)如果小明一个月的通话时间为130分钟,小明选择A 通讯公司每个月的费用较少 22.(1)a =1;(2)y =-x +2.(3)y 1<y 2.23.(1)450,50,100;(2)略;(3)出发2h 或4h 或8h 后,两车相距150km . 24.(1)每小时的进水量为5立方米(2) 2.55y x =+(3) 2.570y x =-+25.(1)12k = (2)当1k >时 12955y x =+;当1k <时 12133y x =-- (3)4k a =+,23k >-且1k ≠。
2022年沪科版八年级数学上册第12章一次函数单元测试卷含答案

沪科版八上一次函数单元测试(共26题,共120分)一、选择题(共10题,共30分)1.(3分)函数中,自变量的取值范围是A.B.C.D.2.(3分)一次函数的图象不经过A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)直线,交点的纵坐标为,则的值为A.B.C.D.4.(3分)如图所示,,两地相距,甲、乙分别从,两地出发,相向而行.图中的,分别表示甲、乙离地的距离()与甲出发后所用的时间()的函数关系.以下结论正确的是A.甲的速度为B.甲和乙同时出发C.甲出发时与乙相遇D.乙出发时到达地5.(3分)一次函数的图象经过A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限6.(3分)如图,折线描述了一汽车在某一直路上行驶时汽车离出发地的距离(千米)和行驶时间(小时)间的变量关系,则下列结论正确的是A.汽车共行驶了千米B.汽车在行驶途中停留了小时C.汽车在整个行驶过程中的平均速度为每小时千米D.汽车自出发后小时至小时间行驶的速度为每小时千米7.(3分)一次函数在平面直角坐标系内的图象如图所示,则和的取值范围是A.,B.,C.,D.,8.(3分)将直线平移后,得到直线,则原直线A.沿轴向上平移了个单位B.沿轴向下平移了个单位C.沿轴向左平移了个单位D.沿轴向右平移了个单位9.(3分)如图,一只蚂蚁从点出发,沿着扇形的边缘匀速爬行一周,当蚂蚁运动的时间为时,蚂蚁与点的距离为,则关于的函数图象大致是A .B .C .D .10. (3分)一次函数与的图象如图所示,有下列结论:① ;② ;③当 时,其中正确的结论为A . 个B . 个C . 个D . 个二、填空题(共8题,共24分)11. (3分)一次函数 ,若 随 的增大而增大,则的取值范围是 .12. (3分)当时,函数是一次函数.13. (3分)函数为一次函数,则 的取值范围为 .14. (3分)如图,已知直线与的交点的横坐标为,则关于 的方程的解为.15. (3分)一次函数 的图象与两坐标轴围成的三角形面积为 ,那么这个一次函数的表达式为 .16. (3分)已知一次函数和的图象交于点,直接写出方程的解 .17. (3分)如图,正比例函数和一次函数的图象相交于点,当时,(填“”或“”).18. (3分)在弹性限度内,弹簧的长度 是所挂物体质量 的一次函数,当所挂物体的质量分别为和时,弹簧长度分别为 和,当所挂物体的质量为时弹簧长 厘米?三、解答题(共8题,共66分) 19. (8分)若函数 是正比例函数,求的值并写出函数解析式.20.(8分)函数 是一次函数吗?如果是,请写出 , 的值;如果不是,试说明理由.21. (8分)若一次函数与的图象交于点,试确定方程组的解和,的值.22. (8分)已知直线经过点 ,求不等式 的解集.23. (8分)乘坐市内某种出租车,当行驶路程不超过 千米时,乘车费用都是元(即起步价 元);当行驶路程超过 千米时,超过 千米的部分每千米收费元.请你求出时,乘车费用 (元)与行驶路程 (千米)之间的函数解析式.24. (8分)如图,直线 是一次函数的图象,点 , 在直线 上.根据图象回答下列问题:(1) 写出方程 的解;(2) 若直线 上的点在线段上移动,求, 的取值范围.25. (8分)如图,在平面直角坐标系中,直线与 轴交于点 ,与直线 交于点 ,点的坐标为,直线与 轴交于点 .(1) 求直线的解析式.(2) 求的面积.26.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为(),两车之间的距离为(),图中的折线表示与之间的函数关系.根据题中所给信息解答以下问题:(1) 甲、乙两地之间的距离为;图中点的实际意义为:;慢车的速度为,快车的速度为;(2) 求线段所表示的与之间的函数关系式;(3) 若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.求第二列快车出发多长时间,与慢车相距.答案一、选择题(共10题,共30分)1. 【答案】C【解析】由题意,得,解得.【知识点】函数自变量的取值范围2. 【答案】C【知识点】k,b对一次函数图象及性质的影响3. 【答案】B【知识点】一次函数与二元一次方程(组)的关系4. 【答案】C【解析】A选项:(),故甲的速度是,该选项错误;B选项:由图可知,甲比乙早出发,该选项错误;C选项:设对应的函数解析式为,由题意列方程组得解得即对应的函数解析式为.设对应的函数解析式为,由题意列方程组得解得即对应的函数解析式为,解方程组得即点的坐标为,点的实际意义是在甲出发小时时,甲乙两车相遇,此时距离地,该选项正确;D选项:由图可得,乙出发后到达地,该选项错误.【知识点】用函数图象表示实际问题中的函数关系、一次函数的应用5. 【答案】C【解析】一次函数解析式为,,,一次函数图象经过第一、三、四象限.故选C.【知识点】k,b对一次函数图象及性质的影响6. 【答案】D【知识点】用函数图象表示实际问题中的函数关系7. 【答案】A【解析】一次函数在平面直角坐标系内的图象过第一、二、三象限,,.【知识点】k,b对一次函数图象及性质的影响8. 【答案】A【解析】将直线平移后得到直线,,直线向下平移个单位后得到直线.原直线沿轴向上平移了个单位后得到直线.【知识点】一次函数的图象变换9. 【答案】B【解析】一只蚂蚁从点出发,沿着扇形的边缘匀速爬行,在开始时经过半径这一段,蚂蚁到点的距离随运动时间的增大而增大;到弧这一段,蚂蚁到点的距离不变,图象是与轴平行的线段;走另一条半径时,随的增大而减小.【知识点】用函数图象表示实际问题中的函数关系10. 【答案】B【解析】① 的图象与轴的交点在负半轴上,,故①错误;② 的图象从左向右呈下降趋势,,故②错误;③两函数图象的交点横坐标为,当时,在的图象的上方,即,故③正确.故选:B.【知识点】k,b对一次函数图象及性质的影响、一次函数与一次不等式的关系二、填空题(共8题,共24分)11. 【答案】【知识点】k,b对一次函数图象及性质的影响12. 【答案】【知识点】一次函数的概念13. 【答案】【解析】由一次函数的定义可知.【知识点】一次函数的概念14. 【答案】【知识点】一次函数与一次不等式的关系15. 【答案】【解析】一次函数与轴的交点为,与轴的交点为.因为和两坐标轴围成的三角形的面积是,所以,所以.所以解析式为:.【知识点】一次函数的解析式16. 【答案】【知识点】一次函数与二元一次方程(组)的关系17. 【答案】【解析】由图象知,当时,的图象在上方,.故答案为:.【知识点】一次函数与一次不等式的关系18. 【答案】【解析】设与的函数关系式为,由题意,得:解得:故与之间的关系式为:;当时,.【知识点】一次函数的应用三、解答题(共8题,共66分)19. 