牛顿第二定律两类动力学问题及答案解析
【师说】高考物理一轮复习 牛顿第二定律 两类动力学问题课后练习(新题,含解析)
![【师说】高考物理一轮复习 牛顿第二定律 两类动力学问题课后练习(新题,含解析)](https://img.taocdn.com/s3/m/e3d8ad97f524ccbff12184f7.png)
课时训练8 牛顿第二定律两类动力学问题一、选择题1.如图所示,连同装备总重力为G的滑雪爱好者从滑雪坡道上由静止开始沿坡道ABC向下滑行,滑到B点时滑雪者通过改变滑雪板角度的方式来增大摩擦力的大小,使其到底端C点速度刚好减为零.已知AB>BC,设两段运动过程中摩擦力均为定值.下列分别为滑雪者位移、速度、加速度、摩擦力随时间变化的图象,其中正确的是( )解析对滑雪者,受重力、支持力和摩擦力三个恒力作用,在AB和BC两段的合力均为恒定值,由牛顿第二定律,Gsinθ-fAB=maAB、fBC-Gsinθ=maBC,加速度也分别恒定,且AB段aAB的方向沿斜面向下,BC段aBC的方向沿斜面向上,则选项C、D错误;滑雪者先匀加速运动到B,再匀减速运动到C,则选项B正确;s-t图象的斜率表示速度,则选项A错误.答案 B2.汽车拉着拖车在水平道路上沿着直线加速行驶,根据牛顿运动定律,以下说法正确的是( )A.汽车能拉着拖车加速前进,是因为汽车拉拖车的力大于拖车拉汽车的力B.加速前进时,汽车对拖车的拉力大小与拖车对汽车的拉力大小相等C.汽车先对拖车施加拉力,然后才产生拖车对汽车的拉力D.汽车对拖车的拉力大小与拖车所受地面对它的摩擦力大小相等解析汽车拉着拖车加速前进,汽车对拖车的拉力大于拖车所受地面对它的摩擦力,根据牛顿第三定律,汽车拉拖车的力等于拖车拉汽车的力,且同时产生,故只有选项B正确.答案 B3.[2014·北京月考]粗糙水平面上放有P、Q两个木块,它们的质量依次为m1、m2,与水平面的动摩擦因数依次为μ1、μ2.分别对它们施加水平拉力F,它们的加速度a随拉力F变化的规律如图所示.下列判断正确的是( )A.m1>m2,μ1>μ2 B.m1>m2,μ1<μ2C.m1<m2,μ1>μ2 D.m1<m2,μ1<μ2解析木块在水平面受到拉力和摩擦力作用,根据牛顿第二定律有a =F -μmg m =1m F -μg ,结合加速度a 随拉力F 变化的图象,a -F 斜率代表1m,图象Q 的斜率大,即m1>m2,纵轴的截距是-μg ,把图象延长得到纵轴截距如图,Q 截距大说明μ2>μ1.对照答案B 对.答案 B4.[2013·新课标全国卷Ⅱ]一物块静止在粗糙的水平桌面上.从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a 表示物块的加速度大小,F 表示水平拉力的大小.能正确描述F 与a 之间关系的图象是( )解析 设物块受的滑动摩擦力为Ff ,当拉力F 增至与滑动摩擦力相等时,物块才开始滑动.根据牛顿第二定律得F -Ff =ma ,则F =Ff +ma ,C 项正确.答案 C 5.[2014·福建月考]如图所示,竖直平面内两根光滑细杆所构成的∠AOB 被铅垂线OO′平分,∠AOB =120°.两个质量均为m 的小环通过水平轻弹簧的作用静止在A 、B 两处,A 、B 连线与OO′垂直,连线中O 点高度为h ,已知弹簧原长为3h ,劲度系数为k ,现在把两个小环在竖直方向上均向下平移h ,释放瞬间A 环加速度为a ,则下列表达式正确的是( )A .k =3mg/3hB .k =mg/6hC .a =gD .a =3g解析 以位于A 点的小环为研究对象受力分析如图所示,设此时弹簧伸长量为Δx ,则有:k Δx =mgtan30°,而Δx =2h tan30°-3h ,解得:k =mg 3h,所以A 、B 错误;同理分析小环下移h 后的受力情况可得到:k Δx′cos30°-mgsin30°=ma ,而同时有Δx′=2×2h tan30°-3h ,代入解得:a =g ,故C 正确、D 错误. 答案 C 6.[2013·广东卷]游乐场中,从高处A 到水面B 处有两条长度相同的光滑轨道.甲、乙两小孩沿不同轨道同时从A 处自由滑向B 处,下列说法正确的有( )A .甲的切向加速度始终比乙的大B .甲、乙在同一高度的速度大小相等C .甲、乙在同一时刻总能到达同一高度D .甲比乙先到达B 处解析设轨道的切线与水平面夹角为θ,小孩下滑过程的切向加速度a =gsin θ,开始甲大于乙后来甲小于乙,A 项错误;由机械能守恒可知,甲、乙在同一高度的速度大小相等,B 项正确;画出甲、乙的速率—时间图象如图所示,由于两种情况路程相同(即图象与t 轴所围的图形的面积相同),最后的速率相同,由图可知甲比乙先到达B 处,同一时刻,甲的位置总低于乙,C 项错误,D 项正确.答案 BD7.[2013·新课标全国卷Ⅰ]2012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功,图(a)为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止.某次降落,以飞机着舰为计时零点,飞机在t =0.4 s 时恰好钩住阻拦索中间位置,其着舰到停止的速度—时间图线如图(b)所示.假如无阻拦索,飞机从着舰到停止需要的滑行距离约为1 000 m .已知航母始终静止,重力加速度的大小为g ,则( )A .从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的1/10B .在0.4 s ~2.5 s 时间内,阻拦索的张力几乎不随时间变化C .在滑行过程中,飞行员所承受的加速度大小会超过2.5gD .在0.4 s ~2.5 s 时间内,阻拦系统对飞机做功的功率几乎不变解析 速度—时间图象中,图线与坐标轴所围图形的面积为物体的位移,所以可以计算飞机受阻拦时运动的位移约为x =70×0.4 m+12×(3.0-0.4)×70 m=119 m ,A 项正确;0.4~2.5 s 时间内,速度—时间图象的斜率不变,说明两条绳索张力的合力不变,但是两力的夹角不断变小,所以绳索的张力不断变小,B 项错误;0.4~2.5 s 时间内平均加速度均为a =66-102.1m/s2=26.7 m/s2,C 项正确;0.4~2.5 s 时间内,阻拦系统对飞机的作用力不变,飞机的速度逐渐减小,由P =Fv 可知,阻拦系统对飞机做功的功率逐渐减小,D 项错误. 答案 AC8.在工厂的车间里有一条沿水平方向匀速运行的传送带,可将放在其上的小工件(可视为质点)运送到指定位置.某次将小工件轻放到传送带上时,恰好带动传送带的电动机突然断电,导致传送带做匀减速运动至停止.则小工件被放到传送带上后相对于地面( )A .做匀减速直线运动直到停止B .先做匀加速直线运动,然后做匀减速直线运动C .先做匀加速直线运动,然后做匀速直线运动D .先做匀减速直线运动,然后做匀速直线运动解析 由于小工件的初速度为零,即小工件的初速度小于传送带的速度,故小工件在传送带的滑动摩擦力作用下先做匀加速直线运动,当小工件达到与传送带相同的速度后,将相对于传送带静止并一起做匀减速直线运动,将最终停止.答案 B9.如图甲所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图乙所示.已知v2>v1,则( )A .t2时刻,小物块离A 处的距离达到最大B .t2时刻,小物块相对传送带滑动的距离达到最大C .0~t2时间内,小物块受到的摩擦力方向先向右后向左D .0~t3时间内,小物块始终受到大小不变的摩擦力作用解析 本题考查受力分析、牛顿第二定律和速度图象,意在考查考生应用牛顿第二定律并结合v -t 图象分析传送带模型的能力.