连杆机构的有限元分析方法

合集下载

机械毕业设计(论文)基于ansys的连杆机构的有限元分析【全套设计】

机械毕业设计(论文)基于ansys的连杆机构的有限元分析【全套设计】

湘潭大学兴湘学院毕业设计论文题目:连杆机构的有限元分析全套设计,加153893706专业:机械设计制造及其自动化学号: 2010963028 姓名:指导教师:完成日期: 2014 年 5 月 25 日湘潭大学兴湘学院毕业论文(设计)任务书论文(设计)题目:连杆机构的有限元分析学号: 2010963028姓名:专业:机械设计制造及其自动化指导教师:系主任:一、主要内容及基本要求1、总结连杆机构设计方法研究和连杆机构研究的发展状况和发展趋势,在总结前人研究成果的基础上,结合当前的技术发展趋势,采用有限元方法来进行开展研究。

2、阐述学习理论基础,即瞬态动力学分析,简要论述瞬态参数,识别原理。

3、简要论述有限元方法和动力学分析的基本求解过程,建立连杆机构中的曲柄滑块机构的有限元模型,合理的确定曲柄长度及转速、连杆长度和转速,偏距,选定和创建单元类型,指点单元属性,创建铰链单元,采用瞬态动力学分析瞬态分析类型对其进行瞬态分析,与图解法进行比较,验证有限元瞬态求解功能。

4、联系工程实际,对受力连杆进行结构静力学学习。

二、重点研究的问题1、 ANSYS的线性静力分析2 、构建几何模型3、在三维铰链单元COMBIN7的创建4、单元类型选择和网络划分5、 ANSYS瞬态动力学分析和静力学分析三、进度安排四、应收集的资料及主要参考文献[1]高耀东,刘学杰.ANSYS机械工程应用精华50例(第三版).- 北京:电子工业出版社,2011.[2]孙波.毕业设计宝典.-西安:西安电子科技大学出版社,2008.[3]温正,张文电.ANSYS14.0有限元分析权威指南.-北京:机械工业出版社,2013.[4]欧阳周,汪振华,刘道德.毕业论文和毕业设计说明书写作指南.-长沙:中南工业大学出版社,1996.[5]华大年,华志宏.连杆机构设计与应用创新.-北京:机械工业出版社,2008.[6]胡仁喜,康士廷.机械与结构有限元分析从入门到精通.-北京:机械工业出版社,2012.[7]李红云,赵社戌,孙雁.ANSYS10.0基础及工程应用.北京:机械工业出版社,2008.[8]唐家玮,马喜川.平面连杆机构运动综合.-哈尔滨:哈尔滨工业大学出版社,1995.[9]潘存云,唐进元.机械原理.-长沙:中南大学出版社,2011.[10]李皓月,周田朋,刘相新.ANSYS工程计算应用教程.-北京:中国铁道出版社,2003湘潭大学兴湘学院毕业论文(设计)评阅表学号2010963028 姓名谭磁安专机械设计制造及其自动化毕业论文(设计)题目:连杆机构的有限元分析湘潭大学兴湘学院毕业论文(设计)鉴定意见学号2010963028 姓名谭磁安专业机械设计制造及其自动化毕业论文77 页图表30 张目录摘要............................................................................................ 错误!未定义书签。

