安全检测监控系统设计(doc 9页)
安全检测监控系统设计
安全检测监控系统设计1. 引言安全是人们生活和工作中最重要的问题之一。
为了保障人们的生命和财产安全,安全监控系统应运而生。
本文将介绍一种安全检测监控系统的设计方案。
该系统可以监测并报警各种安全隐患,有效提高安全防范水平。
2. 总体设计2.1 系统架构安全检测监控系统主要包括传感器、数据采集模块、数据处理模块和报警模块四个关键部分。
2.2 传感器传感器是安全检测监控系统的重要组成部分。
根据具体需求,可以选择不同类型的传感器,如烟雾传感器、红外传感器、温湿度传感器等。
这些传感器可以实时监测环境中的各种参数,并将数据传送给数据采集模块。
2.3 数据采集模块数据采集模块负责将传感器获取的数据进行采集和整理,然后上传到数据处理模块。
为了提高系统的稳定性和可靠性,数据采集模块通常采用分布式设计,其中包括多个数据采集节点。
2.4 数据处理模块数据处理模块是整个系统的核心部分,主要负责对采集到的数据进行处理和分析。
它可以根据预设的规则和算法判断是否存在安全隐患,并生成相应的报警信息。
同时,数据处理模块还可以根据历史数据进行趋势分析,提供给用户更多的安全参考。
2.5 报警模块报警模块负责接收数据处理模块产生的报警信息,并及时向相关人员发送警报。
报警模块可以采用多种通信方式,如短信、电话、邮件等,以确保报警信息能够及时传达给用户。
3. 技术实现3.1 硬件设备安全检测监控系统的硬件设备包括传感器、数据采集节点和报警设备。
传感器可以选择市面上常见的各种类型传感器,数据采集节点可以采用嵌入式系统,报警设备可以选择适合的报警器。
3.2 软件平台安全检测监控系统的软件平台可以选择基于开源的操作系统,如Linux,以及使用Python、C++等编程语言进行开发。
此外,还可以使用数据库系统来存储和管理监测数据。
3.3 网络通信为了实现监测数据的实时传输和报警信息的及时推送,安全检测监控系统需要与网络进行通信。
可以选择无线或有线方式实现数据的传输,如Wi-Fi、以太网等。
安全监测监控系统初步设计
兴隆县平安矿业有限公司安全监测监控系统初步设计2011年12月12日目录第一章建立安全监测监控系统的必要性及监测监控系统现状. 1一、建立完善安全监测监控系统的必要性 (1)二、该矿井监测监控系统现状 (1)三、安全监测监控系统的设计要求 (1)第二章安全监测监控系统及设备的选择 (2)一、安全监测监控系统的选择 (2)二、安全监测监控及传输设备选择 (2)第三章监测监控设备布置 (3)一、监测监控设备设置地点和布置 (3)二、监控分站的安装 (3)三、传输设备的安装 (4)四、各种传感器安装 (4)第四章各类传感器的装备量及管理水平及操作要求 (7)一、各类传感器的装备量 (7)二、管理水平及操作要求 (7)兴隆县平安矿业有限公司安全监测监控系统初步设计第一章建立安全监测监控系统的必要性及监测监控系统现状一、建立完善安全监测监控系统的必要性随着科学技术的发展和生产的实际需求,矿井生产对安全提出了更新更高的要求。
对于煤矿企业,既要解决生产过程中的安全问题,全面掌握井下各种安全参数,杜绝各种危害事故的发生,又要掌握矿井生产状况,依靠科学信息指挥生产,决策管理,实现安全生产管理科学化。
为使矿井管理人员能够及时、准确、全面地掌握和了解安全、生产的综合系统,做到对灾情的早期预报、自动处理,保证人身财产安全及矿井生产安全,对井下通风、瓦斯等环境参数、机电设备和供电系统等工况参数进行监测,同时在瓦斯超限时进行报警及断电,建立矿井安全监测监控系统是非常必要的。
本设计是在现有矿井安全监测监控系统(型号KJ102N)基础上进行完善设计。
二、该矿井监测监控系统现状矿井设有1套KJ102N矿井安全监测监控系统。
2005年03月,公司按照国家安全生产行业标准《煤矿安全监控系统及检测仪器使用管理规范(AQ1029-2007)》对该系统进行了升级改造,主要包括井下分站和传感器的更换、监控主程序升级、短信报警数据传输和网络功能的更新等各个方面,升级改造涉及到全矿井各个采掘工作面和地面系统。
安全检测监控系统设计
安全检测监控系统设计1. 引言安全检测监控系统是一种重要的技术应用,它利用现代科技手段对各种安全事件进行监测和检测。
本文将介绍安全检测监控系统的设计原理和实现方案。
2. 设计目标安全检测监控系统的设计目标是提供一个全面、准确、实时的安全监控解决方案。
具体的设计目标包括:•实时监测:系统能够实时监测各种安全事件,包括入侵检测、火灾报警等。
•准确性:系统能够准确地检测和识别各种安全事件,减少误报和漏报。
•可扩展性:系统能够方便地扩展和升级,以应对未来不断变化的安全需求。
•用户友好性:系统操作简单明了,界面友好,用户能够方便地操作和管理系统。
3. 系统架构安全检测监控系统的整体架构包括硬件和软件两个层面。
3.1 硬件层面硬件层面包括传感器、控制器、数据采集和存储设备等硬件组成。
传感器负责获取各种安全事件的信息,控制器负责控制传感器的工作,数据采集设备负责将传感器获取到的数据进行采集,存储设备负责存储采集到的数据。
3.2 软件层面软件层面包括数据处理、数据分析和用户交互等软件模块。
数据处理模块负责对采集到的数据进行处理和分析,以便发现安全事件和预测趋势。
用户交互模块负责用户与系统的交互,包括显示监控结果、报警通知等。
4. 系统工作流程安全检测监控系统的工作流程如下:1.传感器捕获安全事件的信息并传输给控制器。
2.控制器对传感器的工作进行控制和调度,确保传感器正常工作。
3.数据采集设备对传感器获取到的数据进行采集,并传输给数据处理模块。
4.数据处理模块对采集到的数据进行分析和处理,提取出安全事件和趋势。
5.用户可以通过用户交互模块查看监控结果和报警通知。
5. 设计考虑在设计安全检测监控系统时,我们需要考虑以下几个方面:•安全性:系统需要具备一定的安全性,保护用户数据的安全和隐私。
•稳定性:系统需要具备稳定性,能够在各种环境下正常工作。
•可靠性:系统需要具备可靠性,减少误报和漏报的情况发生。
•扩展性:系统需要具备扩展性,能够方便地扩展和升级以适应未来需求变化。
煤矿安全监测监控系统设计方案
煤矿安全监测监控系统设计方案1. 引言随着煤矿行业的快速发展,煤矿安全问题越来越引起人们的关注。