小物块对地速度为零时,即t1时刻,向左离开A 处最远;t2时刻,小物块相对传送带静止,此时不再相对传送带滑动,所以从开始到此刻,它相对传送带滑动的距离最大;0~t2时间内,小物块受到的摩擦力为滑动摩擦力,方向始终向右,大小不变;t2时刻以后相对传送带静止,故不再受摩擦力作用,B 正确. 答案 B二、非选择题10.[2013·四川卷]如图1所示,某组同学借用“探究a 与F 、m 之间的定量关系”的相关实验思想、原理及操作,进行“研究合外力做功和动能变化的关系”的实验:①为达到平衡阻力的目的,取下细绳及托盘,通过调整垫片的位置,改变长木板倾斜程度,根据打出的纸带判断小车是否做________运动.②连接细绳及托盘,放入砝码,通过实验得到图2所示的纸带,纸带上O 为小车运动起始时刻所打的点,选取时间间隔为0.1 s 的相邻计数点A 、B 、C 、D 、E 、F 、G.实验时小车所受拉力为0.2 N ,小车的质量为0.2 kg.请计算小车所受合外力做的功W 和小车动能的变化ΔEk ,补填表中空格(结果保留至小数点后第四位分析上述数据可知:在实验误差允许的范围内W =ΔEk ,与理论推导结果一致.③实验前已测得托盘质量为7.7×10-3 kg ,实验时该组同学放入托盘中的砝码质量应为________kg(g 取9.8 m/s2,结果保留至小数点后第三位).解析 ①平衡摩擦力完成的依据是,小车可以独自在斜面上做匀速直线运动.②O ~F 段,合外力做的功W =Fs =0.2 N×55.75×10-2 m =0.111 5 J ;小车动能的变化ΔEk =12mv2F =12×0.2×⎣⎢⎡⎦⎥⎤--20.2 2 J =0.110 5 J. ③设M 为托盘、钩码总质量从O 点到任一计数点,拉力的功等于小车动能的变化Fs =12mv2 根据机械能守恒,钩码、托盘减少的重力势能等于系统增加的动能Mgs =12(M +m)v2 联立解得,M =0.022 7 kg钩码质量 m′=M -7.7×10-3 kg =0.015 kg.答案 ①匀速直线 ②0.111 5 J 0.110 5 J ③0.01511.某兴趣小组在研究测物块P 与软垫间的动摩擦因数时,提出了一种使用刻度尺和秒表的实验方案:将软垫一部分弯折形成斜面轨道与水平轨道连接的QCE 形状,并将其固定在竖直平面内,如图所示.将物块P 从斜面上A 处由静止释放,物块沿粗糙斜面滑下,再沿粗糙水平面运动到B 处静止,设物块通过连接处C 时机械能不损失,重力加速度g 取10 m/s2,用秒表测得物块从A 滑到B 所用时间为2 s ,用刻度尺测得A 、C 间距60 cm ,C 、B 间距40 cm.求:(1)物块通过C 处时速度大小;(2)物块与软垫间的动摩擦因数.解析 (1)设物块通过C 处时的速度为vC ,物块由A 滑到C 所通过的位移为x1,时间为t1,物块由C 滑到B 所通过的位移为x2,时间为t2.由x =v0+vt 2t 得x1=vC 2t1 x2=vC 2t2 且t1+t2=2 s解得:vC =1 m/s(2)由牛顿运动定律F =ma 可得μmg =ma由匀变速直线运动规律,得-v2C =-2ax2解得:μ=0.125 12.2013年9月,我国舰载机歼10满载荷在航母上首降成功.设某一舰载机的质量为m =2.5×104 kg,速度为v0=42 m/s ,若仅受空气阻力和甲板阻力作用,舰载机将在甲板上以a0=0.8 m/s2的加速度做匀减速运动,着舰过程中航母静止不动.(1)舰载机着舰后,若仅受空气阻力和甲板阻力作用,航母甲板至少多长才能保证舰载机不滑到海里?(2)为了舰载机在有限长度的跑道上停下来,甲板上设置了阻拦索让舰载机减速,同时考虑到舰载机挂索失败需要复飞的情况,舰载机着舰时不关闭发动机.图示为舰载机勾住阻拦索后某一时刻的情景,此时发动机的推力大小为F =1.2×105 N,减速的加速度a1=20 m/s2,此时阻拦索夹角θ=106°,空气阻力和甲板阻力保持不变.求此时阻拦索承受的张力大小?(已知:sin53°=0.8,cos53°=0.6)解析(1)设甲板的长度至少为x0,则由运动学公式得-v20=-2a0x0故x0=v20/2a0代入数据可得x0=1 102.5 m(2)舰载机受力分析如图所示,其中FT 为阻拦索的张力,f 为空气和甲板对舰载机的阻力,由牛顿第二定律得2FTcos53°+f -F =ma1舰载机仅受空气阻力和甲板阻力时f =ma0联立可得FT =5×105 N 13.如图所示,一质量为m 的物块A 与直立轻弹簧的上端连接,弹簧的下端固定在地面上,一质量也为m 的物块B 叠放在A 的上面,A 、B 处于静止状态.若A 、B 粘连在一起,用一竖直向上的拉力缓慢提B ,当拉力的大小为0.5mg 时,A 物块上升的高度为L ,此过程中,该拉力做的功为W ;若A 、B 不粘连,用一竖直向上的恒力F 作用在B 上,当A 物块上升的高度也为L 时,A 、B 恰好分离.已知重力加速度为g ,不计空气阻力,求:(1)弹簧的劲度系数k ;(2)恒力F 的大小;(3)A 与B 分离时的速度大小.解析 (1)设弹簧原长为L0,没有作用力时,弹簧总长度为L1=L0-2mg k当F1=0.5mg 时,弹簧总长度为L2=L0-2mg -F1k =L0-1.5mg k又由题意可知L =L2-L1=0.5mg k解得k =mg 2L. (2)A 、B 刚分离时,A 不受B 对它的弹力作用,经受力分析可得A 的加速度为aA =--mg m =0.5g 此时B 的加速度为aB =F -mg m刚分离时应有aA =aB解得F =1.5mg(3)设上升L 过程中,弹簧减小的弹性势能为ΔEp ,A 、B 粘连一块上升时,依据功能关系有: W +ΔEp =2mgL在恒力F 作用的过程中有:F·L+ΔEp =2mgL +12·2m·v2 可得:v =32gL -W m。
第三章第二节 牛顿第二定律 两类动力学问题
![第三章第二节 牛顿第二定律 两类动力学问题](https://img.taocdn.com/s3/m/fa2d5c52be23482fb4da4cf8.png)
即时应用 2.(2012· 皖南八校联考)某兴趣小组 为了体验电梯中的超重和失重现象, 电梯由1楼出发,上升至6楼停下,该 过程中兴趣小组利用压力传感器和笔 记本电脑作出了一个质量为1 kg的物 体
对传感器的压力与时间图象,如图 3-2-2所示,试求:(g取 9.8 m/s2)
图3-2-2
(1)该过程中电梯的最大速度;
(3)应用牛顿运动定律和运动学公式求
解,通常先用表示物理量的符号运算,解
出所求物理量的表达式,然后将已知物
理量的数值及单位代入,通过运算求
结果.
3.应用牛顿第二定律的解题步骤 (1)明确研究对象.根据问题的需要和 解题的方便,选出被研究的物体. (2)分析物体的受力情况和运动情 况.画好受力分析图,明确物体的运 动性质和运动过程.
要点透析直击高考
一、对牛顿第二定律的理解
1.牛顿第二定律的“五性”
(1)矢量性:公式F=ma是矢量式,任
一时刻,F与a总同向.
(2)瞬时性:a与F对应同一时刻,即a 为某时刻的加速度时,F为该时刻物体 所受的合外力. (3)因果性:F是产生加速度a的原因, 加速度a是F作用的结果.
(4)同一性:有三层意思:①加速度a
是相对同一个惯性系的(一般指地面);
②F=ma中,F、m、a对应同一个物
体或同一个系统;③F=ma中,各量
统一使用国际单位.
(5)独立性:①作用于物体上的每一个 力各自产生的加速度都满足F=ma, ②物体的实际加速度等于每个力产生 的加速度的矢量和,③分力和加速度 在各个方向上的分量也满足F=ma即 Fx=max,Fy=may.