【答案】由题意得解得.所以,所求解析式为.【知识点】一次函数的解析式20. 【答案】函数是一次函数,理由:,属于一次函数,其中,.【知识点】一次函数的概念21. 【答案】一次函数与的图象交于点,方程组的解为将代入得,解得;将代入得,解得.【知识点】一次函数与二元一次方程(组)的关系22. 【答案】直线经过点,,直线解析式为,令,则,解得,,随的增大而增大,不等式的解集是.【知识点】k,b对一次函数图象及性质的影响、一次函数与一次不等式的关系23. 【答案】.【知识点】解析式法24. 【答案】(1) 函数图象经过点,则方程的解是.(2) 线段的自变量的取值范围是,当时,函数值的取值范围是,的取值范围为,的取值范围为.【知识点】一次函数图像上点的坐标特征、一次函数与一元一次方程的关系25. 【答案】(1) 设直线的解析式为,将,代入得:解得故直线的解析式为:.(2) 直线的解析式为:,当时,,即,,的面积.【知识点】一次函数的解析式、一次函数与一元一次方程的关系26. 【答案】(1) ;当慢车行驶时,快车到达乙地;;(2) 线段所表示的与之间的函数关系式为.(3) 分为两种情况:①设第二列快车出发,与慢车相距,则,解得:.即第二列快车出发,与慢车相距;②第二列开车追上慢车以后再超过慢车.设第二列快车出发,与慢车相距,则,得.(因为快车到达甲地仅需小时,所以舍去)综合这两种情况得出:第二列快车出发,与慢车相距.【知识点】一次函数的应用、用函数图象表示实际问题中的函数关系。
沪科版八年级数学上册《第十二章一次函数》单元检测卷及答案

沪科版八年级数学上册《第十二章一次函数》单元检测卷及答案一、单选题(共10小题,满分40分)1.直线l 是以二元一次方程8x -y =5的解为坐标所构成的直线,则该直线不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.一次函数y =2x ﹣4的图象由正比例函数y =2x 的图象( )A .向左平移4个单位长度得到B .向右平移4个单位长度得到C .向上平移4个单位长度得到D .向下平移4个单位长度得到3.常值函数并不是没有自变量,而是可以看作一次函数中自变量的系数为0,比如常值数2y =即是02y x =+,那么在这个函数中,当5x =时,y =( )A .10B .0C .2D .任意数 4.函数1x y +=x 的取值范围是( ). A .1x ≥-B .3x ≠-C .1x ≥-且3x ≠-D .1x <-5.有一个如图形状的容器,从上口匀速注入清水,能大致反映图中水面高度h 与注水时间t 的函数关系的图像是( )A .B .C .D .6.小明和他家长晚餐后散步,去了离家500米的报亭,稍作停留后返回,如图是他们散步过程中离家的距离随时间变化的情况,下面可能的情节是( )A .他们匀速步行去报亭,回家时加快了速度,匀速步行回家B .他们匀速步行去报亭,回家时减慢了速度,匀速步行回家C .他们去报亭时速度越来越快,回家时平均速度更快,但步行速度越来越慢D .他们去报亭时速度越来越快,回家时平均速度更慢,步行速度也越来越慢7.对于一次函数y =﹣2x +4,下列结论错误的是( )A .函数值随自变量的增大而减小B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .函数的图象与x 轴的交点坐标是(0,4)8.已知点()1,m -与点()0.5,n 都在直线21y x =+上,则m 、n 的大小关系是( )A .m n >B .m n <C .m n =D .无法判断9.函数1(1)n y m x n -=++是一次函数,m ,n 应满足的条件是 ( )A .1m ≠-且0n =B .1m ≠-且2n =C .2m ≠且2n =D .2m ≠-且0n =10.函数y =a |x |与y =x +a 的图象恰有两个公共点,则实数a 的取值范围是( )A .a >1B .-1<a <1C .a >1或a <-1D .a ≥1或a ≤-1二、填空题(共8小题,满分32分)11.请写出一个过点()11,A y -和点()25,B y 且函数值满足12y y >的一次函数解析式: . 12.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为 .13.如图,已知直线1y x a =+与2y kx b =+相交于点(1,2)P -,则关于x 的不等式x a kx b +>+的解集是 .14.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地,两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示,根据图象信息知,点A 的坐标是 ;15.若点 P (1,1) 在直线 1l : y =kx +2上,点 Q (m , 2m -1) 在直线 2l 上,则直线 1l 和2l 的交 点坐标是 . 16.一根长为24cm 的蜡烛被点燃后,每分钟缩短1.2cm ,则其剩余长度y (cm )与燃烧时间x (min )的函数关系式为 ,自变量的取值范围是 .17.学校举办图画展览,需要依次把图画作品横着钉成一排(如图),图中黑色实心圆点表示图钉,照这样,钉x 张图画需要图钉y 颗,请写出y 与x 的函数关系式 .18.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示放置,点A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3…在x 轴上,则A 5的坐标是 .三、解答题(共6小题,每题8分,满分48分)19.已知一次函数y=kx+b 的图像经过点(1,1),(-2,-5).(1)求此函数的解析式.(2)若点(a ,3)在此函数的图像上,求a 的值为多少?20.如图,图1是1个纸杯和6个叠放在一起的纸杯的示意图,量得1个纸杯的高为10厘米,6个叠放在一起的纸杯的高为14厘米.(1)2个纸杯叠放在一起的高为厘米;(2)若设x个纸杯叠放在一起的高为y厘米(如图2),并将这x个纸杯叠放在一起按如图3所示的方式放进竖立的方盒中,方盒的厚度不计.①求y关于x的函数表达式;①若竖立的方盒的高为33.5厘米,求x的最大值.21.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=k x+b的图象经过点B(0,-1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),(1)求n,k ,b的值;(2)若函数y=k x+b的函数值大于函数y=x+1的函数值,则x的取值范围是多少?(3)求四边形AOCD的面积;22.A、B 两乡分别由大米200 吨、300 吨.现将这些大米运至C、D 两个粮站储存.已知C 粮站可储存240 吨,D 粮站可储存200 吨,从A 乡运往C、D 两处的费用分别为每吨20 元和25 元,B 乡运往C、D 两处的费用分别为每吨15 元和18 元.设A 乡运往C 粮站大米x 吨.A、B 两乡运往两个粮站的运费分别为y A、y B元.(1)请填写下表,并求出y A、y B与x 的关系式:C 站D 站总计A 乡x 吨200 吨B 乡300 吨总计240 吨260 吨500 吨(2)试讨论A、B 乡中,哪一个的运费较少;(3)若B 乡比较困难,最多只能承受4830 元费用,这种情况下,运输方案如何确定才能使总运费最少?