为了保障煤矿工人的生命安全和煤矿设备的正常运行,煤矿安全监测监控系统成为一项必不可少的技术手段。
本文将介绍一个基于现代信息技术的煤矿安全监测监控系统设计方案。
2. 设计目标本煤矿安全监测监控系统的设计目标包括:•提供实时监测和报警功能,及时掌握煤矿内的安全状况;•实现对煤矿设备的远程监控和控制,减少人工操作和人力资源的成本;•支持数据采集、存储、处理和分析,为决策提供科学依据;•支持对历史数据的查询和分析,帮助煤矿管理者优化运营模式;•设计稳定可靠、易于部署和维护的系统。
3. 系统架构本煤矿安全监测监控系统采用分布式架构,主要包括以下模块:•传感器模块:负责采集煤矿各项数据,如温度、湿度、气体浓度等;•数据传输模块:使用无线通信技术将采集到的数据传输至服务器;•服务器模块:存储、处理和分析传感器采集的数据,并提供给用户访问;•视频监控模块:通过摄像头实现对煤矿设备和工作人员的远程监控;•报警模块:实时监测数据,并在发生异常情况时通过警报或短信及时报警。
4. 系统功能4.1 实时监测和报警通过传感器模块采集的数据可以实时传输至服务器模块,通过数据处理和分析可以及时掌握煤矿内的安全状况。
当煤矿内出现异常情况时,系统将通过报警模块发送警报或短信通知相关人员,以便及时采取措施避免事故发生。
4.2 远程监控和控制通过视频监控模块,煤矿设备和工作人员的情况可以实时展示给相关管理人员,实现对矿井内部的远程监控。
此外,系统还可以实现对部分设备的远程控制,减少人工操作和人力资源的成本。
4.3 数据采集和存储系统中的传感器模块负责采集各项数据,并通过无线通信技术将数据传输至服务器模块。
服务器模块将采集到的数据进行存储,确保数据的完整性和安全性。
4.4 数据处理和分析服务器模块对传感器采集的数据进行处理和分析,实现对数据的实时监测、查询和分析。
煤矿安全监测监控系统设计方案
煤矿安全监测监控系统设计方案一、引言煤矿是一种危险的工作环境,需要严格的安全措施来保护矿工的生命和财产。
为了提高煤矿的安全性能,本文提出了一种煤矿安全监测监控系统设计方案。
二、系统设计目标本系统设计的目标是提供煤矿安全监测和实时监控的功能,以帮助矿工及时识别并解决潜在的危险情况,提高矿场的安全性。
具体目标包括:1. 实时监测煤矿井下环境参数,如温度、湿度、气体浓度等。
2. 监控煤矿井下人员的位置和行为。
3. 提供远程监控功能,使管理人员能够随时随地监测矿场情况。
4. 建立报警机制,及时发出预警并采取相应措施。
三、系统硬件设计1. 环境参数监测传感器:安装在煤矿井下的各个位置,用于实时监测温度、湿度、气体浓度等参数。
2. 人员定位器:矿工佩戴的定位器,通过无线信号传输其位置信息。
3. 监控摄像头:布置在煤矿井下重要位置,用于实时监测人员的行为。
4. 数据传输设备:用于将环境参数、人员位置和摄像头图像传输至监测中心。
5. 监测中心服务器:接收和处理各种数据,并提供实时监控功能。
四、系统软件设计1. 环境参数监测软件:用于处理传感器采集的环境参数数据,并进行实时显示和分析。
2. 人员定位软件:将定位器传输的位置数据与地图进行匹配,实现实时的人员定位。
3. 监控中心软件:用于接收和显示监控摄像头传输的图像,管理和控制监控系统。
4. 数据处理和分析软件:对传感器、定位器和摄像头数据进行处理和分析,判断是否存在安全隐患,并触发相应的预警机制。
五、系统功能1. 实时监测功能:实时显示煤矿井下的环境参数、人员位置和摄像头图像。
2. 预警报警功能:当环境参数异常或人员发生危险行为时,发出预警并采取相应的报警措施。
3. 数据存储和分析功能:存储历史数据,并进行数据分析,为煤矿管理人员提供决策支持。
4. 远程监控功能:通过互联网连接监控中心,实现远程监测和控制。
六、系统优势1. 提高了煤矿安全性能:通过实时监测和预警功能,及时发现和解决潜在的安全隐患。
煤矿安全监测监控系统设计方案
煤矿安全监测监控系统设计方案一、引言煤炭作为我国的主要能源之一,在国民经济中占有重要地位。
然而,煤矿开采是一项高风险的作业,安全问题始终是煤矿生产的重中之重。
为了保障煤矿的安全生产,提高生产效率,降低事故发生率,设计一套科学、高效、可靠的煤矿安全监测监控系统至关重要。
二、系统需求分析(一)监测环境参数煤矿井下环境复杂,需要对多种环境参数进行实时监测,包括但不限于瓦斯浓度、一氧化碳浓度、氧气浓度、温度、湿度、风速等。
(二)监测设备运行状态对采煤机、通风机、提升机等关键设备的运行状态进行监测,包括设备的转速、电流、电压、功率等参数,以及设备的故障报警信息。
(三)人员定位与跟踪实时掌握井下人员的位置分布和活动轨迹,以便在紧急情况下能够迅速组织救援。
(四)数据传输与存储将监测数据及时、准确地传输到地面监控中心,并进行长期存储,以便后续分析和查询。
(五)报警与预警功能当监测参数超过设定的阈值或设备发生故障时,系统能够及时发出声光报警,并提供预警信息,提醒相关人员采取措施。
三、系统总体设计(一)系统架构煤矿安全监测监控系统采用分层分布式架构,由感知层、传输层和应用层组成。
感知层主要由各类传感器和监测设备组成,负责采集井下环境参数和设备运行状态等信息。
传输层采用有线和无线相结合的方式,将感知层采集到的数据传输到地面监控中心。
有线传输方式包括工业以太网、RS485 总线等,无线传输方式包括 Zigbee、WiFi 等。
应用层包括数据处理服务器、监控终端、数据库等,对传输上来的数据进行处理、分析和展示。
(二)传感器选型与布置根据煤矿井下的实际情况,选择合适的传感器类型和型号。
例如,对于瓦斯浓度的监测,可选用催化燃烧式瓦斯传感器;对于温度的监测,可选用热电偶或热电阻传感器。
传感器的布置应遵循相关标准和规范,确保能够全面、准确地监测井下环境。
(三)数据传输网络设计数据传输网络是整个系统的关键组成部分,应具备高可靠性、高带宽和低延迟的特点。
煤矿安全监测监控系统设计方案
煤矿安全监测监控系统设计方案一、引言二、系统总体设计(一)设计目标本系统的设计目标是实现对煤矿井下环境参数(如瓦斯浓度、一氧化碳浓度、温度、湿度、风速等)、设备运行状态(如通风机、提升机、采煤机等)的实时监测和监控,及时发现异常情况并报警,为煤矿安全生产提供可靠的技术支持。