正交分解法的应用
例2
如图3-2-5所示,质量为m的
人站在自动扶梯上,扶梯正以加速度a
牛顿第二定律的应用——解决动力学的两类基本问题
![牛顿第二定律的应用——解决动力学的两类基本问题](https://img.taocdn.com/s3/m/6b24137cddccda38376baf26.png)
牛顿第二定律的应用(解决动力学的两类基本问题)知识要点:1. 进一步学习分析物体的受力情况,达到能结合物体的运动情况进行受力分析。
2. 掌握应用牛顿运动定律解决问题的基本思路和方法。
重点、难点解析:(一)牛顿第一定律内容:物体总保持静止或匀速直线运动状态,直到有外力迫使它改变这种状态为止。
(二)牛顿第三定律1. 内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一直线上。
2. 理解作用力与反作用力的关系时,要注意以下几点:(1)作用力与反作用力同时产生,同时消失,同时变化,无先后之分。
(2)作用力与反作用力总是大小相等,方向相反,作用在同一直线上(与物体的大小,形状,运动状态均无关系。
)(3)作用力与反作用力分别作用在受力物体和施力物体上,其作用效果分别体现在各自的受力物体上,所以作用力与反作用力产生的效果不能抵消。
(作用力与反作用力能否求和?)(4)作用力与反作用力一定是同种性质的力。
(平衡力的性质呢?)(三)牛顿第二定律1、内容:物体的加速度与物体所受合外力成正比,跟物体质量成反比,加速度方向跟合外力的方向相同。
2、数学表达式:F合=ma3、关于牛顿第二定律的理解:(1)同体性:F合=ma是对同一物体而言的(2)矢量性:物体加速度方向与所受合外力方向一致(3)瞬时性:物体的加速度与所受合外力具有瞬时对应关系牛顿第二定律的应用(一)在共点力作用下物体的平衡1:平衡状态:物体处于静止或匀速直线运动状态,称物体处于平衡状态。
2:平衡条件:在共点力作用下物体的平衡条件是:F合=0。
==(其中F x合为物体在x轴方向上所受的合外力,F y合为物体在y轴方向上所受的合外力)(二)两类动力学的基本问题1. 从受力情况确定运动情况根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况。
2. 从运动情况确定受力情况根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。
牛顿第二定律及应用(解析版)
![牛顿第二定律及应用(解析版)](https://img.taocdn.com/s3/m/147bb060326c1eb91a37f111f18583d049640f7b.png)
牛顿第二定律及应用一、力的单位1.国际单位制中,力的单位是牛顿,符号N。
2.力的定义:使质量为1 kg的物体产生1 m/s2的加速度的力,称为1 N,即1 N=1kg·m/s2。
3.比例系数k的含义:关系式F=kma中的比例系数k的数值由F、m、a三量的单位共同决定,三个量都取国际单位,即三量分别取N、kg、m/s2作单位时,系数k=1。
小试牛刀:例:在牛顿第二定律的数学表达式F=kma中,有关比例系数k的说法,不正确的是()A.k的数值由F、m、a的数值决定B.k的数值由F、m、a的单位决定C.在国际单位制中k=1D.取的单位制不同, k的值也不同【答案】A【解析】物理公式在确定物理量之间的数量关系的同时也确定了物理量的单位关系,在F=kma中,只有m的单位取kg,a的单位取m/s2,F的单位取N时,k才等于1,即在国际单位制中k=1,故B、C 、D正确。
二、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比.加速度的方向与作用力方向相同.2.表达式:F=ma.3.表达式F=ma的理解(1)单位统一:表达式中F、m、a三个物理量的单位都必须是国际单位.(2)F的含义:F是合力时,加速度a指的是合加速度,即物体的加速度;F是某个力时,加速度a是该力产生的加速度.4.适用范围(1)只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).(2)只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.小试牛刀:例:关于牛顿第二定律,下列说法中正确的是()A.牛顿第二定律的表达式F= ma在任何情况下都适用B.物体的运动方向一定与物体所受合力的方向一致C.由F= ma可知,物体所受到的合外力与物体的质量成正比D.在公式F= ma中,若F为合力,则a等于作用在该物体上的每一个力产生的加速度的矢量和【答案】D【解析】A、牛顿第二定律只适用于宏观物体,低速运动,不适用于物体高速运动及微观粒子的运动,故A错误;B、根据Fam合,知加速度的方向与合外力的方向相同,但运动的方向不一定与加速度方向相同,所以物体的运动方向不一定与物体所受合力的方向相同,故B错误;C、F= ma表明了力F、质量m、加速度a之间的数量关系,但物体所受外力与质量无关,故C错误;D、由力的独立作用原理可知,作用在物体上的每个力都将各自产生一个加速度,与其它力的作用无关,物体的加速度是每个力产生的加速度的矢量和,故D正确;故选D。
牛顿第二定律的两类基本问题已知受力情况求运动情况
![牛顿第二定律的两类基本问题已知受力情况求运动情况](https://img.taocdn.com/s3/m/8c3bf401e418964bcf84b9d528ea81c759f52e77.png)
G
由运动学公式vt2-v02=2as2,得:
物体的滑行距离 s2
0
v
2 2
2a2
0 1.22 m
2 (2)
0.36m
※应用牛顿运动定律解题的一般步骤:
1、明确研究对象和研究过程 2、画图分析研究对象的受力和运动情况;(画图 很重要,要养成习惯) 3、进行必要的力的合成和分解,并注意选定正方向 4、根据牛顿运动定律和运动学公式列方程求解; 5、对解的合理性进行讨论
由运动学公式:
4s末的速度 vt v0 at 0 1.1 4 4.4m / s
4s内的位移
s
v0t
1 2
at 2
1 2
1.1 42
8.8m
例2:如图,质量为2kg的物体静止在水平地面上, 物体与水平面间的动摩擦因数为0.2,现对物体施 加一个大小F=5N、与水平方向成θ=370角的斜向 上的拉力(如图),已知:g=10m/s2,求: (1)物体在拉力的作用下4s内通过的位移大小 (2)若4s后撤去拉力F,则物体还能滑行多远?