汽车发动机连杆的有限元分析

汽车发动机连杆的有限元分析

汽车发动机连杆的有限元分析刘显玉(辽宁科技学院机械工程系,辽宁本溪 117022)摘要:采用基于ANSYS软件开发的有限元模拟系统,并利用网格重划技术,对汽车发动机连杆杆身截面进行了弹、塑性力的有限元模拟,得到了变形过程中的应力场、应变场的分布,为进行发动机连杆的结构分析建立了基础.关键词:汽车;发动机;连杆;有限元中图分类号:TK4 文献标识码:A 文章编号:1005-8354 (2005) 03-0009-03Finite Element Analysis of Automobile Engine Connecting RodsLIU Xian-yu(Mechanical Engineering Faculty, Liaoning Science and Technology Institute, Benxi 117022, China)Abstract:This article adopts the finite-element simulation system based on the ANSYS software. By means of technology of grid rewriting, the finite-element simulation of the stress of elasticity and plasticity for the body section of automobile engine’s connecting rod is made to gain distributing of the stress and strain’s field and build the base of structure analysis of automobile engine connecting rods. Key words:automobile;engine; connecting rod; finite-element1 引言连杆是发动机中传递动力的重要组件,它在工作中承受各种复杂的、周期性变化的拉、压及惯性力等外载荷,即使是同一类型的连杆,由于每根连杆的物理参数、几何形状也存在差异,在分析连杆的应力和应变时,要考虑这些不确定的因素,这样才能得到更符合实际的结果.目前,有限元法已成为工程技术领域中不可缺少的一个强有力的计算分析工具,是研究发动机连杆的应力、应变的应用中最常用的方法.该方法较用传统的材料力学公式计算的结果更为精确.鉴于此,本文应用有限元技术对6110柴油机连杆进行静力分析,研究其应力、应变状态及其危险部位.2 有限元的基本原理和特点有限元方法是近似求解一般连续域问题的数值方法.它最先应用于结构的应力分析,很快就广泛应用于求解热传导、电磁场、流体力学等连续问题.对于一个连续体的求解问题,有限单元法的实质就是将具有无限多个自由度的连续体,理想化为只有有限个自由度的单元集合体,单元之间仅在节点处相连接,从而使问题简化为适合于数值求解的结构型问题.工程设计人员使用这些系统,就可以高效而正确合理地确定最佳设计方案.概括而言,有限元法的几个主要特点有:(1)有限元法的基本思想是“离散化”.(2)有限元法的物理概念十分清晰,容易为工程技术人员所理解.(3)有限元法引入边界条件的办法简单.(4)有限元法不仅适用于复杂的几何边界条收稿日期:2005-03-11作者简介:刘显玉(1967-)男,硕士,研究方向:内燃机检测与故障诊断.机电设备 2005年第3期总第24卷— 9 —件,而且能够处理各种复杂的材料性质问题.(5)有限元法必须求解一个大型代数方程组,用人工求解几乎是不可能的.(6)有限元法的计算机软件是通用的.3 连杆的工作条件6110柴油机连杆为斜切口合金钢模锻件,然后经机械加工和热处理完成.连杆大端、连杆盖通过螺栓及其预紧力与连杆紧紧结合在一起;杆身的横截面呈“工”字形,且与连杆大、小端圆滑过渡,整个连杆呈上下对称及左右对称结构.在标定工况下,发动机连杆的运动是随活塞的平移和绕活塞销摆动两种运动的复合运动.连杆在运动的过程中,一般承受的载荷有气缸爆发压力、往复惯性力和螺栓预紧力等,连杆大端还承受旋转惯性力的作用.图1为6110柴油机曲柄连杆机构简图,其曲轴回转中心线和活塞销中心线均与气缸中心线相交.图1 连杆机构运动简图连杆在工作中主要受到以下四种力的作用:(1)作用于活塞的气体作用力;(2)活塞组件的惯性力—活塞组件中所有零件(包括活塞、活塞环、活塞销、活塞销卡环);(3)连杆惯性力;(4)预紧载荷—连杆螺栓装配预紧力和连杆衬套过盈装配产生的预紧力.在有限元分析时,根据力的作用效果,主要考虑以下三种载荷的作用:预紧载荷、最大惯性力、最大爆发压力.连杆工作时,承受的应力是周期性变化的.一般情况下,应选择连杆承受最大拉力和最大压力两情况进行分析,以便得到两情况下的应力和变形分布情况,同时利用此计算结果来近似地进行连杆疲劳强度的计算,为其改进和设计提供可靠的依据.最大拉伸情况发生在活塞运动到排气冲程终了的上止点位置,此时连杆主要承受其它零件及其本身的最大惯性力;最大压力情况发生在膨胀冲程开始的上止点位置附近,此时连杆主要承受缸内燃气的爆发压力以及零件运动的惯性力.在连杆的有限元计算中,处理作用于连杆上的载荷是一件极为重要的工作.由于作用于连杆上的载荷系统一般都比较复杂,特别是某些载荷沿边界的分布规律难以用理论或测量的方法来确定,而往往是采用一些假定的分布规律来模拟.因此如何正确地模拟这些载荷的分布规律,是有限元法计算中不容忽视的问题.4 发动机连杆的有限元计算由于连杆工作时的危险点常在连杆大、小端与杆身的过渡处,按二维平面问题进行建模,将其简化为平面应力问题来计算,则“工”字形梁的结构就会发生改变,其承受载荷的能力必然也要受到影响,最终导致分析的结果与实际结果有很大偏差,况且丢掉大端盖不利于对连杆整体进行应力应变的研究分析,也不利于后续研究工作的开展,从而进一步造成分析结果不周全的缺憾.相比较而言,若采用三维立体建模,可以显著改进二维平面有限元分析的不足,同时以均布面载荷模拟通过螺栓头和螺母分别作用于杆身和大端盖接触面上的力—螺栓预紧力,用多点约束处理杆身与大端盖的接触面来近似模拟其力学接触状态,以限制刚体某自由度上应力与位移,模拟更加真实,提高了分析结果的可信度.连杆结构的离散化可采用三角形单元.在连杆常发生破坏的小端过渡圆弧处,杆身与大、小端过渡处、大端盖两侧夹角处以及杆身的工艺凸台两则— 10 — V ol.24, No.3, 2005 Mechanical and Electrical Equipment应加密网格,把这些部位的单元划分得小一些,以提高应力集中区域的计算精度.由于连杆小端的铜质衬套和钢质连杆具有不同的弹性常数,小端和杆身的工字形截面又有不同的厚度,故把弹性常数和厚度的突变线划成了单元的边界线.在连杆大、小端轴孔处边界单元的大小,将影响到轴承负荷向边界节点移植结果的精度,采取沿轴孔按每10°或15°划分一个节点,可基本满足计算要求.图2、图3和图4分别是发动机连杆的有限元计算模型和拉应力、压应力分布图.图2 发动机连杆的有限元计算模型.图3 发动机连杆的拉应力分布图图4 发动机连杆的压应力分布图5 结论(1)有限元方法是工程设计、开发领域中一种实用、可靠的方法.(2)在有限元分析中,科学的力学模型、准确的边界条件约束决定着分析结果的准确度.(3)连杆应力计算中载荷施加的均匀性、对称性和准确性对杆身、大端和小端过渡区的应力计算结果有很大的影响.(4)连杆大、小端与杆身的过渡区是应力最严重的地方,为减少应力集中,在设计连杆时,小端孔不仅要有足够的壁厚外,还要使小端与杆身的过渡圆角在合理的范围内尽量大些.参考文献:[1] 刘涛,杨风鹏等.精通ANSYS[M].北京:清华大学出版社,2002.[2] 邓兆祥,胡玉梅等.N485柴油机连杆静强度有限元分析[J].内燃机,2001(2).[3] Hiroyuki Tsuzuku,Naoki Tsuchida. An experimentalstudy of connecting rod big ends [Z]. SAE Paper950202.日本科学家发明“机器人服”日本科学家最近发明了一种代号为HAL-5的“机器人服”。

连杆有限元分析

连杆有限元分析

连杆简化模型的有限元分析
蔡森20080430123 T843-1
1.分析任务:
a.对图一所示的连杆的二维简化模型进行有限元分析,确定该设计是否满足结构的强度要
求:若强度不够,修改设计直至最大应力减少至材料允许范围内。