(二)系统组成煤矿安全监测监控系统主要由传感器、分站、传输网络、中心站等部分组成。
1、传感器传感器负责采集煤矿井下的各种环境参数和设备运行状态信息,如瓦斯传感器、一氧化碳传感器、温度传感器、湿度传感器、风速传感器、设备开停传感器等。
2、分站分站接收传感器采集的信息,并进行处理和转换,然后通过传输网络将数据上传至中心站。
3、传输网络传输网络用于实现分站与中心站之间的数据传输,可采用有线传输(如电缆、光缆)或无线传输(如 Zigbee、WiFi 等)方式。
4、中心站中心站是整个系统的核心,负责接收、处理、存储和显示监测数据,并对异常情况进行报警和控制。
(三)系统工作原理传感器将采集到的环境参数和设备运行状态信息转换为电信号,经分站处理后通过传输网络发送至中心站。
中心站对接收的数据进行分析和处理,当监测数据超过设定的阈值时,系统发出声光报警,并采取相应的控制措施,如控制通风机加大风量、停止设备运行等。
三、传感器选型与布置(一)传感器选型根据煤矿井下的实际情况和监测要求,选择合适的传感器类型和型号。
传感器应具有高精度、高可靠性、稳定性好、响应时间短等特点。
1、瓦斯传感器选用催化燃烧式或红外式瓦斯传感器,测量范围为 0~4%CH₄,精度不低于 01%CH₄。
2、一氧化碳传感器选用电化学式一氧化碳传感器,测量范围为 0~1000ppm,精度不低于 1ppm。
3、温度传感器选用热电偶式或热电阻式温度传感器,测量范围为 0~100℃,精度不低于 05℃。
4、湿度传感器选用电容式或电阻式湿度传感器,测量范围为 0~100%RH,精度不低于 3%RH。
煤矿安全监测监控系统设计方案
煤矿安全监测监控系统设计方案【煤矿安全监测监控系统设计方案】设计目标:本设计方案旨在解决煤矿安全监测与监控过程中存在的问题,通过高效的监测系统,实现对煤矿各项指标的实时监控与数据分析,提高煤矿生产安全管理水平,减少事故发生的可能性。
一、系统架构设计1. 系统整体架构本系统采用分布式架构,包括前端设备、云平台、后端数据库和监控终端四个部分。
前端设备包括煤矿设备传感器、视频监控设备等,通过数据采集模块将监测数据实时传输至云平台。
云平台接收并处理数据,将数据存储在后端数据库中,并通过监控终端向管理人员进行实时展示和预警提示。
2. 前端设备设计前端设备采用多种传感器进行数据采集,包括可燃气体传感器、温湿度传感器、压力传感器等。
同时,还需要布置视频监控设备,对矿井内部情况进行实时监测。
3. 云平台设计云平台采用高可用、高稳定性的服务器集群,并配备相应的数据处理和存储设备。
通过数据接收、处理和存储模块,实现对煤矿各项指标数据的实时监控和分析。
4. 后端数据库设计后端数据库采用分布式数据库系统,保证数据的安全性和高效性。
数据库中存储了历史监测数据,以供后续的数据分析和决策参考。
5. 监控终端设计监控终端通过图形化界面展示煤矿各项指标的实时数据,并及时进行预警提示。
监控终端还能生成统计报表,为管理人员提供决策依据。
二、主要功能设计1. 数据采集与传输功能通过前端设备采集各项指标数据,并通过云平台实时传输至后端数据库,确保数据的及时性和准确性。
2. 实时监测与预警功能通过云平台实时监测各项指标数据,当监测数值超过设定的预警值时,系统将立即发送预警通知,提醒管理人员采取相应的措施。
3. 数据分析与报表生成功能系统能够对历史监测数据进行分析,生成统计报表,为管理人员提供决策依据。
同时,系统还可以进行数据预测和趋势分析,提前预防潜在的安全风险。
4. 远程监控与控制功能系统支持对矿井设备进行远程监控与控制,当发生异常情况时,可以及时采取措施进行解决,保障煤矿生产的安全与稳定。
安全监测监控系统方案设计
瓦斯安全监控系统设计方案1概述传统的安全监控系统采用总线传输的方式,系统容量受限,通讯平台只能运行特定的系统,反映速度慢,不具备通讯冗余和自恢复功能;易受干扰,运行不稳定;兼容性差;无法实现故障自我诊断,自成系统,数据孤立且重复布线,使用维护工作量大,不能进行综合分析,预警,应急联动。
根据各矿近年生产管理的实际需要,还将在矿井原煤生产过程各环节装备一些新的系统。
如果继续采用传统的通讯方式,势必又将采用各自独立安装运行方案,造成矿井监控设备布线越来越复杂、系统维护成本越来越大。
针对传统系统的缺点,此次方案设计选用基于工业以太环网+现场总线平台的安全监控系统。
与传统的系统比较具有相当巨大的优势和在传输速度、质量上的质的飞跃。
并能方便实现各系统监测监控数据的综合集成。
以直观形象的各种图形方式显示全矿井的生产工艺流程、同时也将方便显示其它诸如矿井瓦斯、矿井人员、矿井抽放、矿井设备运行状况等分类信息。
这对提高生产调度管理效率,指导煤矿安全生产具有重要意义。
在子系统接入上协议标准采用现在用途最位广泛TCP/IP的通讯协议,子系统接入工业以太环网平台后,不再需要数据接口和其他平台上所需要的数据转换器(调制解调)。
在信号传输方式上真正最大限度上发挥了工业以太环网平台的优势,就近接入环网交换机,不再受数据接口和其他平台上所需要的数据转换器(调制解调)的限制。
2设计原则及依据本方案在设计过程中始终遵循系统应具备高可靠性、先进性、实用性、可扩展性及开放性原则,以满足高产、高效的现代化矿井对监测、监控等管理信息有效获得的需要。
设计依据为➢《煤矿安全规程》➢《煤矿安全生产监控系统通用技术条件》➢《矿用信息传输接口》➢《矿用分站》➢《矿用信号转换器》➢《煤矿安全生产监控系统软件通用技术要求》➢《煤矿用信号传输装置》➢《煤矿安全监控系统通用技术要求(AQ6201-2006)》➢《煤矿安全监控系统及检测仪器使用管理规范(AQ1029-2007)》➢《煤炭工业矿井设计规范》➢《煤矿安全装备基本要求》➢《煤矿监控系统总体设计规范》➢《煤矿监控系统中心站软件开发规范》➢《爆炸性环境用防爆电气设备本质安全型电路和电气设备要求》➢《爆炸性环境用防爆电气设备通用要求》➢《煤矿通信、检测、控制用电工产品通用技术条件》➢《设备可靠性试验》➢《电气设备的抗干扰特性基本测量方法》➢国务院安全生产委员会办公室[2006]21号文件相关规定3工业以太环网平台设计3.1工业以太环网平台结构设计为满足煤业发展需要,此方案设计为100M工业以太环网平台,采用单模阻燃传输光缆和井下本安网络交换机。
煤矿安全监测监控系统设计方案