例3:一个滑雪的人,质量m=75kg,以 V0=2m/s的初速度沿山坡匀加速地滑下, 山坡的倾角θ=300,在t=5s的时间内滑下 的路程s=60m,求滑雪人受到的阻力(包 括滑动摩擦力和空气阻力)。
解:对人进行受力分析画受力图,如下 因为:V0=2m/s,x=60m,t=5s
N f
取沿钭面向下方向为正
G2
则:根据运动学公式:
x
V0t
1 2
at
2
60
2
5
1 2
a
52
求得a = 4m/s2
G1 mg
再由牛顿第二定律可得:
G2 f m gsin f m a f m( g sin a)
2024高考物理一轮复习--牛顿第二定律的应用--瞬时性问题,动力学中的两类基本问题
![2024高考物理一轮复习--牛顿第二定律的应用--瞬时性问题,动力学中的两类基本问题](https://img.taocdn.com/s3/m/690b3770f011f18583d049649b6648d7c1c708a8.png)
瞬时性问题、动力学中的两类基本问题一、瞬时问题的两类模型轻绳、轻杆和接触面的弹力能跟随外界条件发生突变;弹簧(或橡皮绳)的弹力不能突变,在外界条件发生变化的瞬间可认为是不变的.二、动力学两类基本问题1.解题指导(1)做好两个分析:①受力分析,表示出合力与分力的关系;②运动过程分析,表示出加速度与各运动量的关系.(2)熟悉两种处理方法:合成法和正交分解法.(3)把握一个关键:求解加速度是解决问题的关键.2.必备知识(1)基本思路(2)基本步骤(3)解题关键(1)两类分析——物体的受力分析和物体的运动过程分析。
(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁。
三、针对练习1、如图甲、乙所示,细绳拴一个质量为m 的小球,小球分别用固定在墙上的轻质铰链杆和轻质弹簧支撑,平衡时细绳与竖直方向的夹角均为53°,轻杆和轻弹簧均水平。
已知重力加速度为g ,sin 53°=0.8,cos 53°=0.6。
下列结论正确的是( )A .甲、乙两种情境中,小球静止时,细绳的拉力大小均为43mgB .甲图所示情境中,细绳烧断瞬间小球的加速度大小为43gC .乙图所示情境中,细绳烧断瞬间小球的加速度大小为53gD .甲、乙两种情境中,细绳烧断瞬间小球的加速度大小均为53g2、如图所示,细线连接着A 球,轻质弹簧两端连接着质量相等的A ,B 球,在倾角为θ的光滑斜面体C 上静止,弹簧与细线均平行于斜面.C 的底面粗糙,在水平地面上能始终保持静止,在细线被烧断的瞬间,下列说法正确的是( ) A .两个小球的瞬时加速度均沿斜面向下,大小均为g sin θ B .A 球的瞬时加速度沿斜面向下,大小为2g sin θ C .C 对地面的压力等于A ,B 和C 的重力之和 D .地面对C 无摩擦力3、如图所示,物块1的质量为3m ,物块2的质量为m ,两者通过弹簧相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则有( ) A .a 1=0,a 2=g B .a 1=g ,a 2=g C .a 1=0,a 2=4 g D .a 1=g ,a 2=4 g4、如图所示,质量分别为m 、2m 的球A 、B 由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀减速运动的电梯内,细线承受的拉力为F ,此时突然剪断细线,在绳断的瞬间,弹簧的弹力大小和小球A 的加速度大小分别为( ) A .2F 3 2F 3m +gB .F 3 2F3m+gC .2F 3 F 3m+gD .F 3 F3m+g5、如图,A 、B 两球质量相等,光滑斜面的倾角为θ,图甲中,A 、B 两球用轻弹簧相连,图乙中A 、B 两球用轻质杆相连,系统静止时,挡板C 与斜面垂直,弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间(重力加速度为g )( ) A .图甲中A 球的加速度不为零 B .图乙中两球加速度均为g sin θ C .图乙中轻杆的作用力一定不为零D .图甲中B 球的加速度是图乙中B 球加速度的3倍6、如图所示,质量为2 kg 的物体B 和质量为1 kg 的物体C 用轻弹簧连接并竖直地静置于水平地面上。
《三维设计》2014新课标高考物理一轮总复习课件 第三章牛顿运动定律第2单元 牛顿第二定律 两类动力学问题
![《三维设计》2014新课标高考物理一轮总复习课件 第三章牛顿运动定律第2单元 牛顿第二定律 两类动力学问题](https://img.taocdn.com/s3/m/d519e013964bcf84b9d57b5a.png)
的羽毛与苹果自由下落的频闪照片。请思
考苹果与羽毛重力相差很大,为什么它们 总在同一相同的高度呢? 图3-2-1
提示:物体的加速度与力成正比,与物体的质量成反 F mg 比,物体在真空中仅受重力作用,故a= m = m =g,可 知羽毛和苹果在真空中下落的加速度相同。故它们的运 动状态时刻相同,它们能时刻处在同一高度。
[尝试解题]
(1)从题中图象知,滑块脱离弹簧后的加速度大小 Δv1 1.5 a1= Δt =0.3 m/s2=5 m/s2
1
由牛顿第二定律得:μmg=ma1 解得:μ=0.5
(2)刚释放时滑块的加速度 Δv2 3 a2= Δt =0.1 m/s2=30 m/s2 2 由牛顿第二定律得:kx-μmg=ma2 解得:k=175 N/m。
于水平地面的A处,A、B间距L=20 m,用大小为30 N, 沿水平方向的外力拉此物体,经t0=2 s拉至B处。(已知cos 37°=0.8,sin 37°=0.6,取g=10 m/s2)
图3-2-4 (1)求物体与地面间的动摩擦因数; (2)用大小为30 N,与水平方向成37°的力斜向上拉此 物体,使物体从A处由静止开始运动并能到达B处,求该 力作用的最短时间t。
(4)确定合外力F合,注意F合与a同向。若物体只受两
个共点力作用,常用合成法;若物体受到3个或3个以上不 在同一直线上的力的作用,一般用正交分解法。 F =ma x x (5)根据牛顿第二定律F合=ma或 列方程求 Fy=may
解,必要时还要对结果进行讨论。
[例2]
如图3-2-4所示,质量m=2 kg的物体静止
2.解决两类基本问题的方法
以 加速度 为“桥梁”,由 运动学公式 和 牛顿运动定律 列 方程求解,具体逻辑关系如图:
(完整版)动力学两类基本问题
![(完整版)动力学两类基本问题](https://img.taocdn.com/s3/m/efdb7cb7f61fb7360b4c655b.png)
动力学两类基本问题1.由受力情况判断物体的运动状态,处理这类问题的基本思路是:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再应用运动学公式求出速度或位移.2.由物体的运动情况判断受力情况,处理这类问题的基本思路是:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力,至于牛顿第二定律中合力的求法可用力的合成和分解法(平行四边形定则)或正交分解法.3.求解上述两类问题的思路,可用如图所示的框图来表示:解决两类动力学基本问题应把握的关键(1)做好两个分析——物体的受力分析和物体的运动过程分析;根据物体做各种性质运动的条件即可判定物体的运动情况、加速度变化情况及速度变化情况.(2)抓住一个“桥梁”——物体运动的加速度是联系运动和力的桥梁.【典例1】(2013·江南十校联考,22)如图3-3-2所示,倾角为30°的光滑斜面与粗糙平面的平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m.(滑块经过B点时没有能量损失,g=10 m/s2),求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.图3-3-2教你审题关键词获取信息①光滑斜面与粗糙的水平面滑块在斜面上不受摩擦力,水平面受摩擦力②从斜面上的A点由静止释放滑块的初速度v0=0③最终停在水平面上的C点滑块的末速度为零④滑块经过B点时没有能量损失斜面上的末速度和水平面上的初速度大小相等第二步:分析理清思路→抓突破口做好两分析→受力分析、运动分析①滑块在斜面上:滑块做初速度为零的匀加速直线运动.②滑块在水平面上:滑块做匀减速运动.第三步:选择合适的方法及公式→利用正交分解法、牛顿运动定律及运动学公式列式求解.