最少的费用是多少?23.小明根据学习函数的经验,对函数y=11x-+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=11x-+1的自变量x的取值范围是;(2)下表列出了y与x的几组对应值,请写出m,n的值:m=,n=;x…﹣32﹣1﹣121232252372…y (3)5m130﹣1n2533275…(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,解决问题:①写出该函数的一条性质:①当函数值11x-+1>32时,x的取值范围是:①方程11x-+1=x的解为:24.单位组织员工自驾游,并打算在一家租车公司租用同一品牌同款的5座或7座越野车组成一个车队.该租车公司同品牌同款的7座越野车的日租金比5座的多300元.已知该单位参加自驾游的员工共有40人,其中10人可以担任司机,但这10人中至少需要留出3人做为机动司机,以备轮换替代.(1)有人建议租8辆5座的越野车,刚好可以载40人.他的建议合理吗?请说明理由;(2)请为该单位设计一种租车方案,使车队租车的日租金最少,并说明理由参考答案1.B2.D3.C4.A5.C6.A7.D8.B9.B10.C11.21y x =-+12.()0,8或80,3⎛⎫ ⎪⎝⎭/80,3⎛⎫ ⎪⎝⎭或()0,8 13.x >-114.(40,1600)15.(1,1)16. y =24-1.2x 0≤x ≤2017.22y x =+18.(15,16).19.20.(1)10.8;(2)①0.89.2y x =+;①x 的最大值为30.21.(1)n ,k ,b 的值分别为:2,3,-1;(2)x >1(3)5622.(1)y A =20x+25×(200−x)=−5x+5000(0⩽x ⩽200);y B =15×(240−x)+18×(x+60)=3x+4680(0⩽x ⩽200);(2)当x<40时,B 乡运费少;当x=40时,A. B 两乡运费一样多;当x>40时,A 乡运费少;(3)当x=50时,总运费最低,最低费用为9580元.23.(1)x≠1;(2)12,3;(3)略;(4)①函数图象经过原点且关于点(1,1)对称,①1<x <3,①x =0或x =224.(1)建议不合理;(2)租车方案是:租4辆5座越野车,3辆7座越野车;当12y y =即600a =时,日租金最少的方案是:租1辆5座越野车,5辆7座越野车,或租4辆5座越野车,3辆7座越野车;当12y y <即600a >时,日租金最少的方案是:租1辆5座越野车,5辆7座越野车;当12y y >即600a <时,日租金最少的方案是:租4辆5座越野车,3辆7座越野车.。
沪科版数学八年级上册 第十二章 一次函数 单元测试(含答案)

第 十二 章 一次函数(时间:120分钟满分:150分)题 号一二三四五六七八总 分得 分一、选择题(本大题共10 小题,每小题4分,满分40 分)1.函数 y =x−3x中,自变量x 的取值范围是 ( )A. x≠0B. x≥3C. x≥3且x≠0D. x>3且x≠02.若正比例函数的图象经过点(-1,2),则这个图象必经过点 ( )A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)3.函数 y =k (x−k )(k <0)的图象不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数y =−x +3,,当x=a 时,y=5;当x=b 时,y=-5;当x=c 时,y =3,则a ,b ,c 的大小关系是( )A.a >b >cB. a>c>bC. b>a>cD. b>c>a5.直线 y =2x 向下平移2 个单位得到的直线是 ( ) A.y =2x (x +2) B.y =2(x−2) C.y =2x−2 D.y =2x +26.如图,在下列平面直角坐标系中,一次函数 y =12kx−2k 的图象只可能是( )7.如图,下列方程组的解可以用两直线 l₁,l₂的交点坐标表示的是 ( )A.{x−y =1,2x−y =1 B.{x−y =−1,2x−y =1 C.{x−y =3,2x−y =1 D.{x−y =−3,2x−y =−18.如图,函数 y 1=|x|,y 2=13x +43.当 y₁>y₂时,x 的取值范围是 ( )A. x< -1B.−1<x <2C.x <−1或x>2D.x >29.小高从家门口骑车去单位上班,先走平路到达点 A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 ( )A.12 分钟B.15分钟C.25分钟D.27 分钟10.如图,在平面直角坐标系中,在边长为1 的正方形ABCD 的边上有一动点 P 沿A→B→C→D→A 运动一周,则点 P 的纵坐标y 与点 P 走过的路程s 之间的函数关系用图象表示大致是 ( )二、填空题(本大题共4 小题,每小题5分,满分20分)11.已知一次函数 y =(4m +1)x−(m +1),,当m 满足 时,直线在y 轴上的截距小于0.12.一次函数 y =2x−6的函数值为0,则 x =.13.甲、乙两人以相同路线前往距离单位10 千米的培训中心参加学习.图中 l 甲,l 乙分别表示甲、乙两人前往目的地所走的路程s(千米)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/时;③乙的平均速度为1507千米/时;④乙出发6分钟后追上甲.其中正确的有 .(填所有正确的序号)14.已知一次函数 y =ax +b (a ,b 是常数),x 与y 的部分对应值如下表:x -2-10123y642-2-4那么方程ax+b=0的解是 ;不等式。
沪科版八年级上 第12章 一次函数单元测试(含答案)

第12章一次函数单元测试(满分:120分 时间:100分钟)一.选择题(每题3分,共30分)1.已知正比例函数(0)y kx k =≠的图象经过点(-1,2),则此函数的解析式是 ( ) A.2y x =- B.2y x = C.12y x =-D.12y x = 2.下面函数的图象所对应的函数可能是 ( )第2题Oyx32第3题Oy xA.22y x =-+B.22y x =--C.22y x =+D.22y x =-3.一次函数(0)y kx b k =+≠的图象如图,则当y ≤0时,x 的取值范围是 ( ) A.x ≥0 B .x ≤0 C.x ≥2 D.x ≤24.一次函数21y x =--的图象不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限5.函数12x y x +=-的自变量x 的取值范围是 ( ) A.x ≥-1 B.2x ≠ C.x ≥-1且2x ≠ D.x ≤-1且2x ≠6.若直线(0)y kx b k =+≠不经过第一象限,则下列关于,k b 的取值正确的是 ( ) A.0,0k b <> B.0,0k b << C.0,0k b <≥ D.0,0k b <≤7.直线41y x =-沿y 轴平移后经过点(-1,-2),则平移后的直线解析式是 ( ) A.42y x =+ B.42y x =- C. 24y x =- D.不能确定8.