汇报人:日期:•绪论•煤矿安全监测监控系统概述•煤矿安全监测监控系统详细设计•煤矿安全监测监控系统实施与运行目•煤矿安全监测监控系统效果评估•总结与展望录01绪论近年来,煤矿事故频发,造成严重的人员伤亡和财产损失,煤矿安全生产形势严峻。
煤矿事故频发随着传感器技术、通信技术、计算机技术等的发展,煤矿安全监测监控系统的设计和实施成为可能。
技术进步推动国家相关部门对煤矿安全生产提出了更高要求,煤矿安全监测监控系统的建设成为煤矿企业的法定责任。
政策法规要求设计背景提高应急救援能力在事故发生时,通过监测监控系统提供的实时数据,为应急救援提供决策支持,提高救援效率。
促进煤矿企业可持续发展保障煤矿安全生产,减少事故对企业经营的影响,有利于企业的长期稳定发展。
提高煤矿安全生产水平通过实时监测监控煤矿生产过程中的安全参数,及时发现潜在的安全隐患,降低事故发生的概率。
推动行业技术进步通过引入先进的技术手段,推动煤矿行业的安全生产技术升级,提高整体安全生产水平。
保障人民生命安全煤矿安全监测监控系统的建设,将有效减少煤矿事故的发生,保障人民群众的生命安全。
履行企业社会责任煤矿企业作为社会生产的重要组成部分,有责任保障员工的生命安全和财产安全,推动社会的和谐发展。
02煤矿安全监测监控系统概述包括各种气体传感器、温度传感器、压力传感器等,用于实时监测煤矿井下的环境参数。
1. 传感器网络2. 数据传输设备3. 地面监控中心4. 报警与控制系统包括数据采集器、数据传输线缆、数据交换机等,确保监测数据实时、准确地传输到地面监控中心。
包括数据服务器、数据处理计算机、监控大屏等,用于接收、处理、分析和显示监测数据。
当监测到异常数据时,系统能够自动报警,并通过控制系统启动相应的应急处理措施。
系统组成系统能够24小时不间断地监测煤矿井下的各种环境参数,如瓦斯浓度、CO浓度、温度、湿度等。
1. 实时监测系统具备强大的数据处理和分析功能,能够对历史数据进行分析,为煤矿安全管理提供数据支持。
安全监控系统设计
安全监控系统设计一、引言安全监控系统是现代社会中必不可少的一种设备,它可以帮助我们实时监测和保护我们的财产和生命安全。
本文将详细介绍一个基于最新技术的安全监控系统的设计。
二、系统概述1.1 目标和功能该安全监控系统旨在提供高效可靠的监控解决方案,主要包括以下功能:a. 实时视频监控:通过高清摄像头实时监测被监控区域,可以迅速发现异常情况。
b. 视频录像和存储:将监控画面录制并存储,以备后期审查和证据追踪。
c. 远程访问:通过网络连接可以随时随地远程访问监控画面,并对设备进行远程操作和管理。
d. 报警功能:通过智能分析和感知,系统能够即时发出报警并通知相关人员。
e. 数据分析与报表:系统能进行数据分析,生成报表,以提供更好的决策依据。
1.2 硬件设备本系统将采用以下硬件设备来满足上述功能需求:a. 高清摄像头:为了获得更清晰的图像,我们将使用高清摄像头,并保证其具备低照度夜视功能。
b. 视频录像机:选择专业的视频录像机,以提供高质量的视频录制和存储功能。
c. 网络设备:包括路由器、交换机等网络设备,以保证视频信号的传输和远程访问的流畅性。
d. 报警设备:包括传感器、控制器等,用于实现报警功能。
三、系统设计2.1 系统架构本系统采用分布式架构,主要包括前端设备、后端服务器和中央管理中心三个部分。
2.1.1 前端设备前端设备包括高清摄像头和报警器,它们负责实时监控和报警功能。
摄像头将采集到的视频信号传输到后端服务器,报警器则负责感知异常情况并触发报警。
2.1.2 后端服务器后端服务器主要负责视频信号的接收、存储和处理,同时也提供远程访问服务。
服务器将接收到的视频信号进行编码压缩,并存储在硬盘上以备后期查看。
通过网络连接,用户可以随时随地通过手机、电脑等设备访问并查看实时监控画面。
2.1.3 中央管理中心中央管理中心是整个安全监控系统的核心,它负责对所有前端设备和后端服务器进行管理、配置和监控。
管理中心提供友好的用户界面,使管理员可以轻松地管理整个系统,包括添加、删除和修改设备,设置报警规则等。
煤矿安全监测监控系统设计方案
煤矿安全监测监控系统设计方案随着我国现代化进程的不断加速,煤矿作为我国最重要的能源之一,在经济建设中起着不可替代的作用。
煤矿作业面广、作业条件复杂、危险性大,多次发生煤矿事故,为煤矿的安全生产带来了极大的威胁。
如何合理利用先进的监测监控技术,提高煤矿的安全系数,保障人民群众安全,成为了煤矿生产管理者需要思考的问题。
本文就煤矿安全监测监控系统设计方案进行探讨。
一、监测监控技术的重要性煤矿内涵盖着多种设备,如井下提升机,通风设备,采掘设备,支架,转载机,皮带输送机等等,每一台设备都可能随时出现故障,给安全生产带来巨大威胁。
因此,通过机电一体化的监控技术对设备运行过程进行长期持续的监测,可以更好地保障设备的运行稳定性,减少故障率,降低生产成本,提高生产效率。
而对于煤矿的安全管理,更是具有重要意义。
二、监测监控系统设计方案(一)硬件设计1、设备传感器:煤矿设备运行过程中,存在多种不同的物理参数变化,如振动、温度、湿度、流量等等,设备传感器可以在设备周围环境中自动、持续地测量并采集这些参数的信息,为相关管理人员提供实时监测与分析数据。
2、数据采集器:通过设备传感器采集到的数据,需要进行传输到上位机,同时向下控制设备的状态。
数据采集器可以根据传感器所测量到的不同物理参数,对传感器数据进行预处理,然后进行数据采集。
3、上位机:上位机是整个系统的核心控制模块,所有传感器信息都可以通过上位机进行实时监控、数据分析和预警处理。
上位机可以控制数据采集器,针对已知问题,对未知问题进行预测和分析,提供及时反馈信息。
(二)软件设计1、监测系统后台管理系统:通过固定的网络通信,实现设备的远程监控和数据传输,为设备的物联网提供云服务支持,可以进行设备的数据分析以及设备的远程操作管理。
2、安全控制系统:通过安全控制系统,可以对煤矿内的所有设备进行全面、科学、有效的管理和监控,自动诊断设备故障,提早预警,避免煤矿事故的发生,并及时实施救援措施。
安全监测监控系统课程设计Word版
安全监测监控系统课程设计1 设计目的与要求1.1设计目的对于多数矿井来说,较大的矿井水被排放到地面后比较难以处理,自然排放容易造成环境污染,二次处理成本极高,采用二次利用的方式能有效的解决矿井水排放问题。