在修改结构时,注意不可改变连杆小头衬套的内径和连杆大头的内径,也不可改变连杆各处厚度。

b.采用三维结构对图示连杆进行强度分析,与二维结构分析结果进行比较。

c.对结构进行参数化研究和目标驱动的优化设计
2.分析所需数据
a.连杆采用两种材料,连杆本体用的是40cr结构钢,左侧小头中的村套用的是铜。

b.连杆本身和大头的厚度为1.5mm,小头的厚度为3.0mm。

注意在杆身和小头的过渡处有
R2.0的过渡圆角
c.连杆结构的其他尺寸如图二所示;
d.施加在大、小头内壁上边界条件用于模拟连杆与曲轴连杆及活塞销的连接。

假定载荷为
轴承载荷,分布在小头夹角为90°的内壁上;约束施加在连杆大头夹角为90°的内壁上。

e.40cr材料的弹性模量:210Gpa;泊松比:0.3;屈服极限为:850Mpa,设计安全系数为
6;铜的弹性模量:120Gpa;泊松比:0.33;屈服极限:250MPa;设计安全系数为4 Part1
一.草图轮廓的建立
二.连杆的实体建模
二维模型
三维模型三.连杆的网格划分
二维模型网格划分
三维模型网格划分
网格的局部细分四.模型参数的设置
五.轴承载荷与约束的施加。

杆结构 分析的有限元方法(有限元)

杆结构   分析的有限元方法(有限元)
局部坐标系中的单元述
杆单元形状函数
杆单元刚度矩阵
平面问题中的坐标变换
梁结构分析的有限元方法
梁:承受横向荷载和弯矩的杆件。
梁的主要变形为挠度v
横截面变形前后都垂直于杆变形前的轴线x轴
中性层变形=0
纯弯曲没有剪力,只有弯矩
梁截面的惯性矩
杆结构分析的有限元方法
杆:承受轴向荷载的杆件
最基本的承力结构件:杆、梁
弹簧--简单的承受轴力的结构件
有限元方法中,每一个处理步骤都是标准化和规范化的,
因而可以在计算机上通过编程来自动实现。
F=kδ
k--刚性系数
位移的绝对变化量/杆件的伸长量δ=u2—u1
应力某截面上单位面积上的内力/内力的分布集度
应变相对伸长量单位长度的伸长量
杆单元的特性是节点位移及节点力的方向都是沿轴线方向。
杆结构的力学分析
铰接的杆结构----杆只受轴力-----杆件拉伸问题---可自然离散
两端为铰接的杆件只承受轴力。
各个单元研究(基于局部坐标系的表达)
各个单元研究
离散单元的集合、组装
杆单元及坐标变换
自由度:描述物体位置状态的每个独立变量。
对于杆单元,其节点位移有两个自由度。

连杆的设计和有限元分析

连杆的设计和有限元分析

连杆的设计和有限元分析连杆是一种常见的机械传动元件,用于将机械运动传递给其他部件。

其设计和有限元分析是确保连杆能够安全有效地工作的重要步骤。

本文将主要介绍连杆的设计和有限元分析。

首先,根据传动的要求确定连杆的工作载荷,包括径向力、切向力和弯曲力等。

根据这些载荷,可以计算出连杆的最大载荷和加速度。

其次,在确定连杆的最大载荷后,需要根据材料的强度和韧性来选择合适的材料。

常用的连杆材料包括钢、铝合金和铜合金等。

根据材料的强度和韧性,可以计算出连杆的最大应力和应变。

然后,根据最大载荷和材料性能计算出连杆的尺寸。

连杆的尺寸包括长度、直径和孔径等。

通过对连杆进行强度计算,可以确保其不会发生破坏或变形。

最后,设计完成后,可以制作连杆的CAD模型,用于制造和装配。

有限元分析是一种常用的工程分析方法,可以用于模拟材料和结构的行为。

在连杆的设计中,有限元分析可用于评估连杆的强度和刚度等性能。

以下是使用有限元分析进行连杆分析的主要步骤:首先,根据设计完成的CAD模型,将连杆的几何形状转换成有限元模型。

连杆可以被分解成多个有限元单元,例如梁单元或壳单元。

每个有限元单元都与相邻的单元相连,形成整个连杆的有限元模型。

其次,应用适当的边界条件和载荷,在有限元模型中模拟工作载荷和运动条件。

这些载荷和边界条件可能包括沿连杆的节点施加的力或位移。

然后,使用适当的材料力学模型,在有限元模型中定义材料的性能。

这包括材料的弹性模量、屈服强度和断裂韧性等。

根据材料模型,有限元分析可以计算出连杆在应力和应变下的响应。

最后,根据有限元模型的分析结果,评估连杆的强度和刚度等性能。

如果连杆的应力或应变超过了材料的极限,表明设计存在缺陷,需要进行修改。

除了强度和刚度分析外,有限元分析还可以对连杆进行模态分析和动力学分析等,以评估其固有频率和响应。

总结起来,连杆的设计和有限元分析是确保连杆能够安全有效地工作的重要步骤。

通过正确的设计和分析,可以确保连杆的强度和刚度等性能,从而满足传动的要求。

连杆的有限元分析

连杆的有限元分析

目录第一章序言 (1)1.1课题研究的目的和意义 (1)1.2课题的分析 (1)1.3研究内容 (2)第二章有限元的基本原理及其应用 (4)2.1有限元分析概述 (4)2.2有限元分析的优缺点 (5)2.2.1有限元法的优点 (5)2.2.2有限元分析的缺点 (6)第三章连杆的工作条件及载荷的确定 (7)3.1.连杆的结构和布置 (7)3.2柴油机一般采用斜连杆的原因 (9)3.3连杆的工作条件及受力 (10)3.4连杆的材料及制造工艺 (11)第四章连杆的建模 (15)4.1SolidWorks软件介绍 (15)4.1.1概述 (15)4.1.2 SolidWorks软件的特点 (16)4.1.3 SolidWorks软件的应用 (17)4.2连杆模型的建立 (17)4.2.1创建连杆的几何模型 (18)4.2.2连杆的力学模型的建立 (32)第五章计算结果及其分析 (40)5.1最大拉伸情况的结果与分析 (40)5.1.1连杆受拉时应力结果 (40)5.1.2连杆受拉时应变结果 (41)5.1.3连杆受拉时位移结果 (43)5.2最大压缩情况的结果与分析 (44)5.2.1连杆受压时应力结果 (44)5.2.2连杆受压时应变结果 (45)5.2.3连杆受压时位移结果 (46)5.3分析总结 (46)引用文献 (49)附录(英文翻译) (51)第一章序言1.1课题研究的目的和意义连杆是发动机中传递动力的重要零件,它把活塞的直线运动转变为曲轴的旋转运动,并将作用在活塞上的力传给曲轴以输出功率。