若一次函数y kx b =+当x 增加2时,y 就增加4,则当x 减小3时,y 的值将( ) A.增加4 B.减小4 C.增加6 D.减小69.一次函数1y kx b =+与2y bx k =-在同一平面直角坐标系中的大致图象不可能是 ( )A Oy 2y 1xyB Oy 2y 1xyC Oy 2y 1xyDOy 2y 1x y10.小明和小华两人在一段长为800米的笔直公路上赛跑,小明.小华两人跑步的速度分别是2/m s ,4/m s ,起跑前小明在小华的前面100米处,两人同时起跑,两人从起跑至其中一人先到达终点的过程中,两人之间的路程y (m )与时间t (s )的函数图象是( )200100300100A Ot /s y /m20050300100BO t /sy /m25050300100C O t /s y /m250100300100D Ot /s y /m二.填空题(每题3分,共30分)11.一支蜡烛长20㎝,每分钟燃烧0.1㎝,则蜡烛的长度l (㎝)与燃烧时间t (min )之间的函数关系式是______________________________________. 12.直线223y x =-+与坐标轴围成的三角形的面积为____________. 13.已知关于x 的不等式10(0)ax a -≠>的解集为2x -<,则直线1y ax =-与x 轴的交点坐标为__________.14.一次函数(1)12y m x m =-+-的图象经过第二.三.四象限,则m 的取值范围是______. 15.已知点1122(,),(,)x y x y 都在直线2(1)y k x b =+-上,且12x x >,则12,y y 的关系是1y _____________2y (填“>”.“<”.或“=”).16.直线25y x =-+与29y x =--位置关系是____,方程组2529x yy x =-⎧⎨+=-⎩的解为_____.17.如图,直线y kx b =+与x 轴交点坐标为(-3,0)则下列说法:①y 随x 的增大而增大;②0b <;③关于x 的方程0kx b +=的解为3x =-;④直线y kx b =+在y 轴上的截距为b ,其中说法正确的有_____________________(填序号).18.如图,有一种动画程序,屏幕上正方形ABCD 是黑色区域(含正方形边界),其中A (-2,-2),B (-1,-2),C (-1,-1),D (-2,-1),用信号枪沿直线2y x b =+发射信号,当信号遇到黑色区域时,区域便由黑变白,则能使黑色区域变白的b 的取值范围是________.第17题xyO -3-1-1-2DC BA第18题xy O -219.若直线2y x =-与3y x b =-+相交于x 轴上同一点,则b =___________.20.一根弹簧原长10㎝,在弹性限度内最多可挂质量为5㎏的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比.若弹簧的总长度y (㎝)与所挂物体的质量x (㎏)之间的函数关系式为210(05)5y x x =+≤≤ ,则还需添加的条件是__________________(写出一个条件即可). 三.解答题(共60分)21.(8分)如图,在平面直角坐标系中画出了一次函数(0)y kx b k =+≠的图象 (1)求这个一次函数的解析式; (2)在图中画出函数2y x =-+的图象. (3)你能发现这两个函数的图象有什么关系吗?321321-3-3-1-1-2xy O -222.(9分)下已知直线121y x =-和22y x =-+相交于点A ,分别交x 轴于点B .C .(1)画出它们的图象,并根据图象求x 为何值时,12y y ≥ ; (2)求△ABC 的面积.23.(10分)在我市出租车的计费方法如图所示,x (km )表示行驶的路程,y (元)表示车费,根据图象回答下列问题:. (1)求y 关于x 的函数关系式;(2)若小王有一次乘出租车的车费为30元,则他乘车的路程是多少?201083x /kmy /元O24.(10分)合肥市某医药公司要把一批药品运往A 地,现有两种运输方式供选择.方式一:用快递公司的邮车运输,装卸费300元,另外每千米再加收5元;方式二:用铁路运输公司的火车运输,装卸费720元,另外每千米再加收3元.你认为选用哪种运输方式较好?为什么?25.(11分)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做和谐点.如图,过点P 分别作坐标轴的垂线,所得长方形OAPB 的周长与面积相等,则点P 就是和谐点.(1)请判断C (2,4).D (3,6)是否为和谐点,并说明理由.(2)若和谐点Q (4,m )在直线y x b =--(b 为常数)上,求,m b 的值.PBA xy O26.(12分)如某饮料厂开发乐A .B 两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲.乙的含量如下表所示.现用甲.乙原料各2800g 进行试生产,计划生产A .B 两种饮料共100瓶.设生产A 种饮料x 瓶,解答下列问题:(1)有几种符合题意的生产方案?写出解答过程;(2)如果A 种饮料每瓶的成本为2.60元,B 种饮料每瓶的成本为2.80元,这两种饮料成本总额为y 元,请写出y 与x 之间的关系式,并说明x 取何值会使成本总额最低?甲(g )乙(g )A 20 40 B3020原料饮料参考答案1.A2.B3.C4.A5.C6.D7.A8.CD9.CD 10.B 11.0.120(0200)l t t =-+≤≤ 12.3 13.(-2,0) 14.112m << 15.> 16.平行;无解17.①③④ 18.03b ≤≤ 19.6 20.答案不唯一,如挂上2.5㎏物体时弹簧伸长1㎝等 21.(1)把点(-2,0).(0,2)分别代入y kx b =+,得202k b b -+=⎧⎨=⎩,解得12k b =⎧⎨=⎩,所以这个函数的解析式为2y x =+;(2)如图:y =-x +2321321-3-3-1-1-2xy O -2(3)两个函数的图象关于y 轴对称 22.(1)如图:CB Ay 1=2x -1y 2=-x +2321321-3-3-1-1-2x yO -2当1x ≥时,12y y ≥;(2)△ABC 的面积为1(20.5)10.752⨯-⨯= 23.(1)10(0324(3x y x x ⎧=⎨+⎩≤≤>);(2)13km24.设运输路程为x 千米,用邮车.火车的总费用为1y 元,2y 元,由题意,得15300y x =+,23720y x =+ 由12y y >,得210x >,由12y y =,得210x =,由12y y <,得210x <,所以当运输路程小于210千米时,选择邮车运输较好;当运输路程等于210千米时,两种方式一样;当运输路程大于210千米时,选择火车运输较好25.(1)因为2(24)24+≠⨯,所以点C (2,4)不是和谐点;因为2(36)36+=⨯,所以点D (3,6)是和谐点.(2)由题意,得2(4)4m m +=⨯,解得4m =±,把(4,4),(4,-4)分别代入y x b =--,得b =-8或026.(1)由题意,得2030(100)28004020(100)2800x x x x +-⎧⎨+-⎩≤≤ ,解得2040x ≤≤,因为x 为整数,所以共21种方案;(2)由题意,得 2.6 2.8(100)0.2280y x x x =+-=-+,因为-0.2<0,y ,随x 的增大而减小,所以当x =40时会使成本总额y 最低.。