把矿井中的水抽放到地面的蓄水池,通过相关的处理后再次利用。
由于蓄水池水位变化的原因,有时候就发生了蓄水池缺水事故而影响井下正常生产,有时候也发生满水溢流浪费的现象。
不论是什么情况对企业都是无益的。
就其缺水或满水的原因,主要有两方面:一个是供水操作人员责任心不强,对蓄水池水位的监视不到位,当蓄水池水位变化较大时,不能及时调节进水阀门的开度确保水池正常供水;另一个是蓄水池进水管出口安装的浮球阀不完好,水满时不能关严,从而造成溢流浪费。
矿井蓄水池水位采用自动控制装置后,保证了井下用水的可靠性,提高了管理水平,避免了溢流浪费。
1.2 设计要求各生产矿井用水都是由地面蓄水池靠自然压力向井下各用水地点供应的。
在蓄水池向井下供水的同时,外界水源也向蓄水池内注水。
一般情况下,外界的供水压力是恒定不变的,由于井下生产用水量的大小随时变化,从而蓄水池的水位也随时变化。
即外界供水阀门开度不变时,水池水位随井下用水量的增加而降低,随用水量的减少而升高。
本文设计在蓄水池进水管路上与原进水阀门并联安装一座电动调节阀,在蓄水池内安装一套投入式液位变送器通过WT-600控制表控制电动调节阀的开启度,调节蓄水池的进水量,保证井下生产用水量与蓄水池进水量相平衡,即井下生产用水量增大时, 电动调节阀自动开大;当井下生产用水量减小时,电动调节阀自动关小,从而达到水位恒定的目的。
由于抽取到地面蓄水池的水杂质较多,所以在水泵供水管路上设置Y型过滤器,可以有效地过滤循环水池循环水中的杂质,减少喷嘴的堵塞,保证系统的正常工作从真正意义上实现煤矿水的再次利用,避免环境污染和不必要的水资源浪费。
2 系统结构设计2.1 控制方案在蓄水池进水管路上与原进水控制阀门并联安装一座ZAZP-16型电动调节阀,规格与原进水管阀门相同,这种调节阀的功能是能接收4~20mA 的标准信号,流量特性为直线型。
煤矿安全监测监控系统设计方案
注:本文档版权归原作者所有。
现仅供网友学习交流,勿作他用,否则后果自负。
第一章安全监测监控系统的概述1.1 历史发展及国内外现状对煤矿井下危险源进行实时监测和预警,是煤矿最早关注的项目。
从20世纪60年代后期开始,工业发达国家开始研制矿井监测监控系统。
主要有法国OLDHAM公司的CTT63/40U集中监控系统;波兰的CMM—20M和CMM—1监控系统,英国MINOS(Mine Operation System),德国F—H公司的TF200H信息传输系统和ZM400遥控系统,美国的DJN6400系统以及加拿大康斯培克公司的MINl600安全生产监测系统。
在煤矿监测监控系统中,影响较大的是20世纪70年后期由英国煤管局组织开发,分别由不同公司生产的MINOS系统。
该系统最早应用于煤矿环境监测,后来扩展了许多生产监测监控的功能。
例如,煤仓监测、带式输送机控制等。
但总体上讲,该监测监控系统仍是以监测功能为主,附加简单逻辑控制功能。
我国监测监控技术应用较晚,80年代初,从波兰、法国、德国、英国和美国等〔如DAN6400、TF200、MINOS和Senturion-200〕引进了一批安全监控系统,装备了部分煤矿;在引进的同时,通过消化、吸收并结合我国煤矿的实际情况,先后研制出KJ2、KJ4、KJ8、KJ10、KJ13、KJ19、KJ38、KJ66、KJ75、KJ80、KJ92等监控系统,在我国煤矿已大量使用。
实践说明,安全监控系统为煤矿安全生产和管理起到了十分重要的作用,各局矿已作为一项重大安全装备。
由于当时相当一部分监控系统由于技术水平低、功能和扩展性能差、现场维修维护和技术服务跟不上等原因,或者已淘汰、或者停产。
因此造成相当一部分矿井无法继续正常使用已装备的系统。
特别是近年来由于老系统服务年限将至,已无继续维修维护的必要,系统面临更新改造的机遇。
随着电子技术、电脑软硬件技术的迅猛发展和企业自身发展的需要,国内各主要科研单位和生产厂家又相继推出了KJ90、KJ95、KJ101、KJF2000、KJ4/KJ2000和KJG2000等监控系统,以及MSNM、WEBGIS等煤矿安全综合化和数字化网络监测管理系统。
安全检测监控系统设计
安全检测监控系统设计1. 引言安全检测监控系统是一种用于监测和控制各种安全事件的系统。
它可以对建筑物、设备和人员进行实时监控,及时发现并应对潜在的安全威胁。
本文将介绍一个基于现有技术和最佳实践的安全检测监控系统的设计方案。
2. 系统架构安全检测监控系统的设计采用分布式架构,由以下组件组成:2.1 检测设备检测设备负责收集和传输安全事件相关的数据。
它包括但不限于摄像头、传感器等设备,在关键区域进行部署。
这些设备将收集到的数据传输给数据处理中心。
2.2 数据处理中心数据处理中心是安全检测监控系统的核心组件。
它接收来自检测设备的数据,并对数据进行处理和分析。
数据处理中心采用实时处理技术,能够实时监控各种安全事件并做出响应。
它还负责存储和管理历史数据,提供数据查询和分析功能。
2.3 客户端应用客户端应用是系统的用户界面,通过它用户可以实时监控安全事件、查询历史数据和进行配置管理等操作。
客户端应用可以运行在各种终端设备上,例如PC、手机等。
3. 功能需求安全检测监控系统应满足以下功能需求:3.1 实时监测系统能够实时地监测各个安全点位的状态。
当发生安全事件时,系统能够立即发出警报并将相关信息显示给用户。
3.2 历史数据存储与查询系统能够将历史数据存储在数据库中,并提供数据查询和分析功能。
用户可以根据需求查询特定时间段、特定设备的数据,并进行数据分析和报表生成。
3.3 视频监控系统能够监控摄像头采集到的视频流,并提供实时视频显示和录像功能。
用户可以随时观看特定地点的实时视频,并查看存储在系统中的历史录像。
3.4 警报和响应系统能够根据设定的规则进行警报和响应。
当检测到安全事件时,系统能够自动发出警报,并进行相应的处理措施,例如通知安保人员、启动防护装置等。
3.5 配置管理系统能够提供用户友好的配置管理界面,用户可以对系统进行参数配置、录像设置等操作。
4. 技术选型在设计安全检测监控系统时,需要选择合适的技术来实现各个组件。
安全监测监控系统设计方案设计