连杆在工作过程中要承受装配载荷(包括轴瓦过盈及螺栓预紧力)和交变工作载荷(包括气体爆发压力及惯性力)的作用,工作条件比较苛刻。

现代汽车正向着环保节能方向发展,这就要求发动机连杆在满足强度和刚度的基础上,应具有尺寸小、重量轻的特点。

本文通过SolidWorks这个三维制图软件制作连杆的三维模型,然后通过COSMOSWorks软件,对连杆模型进行网格划分、加载和约束的处理,然后再进行计算分析,得出柴油机连杆在受拉和受压的两种工况下的应力、应变等分析结果。

基于ANSYS的汽车发动机连杆的有限元分析

基于ANSYS的汽车发动机连杆的有限元分析

基于ANSYS的汽车发动机连杆的有限元分析有限元分析(Finite Element Analysis,简称FEA)是一种应用数值计算方法的工程分析技术,可以用于解决各种工程问题。

在汽车发动机设计中,使用有限元分析可以帮助工程师了解和优化发动机组件的力学性能。

本文将基于ANSYS软件,介绍如何进行汽车发动机连杆的有限元分析。

一、建模和几何参数定义:在进行有限元分析之前,首先需要将连杆的几何形状转化为虚拟模型。

一般来说,使用CAD软件绘制连杆的草图,并根据设计要求对连杆进行几何尺寸和参数的定义。

对于汽车发动机连杆而言,常见的几何参数包括连杆长度、大端和小端直径、连杆的截面形状等。

在绘制草图时,应注意考虑到实际的工程要求和设计限制。

二、材料定义和材料力学参数:在有限元分析中,连杆的材料定义至关重要。

一般来说,连杆材料应具有优异的强度和刚度,以应对高速旋转和高温的工作环境。

一般常用的连杆材料包括铸铁、铝合金、钛合金等。

在模型中定义连杆的材料属性,常用的材料力学参数有弹性模量、泊松比、屈服强度和断裂韧性等。

这些参数将作为材料的基本力学性能指标,用于后续的有限元分析计算。

三、网格划分和单元选择:在进行有限元分析之前,需要将连杆的几何模型划分成一系列小的有限元网格。

这一步骤称之为网格划分。

在网格划分时,需要根据设计要求和实际需求选择适当的网格类型。

对于连杆而言,常用的网格类型有四面体网格、六面体网格和四边形网格等。

划分后的网格中的每个单元都将代表连杆的一个局部区域,通过对每个单元进行力学计算,可以得到连杆在整个工作过程中的承载能力和应力分布情况。

四、加载和边界条件定义:在有限元分析中,需要对模型施加适当的加载和边界条件来模拟实际工作情况。

对于汽车发动机连杆而言,常见的加载和边界条件有定常和动态载荷、热载荷和流体载荷等。

例如,在连杆的大端和小端分别施加适当的载荷,以模拟发动机工作时的受力情况。

同时,还需要定义边界条件,如固定轴承的位置,以模拟实际组装情况。

液压机械臂连杆有限元分析

液压机械臂连杆有限元分析

液压机械臂连杆有限元分析液压机械臂连杆是机械臂中的重要部件之一,其主要功能是将液压力转化为机械运动力,实现机械臂的运动。

为了确保液压机械臂连杆在工作中的稳定性和可靠性,需要进行有限元分析,并对分析结果进行优化。

本文将从有限元分析的基本原理、分析方法和优化方式等方面进行探讨。

一、有限元分析的基本原理有限元法是一种数值分析方法,其中将连续的物理现象离散化为有限数量的元素,并通过求解元素之间的方程来解决整个问题。

有限元法应用广泛,尤其是在工程领域的结构力学问题中。

对于液压机械臂连杆的有限元分析,需要首先将其模型离散为有限数量的元素。

接着建立节点和单元的坐标系,并确定每个元素的节点编号和连接方式。

然后建立有限元节点的位移方程和约束方程,通过有限元法求解所有节点的位移和应力值。

最后,根据分析结果对加强结构和优化设计进行指导。

二、有限元分析的方法液压机械臂连杆的有限元分析方法主要包括以下几个步骤:1.建立几何模型液压机械臂连杆的几何模型可以使用CAD软件建立。

建立几何模型时需要考虑连杆的尺寸、形状、连接方式等因素,以确保几何模型与实际情况尽可能符合。

2.网格划分在建立几何模型之后,需要对连杆进行网格划分,将其离散为有限数量的元素,这些元素包括三角形、四边形、六边形等,其中以四边形和六边形为主。

3.材料参数的确定在进行有限元分析之前,还需要确定液压机械臂连杆的材料参数,包括弹性模量、泊松比和密度等。

根据这些参数,可以建立有限元的材料模型,对连杆进行静力学分析。

4.应用约束条件在建立完几何模型、确定元素类型和材料参数之后,还需要施加约束条件,以模拟实际工作情况。

特别是对于液压机械臂连杆来说,还需要考虑液压作用力的影响,因此需要将液压作用点模拟为连接点,进而将施加在该点上的力和力矩作为边界条件施加到有限元模型上。

5.求解方程通过有限元分析软件对有限元方程进行求解,并计算有限元的位移、应力和应变分布情况。

分析结果可以用于指导结构的加强和优化设计。

汽车发动机连杆结构有限元分析方法探究

汽车发动机连杆结构有限元分析方法探究

Internal Combustion Engine &Parts0引言在发动机运行的过程当中,发动机内部的连杆结构受到压缩拉伸等交变的载荷作用。

如果连杆存在刚度不足的情况,那么经过一段时间的使用之后,整个杆体会出现变形弯曲的现象,甚至整个连杆的大头都会视源变形,一旦发生这一情况就会使得发动机的活塞气缸轴承等零部件出现偏磨的现象。