沪科版八年级数学上册《第十二章一次函数》单元测试卷(带答案)

沪科版八年级数学上册《第十二章一次函数》单元测试卷(带答案)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列各图中反映了变量y是x的函数是( )A. B. C. D.2.下列变量间的关系,不是函数关系的是( )A. 长方形的宽一定,其长与面积B. 正方形的面积与周长C. 等腰三角形的面积与底边长D. 圆的周长与半径3.若函数y=(m−1)x|m|+2是一次函数,则m的值为( )A. 1B. −1C. ±1D. 2x−2.其中属于一次函数的是( )4.有下列函数: ①y=−2x; ②y=−3x2+1; ③y=13A. ① ②B. ① ③C. ② ③D. ① ② ③5.已知一次函数y=(2+m)x+m2−4的图象过原点,则m的值为( )A. 0B. 2C. −1D. ±26.如果点A(m+1,n−1),B(m−1,n+5)均在一次函数y=kx+b(k≠0)的图像上,那么k的值为( )A. 2B. 3C. −3D. −27.一次函数y=kx+b的图象与直线y=2x+3平行,且与y轴的交点为(0,2),则一次函数的表达式为( )A. y=2x+3B. y=2x+2C. y=−2x+3D. y=−2x+28.已知一次函数y=kx+b的图象与直线y=−5x+1平行,且过点(2,1),那么此一次函数的解析式为( )A. y=−5x−2B. y=−5x−6C. y=−5x+10D. y=−5x+119.如图,一次函数y=kx+b与y=bx+k在同一坐标系中的图像大致是( )A. B. C. D.10.如图,已知直线l1:y=3x+1和直线l2:y=mx+n交于点P(a,−8),则关于x的不等式3x+1<mx+n 的解集为( )A. x >−3B. x <−3C. x <−8D. x >−811.如图,直线y =kx +b 交x 轴于点A(−2,0),直线y =mx +n 交x 轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组{kx +b <0mx +n >0的解集为( )A. x <5B. x <−2C. −2<x <5D. −2<x <112.如图,落落同学从家沿着笔直的公路去跑步锻炼,她离开家的距离y(米)与时间t(分钟)的函数关系式的图象如图所示,下列结论中不正确的是( ) A. 整个进行过程花了40分钟 B. 整个进行过程共跑了2700米 C. 在途中停下来休息了5分钟D. 返回时休息后的速度比去的时候的速度小60米/分 二、填空题(本大题共8小题,共24.0分) 13.函数y =23x−3自变量x 的取值范围______ . 14.已知变量x 与y 的四种关系: ①y =|x|; ②|y|=x; ③2x 2−y =0; ④x +y 2=1.其中y 是x 的函数的有 个.15.已知点P(3,a),Q(b,1)都在y =x −1的图象上,则a +b = . 16.如图所示的程序图,当输入x =2时,输出的结果y = .(16题) (20题) 17.若一次函数y =(2k −1)x +k 的图象不经过第三象限,则k 的取值范围是________. 18.对于一次函数y =kx +b ,当1≤x ≤4时3≤y ≤6,则一次函数的解析式为______. 19.若直线y =kx −6与坐标轴围成的三角形面积为9,则k = .20.如图,函数y=2x和y=ax+4图象相交于点A(m,3),则关于x,y的方程组的解为______ .三、解答题(本大题共5小题,共60分。
八年级数学12章一次函数单元测试题

八年级数学第12章一次函数测试卷(满分120分) 姓名 得分一、 填空题(10×3’=30’)1、函数224y x =+中,自变量x 的取值范围为 。
2、某中学今年为改善教学设备投资15万元,计划以后每年增加2万元,则年投资量y 与年数x 的函数关系式为 。
3、 一个正比例函数(32)y m x =-其函数图像经过第二、四象限,则m 的取值范围为 。
4、如果点(-2,1)在正比例函数y kx =的图像上,那么点(-1,2)是否也在该函数的图像上? 。
(填是或否)5、一次函数34y x =+的图像与x 轴的交点A 坐标为 ,与y 轴的交点B 坐标为 ,△AOB 的面积为 。
6、函数33y x =-+的图像经过 象限,y 随x 的增大而 ,函数27y x =-的图像经过 象限,y 随x 的增大而 。
7、y -2与x 成正比例,当x =-2时,y =4,则x = 时,y =-4。
8、已知函数y=1()32m x m ++-是一次函数,则m 的取值范围为 。
9、已知一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则k= ,b= 。
10、一次函数y=(m+4)x-5+2m,当y 随x 的增大而增大,则m ;当y 随x 的增大而减小,则m______,当此函数图象过原点时,m=_____。
二、选择题(10×3’=30’)1、下列函数(1)y +x =0 (2)y=-2x +1 (3)y=-1x(4)y=-x 2中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个2、李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕迟到,于是加快了骑车的速度,在以下给出的四个函数图象中(S 是距离,t 是时间),符合以上情况的是( )A B C D3、函数31-=x y 中,自变量x 的取值范围是( )(A )x >3 (B )x ≥3 (C )x ≤3 (D )x <34、下列各点,在一次函数112y x =-的图像上的是( ) (A )(0,-1) (B )(-1,0) (C )(1,2) (D )(2,1)5、已知点(-1,y 1),(2,y 2)都在直线y=12x +1上,则y 1 y 2大小关系是( ) (A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较6、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图像表示应为( )7、已知一次函数y=kx +b (k ≠0)的图像如图所示,当x<0时,y 的取值范围( )A )y >0 (B )y< -2 (C )-2<y<0 (D )y <08、下列四个图像中不是表示函数的是()A B C D9、已知一次函数y=kx+b,y 随着x 的增大而减小,且k ·b<0,则在直角坐标系内它的大致图象是() (A) (B) (C ) (D )10、已知一次函数y=ax+4与y=bx -2的图象在x 轴上相交于同一点,则的值是( )(A)4 (B)-2 (C) 12 (D)- 12三、解答题(共60’)1、(7分)画一次函数y=2x-5和y=-3x 的图象.利用图像求方程组的解。
沪科版八年级上册数学第12章一次函数单元测试卷(Word版-含答案)