解析(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大为v m,设滑块在斜面上运动的加速度大小为a1,则有mg sin 30°=ma1,v2m=2a1hsin 30°,解得:v m=4 m/s(2)滑块在水平面上运动的加速度大小为a2,μmg=ma2v2m=2a2L,解得:μ=0.4(3)滑块在斜面上运动的时间为t1,v m=a1t1得t1=0.8 s由于t>t1,滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s设t=1.0 s时速度大小为v=v m-a2(t-t1)解得:v=3.2 m/s答案(1)4 m/s(2)0.4(3)3.2 m/s1.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个桥梁——物体运动的加速度是联系运动和力的桥梁.2.解决动力学基本问题时对力的处理方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”.(2)正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.3.解答动力学两类问题的基本程序(1)明确题目中给出的物理现象和物理过程的特点.(2)根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.(3)应用牛顿运动定律和运动学公式求解.突破训练3如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取10 m/s2)图5答案 5.53 s解析此题可以分为三个运动阶段:力F存在的阶段物体沿斜面向上加速,受力分析如图所示,由牛顿第二定律和运动学公式得:F-F f-mg sin θ=ma1F f=μF N=μmg cos θv1=a1t1解得:a1=2 m/s2v1=4 m/s第二阶段为从撤去力F到物体沿斜面向上的速度减为零,受力分析如图所示由牛顿第二定律和运动学公式mg sin θ+μmg cos θ=ma20-v1=-a2t2解得:a2=7.6 m/s2t2=0.53 s第三阶段物体反向匀加速运动(因为mg sin θ>μmg cos θ)mg sin θ-μmg cos θ=ma3v2=a3t3解得:a3=4.4 m/s2t3=5 st=t2+t3=5.53 s题组一动力学两类基本问题1.如图3-2-5所示,水平桌面由粗糙程度不同的AB、BC两部分组成,且AB=BC,小物块P(可视为质点)以某一初速度从A点滑上桌面,最后恰好停在C点,已知物块经过AB与BC两部分的时间之比为1∶4,则物块P与桌面上AB、BC部分之间的动摩擦因数μ1、μ2之比为(P物块在AB、BC上所做的运动均可看作匀变速直线运动)()图3-2-5A.1∶1B.1∶4C.4∶1 D.8∶1解析:选D由牛顿第二定律可知,小物块P在AB段减速的加速度a1=μ1g,在BC段减速的加速度a2=μ2g,设小物块在AB段运动时间为t,则可得:v B=μ2g·4t,v0=μ1gt+μ2g·4t,由x AB=v0+v B2·t,x BC=v B2·4t,x AB=x BC可求得:μ1=8μ2,故D正确。
第2讲 牛顿第二定律 两类动力学问题
![第2讲 牛顿第二定律 两类动力学问题](https://img.taocdn.com/s3/m/95bb341c5901020207409cb3.png)
第2讲牛顿第二定律两类动力学问题考点1对牛顿第二定律的理解1.牛顿第二定律的性质2.合力、加速度、速度的关系(1)物体的加速度由所受合力决定,与速度无必然联系.(2)合力与速度夹角为锐角,物体加速;合力与速度夹角为钝角,物体减速.(3)a=ΔvΔt是加速度的定义式,a与v、Δv无直接关系;a=Fm是加速度的决定式.1.(多选)关于速度、加速度、合力的关系,下列说法正确的是(ABC)A.原来静止在光滑水平面上的物体,受到水平推力的瞬间,物体立刻获得加速度B.加速度的方向与合力的方向总是一致的,但与速度的方向可能相同,也可能不同C.在初速度为0的匀加速直线运动中,速度、加速度与合力的方向总是一致的D.合力变小,物体的速度一定变小解析:加速度与力同时产生、同时消失、同时变化,选项A正确;加速度的方向由合力方向决定,但与速度方向无关,选项B正确;在初速度为0的匀加速直线运动中,合力方向决定加速度方向,加速度方向决定末速度方向,选项C正确;合力变小,物体的加速度一定变小,但速度不一定变小,选项D错误.2.(2019·黑龙江哈尔滨考试)如图所示,一木块在光滑水平面上受到一恒力F作用而运动,前方固定一轻质弹簧,当木块接触弹簧后,下列判断正确的是(C)A.木块将立即做匀减速直线运动B.木块将立即做变减速直线运动C.在弹簧弹力大小等于恒力F时,木块的速度最大D.在弹簧处于最大压缩状态时,木块的加速度为零解析:对木块进行受力分析,接触弹簧后弹力不断增大,当弹力小于力F时,木块仍将加速运动,但加速度变小,A、B均错误.在弹簧弹力大小等于恒力F时,木块的加速度为0,速度最大,C正确.继续压缩弹簧,合力反向且增大,加速度向右不断增大,D错误.3.(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则(BC)A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变解析:质点一开始做匀速直线运动,处于平衡状态,施加恒力后,则该质点所受的合外力为该恒力.①若该恒力方向与质点原运动方向不共线,则质点做曲线运动,质点速度方向与恒力方向不同,故A 错;②若F的方向某一时刻与质点运动方向垂直,之后质点做曲线运动,力与速度方向不再垂直,例如平抛运动,故B正确;③由牛顿第二定律可知,质点加速度方向总是与其所受合外力方向相同,C 正确;④根据加速度的定义,相等时间内速度变化量相同,而速率变化量不一定相同,故D错.考点2牛顿第二定律的瞬时性1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.求解瞬时加速度的一般思路 分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度如图甲、乙所示,细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A 的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;剪断瞬间图甲中倾斜细线OA 与图乙中弹簧的拉力之比为________(θ角已知).[审题指导]A 球――→刚性绳弹力特点判定合力的方向―→加速度大小和方向B 球――→弹簧弹力特点判定合力的方向―→加速度大小和方向 【解析】 设两球质量均为m ,剪断水平细线瞬间,对A 球受力分析,如图(a)所示,球A 将沿圆弧摆下,故剪断水平细线瞬间,小球A 的加速度a 1方向沿圆周的切线方向向下,即垂直倾斜细线OA 向下.则有F T1=mg cos θ,F 1=mg sin θ=ma 1,所以a 1=g sin θ.水平细线剪断瞬间,B 球所受重力mg 和弹簧弹力F T2不变,小球B 的加速度a 2方向水平向右,如图(b)所示,则 F T2=mg cos θ,F 2=mg tan θ=ma 2,所以a 2=g tan θ.甲图中倾斜细线OA 与乙图中弹簧的拉力之比为F T1F T2=cos 2θ. 【答案】 见解析在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.1.(多选)如图所示,A 、B 两物块质量分别为2m 、m ,用一轻弹簧相连,将A 用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B 物块恰好与水平桌面接触而没有挤压,此时轻弹簧的伸长量为x .现将悬绳剪断,则下列说法正确的是( BD )A .悬绳剪断后,A 物块向下运动2x 时速度最大B .悬绳剪断后,A 物块向下运动3x 时速度最大C .悬绳剪断瞬间,A 物块的加速度大小为2gD .悬绳剪断瞬间,A 物块的加速度大小为32g 解析:剪断悬绳前,对物块B 受力分析,物块B 受到重力和弹簧的弹力,可知弹力F =mg .悬绳剪断瞬间,对物块A 分析,物块A的合力为F 合=2mg +F =3mg ,根据牛顿第二定律,得a =32g ,故C 错误,D 正确;弹簧开始处于伸长状态,弹力F =mg =kx ;物块A 向下压缩,当2mg =F ′=kx ′时,速度最大,即x ′=2x ,所以A 下降的距离为3x 时速度最大,故B 正确,A 错误.2.如图所示,在倾角θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m .物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起但A 、B 之间无弹力,已知重力加速度为g .某时刻将细线剪断,则细线剪断瞬间,下列说法错误的是( A )A .物块B 的加速度为12g B .物块A 、B 间的弹力为13mg C .弹簧的弹力为12mg D .