而且连杆的杆身本身就是属于一个长杆件在运行的过程当中需要承受较大的工作压力,为了防止连杆的杆身因受到多种力量的影响,出现弯曲变形的情况,那么杆身就需具备较强的刚度和强度。

总而言之,对于汽车的使用,汽车发动机的使用效果和使用寿命来说,发动机连杆结构的质量直接影响到了相关的指标。

1有限元法在社会快速发展的背景之下,人们对科学技术的要求也越来越高,随着工程技术的深入发展,各个行业在进行产品生产的过程当中,都已经融入了高科技的技术。

但是人们对工程技术的实际要求也不断的提高,使用传统的线性理论知识已经无法满足各行业在设计方面的各项要求,要想解决工程当中存在的实际问题,现场工作人员需要花费更多的时间和精力,对非线性的问题进行深入的探讨。

那么要想真正的解决非线性的问题,就需要使用数值模拟的方法进行解决,这种方法的实用性和应用广泛性都比较高,其中使用价值较高的是有限元法。

从第一的角度进行分析,有限元法实质上是以力学模型作为基础进行近似数值计算的一种方法,它所求得的解是一种数值解。

在对工程问题进行研究时,使用有限元法进行分析,如果能够获得较好的处理结果,那么就说明计算过程所得的数值精确度非常高。

有限元法的实际操作过程,就是将一个物体离散成有限个单元,按照一定的方法将这些不同的单元进行连接以及组合之后,使得单元的组合与原来的物体相似度越来越高和对不同单元的问题进行解决之后,就可以有效的分析物体原本存在的问题。

经过分析之后,不同单元的问题变得更加简单,解决这些简单的问题与解决一个大的难题相比,花费的时间和精力比较少。

杆系结构的有限元法分析

杆系结构的有限元法分析

杆系结构的有限元法分析有限元法是一种结构分析方法,常用于分析各种不同类型的结构系统,其中包括杆系结构。

杆系结构是由杆件连接而成的桁架结构,常见于桥梁、塔架和支撑结构等。

利用有限元法进行杆系结构的分析,可以得到结构的位移、应力、应变和刚度等信息,帮助工程师评估结构的稳定性和安全性。

下面将介绍杆系结构的有限元法分析的步骤。

首先,进行前期准备工作。

这包括收集与结构相关的几何信息(如杆件长度、截面形状等)、边界条件(如固定支座、外载荷等)和材料性质(如材料的弹性模量、密度等)。

这些信息将是有限元模型建立所需要的输入参数。

接下来,建立有限元模型。

将杆系结构离散化为一个个的杆单元,采用有限元方法对每个杆单元进行离散近似。

常用的杆单元包括横截面线性杆单元、三节点弯曲杆单元和非线性杆单元等。

然后,确定单元刚度矩阵。

对于横截面线性杆单元,其刚度矩阵可以根据材料性质和几何信息计算得到。

对于弯曲杆单元和非线性杆单元,则需要考虑附加的几何和材料非线性效应。

接着,组装全局刚度矩阵。

将所有杆单元的刚度矩阵按照其关联的节点自由度进行组装。

在组装过程中,需要考虑杆单元之间的关联关系,确保刚度矩阵的正确性和完整性。

然后,应用边界条件。

根据实际情况,将已知的边界条件(如固定支座、已知位移等)施加到全局刚度矩阵中。

这将改变全局刚度矩阵的特征值和特征向量,从而影响结构的响应。

接下来,求解结构的位移和应力。

通过求解结构的整体刚度方程以及施加的边界条件,可以得到结构的位移解向量和应力解向量。

位移解向量描述了结构的变形情况,而应力解向量体现了结构的应力分布情况。

最后,进行后处理。

在得到位移和应力解后,可以计算结构的应变分布、变形形态以及额外的设计指标。

通过这些结果,可以对结构的性能进行评估,以便优化设计。

综上所述,杆系结构的有限元法分析包括前期准备、建立有限元模型、确定单元刚度矩阵、组装全局刚度矩阵、应用边界条件、求解结构的位移和应力以及后处理等步骤。

有限元第三章-杆系结构有限元法

有限元第三章-杆系结构有限元法

第三章 杆系结构有限元分析
坐标变换
y
x'
U
' i

Ui
cos
Vi
sin

y'
Vi' Ui sin Vi cos
M
' i

Mi
U
' j
U
j
cos
Vj
sin

Vi' Vi Mi'
Ui'
Ui
V
' j

U
j
sin

Vj
cos
Mi
x
M
' j

M
j
第三章 杆系结构有限元分析 [T ]
U T dV
eT F e T dV
B eT DB edV
eT BT DBdV e
第三章 杆系结构有限元分析
Fe BT DBdV e
有限元法要求载荷只作用在节点上,若单元内部作用
有非节点载荷,则应根据静力等效的原则移置到单元节 点上,即非节点载荷的等效节点载荷。所谓静力等效原 则是指等效节点载荷在任意节点虚位移上的虚功,应等 于原来载荷(非节点载荷)在相应的虚位移上的虚功。
Yi
Ti
i
Xi
集中力:
Py
m
Px
P Px Py m T
0 0 0 1 0 0 0 0
0
[T1]
0
0 1 0 0 0 0 0 1 0 0 0
0 0 cos sin 0 0 0 0 1 0 0 I