瓦斯平安监控系统设计方案1概述传统的平安监控系统采用总线传输的方式,系统容量受限,通讯平台只能运行特定的系统,反映速度慢,不具备通讯冗余和自恢复功能;易受干扰,运行不稳定;兼容性差;无法实现故障自我诊断,自成系统,数据孤立且重复布线,使用维护工作量大,不能进展综合分析,预警,应急联动。
根据各矿近年生产管理的实际需要,还将在矿井原煤生产过程各环节装备一些新的系统。
如果继续采用传统的通讯方式,势必又将采用各自独立安装运行方案,造成矿井监控设备布线越来越复杂、系统维护本钱越来越大。
针对传统系统的缺点,此次方案设计选用基于工业以太环网+现场总线平台的平安监控系统。
与传统的系统比拟具有相当巨大的优势和在传输速度、质量上的质的飞跃。
并能方便实现各系统监测监控数据的综合集成。
以直观形象的各种图形方式显示全矿井的生产工艺流程、同时也将方便显示其它诸如矿井瓦斯、矿井人员、矿井抽放、矿井设备运行状况等分类信息。
这对提高生产调度管理效率,指导煤矿平安生产具有重要意义。
在子系统接入上协议标准采用现在用途最位广泛TCP/IP的通讯协议,子系统接入工业以太环网平台后,不再需要数据接口和其他平台上所需要的数据转换器〔调制解调〕。
在信号传输方式上真正最大限度上发挥了工业以太环网平台的优势,就近接入环网交换机,不再受数据接口和其他平台上所需要的数据转换器〔调制解调〕的限制。
2设计原那么及依据本方案在设计过程中始终遵循系统应具备高可靠性、先进性、实用性、可扩展性及开放性原那么,以满足高产、高效的现代化矿井对监测、监控等管理信息有效获得的需要。
设计依据为➢?煤矿平安规程?➢?煤矿平安生产监控系统通用技术条件?➢?矿用信息传输接口?➢?矿用分站?➢?矿用信号转换器?➢?煤矿平安生产监控系统软件通用技术要求?➢?煤矿用信号传输装置?➢?煤矿平安监控系统通用技术要求(AQ6201-2006)?➢?煤矿平安监控系统及检测仪器使用管理规X(AQ1029-2007)?➢?煤炭工业矿井设计规X?➢?煤矿平安装备根本要求?➢?煤矿监控系统总体设计规X?➢?煤矿监控系统中心站软件开发规X?➢?爆炸性环境用防爆电气设备本质平安型电路和电气设备要求?➢?爆炸性环境用防爆电气设备通用要求?➢?煤矿通信、检测、控制用电工产品通用技术条件?➢?设备可靠性试验?➢?电气设备的抗干扰特性根本测量方法?➢国务院平安生产委员会办公室[2006]21号文件相关规定3工业以太环网平台设计3.1工业以太环网平台构造设计为满足煤业开展需要,此方案设计为100M工业以太环网平台,采用单模阻燃传输光缆和井下本安网络交换机。
煤矿安全监测监控系统设计方案
煤矿安全监测监控系统设计方案在我国的工业化进程中,煤炭产业一直扮演着重要角色。
作为主要能源产出的煤炭,得到了国家的大力支持和投资,但是也随之而来的是煤矿安全问题。
煤矿事故频频发生,给人们的生命财产造成巨大损失,可谓是我国工业化进程中的一大阻碍。
如果想要从根本上解决煤矿安全问题,就需要在技术上下功夫。
其中,煤矿安全监测监控系统就是提高煤矿安全性的一个关键技术。
一、系统设计初衷煤矿作为重要的能源产出行业,安全问题一直是贯穿于整个行业的问题。
尽管煤矿企业已经对设备和操作人员进行了严格的监管和安全培训,但仍然无法完全避免安全事故的发生。
其中一个重要原因就是煤矿中矿井深度较大,环境恶劣,如何实时掌握煤矿中的情况,及时发现异常,成了在安全部门中、特别是在国家相关政策支持下发展煤矿安全监测监控系统的必要。
二、系统设计原则煤矿安全监测监控系统是一个需要经过严格考虑的系统,需要考虑到很多方面。
系统的设计应当遵循以下原则:1.实用性原则煤矿安全监测监控系统是为了确保煤矿中的人员、车辆等各个重要元素的安全,因此系统的设计应当以实用性为原则。
设计人员应该优先考虑实际使用过程中的问题,并且在设计之初就要考虑到应对各种应急情况的方法。
系统应该简单易操作,不应该有复杂的程序或者操作步骤。
2.可靠性原则煤矿安全监测监控系统的设计必须遵循可靠性原则。
煤矿作为危险品生产企业,如果监测系统出现问题会给煤矿带来巨大的影响。
因此,设计人员必须考虑如何实现故障检测和恢复。
同时,系统应该与其他设备整合度高,保证数据的准确性和及时性。
3.先进性原则随着技术的不断发展,煤矿安全监测监控系统也需要不断更新以适应时代的需求。
系统设计应该遵循先进性原则,建立的系统应该是能够更好地适应未来技术发展的。
同时,在设计系统时应该考虑系统的可拓展性,在未来可以根据需求进行修改和完善。
三、系统设计方案煤矿安全监测监控系统的设计方案需要考虑到多个方面。
系统由硬件系统和软件系统组成。
煤矿安全监测监控系统设计方案
煤矿安全监测监控系统设计方案煤矿安全是我国煤矿行业的重点关注问题之一。
为了确保煤矿生产过程的安全性,提高事故处理的效率,设计一个高效可靠的煤矿安全监测监控系统是至关重要的。
该系统可以实时监测煤矿各个环节的安全状态,并及时报警并采取措施,以防止事故的发生。
煤矿安全监测监控系统设计方案目标是提供全面的煤矿安全监测和报警功能,以确保煤矿工作人员的安全。
该系统应具备以下关键功能和特点:1. 实时监测:系统应能够实时监测煤矿的关键参数,如瓦斯浓度、风速风向、煤尘浓度等。
这些参数应通过传感器实时采集,并通过数据传输方式将数据发送到监控中心。
2. 报警功能:系统应当具备智能报警功能,一旦监测到异常情况,如超过预设的安全阈值,系统应立即发出声音或光信号警报,并将报警信息发送至监控中心和相关工作人员手机。
3. 数据存储与分析:系统应能够存储历史数据并提供数据分析功能。
这使得用户可以通过系统分析数据,发现隐患,及时采取措施,并进行事故处理和预防。
4. 远程监控:系统应能够远程监控煤矿的安全状况。
监控中心可以通过云平台或网络连接到煤矿的监测系统,实时接收数据和监控煤矿的运行状态。
5. 信息可视化:系统应提供直观的信息显示界面,将监测数据以图表或图像的形式展示出来,使用户能够快速了解煤矿的安全状态。
为了实现这些功能,煤矿安全监测监控系统的设计应包括以下关键元素和步骤:1. 传感器选择:根据实际需求和监测对象的不同,选择适合的传感器来监测煤矿的各项参数,如瓦斯浓度传感器、温湿度传感器、风速风向传感器等。
2. 数据传输方式:选择合适的数据传输方式,如有线传输(以太网、RS485等)或无线传输(Wi-Fi、GPRS等),确保数据的可靠传输。