物块A 的加速度为13g 解析:细线剪断瞬间,弹簧弹力不变,因而弹力F =mg sin30°=12mg ,选项C 正确;细线剪断后,物块A 、B 将共同沿斜面加速下滑,根据牛顿第二定律有3mg sin30°-F =3ma ,解得a =13g ,选项A 错误,选项D 正确;以物块B 为研究对象可知2mg sin30°-N =2ma ,解得N =13mg ,选项B 正确. 考点3 两类动力学问题1.解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图所示.2.两类动力学问题的解题步骤考向1已知受力求运动如图所示,质量为0.5 kg、0.2 kg的弹性小球A、B穿过一绕过定滑轮的轻绳,绳子末端与地面距离0.8 m,小球距离绳子末端6.5 m,小球A、B与轻绳的滑动摩擦力都为重力的0.5倍,设最大静摩擦力等于滑动摩擦力.现由静止同时释放A、B两个小球,不计绳子质量,忽略与定滑轮相关的摩擦力,g取10 m/s2.(1)释放A 、B 两个小球后,A 、B 的各自加速度?(2)小球B 从静止释放经多长时间落到地面?[审题指导] 本题力和运动分析是关键(1)由于f A >f B ,B 受滑动摩擦力,A 受静摩擦力,否则轻绳合力不为零.(2)由于m B g >f B ,B 球向下加速运动.(3)由于m A g >f B ,A 球向下加速运动,同时A 球带动轻绳共同运动.【解析】 (1)由题意知,B 与轻绳的最大摩擦力小于A 与轻绳的最大摩擦力,所以轻绳与A 、B 间的摩擦力大小均为km 2g .对B ,由牛顿第二定律得:m 2g -km 2g =m 2a 2,a 2=5 m/s 2. 对A ,由牛顿第二定律得:m 1g -km 2g =m 1a 1,a 1=8 m/s 2.(2)A 球与绳子一起向下加速运动,B 球沿绳子向下加速运动. 设经历时间t 1小球B 脱离绳子,小球B 下落高度为h 1,获得速度为v ,12a 1t 21+12a 2t 21=l =6.5 m ,t 1=1 s , h 1=12a 2t 21=2.5 m ,v =a 2t 1=5 m/s.小球B脱离绳子后在重力作用下匀加速下落,此时距地面高为h2,经t2落地,则:h2=6.5 m+0.8 m-2.5 m=4.8 m,h2=v t2+12gt22,t2=0.6 s,t=t1+t2=1.6 s.【答案】(1)8 m/s2 5 m/s2(2)1.6 s考向2已知运动求未知力放于水平地面的小车上,一细线一端系着质量为m 的小球a,另一端系在车顶,当小车做直线运动时,细线与竖直方向的夹角为θ,此时放在小车上质量M的物体b跟小车相对静止,如图所示,取重力加速度为g,下列说法正确的是()A.小车一定向左运动B.加速度的大小为g sinθ,方向向左C.细线的拉力大小为mg cosθ,方向沿线斜向上D.b受到的摩擦力大小为Mg tanθ,方向向左【解析】小球a和物体b、小车一起运动,加速度相同,对小球a受力分析,受重力和绳拉力,合力水平向左,可知加速度向左,但不知道速度方向,故小车可向左加速或向右减速,选项A错误;对a球由牛顿第二定律mg tanθ=ma,可得a=g tanθ,选项B错误;对a球分析,由合成法可得F T=mgcosθ,方向沿绳斜向上,选项C错误;对b物体分析可知由静摩擦力提供加速度,F f静=Ma=Mg tanθ,方向与加速度方向相同,且向左,选项D正确.【答案】 D考向3 两类动力学问题的综合应用(多选)两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( )A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功[审题指导] (1)由同一种材料制成→两球的密度相等.(2)受到的阻力与球的半径成正比→F f =kr .【解析】 设小球的密度为ρ,其质量m =4ρπr 33,设阻力与球的半径的比值为k ,根据牛顿第二定律得:a =(mg -kr )m =g -kr (4ρπr 33)=g -3k 4ρπr 2,由此可见,由m 甲>m 乙,ρ甲=ρ乙,r 甲>r 乙可知a 甲>a 乙,选项C 错误;由于两球由静止下落,两小球下落相同的距离则由x =12at 2,t 2=2x a ,t 甲<t 乙,选项A 错误;由v 2=2ax 可知,甲球末速度的大小大于乙球末速度的大小,选项B 正确;由于甲球质量大于乙球质量,所以甲球半径大于乙球半径,甲球所受的阻力大于乙球所受的阻力,则两小球下落相同的距离甲球克服阻力做的功大于乙球克服阻力做的功,选项D 正确.【答案】 BD3.如图甲所示,光滑平台右侧与一长为l=2.5 m的水平木板相接,木板固定在地面上,现有一小滑块以v0=5 m/s初速度滑上木板,恰好滑到木板右端停止.现将木板右端抬高,使木板与水平地面的夹角θ=37°,如图乙所示,让滑块以相同的初速度滑上木板,不计滑块滑上木板时的能量损失,g取10 m/s2,sin37°=0.6,cos37°=0.8.求:(1)滑块与木板之间的动摩擦因数μ;(2)滑块从滑上倾斜木板到滑回木板底端所用的时间t.解析:(1)设滑块质量为m,木板水平时滑块加速度为a,则对滑块有μmg=ma①滑块恰好到木板右端停止0-v20=-2al②解得μ=v202gl=0.5③(2)当木板倾斜时,设滑块上滑时的加速度为a1,最大距离为s,上滑的时间为t1,有μmg cosθ+mg sinθ=ma1④0-v20=-2a1s⑤0=v0-a1t1⑥由④⑤⑥式,解得t1=0.5 s⑦设滑块下滑时的加速度为a2,下滑的时间为t2,有mg sinθ-μmg cosθ=ma2⑧s =12a 2t 22⑨ 由⑧⑨式解得t 2=52s ,所以滑块从滑上倾斜木板到滑回木板底端所用的时间t =t 1+t 2=1+52s. 答案:(1)0.5 (2)1+52s解决动力学两类问题的两个关键点学习至此,请完成课时作业8。
第三章:牛顿运动定律(3.2_牛顿第二定律、两类动力学问题)讲解
![第三章:牛顿运动定律(3.2_牛顿第二定律、两类动力学问题)讲解](https://img.taocdn.com/s3/m/c7544be7168884868762d6e9.png)
2012年物理一轮精品复习学案:第2节 牛顿第二定律、两类动力学问题【考纲知识梳理】一、牛顿第二定律1、内容:牛顿通过大量定量实验研究总结出:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向和合外力的方向相同。
这就是牛顿第二定律。
2、其数学表达式为:m Fa =ma F =牛顿第二定律分量式:⎩⎨⎧==yy x x ma F ma F用动量表述:t PF ∆=合3、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理微观粒子高速运动问题; 二、两类动力学问题1.由受力情况判断物体的运动状态;2.由运动情况判断的受力情况 三、单位制1、单位制:基本单位和导出单位一起组成了单位制。
(1)基本单位:所选定的基本物理量的(所有)单位都叫做基本单位,如在力学中,选定长度、质量和时间这三个基本物理量的单位作为基本单位: 长度一cm 、m 、km 等; 质量一g 、kg 等; 时间—s 、min 、h 等。
(2)导出单位:根据物理公式和基本单位,推导出其它物理量的单位叫导出单位。
2、由基本单位和导出单位一起组成了单位制。
选定基本物理量的不同单位作为基本单位,可以组成不同的单位制,如历史上力学中出现了厘米·克·秒制和米·千克·秒制两种不同的单位制,工程技术领域还有英尺·秒·磅制等。
【要点名师精解】一、对牛顿第二定律的理解1、牛顿第二定律的“四性”(1)瞬时性:对于一个质量一定的物体来说,它在某一时刻加速度的大小和方向,只由它在这一时刻所受到的合外力的大小和方向来决定.当它受到的合外力发生变化时,它的加速度随即也要发生变化,这便是牛顿第二定律的瞬时性的含义.例如,物体在力F1和力F2的共同作用下保持静止,这说明物体受到的合外力为零.若突然撤去力F2,而力F1保持不变,则物体将沿力F1的方向加速运动.这说明,在撤去力F2后的瞬时,物体获得了沿力F1方向的加速度a1.撤去力F2的作用是使物体所受的合外力由零变为F1,而同时发生的是物体的加速度由零变为a1.所以,物体运动的加速度和合外力是瞬时对应的.(2)矢量性(加速度的方向与合外力方向相同);合外力F是使物体产生加速度a的原因,反之,a是F产生的结果,故物体加速度方向总是与其受到的合外力方向一致,反之亦然。
牛顿第二定律、两类动力学问题测试题及解析
![牛顿第二定律、两类动力学问题测试题及解析](https://img.taocdn.com/s3/m/0c5577a0bed5b9f3f90f1cea.png)