沪科版八年级上册数学第12章一次函数单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.如图,把两根木条AB 和AC 的一端A 用螺栓固定在一起,木条AB 自由转动至AB ′位置.在转动过程中,下面的量是常量的为( )A .∠BAC 的度数B .AB 的长度C .BC 的长度D .∠ABC 的面积2.若关于x 的方程﹣2x +b =0的解为x =2,则直线y =﹣2x +b 一定经过点( )A .(2,0)B .(0,3)C .(4,0)D .(2,5)3.如图,直线3y x =-+与y mx n =+交点的横坐标为1,则关于x 、y 的二元一次方程组3x y mx y n +=⎧⎨-+=⎩的解为( )A .13x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .11x y =⎧⎨=⎩4.根据如图所示的程序计算函数y 的值,若输入x 的值是8,则输出y 的值是3-,若输入x 的值是8-,则输出y 的值是( )A .10B .14C .18D .225.已知函数y =(m ﹣3)28m x -+4是关于x 的一次函数,则m 的值是( )A .m =±3B .m ≠3C .m =3D .m =﹣36.下列函数关系式中,自变量x 的取值范围错误的是( )A .y =2x 2中,x 为全体实数B .yx ≠﹣1C .y x =0D .yx >﹣77.如图,直线2y x =与y kx b =+相交于点(),2P m ,则关于x 的方程2kx b +=的解是()A .12x = B .1x = C .2x = D .4x =8.对于一次函数y =﹣x ﹣2的相关性质,下列描述错误的是( )A .函数图像经过第二、三、四象限B .函数图像与x 轴的交点坐标为(﹣1,0)C .y 随x 的增大而减小D .函数图像与坐标轴围成的三角形面积为29.在平面直角坐标系中,A 点坐标为(4,2),在x 轴上有一动点M ,直线y =x 上有一动点N ,则∠AMN 的周长的最小值( )AB .C .10D .4010.如图,直线11y k x b =+和直线22y k x b =+相交于点2,23M ⎛⎫- ⎪⎝⎭,则关于x ,y 的方程组1122y k x b y k x b =+⎧⎨=+⎩,的解为( )A .2,32x y ⎧=⎪⎨⎪=-⎩B .2,23x y =-⎧⎪⎨=⎪⎩C .2,32x y ⎧=⎪⎨⎪=⎩D .2,23x y =-⎧⎪⎨=-⎪⎩11.函数y中,自变量x 的取值范围是( ) A .x >﹣2 B .x ≥﹣2 C .x >﹣2且x ≠1 D .x ≥﹣2且x ≠112.在平面直角坐标系中,点()5,1A --关于原点对称的点的坐标为(),A a b ',关于x 轴对称的点的坐标为(),B c d ,则一次函数()()y a c x b d =--+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(本大题共8小题,每小题3分,共24分)13.如图,平面直角坐标系xoy 中,直线y 1=k 1x +b 1的图像与直线y 2=k 2x +b 2的图像相交于点(-1,-3),当y 1<y 2时,实数x 的取值范围为__________.14.如图,直线AB 是一次函数1y kx k =+-的图象,若关于x 的方程10kx k +-=的解是23x =-,则直线AB 的函数关系式为_________.15.如图,直线5y x =+与直线0.515y x =+交于点()20,25A ,则方程50.515x x +=+的解为______.16.如图,直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,13OB OA =,点C 是直线AB 上的一点,且位于第二象限,当∠OBC 的面积为3时,点C 的坐标为______.17.若平面直角坐标系中,设点(2,)P a 在正比例函数y x =的图像上,则点,35()a Q a -位于第______象限.18.若方程组()23312y kx y k x =-⎧⎨=-+⎩无解,则2y kx =-图象不经过第________象限. 19.一次函数10y kx =+的图象与两坐标轴围成的三角形的面积等于5,则该直线的表达式为________. 20.如图,在平面直角坐标系中,已知(3,6),(2,2)A B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为________.三、解答题(本大题共5小题,每小题8分,共40分)21.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x 元,去甲商店购买实付y 甲元,去乙商店购买实付y 乙元,其函数图象如图所示.(1)分别求y,y乙关于x的函数关系式;甲(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.22.已知如图,在平面直角坐标系中,点A(3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B(1,0)和点C都在x轴上,当∠ABC的面积是17.5时,求点C的坐标.23.如图,直线1y=kx+b与坐标轴交于A(0,2),B(m,0)两点,与直线2y=-4x+12交于点P(2,n),直线2y=-4x+12交x轴于点C,交y轴于点D.(1)求m ,n 值;(2)直接写出方程组412y kx b y x =+⎧⎨=-+⎩的解为 ; (3)求△PBC 的面积.24.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A ,B 两种型号的空气净化器,两种净化器的销售相关信息如表:(1)每台A 型空气净化器的销售利润是 元;每台B 型空气净化器的销售利润是 元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B 型空气净化器的进货量不少于A 型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?25.如图,在平面直角坐标系xOy中,直线y=2x﹣6交x轴于点C,交y轴于点D,点A,B的坐标分别为(1,0),(0,2),直线AB与直线CD相交于点P.(1)直线AB的表达式为;S△=;(2)点P的坐标为,连接OP,则APO(3)若直线CD上存在一点E,使得∠BPE的面积是∠APO的面积的4倍,求点E的坐标.参考答案:1.B2.A3.C4.C5.D6.B7.B8.B9.B10.A11.D12.B13.x <-114.32y x =+15.20x16.()3,6-17.一18.二19.1010y x =-+或1010y x =+20.(-1,0)21.(1)y 甲=0.85x ;y 乙与x 的函数关系式为y 乙=()03000.790(300)x x x x ⎧≤≤⎨+⎩> (2)(600,510)(3)当x <600时,选择甲商店更合算;当x =600时,两家商店所需费用相同;当x >600时,选择乙商店更合算.22.(1)73y x =;(2)(6,0)或(4,0)-. 23.(1)2m =-,4n =;(2)24x y =⎧⎨=⎩; (3)1024.(1)200,150(2)26,54(3)4台25.(1)y=﹣2x+2(2)(2,﹣2),1(3)E(3,0)或(1,﹣4)。