3. 监控中心建设:建设一个专门的监控中心,包括监控设备、服务器、存储设备等,并安装相应的监控软件,以接收、处理和分析来自煤矿的数据。
4. 报警系统:设计一个可靠的报警系统,包括声音报警器、光信号报警器和报警信息的发送设备,确保在发生异常情况时及时提醒和通知相关人员。
安全检测监控系统设计
07
安全检测监控系统的应用案例与实践
安全检测监控系统在工业领域 的应用案例
• 安全检测监控系统在化工、石油、矿山等工业生产过程中发挥重 要作用
• 监测生产过程中的安全参数,预防事故的发生 • 提高生产过程的自动化水平,降低人工操作的风险 • 应用案例包括 • 化工厂安全检测监控系统:监测生产过程中的温度、压力、流
安全检测监控系统采用分布式网络架构设计
• 保证系统的可靠性和稳定性 • 便于系统的远程监控和数据传输
网络架构与传输设计还考虑了系统的实时性和带宽需求
• 采用高速网络和数据压缩技术,提高数据传输速度 • 保证系统在低带宽环境下也能正常工作
远程监控与数据传输的实现
安全检测监控系统提供远程监控功能
• 用户可以通过Web界面、手机应用等方式远程查看系统 状态和数据 • 方便用户进行远程管理和故障处理
安全检测监控系统的运行与维护
安全检测监控系统在调试检验合格后投入运行
• 安排专人负责系统的运行和维护工作 • 保证系统的正常运行和安全
系统的维护包括
• 定期检查:检查系统设备的工作状态和性能指标 • 故障处理:对系统存在的故障进行及时处理和修复 • 系统升级:根据用户需求和技术发展,对系统进行升级和优化
安全检测监控系统的调试与检验
安全检测监控系统在安装完成后进行调试和检验
• 确保系统性能指标达到设计要求 • 排除系统存在的故障和隐患
调试与检验的方法包括
• 功能测试:测试系统各模块的功能是否正常 • 性能测试:测试系统的性能指标是否达到设计要求 • 稳定性测试:测试系统在长时间运行中的稳定性和可靠性
• 市场竞争日益激烈,要求系统具有更高的性能指标和更 低的成本 • 用户需求多样化,要求系统具有更高的灵活性和可扩展 性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安全检测监控系统设计(doc 9页)实习报告实习性质:学生姓名:专业班级:指导教师:实习时间:实习地点:一、煤矿安全检测监控设计的思想本设计根据AQ+6201-2006、AQ6203-2006等传感器的使用的相关规则以及《煤矿安全规则》等一系列规章规程以及该业主提供的相关的地质和该煤矿的基本资料和相关文件而进行的相关设计。
本设计方案反映了该煤矿的地质地貌、地质构造及含煤层、煤质、矿井的瓦斯情况和水文基本条件。
根据改煤矿的基本情况本设计决定采用暗硐开拓,采用走向长壁采煤的方法,是根据国家有关文件及实际情况而设计的,本方案安全可靠,经济合理、见效快、技术可靠。
矿井设计的供电电源采用多级设备多级备份,可满足矿区各设备的供电需求。
对于各种本安和非本安设备都有有其相关用电规则,保证井下的安全用电,从而提高矿区的工作效率。
二、安全检测监控系统概述1、矿井灾害种类程度及设置安全监测系统的重要性本矿井属高瓦斯矿井,所开采煤层均为易自燃煤层;煤尘具有爆炸性地点危险;矿井无冲击地压显现,煤层为2类顶板易管理。
矿井设计生产能力45kt/a,2面4头,提升、运输、通风、排水、供配电等环节较多,不论哪一环节故障都有可能酿成事故,甚至造成重大事故,特别是近几年煤矿事故的频出以及相关机关对煤矿安全的重视。
因此矿井设置安全监测监控系统,对矿井安全实施全方位的监控是十分必要的。
2、安全监测监控系统设置的条件和要求根据《煤矿安全规程》第158条规定,所有矿井必须装备矿井安全监控系统。
设计在采煤工作面进、回风平巷、回风隅角、岩石回风上山、行人上山、提升上山、掘进工作面碛头、矿井总回风巷、井下中央配电所、主扇风机房等重要机电硐室,在回风巷大于1000m的时候必须在必须在回风平巷的中部必须设置甲烷传感器,并设置安全集中监测系统,对矿井瓦斯浓度、一氧化碳、温度、风速、压差等影响矿井安全的环境参数及矿井主要机电设备的运行状况进行时时监测监控。
各种传感器的预警值、报警值和断电值以及上限复电值都要根据该矿井的实际情况设定好值;各种传感器的对应控制输入输出也应该规划好;近程和远程断电都要按其规定连接好设备和调效。
三、安全监测监控系统和传输设备选择1.监测监控系统设备选型原则(1) 监测监控设备必须符合有关国家标准和行业标准,取得“防爆合格证,且优先选择本质安全型设备。
(2) 必须具有监测、报警、断电、控制、显示、存储、打印报表和完善的故障闭锁功能。
当电网停电时能正常工作不小于2h;系统必须具有防雷电保护措施;中心站不少于2台主机,1台备用。
(3) 技术先进、更新能力和售后服务好。
(4) 充分利用现有KJ90NB监测系统资源,有利于统一管理的原则。
2.安全监控系统的组成、设置地点和布置安全监控系统由监控系统主机、传输接口、地面分站、井下分站、传输电缆、各种传感器等组成。
(1) 监测监控总站安全监控系统地面中心站设在+375m工业广场矿办公楼安全监控室,以便矿领导及有关部门可随时查看全矿的监测控实时信息,及时掌握当前的各类生产、设备运行信息。
中心站设备有可靠的接地装置和防雷装置;中心站还配有录音电话。
地面使用的是抗静电的材质的地板铺设。
矿井安全监测监控系统选用先进的融计算机技术、程控调度通讯技术和光纤传输技术于一体的KJ90NB型煤矿安全监测监控系统。
地面监控总站设监控主机2台,1台工作1台备用。
配置为P4/2.4G/2G/320G/100M/光驱/21″显示器;配备3kV A交流稳压电源l台,STKlkV A/4Ah型UPS电源l台,四屏显示驱动卡1台,LQ-1600打印机1台,传输接口(KJ101)等。
中心站主机不断的轮流与各个分站进行通信,每个分站接收到主机的询问后,立即将该分站接收的各测点信号传给主机,各分站又不停的接收各传感器信号进行检测变换和处理,时刻等待主机的询问,以便将检测参数传送到地面。
地面需要对井下设备进行控制时,主机将控制命令与分站巡检信号一起传给分站,分站输出指令通过远动开关控制设备。
监控主机将接到的实时信号进行处理和存盘,并通过本机显示器显示出来。
并能将各测量参数的实时或历史数据,制作成各种图形或报表输出。