牛顿第二定律、两类动力学问题测试题及解析1.(2020·商丘模拟)受水平外力F 作用的物体,在粗糙水平面上做直线运动,其v -t 图线如图所示,则( )A .在0~t 1内,外力F 大小不断增大B .在0~t 1内,外力F 大小不断减小直至为零C .在t 1~t 2内,外力F 大小可能不断增大D .在t 1~t 2内,外力F 大小可能先减小后增大解析:选D v -t 图线的斜率表示加速度,所以在0~t 1内,加速度为正并不断减小,根据加速度a =F -μmg m,所以外力F 大小不断减小,F 的最小值等于摩擦力,故A 、B 错误;在t 1~t 2内,加速度为负并且不断变大,根据加速度的大小a =μmg -F m,外力F 大小可能不断减小,故C 错误;如果在F 先减小一段时间后的某个时刻,F 的方向突然反向,根据加速度的大小:a =μmg +F m ,F 后增大,因为v -t 图线后一段的斜率比前一段大,所以外力F 大小可能先减小后增大,故D 正确。
2.如图所示,弹簧左端固定,右端自由伸长到O 点并系住质量为m 的物体。
现将弹簧压缩到A 点,然后释放,物体可以一直运动到B 点。
如果物体受到的阻力恒定,则( )A .物体从A 到O 先做加速运动后做减速运动B .物体从A 到O 做加速运动,从O 到B 做减速运动C .物体运动到O 点时,所受合力为零D .物体从A 到O 的过程中,加速度逐渐减小解析:选A 物体从A 到O ,初始阶段受到向右的弹力大于阻力,合力向右。
随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大。
当物体向右运动至AO 间某点(设为点O ′)时,弹力减小到与阻力相等,物体所受合力为零,加速度为零,速度达到最大。
此后,随着物体继续向右运动,弹力继续减小,阻力大于弹力,合力方向变为向左,至O 点时弹力减为零,此后弹力向左且逐渐增大。
有关牛顿第二定律的动力学问题(解析版)-2023年高考物理压轴题专项训练(全国通用)
![有关牛顿第二定律的动力学问题(解析版)-2023年高考物理压轴题专项训练(全国通用)](https://img.taocdn.com/s3/m/ea432a51cbaedd3383c4bb4cf7ec4afe04a1b1a8.png)
压轴题01有关牛顿第二定律的动力学问题考向一/选择题:有关牛顿第二定律的连接体问题考向二/选择题:有关牛顿第二定律的动力学图像问题考向二/选择题:有关牛顿第二定律的临界极值问题考向一:有关牛顿第二定律的连接体问题1.处理连接体问题的方法:①当只涉及系统的受力和运动情况而不涉及系统内某些物体的受力和运动情况时,一般采用整体法。
②当涉及系统(连接体)内某个物体的受力和运动情况时,一般采用隔离法。
2.处理连接体问题的步骤:3.特例:加速度不同的连接体的处理方法:①方法一(常用方法):可以采用隔离法,对隔离对象分别做受力分析、列方程。
②方法二(少用方法):可以采用整体法,具体做法如下:此时牛顿第二定律的形式:+++=x x x x a m a m a m F 332211合;+++=y y y y a m a m a m F 332211合说明:①F 合x 、F 合y 指的是整体在x 轴、y 轴所受的合外力,系统内力不能计算在内;②a 1x 、a 2x 、a 3x 、……和a 1y 、a 2y 、a 3y 、……指的是系统内每个物体在x 轴和y 轴上相对地面的加速度。
考向二:有关牛顿第二定律的动力学图像问题常见图像v t 图像、a t 图像、F t 图像、F a 图像三种类型(1)已知物体受到的力随时间变化的图线,求解物体的运动情况。
(2)已知物体的速度、加速度随时间变化的图线,求解物体的受力情况。
(3)由已知条件确定某物理量的变化图像。
解题策略(1)问题实质是力与运动的关系,要注意区分是哪一种动力学图像。
(2)应用物理规律列出与图像对应的函数方程式,进而明确“图像与公式”“图像与物体”间的关系,以便对有关物理问题作出准确判断。
破题关键(1)分清图像的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图像所反映的物理过程,会分析临界点。
(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等。
3.2牛顿第二定律两类动力学问题
![3.2牛顿第二定律两类动力学问题](https://img.taocdn.com/s3/m/a2bda6d750e79b89680203d8ce2f0066f4336448.png)
答案 小球的加速度方向是先向下后向上,大小是先 变小后变大;速度方向始终竖直向下,大小是先变大后 变小. 规律总结 很多非匀变速过程都要涉及应用牛顿第二定律进行过 程分析,如“电磁感应部分导体棒获得收尾速度前的 过程”“机车起动获得最大速度之前的过程”等都属 于这一问题.分析此类问题应注意以下几方面: (1)准确分析研究对象的受力情况,明确哪些力是恒力, 哪些力是变力,如何变化. (2)依据牛顿第二定律列方程,找到运动情况和受力情 况的相互制约关系,发现潜在状态(如平衡状态、收尾 速度等),找到解题突破口.
(1)恒力F的大小.
(2)斜面的倾角α.
(3)t=2.1 s时物体的速度.
解析 (1)物体从A到B过程中:a1= 则F=ma1=2 N
v 1=2
t1
m/s2①
②
v2
(2)物体从B到C过程中a2= t 2 =5 m/s
③
由牛顿第二定律可知mgsinα=ma2④
代入数据解得sinα=1/2,α=30°⑤
7
(3)选取正方向或建立坐标系,通常以加速度的方向 为正方向或以加速度方向为某一坐标轴的正方向. (4)求合外力F合. (5)根据牛顿第二定律F合=ma列方程求解,必要时 还要对结果进行讨论. 特别提醒 1.物体的运动情况是由所受的力及物体运动的初始
状态共同决定的. 2.无论是哪种情况,联系力和运动的“桥梁”是加
22
(3)设B点的速度为vB,从v=0.8 m/s到B点过程中
vB=0.8+a1t1
⑥
从B点到v=3 m/s过程vB=3+a2t2
⑦
t1+t2=1.8 s
⑧
解得t1=1.6s t2=0.2 s vB=4 m/s
牛顿第二定律_例题详解
![牛顿第二定律_例题详解](https://img.taocdn.com/s3/m/8b7c7c96bceb19e8b8f6babf.png)
牛顿第二定律一、牛顿第二定律1.内容:物体的加速度与所受合外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同.2.公式:F=ma3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中,F的单位是N,m的单位是kg,a的单位是m/s2.【例1】如图所示,轻绳跨过定滑轮(与滑轮问摩擦不计)一端系一质量为m的物体,一端用F的拉力,结果物体上升的加速度为a1,后来将F的力改为重力为F的物体,m向上的加速度为a2则()A.a1=a2 ;B.a1>a2 C.a1<a2 D.无法判断二、突变类问题(力的瞬时性)(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,(2)中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性:A.轻:即绳(或线)的质量和重力均可视为等于零,同一根绳(或线)的两端及其中间各点的张为大小相等。
B.不可伸长:即无论绳所受拉力多大,绳子的长度不变,绳子中的张力可以突变。
(3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:A.轻:即弹簧(或橡皮绳)的质量和重力均可视为等于零,同一弹簧的两端及其中间各点的弹力大小相等。
B.弹簧既能承受拉力,也能承受压力(沿着弹簧的轴线),橡皮绳只能承受拉力。
不能承受压力。
C、由于弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能发生突变。
【例2】如图(a)所示,一质量为m的物体系于长度分别为l1、12的两根细绳上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态,现将l2线剪断,求剪断瞬间物体的加速度。
江苏专用2022版高考物理一轮复习课后练习8牛顿第二定律两类动力学问题含解析
![江苏专用2022版高考物理一轮复习课后练习8牛顿第二定律两类动力学问题含解析](https://img.taocdn.com/s3/m/730fda972e3f5727a4e96210.png)