第三章 杆系结构有限元分析

汽车发动机连杆结构有限元分析方法探索

汽车发动机连杆结构有限元分析方法探索

0引言汽车发动机连杆结构是曲柄连杆机构的一部分,它们共同组成活塞连杆组。

这是发动机中技术含量极高的部位。

车用发动机的活塞连杆组承受活塞销传来的气体作用力及其本身摆动和活塞组往复惯性力的作用,这些力的大小和方向都是周期性变化的。

因此连杆受到压缩、拉伸等交变载荷作用。

连杆必须有足够的疲劳强度和结构刚度。

疲劳强度不足,往往会造成连杆体或连杆螺栓断裂,进而产生整机破坏的重大事故。

若刚度不足,则会造成杆体弯曲变形及连杆大头的失圆变形,导致活塞、汽缸、轴承和曲柄销等的偏磨。

其中,连杆杆身是一个长杆件,在工作中受力也较大,为防止其弯曲变形,杆身必须要具有足够的强度和刚度。

汽车发动机连杆结构直接关系到发动机的使用寿命。

1有限元法随着科学技术的发展和工程技术实际要求的提高,线性理论已经远远不能满足设计的要求,解决工程实际问题时也要考虑非线性问题。

解决非线性问题常用的数值模拟方法有很多,但就其实用性和应用的广泛性而言,主要还是有限元法。

有限元法实质上是一种在力学模型上进行近似数值计算的方法,它所求得的解是一种数值解。

利用有限元法分析工程问题时,如果处理得当,所得解的精度会很高。

有限元法(Finite Element Methed,FEM)也称为有限单元法或有限元素法,其基本思想是将物体,即连续求解域,离散成有限个且按一定方式相互连接在一起的单元组合,来模拟或逼近原来的物体,从而将一个连续的无限自由度问题简化为离散的有限自由度问题进行求解。

物体被离散以后,通过对其中的各个单元进行单元分析,最终得到对整个物体的分析。

网络划分中的每个小块体称为单元。

确定单元形状、单元之间相互连接的点称为节点。

单元上节点处的结构内力为节点力,为节点载荷。

这些物理量后期分析计算将会用到。

2有限元法解决结构分析的适应性2.1建立在严格理论基础上的可靠性用于建立有限元方程的变分原理或加权余量法在数学上已经证明时微分方程和边界条件的等效积分形式,所以只要原问题的数学模型是正确的,且用来求解有限元方程的数值算法是稳定可靠的,则随着单元数目的增加(即单元尺寸的缩小)或单元自由度数的增加(即插值函数阶次的提高),有限元解的近似程度就会不断提高。

连杆的有限元分析及优化

连杆的有限元分析及优化

连杆的有限元分析及优化*****学号: *******目录目录 (2)1.优化设计基础 (3)1.1优化设计概述 (3)1.2优化设计作用 (3)1.3优化设计流程 (3)2.问题描述 (4)3.问题分析 (4)4.结构静力学分析 (5)4.1创建有限元模型 (5)4.2创建仿真模型并修改理想化模型 (6)4.3定义约束及载荷 (6)4.4求解 (7)5.结构优化分析 (8)5.1建立优化解算方案 (8)5.2优化求解及其结果查看 (9)6.结果分析 (11)7.案例小结 (11)1. 优化设计基础1.1 优化设计概述优化设计是将产品/零部件设计问题的物理模型转化为数学模型,运用最优化数学规划理论,采用适当的优化算法,并借助计算机和运用软件求解该数学模型,从而得出最佳设计方案的一种先进设计方法,有限元被广泛应用于结构设计中,采用这种方法任意复杂工程问题,都可以通过它们的响应进行分析。

如何将实际的工程问题转化为数学模型,这是优化设计首先要解决的关键问题,解决这个问题必须要考虑哪些是设计变量,这些设计变量是否受到约束,这个问题所追求的结果是在优化设计过程要确定目标函数或者设计目标,因此,设计变量、约束条件和目标函数是优化设计的3个基本要素。