(2) 监测监控分站分站是监测系统的关键配套设备,分大、中分站两种。
大分站(KFD-2)容量:16个输入端口,8个控制输出,最多安装16个传感器;中分站(KFD-3)容量:8个输入端口,4个控制输出,最多安装8个传感器。
根据传感器和执行器与分站的距离最多不能超过2km,与地面中心站的距离不能大于25km,根据线缆的损耗确定实际距离监测监控分站为矿用本质安全型,输入电压为AC36或AC127V,频率为50Hz。
分站在接传感器时,不用区别开关量、模拟量,完全由地面计算机作统一定义。
分站主要实现对各类传感器数据收集、实时处理、存诸、显示、控制和与地面中心站的数据通信。
分站可适用于井上下各种场合,实现瓦斯断电仪和瓦斯风电闭锁装置的全部功能。
分站使用带备用电源(独立供电大于2h),当系统停电或发生故障时,仍可独立工作,能从分站调出有关参数进行故障分析。
井下分站安装在便于人员观察、调试、检验及支护良好、无滴水、无杂物的进风巷道或硐室中,安装时加垫支架,使其距巷道底板不小于300mm或吊挂在巷道中。
声光报警器设置在相邻分站附近。
瓦斯传感器防爆型式为Exibd I矿用本安兼隔爆型,其余为Exibd I矿用本安型,传感器稳定性好、可靠性高,具有就地数据显示、报警、断电等功能,工作电流小,传输距离远。
系统具有独特的三级断电控制和超强异地交叉断电能力(中心站手控、分站程控和传感器就地控制),具有断电回信息比较,若异常则报警。
矿井达产时,全矿共需要9个监测监控分站,使用7个,备用2个。
其中:使用大分站3个,备用1个;使用中分站4个,备用1个。
各监测监控分站设置情况见表1-1-1:表1-1-1 监测监控分站设置情况表序分站安装地点分站单数备注1 +309.5m南回风KFD-2 台 1 掘进面2 +305m二平面KFD-2 台 1 回风平3 +180回风上山KFD-2 台 1 +18轨4 大分站使用合台 35 +180mE平面KFD-3 台 16 +220岩石回风KFD-3 台 17 1101平巷KFD-3 台 18 +303m9道拐回KFD-3 台 19 中分站使用合台 410 大、中分站使用台711 大分站备用KFD-2 台 112 中分站备用KFD-3 台 113 总计台93.监测监控系统设备调试与校正监测监控系统设备每月至少进行一次调试、校正。
甲烷传感器、便携式甲烷检测报警仪等采用载体催化元件的甲烷检测设备,根据相关规定:每10天必须使用校准气样和空气样调校、测试1次。
监测监控设备发生故障时,必须及时处理,在故障期间必须有安全措施。
必须每天检查监测监控设备及电缆是否正常,使用便携式甲烷检测报警仪与甲烷传感器进行对照,并将记录和检查结果报监测值班员;当两者读数误差大于允许误差时,先以读数较大者为依据,采取安全措施并必须有8h内对2种设备调校完毕,必须设专职人员负责便携式甲烷检测报警仪的充电、收发和维护。
每班要清理隔爆罩上的煤尘,发放前必须检查便携式甲烷检测报警仪的零点和电压或电源欠压值,不符合要求的严禁发放使用。
4.传输设备及器材选型(1).传输设备及器材选型原则传输设备应符合《中华人民共和国煤炭行业标准煤矿用信息传输装置》(MT/T899-2000)。
用于监测监控系统的误码率不应大于10-6,最大巡检周期不应大于30s。
安全监测监控设备之间的输入输出信号必须为本质安全型信号,设备之间必须使用专用阻燃电缆、光缆连接,严禁与调度电话线和动力电缆等共用。
(2).传输设备及器材型号、数量根据《煤矿安全规程》规定,井下电缆必须选用检验合格的并取得煤矿矿用产品安全标志的阻燃电缆、光缆。
本系统中心站下井、井下主要传输线采用光缆,根据本矿井属于平硐型也可以选用MHY-32(1x4x1.0)主传输线缆。
分站至模拟量传感器之间采用PUYVR-1×4×7/0.43型电缆,分站至开关量传感器之间、控制电缆采用PUYVR-1×2×7/0.28型电缆。
电缆每隔100m作一黄色标志,标志长度为100m,电缆的敷设、连接方式按相关规程规范的规定执行。
(3).传输设备由传输电缆和接线盒组成,传输电缆分3种规格:1)主通讯电缆:用于监控总站至分站、分线盒至分站的数据传输,型号PUYVRP39 1×4×7/1.38,长1200m。
2)模拟电缆:用于分站至分线盒的数据传输,型号PUYVP 1×4×7/0.43,长2150m。
3)开关量电缆:用于分线盒至传感器的数据传输,型号PUYVP 1×2×7/0.28,长2350m。
4)二通、三通接线盒各8个。
5)传输接口设备为KJ101数据通信装置,通讯方式为RS485。
四、监测设备各类传感器布置根据《煤矿安全规程》、《煤矿安全监测新标准、新规程》等有关规定,结合本矿井的开采技术条件、采掘布置、回采工艺、生产系统等综合条件,对井下采掘工作面、硐室、各主要生产环节等进行了传感器配备。
1.回采面传感器选型及配置本矿井为高瓦斯矿井,故在回采工作面工作面上隅角、回风巷、回风流分别设有高低浓度甲烷传感器。
一氧化碳传感器和温度传感器用于有自燃倾向的煤层,前者报警浓度≥0.0024%,后者报警值34℃。
进风流:设置0-10%的低浓度甲烷传感器,报警浓度为0.5%、断电浓度≥0.5%,复电浓度<0.5%。
断电范围运输巷全部非本质安全型电气设备。
工作面和上隅角:设置0-10%的低浓度甲烷传感器,报警浓度为 1.0%、断电浓度≥1.5%,复电浓度<1%。
断电范围工作面和回风巷全部非本质安全型电气设备。
回风巷:在回风巷中部及回风巷与采区回风上山相距10m处设置0-10%的低浓度甲烷传感器,报警浓度为1%、断电浓度≥1.5%、复电浓度<1%。
断电范围回风巷全部非本质安全型电气设备。
2.掘进面传感器选型及配置本矿井为高瓦斯矿井,在掘进面和回风流中分别设有甲烷传感器,在掘进面进风处设有局部通风机开停传感器,风筒末端设置风筒传感器。
碛头:设置0-10%的低浓度甲烷传感器,报警浓度为1%、断电浓度≥1.5%、复电浓度<1%。
回风:设置0-10%的低浓度甲烷传感器,报警浓度为1%、断电浓度≥1%、复电浓度<1%。
本矿井属于高瓦斯容易自燃的矿井,在采煤的工作面至少要设置一个一氧化碳传感器,其安装的地点可以是上隅角、采煤工作面或者回风平巷,其报警浓度为>=0.0024%工作面甲烷传感器断电范围为掘进巷道内全部非本质安全型电气设备。