第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、函数y=中,自变量x的取值范围是()A.x≥2B.x≠2C.x>2D.x≤22、已知一次函数y1=2x+m与y2=2x+n(m≠n)的图象如图所示,则关于x与y的二元一次方程组的解的个数为()A.0个B.1个C.2个D.无数个3、已知y=kx+k的图象与y=x的图象平行,则y=kx+k的大致图象为()A. B. C. D.4、在平面直角坐标系中,将直线 y=3x 的图像向左平移 m 个单位,使其与直线 y=-x+6 的交点在第二象限,则 m 的取值范围是()A.m>2B.-6<m<2C.m>6D.m<65、下列图象中,不表示y是x的函数的是()A. B. C. D.6、如图,直线与x轴交于点,与y轴交于点,则关于x的不等式的解集为()A. B. C. D.7、一个长方体木箱的长为4㎝,宽为,高为宽的2倍,则这个长方体的表面积S与的关系及长方体的体积V与的关系分别是()A. ,B. ,C. ,D. ,8、表示皮球从高处d落下时,弹跳高度b与下落高度d的关系如下表所示:则d与b之间的关系式为()下落高度d …80 100 150 …弹跳高度b …40 50 75 …A.d=b 2B.d=2bC.d=b+40D.d= b9、若把函数y=2x-3图象向上平移3个单位长度,得到图象对应的函数解析式为( )A.y=2xB.y=2x-6C.y=4x-3D.y=-x-310、点在函数的图像上,则代数式的值等于()A.5B.3 C.-3D.-111、如果函数y=kx-2(k≠0)的图象不经过第一象限,那么函数y= 的图象一定在()。
A.第一,二象限B.第三,四象限C.第一,三象限D.第二,四象限12、在平面直角坐标系中,直线y=x﹣1经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限13、已知(-1,y1),(1.8,y2),(- , y3)是直线 y = -3x + m (m 为常数)上的三个点,则 y1, y2, y3的大小关系是( )A.y3>y1>y2B.y1>y3>y2C.y1>y2>y3D.y3>y2>y114、函数y= 中,自变量x的取值范围是()A.x>﹣3B.x≥﹣3C.x≠﹣3D.x≤﹣315、张老师驾车从家出发到植物园赏花,匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后加速行驶,到达植物园,参观结束后,张老师驾车一路匀速返回,其中x表示汽车从家出发后所用时间,y表示车离家的距离,下面能反映y与x的函数关系式的大致图象是()A. B. C. D.二、填空题(共10题,共计30分)16、把直线向下平移________个单位得到直线.17、周末小明和爸爸从家里出发到野外郊游,小明骑自行车出发0.3小时后爸爸开始骑摩托车追赶,爸爸在追上小明前停留了0.1小时与碰到的朋友聊天,聊天完毕后以原来的速度继续追赶.在整个过程中,他们离家的路程y(千米)与爸爸出发的时间x(小时)之间的关系如图所示,则爸爸出发________小时后与小明相遇.18、某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5kgA原料、1.5kgB原料;乙产品每袋含2kgA原料、1kgB原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为________元.19、甲、乙两车从A地开往B地,全程800km;所行的路程与时间的函数图像如图所示,下列问题:①乙车比甲车早出发2h;②甲车追上乙车时行驶了300km;③乙车的速度小于甲车速度;④甲车跑完全程比乙车跑完全程少用3h;以上正确序号是________.20、函数中,自变量x的取值范围是________。
第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,一次函数y=ax+b的图象经过A、B两点,则关于x的不等式ax+b<0的解集是()A.x<﹣1B.x<2C.x>﹣1D.x>22、如图所示,四边形ABCD是边长为4cm的正方形,动点P在正方形ABCD的边上沿着A→B→C→D的路径以1cm/s的速度运动,在这个运动过程中△APD的面积s(cm2)随时间t (s)的变化关系用图象表示,正确的是()A. B. C. D.3、当k>0时,正比例函数y=kx的图象大致是()A. B. C. D.4、已知一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数的图象在()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限.5、如图,直线l是菱形ABCD和矩形EFGH的对称轴,点C在EF边上,若菱形ABCD沿直线l从左向右匀速运动直至点C落在GH边上停止运动.能反映菱形进入矩形内部的周长y与运动的时间x之间关系的图象大致是()A. B. C. D.6、如图,两直线y1=kx+b和y2=bx+k在同一坐标系内图象的位置可能是()A. B. C. D.7、甲、乙两车从同地沿同一路线去600km外的某地取货,甲比乙先出发,他们去时所走的路程S(km)与时间t(h)之间的函数图象如图所示,则以下说法中正确的有()①甲比乙早出发8h;②相遇前,乙的速度是甲的速度的5倍;③相遇后甲提速了,乙降速了;④乙出发2h后追上甲;⑤甲比原计划(按初始速度行驶)晚到目的地4h.A.2个B.3个C.4个D.5个8、函数y=-x与y= 在同一直角坐标系中的图象是()A. B. C. D.9、一次函数y=kx+3的自变量取值增加2,函数值就相应减少2,则k的值为()A.2B.﹣2C.﹣1D.410、已知一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是()A.x>-2B.x>1C.x<-2D.x<111、若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:()A. B. C. D.12、一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x<1时,y2<0;④当x<3时,y1<y2中正确的个数是()A.0B.1C.2D.313、某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B 方式最省钱D.每月上网时间超过70h时,选择C方式最省钱14、如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<215、直线y=kx+b经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是()A.y=2x+3B.C.y=3x+2D.y=x-1二、填空题(共10题,共计30分)16、已知关于x的方程mx+n=0的解是x=-2,则直线 y=mx+n与x轴的交点坐标是________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12章《一次函数》整章水平测试
一、耐心填一填,一锤定音!(每小题3分,共30分)
1.已知函数(1)1y k x k =++-,当k 时,它为一次函数,当k 时,它为正比例函数.