因此概括来说,优化设计就是:在满足设计要求的前提下,自动修正被分析模型的有关参数,以到达期望的目标。

1.2 优化设计作用以有限元法为基础的结构优化设计方法在产品设计和开发中的主要作用如下:1)对结构设计进行改进,包括尺寸优化、形状优化和几何拓扑优化。

2)从不合理的设计方案中产生出优化、合理的设计方案,包括静力响应优化、正则模态优化、屈曲响应优化和其他动力响应优化等。

3)进行模型匹配,产生相似的结构响应。

4)对系统参数进行设别,还可以保证分析模型与试验结果相关联。

5)灵敏度分析,求解设计目标对每个设计变量的灵敏度大小。

1.3 优化设计流程不同的优化软件其操作要求及操作步骤大同小异。

发动机连杆的有限元分析

发动机连杆的有限元分析

发动机连杆的有限元分析摘要连杆作为发动机结构中一个重要构件,其作用是将活塞的往复直线运动变成曲轴的旋转运动,并在活塞和曲轴之间传递作用力。

连杆在工作中经受拉伸、压缩和弯曲等交变载荷的作用。

一个重量轻而且具有足够强度的连杆对现代发动机设计起到举足轻重的作用。

本文参考了CA4110柴油机的相关参数,对四缸柴油机的连杆进行了结构设计和力学分析。

应用Pro/E 软件进行建模,以 ANSYS Workbench软件为平台,对连杆模型进行有限元分析。

为了能更好地保证精度,使边界条件和载荷与工程实际情况相符合,并考虑了各种受力情况,进行了静力学分析、模态分和谐响应分析。

静力学分析表明连杆最大应力值小于材料屈服强度极限,即符合强度要求。

动态的模态分析,不仅从静态上保证了连杆的强度,同时也了解了连杆的动态的振动特性。

连杆在不同固有频率下振型不同,在第四阶振型时易失效,并且在发动机工作时应该尽量避开各阶的固有频率。

谐响应分析表明,结构在2400Hz的响应最剧烈,可导致弯曲失稳的位移最大。

关键词: 发动机连杆;有限元分析;模态分析;谐响应分析Finite element analysis of engine connecting rodAbstractConnecting rod as an important component in the engine structure, its function is to the reciprocating linear motion of the piston into the rotation of the crank movement, and between the piston and the crankshaft transfer reaction. Connecting rod subjected to tensile, compression and bending in the job, etc. The effect of cyclic loading. A light weight and has enough strength of the connecting rod to the modern engine design play a decisive role.This article through to CA4110 reference for the related parameters of the diesel engine, four cylinder diesel engine connecting rod for the structure design and mechanics analysis. Pro/E software modeling is applied in this article, based on ANSYS Workbench software platform, finite element analysis was carried out on the model. In order to better guarantee the accuracy, the boundary conditions and load and engineering to coincide with the actual situation, and consider the various stress distribution, the static analysis, modal points harmony response analysis.Statics analysis shows that the strength of the connecting rod maximum stress is less than the yield limit, which conform to the requirements of the strength. From the static and dynamic modal analysis, not only ensure the strength of connecting rod, as well as understand the dynamic vibration characteristic of the connecting rod. Connecting rod under different natural frequency vibration mode is different, prone to failure when the fourth order vibration mode, and should be avoided when engine working each order natural frequency. Harmonic response analysis shows that the response of the structure in 2400 Hz is the most severe, can lead to the unstability of the bending displacement is the largest.Key words:The engine connecting rod;The finite element analysis; The modal analysis; Harmonic response analysis目录第1章绪论.............................................................. - 1 -1.1 课题来源及研究的目的和意义............................................. - 1 -1.2 国内外研究现状及分析................................................... - 2 -1.3 主要研究的内容......................................................... - 3 -第2章连杆的三维建模.................................................... - 4 -2.1 连杆的结构及参数分析................................................... - 4 -2.1.1连杆的结构类型................................................... - 4 -2.1.2连杆结构参数及其分析............................................. - 4 -2.2基于Pro/E连杆的建模................................................... - 5 -2.2.1 Pro/E的简介..................................................... - 5 -2.2.2 连杆的建模过程.................................................. - 6 -第3章连杆的静力学分析................................................. - 10 -3.1 连杆材料的选择........................................................ - 10 -3.2 连杆的有限元网格划分.................................................. - 10 -3.3 连杆的运动和受力分析.................................................. - 11 -3.4 约束与载荷............................................................ - 12 -3.5 静态模拟结果分析...................................................... - 13 -3.5.1 连杆总变形分析................................................. - 13 -3.5.2 连杆等效应力分析............................................... - 14 -3.5.3 连杆等效应变分析............................................... - 14 -3.6 静态分析结论.......................................................... - 15 -第4章连杆的模态分析................................................... - 16 -4.1 模态分析理论.......................................................... - 16 -4.2 约束与载荷............................................................ - 17 -4.3 连杆模态求解与分析.................................................... - 17 -4.4 连杆模态分析结论...................................................... - 19 -第5章连杆的谐响应分析................................................. - 20 -5.1 谐响应分析............................................................ - 20 -5.2 谐响应分析的结论:.................................................... - 21 -结论与展望.............................................................. - 22 -结论...................................................................... - 22 - 展望...................................................................... - 22 -参考文献................................................................ - 23 -致谢................................................................... - 24 -第1章绪论1.1 课题来源及研究的目的和意义内燃机自十九世纪后期出现以来,经过一百多年的不断研究和优化改进,已经发展到比较完善的程度。

连杆工艺设计及有限元分析(有cad原图)

连杆工艺设计及有限元分析(有cad原图)

本科毕业设计论文题目连杆工艺设计及有限元分析目录摘要 (3)ABSTRACT (4)第一章绪论 (5)1.1课题研究的意义 (5)1.2国内外现状 (5)1.3论文的章节安排 (6)第二章连杆零件的分析 (7)2.1连杆的作用 (7)2.2连杆的结构特点 (7)2.3连杆的工艺分析 (7)2.4连杆的材料和毛坯 (9)第三章连杆零件的工艺编制 (10)3.1连杆机械加工工艺过程 (10)3.2连杆工艺过程的安排 (22)3.3连杆工艺设计存在的问题 (15)3.3.1工序安排 (15)3.3.2定位基准 (15)3.3.3夹具使用 (15)3.3.4切削用量的选择原则 (15)3.4连杆机械加工工序卡片 (11)第四章连杆受载荷情况下的有限元分析 (27)4.1 连杆的有限元分析过程和结果................................... 错误!未定义书签。

第五章总结与展望 . (27)5.1 论文总结 (39)致谢 (40)参考文献 (41)毕业设计小结 (42)摘要连杆是主要传动件之一,本文主要论述了连杆的加工工艺及有限元分析。

连杆的尺寸精度、形状精度以及位置精度的要求都很高,而连杆的刚性比较差,容易产生变形,因此在安排工艺过程时,就需要把各主要表面的粗精加工工序分开。

逐步减少加工余量、切削力及内应力的作用,并修正加工后的变形,就能最后达到零件的技术要求。

本次设计通过AUTOCAD画出零件图,并且进行工艺编制。

连杆的尺寸精度、形状精度以及位置精度的要求都很高,且连杆的刚性比较差,容易产生变形。

并且用PRO/E 对连杆做有限元分析,查看连杆的受力情况。

关键字:CAD,工艺编制,有限元分析ABSTRACTLinkage is one of the main transmission parts, this article discusses the link processing technology and finite element analysis. Link dimensional accuracy, position accuracy and shape accuracy requirements are high, and the relatively poor rigidity of the connecting rod, easily deformed, and therefore arranged in the process, the rough finishing process requires the separation of the major surfaces. Gradually reduce the allowance, cutting forces and internal stress and distortion correction after processing, we can finally meet the technical requirements of the part.The design of the parts diagram drawn by AUTOCAD, and perform process planning. Link dimensional accuracy, position accuracy and shape accuracy requirements are high, and the relatively poor rigidity of the link easily deformed. And using PRO / E for the link to do finite element analysis, see link stress situation.KEY WORDS: CAD,Process planning ,Finite Element Analysis第一章绪论1.1课题研究的意义随着科学技术的发展,我们的生活越来越便捷。

连杆有限元分析ansys workbench

连杆有限元分析ansys workbench

数据一(二维)
三、两种结构对比分析
数据二(三维)
最大应力:143.45MPa 最小安全系数:4.5286
最大应力:128.66MPa 最小安全系数:4.5819
3.1总结
• 结论:通过表四可以看出,当各尺寸相同时,二 维和三维的数据会有一些变化,其中,最小安全 系数相差不大,没有多少变化,都能达到设计要 求;而二维的最大应力超过了材料的许用应力, 三维的最大应力达到了设计要求,因此,在相同 的条件下,二维连杆较三维连杆的效果差,三维 模型更能符合设计要求,满足强度和设计安全系 数。
数据一
3.3、不同尺寸三维模型云图
数据二
数据三
3.4、不同尺寸三维模型数据
数据一
数据二
数据三
1.小头外径:R9.5 2.大头外径:R20 3.过渡圆角:R2 4.大头圆心与小头圆心的 距离:77mm 5.夹角:40度(小头与杆 身)
Nodes:2312 Elements:272
最大应力:191.01MPa 最小安全系数:2.551
• b.采用三维结构对图示连杆进行强度分析,与二 维结构分析结果进行比较。
• c.对结构进行参数化研究与目标驱动的优化设计
连杆简化模型的几何形状
完成该分析应掌握的CAE任务
• 1.DM模块草绘,建立新平面,冻结体 • 2.DS模块,模型参数的建立,分析不同的接触类
型, 3.网格的划分(整体+局部),载荷和约束的施加 • 4.查看应力,应变,接触结果及安全系数 • 5.DS模块中优化模型,并适时更新 • 6.DX模块参数化研究及目标驱动的优化 • 7.FE Model的查看 • 8.结果出图,多窗口对比分析
连杆几何参数在目标驱动前的特性 连杆杆长的特性

基于ABAQUS的连杆的有限元计算分析

基于ABAQUS的连杆的有限元计算分析
因此对其第三主应力进行分析,连杆第三主应力比较大 的位置出现在小头与杆身过渡圆角处,瓦盖与螺栓接触 的圆孔处,如图 8~9。在最大爆发压力工况下,连杆小头内
图 4 连杆在装配工况下的第一主应力分布图
图 8 连杆在最大爆发压力工况下的第三主应力分布图
70
现代制造技术与装备
2008 第 6 期 总第 187 期
关键词:连杆 有限元 安全系数 变形
连杆是内燃机的主要运动受力部件之一,它在工作中 所受的各种外载荷复杂且作周期性变化, 机械负荷严重, 工作条件恶劣。因此,连杆的可靠性一直也是人们在内燃 机研究和改进过程中关注的热点。对连杆设计的主要要求 是在保证足够的强度、刚 度 和 稳 定 性 的 下 ,尽 可 能 地 达 到 质 量 轻 、体 积 小 、形 状 合 理 ,并 最 大 限 度 的 减 缓 应 力 集 中 。
[4] 杨连生 内燃机设计 吉林 中国农业机械出版社,1980 226~256.
图 11 连杆的安全系数分布云图
近杆身处,由于高周疲劳需要的理论安全系数应该大于 1.0,考虑到载荷离散产生的 5%的误差和网格质量产生 的 5% 的 误 差 ,实 际 要 求 的 安 全 系 数 应 该 大 于 1.1,因 此 , 此连杆设计符合要求。
图 6 连杆小头和大头在最大惯性力工况下的第一主应力分布图
图 3 最大爆发压力工况连杆加载及约束位置 3 计算结果的分析
(1)由于连 杆 螺 栓 的 预 紧 力 非 常 大 ,螺 栓 的 受 力 情 况 比较复杂,螺栓在实际 工 作 中 处 于 塑 性 状 态 ,因 此 对 螺 栓 及 连 杆 上 与 螺 栓 接 触 区 域 应 该 用 详 细 模 型 进 行 分 析 ,同 样,杆身与 瓦盖接触齿 的 根 部 也 需 要 详 细 模 型 进 行 分 析 , 所以暂不考虑此部分的应力分布。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连杆机构的有限元分析方法
连杆机构的有限元分析方法
连杆机构是一种常见的机械结构,由多个连杆和铰链连接而成,广泛应用于各行各业的机械装置中。

在设计和优化连杆机构时,有限元分析是一种有效的方法,可以帮助工程师评估其性能和稳定性。

以下是连杆机构有限元分析的一些步骤和方法。

第一步:建立模型
在进行有限元分析之前,需要建立连杆机构的几何模型。

这可以通过计算机辅助设计(CAD)软件完成,将连杆和铰链的几何形状和尺寸输入到软件中。

第二步:离散化
离散化是指将连续的结构模型分割为有限数量的单元,以便进行有限元分析。

常用的单元类型包括三角形、四边形单元或六面体等。

根据具体的连杆机构结构,选择合适的单元类型进行离散化。

第三步:确定材料属性和边界条件
根据实际情况,为连杆和铰链分配合适的材料属性,如弹性模量、泊松比、密度等。

此外,还需要确
定边界条件,如约束和外部载荷。

约束是指限制杆件的运动范围,外部载荷是指施加在连杆上的力或力矩。

这些参数对于分析连杆机构的性能至关重要。

第四步:求解有限元方程
将连杆机构的模型和边界条件输入有限元分析软件中,通过求解有限元方程来计算连杆机构的应力、位移和变形。

有限元方程是通过应变能原理和位移函数推导得到的。

第五步:评估结果
根据有限元分析的结果,评估连杆机构的性能和稳定性。

例如,可以通过应力和位移分布来判断杆件是否会发生破坏或变形。

此外,还可以计算杆件的刚度、自然频率和振动模态等参数。

第六步:优化设计
如果连杆机构的性能不符合要求,需要进行设计优化。

可以通过改变连杆和铰链的尺寸、形状或材料来改善连杆机构的性能。

再次进行有限元分析,评估优化后的连杆机构是否满足设计要求。

综上所述,有限元分析是一种对连杆机构进行性能评估和优化设计的有效方法。

通过逐步完成建模、离散化、确定材料属性和边界条件、求解有限元方程、评估结果和优化设计等步骤,可以提高连杆机构的设计质量和工作效率。

相关文档
最新文档