2.直线1y x =+与直线22y x =-的交点坐标是 .
3.一次函数1y x =-+的图象经过点P (m ,m -1),则m = .
4.A ,B 两地的距离是160k m ,若汽车以平均每小时80k m 的速度从A 地开往B 地,则汽车距B 地的路程y (k m )与行驶的时间x (h )之间的函数关系式为 . 5.已知函数3y x b =-+的图象过点(1,-2)和(a ,-4),则a = . 6.一次函数y kx b =+中,y 随x 的增大而减小,且kb >0,则它的图象一定不经过 第 象限.
7.已知某一次函数的图象如图1所示,则其函数表达式是 .
8.直线y kx b =+过点(2,-1),且与直线1
32
y x =
+相交于y 轴上同一点,则其函数表达式为 . 9.某一次函数图象过点(-1,5),且函数y 的值随自变量x 的值的增大而增大,请你写出一个符合上述条件的函数表达式 . 10.若三点A (0,3),B (-3,0)和C (6,y )共线,则y = . 二、精心选一选,慧眼识金!(每小题3分,共30分)
1.下列各函数中,x 逐渐增大y 反而减少的函数是( ) A .13
y x =-
B .1
3
y x =
C .41y x =+
D .41y x =-
2.下面哪个点不在函数23y x =-+的图象上( )
A .(-5,13)
B .(0.5,2)
C .(3,0)
D .(1,1) 3.已知直线y =x +b ,当b <0时,直线不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.直线y =kx 过点(3,4),那么它还通过点( ) A .(3,-4) B .(4,3) C .(-4,-3) D .(-3,-4) 5.一次函数y =kx +b 的图象经过点(2,1)和点(0,3),那么这个函数表达式为( ) A .1
32
y x =
- B .y =-x +3 C .y =3x - 2 D .y =-3x +2
6.如果直线y =kx +b 经过一、二、四象限,则有( )
A .k >0,b >0
B .k >0,b <0
C .k <0,b <0
D .k <0,b >0 7.关于正比例函数y =-2x ,下列结论中正确的是( ) A .图象过点(-1,-2) B .图象过第一、三象限 C .y 随x 的增大而减小 D .不论x 取何值,总有y <0
8.已知一次函数y =kx -k ,若y 随x 的增大而减小,则该函数的图象经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限
9.汽车由重庆驶往相距400千米的成都.如果汽车的平均速度是100千米/小时,那么汽车距离成都的路程s (千米)与行驶时间t (小时)的函数关系的图象表示为( )
A. B. C. D. 10.甲、乙两人赛跑,所跑路程与时间的关系如图2所示
(实线为甲的路程与时间的关系图象,虚线为乙的路程与 时间的关系图象),小王根据图象得到如下四个信息,其中 错误的是( )
A .这是一次1500m 赛跑
B .甲、乙两人中先到达终点的是乙
C .甲、乙同时起跑
D .甲在这次赛跑中的速度为5m/s 三、用心想一想,马到成功!(本大题共46分) 1.(本小题11分)如图3所示,直线m 是一次函数y =kx +b 的图象. (1)求k 、b 的值; (2)当1
2
x
时,求y 的值; (3)当y =3时,求x 的值.
2.(本小题11分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x 件,每月纯利润y 元.
(1)求出y 与x 的函数关系式(纯利润=总收入-总支出); (2)当y =106000时,求该厂在这个月中生产产品的件数.
3.(本小题12分)某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元,该店制定两种优惠方案:①买一个书包赠送一个文具盒;②按总价九折付款。
若某班需购8个书包,文具盒若干个(不少于8个),如果设购文具盒数为x(个),付款为y(元).(1)分别求出两种优惠方案中y与x之间的函数关系式;
(2)在同一直角坐标系中画出这两个函数的图象.
4.(本小题12分)如图4,一个正比例函数与一个一次函数的图象交于点(3,4),且OA=OB.求:
(1)这两个函数的表达式;
(2)△AOB的面积S.
四、综合应用,再接再厉!(本大题14分)
对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在一次函数关系.从温度计的刻度上可以看出,摄氏温度x(℃)与华氏温度y(℉)有如下的对应关系:
(1)试确定y与x之间的函数关系式,并画出函数图象;
(2)某天,南昌的最高气温是25℃,澳大利亚悉尼的最高气温80℉,这一天哪个地区的最高气温较高?
参考答案:
一、1.≠-1,=1 2.(3,4) 3.1 4.16080y x =-
5.
5
3
6.一 7.1
12
y x =-+
8.23y x =-+
9.6y x =+(答案不惟一)
10.9
二、1.A 2.C 3.B 4.D 5.B 6.D 7.C 8.B 9.C 10.C 三、1.(1)1
133
k b ==,; (2)12y =
; (3)由11
333
x =+,得x =8.
2.(1)198000y x =-;
(2)该厂在这个月中生产产品的件数为6000件.
3.(1)①方案中:y =5x +200,②方案中:y =4.5x +216; (2)画图略.
4.(1)这两个函数表达式分别为4
3
y x =和35y x =-; (2)152
S =
. 四、y 与x 之间的函数关系式为y =1.8x +32,图略;
(2)由(1)知,南昌的华氏温度为77℉,所以可知这一天悉尼的最高气温较高.。