牛顿第二定律、两类动力学问题建议用时:45分钟1.(2019·北京海淀区期中)如图所示,在上端开口的饮料瓶的侧面戳一个小孔,瓶中灌水,手持饮料瓶静止时,小孔中有水喷出,则下列说法正确的是( )A.将饮料瓶竖直向上抛出,上升过程饮料瓶处在超重状态B.将饮料瓶竖直向上抛出,下降过程饮料瓶处在超重状态C.将饮料瓶放在绕地球做匀速圆周运动的宇宙飞船内,并与飞船保持相对静止,则水不流出D.饮料瓶静置于绕地球公转的月球表面,则水不流出C[无论是竖直向上还是竖直向下抛出,抛出之后的物体都只受到重力的作用,加速度为g,处于完全失重状态,A、B错误;将饮料瓶放在绕地球做匀速圆周运动的宇宙飞船内,并与飞船保持相对静止,因飞船内的物体也是处于完全失重状态,可知水不流出,C正确;饮料瓶静置于绕地球公转的月球表面,不是完全失重状态,则水会流出,D错误。
] 2.(2020·泰安一模)雨滴在空气中下落时会受到空气阻力的作用。
假设阻力大小只与雨滴的速率成正比,所有雨滴均从相同高处由静止开始下落,到达地面前均达到最大速率。
下列判断正确的是( )A.达到最大速率前,所有雨滴均做匀加速运动B.所有雨滴的最大速率均相等C.较大的雨滴最大速率也较大D.较小的雨滴在空中运动的时间较短C[设雨滴下落时受到的阻力为f=kv,根据牛顿第二定律:mg-kv=ma,则雨滴下落时,随着速率的增加,加速度逐渐减小,则达到最大速率前,所有雨滴均做加速度减小的变加速运动,选项A错误;当a=0时速率最大,则v m=mgk,质量越大,则最大速率越大,选项B错误,C正确;较小的雨滴在空中运动的最大速率较小,整个过程的平均速率较小,则在空中运动的时间较长,选项D错误。
]3.(2019·日照第一中学检测)如图所示,质量为2 kg的物体B和质量为1 kg的物体C 用轻弹簧连接并竖直地静置于水平地面上。
再将一个质量为3 kg的物体A轻放在B上的一瞬间,物体B的加速度大小为(取g=10 m/s2)( )A.0 B.15 m/s2 C.6 m/s2 D.5 m/s2C[开始时弹簧的弹力等于B的重力,即F=m B g。
高考经典课时作业3-2 牛顿第二定律、两类动力学问题
![高考经典课时作业3-2 牛顿第二定律、两类动力学问题](https://img.taocdn.com/s3/m/7942cc472e3f5727a5e96285.png)
高考经典课时作业3-2 牛顿第二定律、两类动力学问题(含标准答案及解析)时间:45分钟分值:100分1.(2012·高考海南卷)根据牛顿第二定律,下列叙述正确的是()A.物体加速度的大小跟它的质量和速度大小的乘积成反比B.物体所受合力必须达到一定值时,才能使物体产生加速度C.物体加速度的大小跟它所受作用力中的任一个的大小成正比D.当物体质量改变但其所受合力的水平分力不变时,物体水平加速度大小与其质量成反比2.(2012·高考安徽卷)如图所示,放在固定斜面上的物块以加速度a沿斜面匀加速下滑,若在物块上再施加一个竖直向下的恒力F,则()A.物块可能匀速下滑B.物块仍以加速度a匀加速下滑C.物块将以大于a的加速度匀加速下滑D.物块将以小于a的加速度匀加速下滑3.(2012·高考江苏卷)将一只皮球竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比.下列描绘皮球在上升过程中加速度大小a与时间t关系的图象,可能正确的是()4.(2011·高考上海卷)受水平外力F作用的物体,在粗糙水平面上做直线运动,其v-t图线如图所示,则()A.在0~t1秒内,外力F大小不断增大B.在t1时刻,外力F为零C.在t1~t2秒内,外力F大小可能不断减小D.在t1~t2秒内,外力F大小可能先减小后增大5.(2012·扬州模拟)从地面以一定的速度竖直向上拋出一小球,小球从拋出点上升到最高点的时刻为t1,下落到拋出点的时刻为t2.若空气阻力的大小恒定,则在图中能正确表示被拋出物体的速率v随时间t的变化关系的图线是()6.如图所示,两个质量分别为m 1=2 kg 、m 2=3 kg 的物体置于光滑的水平面上,中间用轻质弹簧测力计连接,两个大小分别为F 1=30 N ,F 2=20 N 的水平拉力分别作用在m 1、m 2上,则( )A .弹簧测力计的示数是10 NB .弹簧测力计的示数是50 NC .在突然撤去F 2的瞬间,弹簧测力计的示数不变D .在突然撤去F 1的瞬间,m 1的加速度不变7.(2013·马鞍山调研)如图所示,A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为( )A .都等于g 2B.g 2和0 C.M A +M B M B ·g 2和0 D .0和M A +M B M B ·g 28.汽车正在走进千家万户,在给人们的出行带来方便的同时也带来了安全隐患.行车过程中,如果车距较近,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带,假定乘客质量为70 kg ,汽车车速为90 km/h ,从踩下刹车到完全停止需要的时间为5 s ,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦)( )A .450 NB .400 NC .350 ND .300 N9.如图所示,圆柱形的仓库内有三块长度不同的滑板aO 、bO 、cO ,其下端都固定于底部圆心O ,而上端则搁在仓库侧壁上,三块滑板与水平面的夹角依次是30°、45°、60°.若有三个小孩同时从a 、b 、c 处开始下滑(忽略阻力),则( ) A .a 处小孩最后到O 点B .b 处小孩最后到O 点C .c 处小孩最先到O 点D .a 、c 处小孩同时到O 点10.质量m =10 kg 的物体,在F =40 N 的水平向左的力的作用下,沿水平桌面从静止开始运动.物体运动时受到的滑动摩擦力F f =30 N .在开始运动后的第5 s 末撤去水平力F ,求物体从开始运动到最后停止总共发生的位移大小.(保留三位有效数字)11.一质量m=0.5 kg的滑块以一定的初速度冲上一倾角为30°足够长的斜面,某同学利用DIS实验系统测出了滑块冲上斜面过程中多个时刻的瞬时速度,如图所示为通过计算机绘制出的滑块上滑过程的v-t图.求:(g取10 m/s2)(1)滑块冲上斜面过程中加速度的大小;(2)滑块与斜面间的动摩擦因数;(3)判断滑块最后能否返回斜面底端?若能返回,求出返回斜面底端时的动能;若不能返回,求出滑块停在什么位置.12.原地起跳时,先屈腿下蹲,然后突然蹬地,从开始蹬地到离地是加速过程(视为匀加速),加速过程中重心上升的距离为“加速距离”.离地后重心继续上升,在此过程中重心上升的最大距离称为“竖直高度”.某同学身高1.8 m,质量80 kg,在某一次运动会上,他参加跳高比赛时“加速距离”为0.5 m,起跳后身体横着越过(背越式)2.15 m高的横杆,试估算人的起跳速度v和起跳过程中地面对人的平均作用力.(g取10 m/s2)标准答案及解析:1.解析:物体加速度的大小与质量和速度大小的乘积无关,A 项错误;物体所受合力不为0,则a ≠0,B 项错误;加速度的大小与其所受的合力成正比,C 项错误. 答案: D2.解析:设斜面倾角为θ,对物块由牛顿第二定律列式:mg sin θ-μmg cos θ=ma ,得a =g sin θ-μg cos θ=g (sin θ-μcos θ),加上恒力F 后:(mg +F )sin θ-μ(m g +F )cos θ=ma ′得a ′=m g +F s in θ-μm g +F c os θm =mg +F m (sin θ-μcos θ),因mg +F m>g ,所以 a ′>a ,C 正确.答案:C3.解析:皮球上升过程中受重力和空气阻力作用,由于空气阻力大小与速度成正比,速度v 减小,空气阻力f =kv 也减小,根据牛顿第二定律mg +f =m a ,知a =kv m+g ,可知,a 随v 的减小而减小,且v 变化得越来越慢,所以a 随时间t 减小且变化率减小,选项C 正确.答案:C4.解析:由图象可知,0~t 1物体做a 减小的加速运动,t 1时刻a 减小为零.由a =F -f m可知,F 逐渐减小,最终F =f ,故A 、B 错误.t 1~t 2物体做a 增大的减速运动,由a =f -F m可知,至物体速度减为零之前,F 有可能是正向逐渐减小,也可能已正向减为零且负向增大,故C 、D 正确.答案:CD5.答案:C6.解析:设弹簧的弹力为F ,系统加速度为a .对系统:F 1-F 2=(m 1+m 2)a ,对m 1:F 1-F=m 1a ,联立两式解得:a =2 m/s 2,F =26 N ,故A 、B 两项都错误;在突然撤去F 2的瞬间,两物体间的距离不能发生突变,所以弹簧的长度在撤去F 2的瞬间没变化,弹簧上的弹力不变,故C 项正确;若突然撤去F 1,物体m 1所受的合外力方向向左,而没撤去F 1时,合外力方向向右,所以m 1的加速度发生变化,故D 项错误.答案:C7.解析:线被剪断瞬间,线的拉力变为0,弹簧形变来不及发生变化,弹力不变,故A 球仍受力平衡,加速度为0,B 球受重力、支持力、弹簧产生的大小为M A g ·sin 30°的弹力,所以可得其加速度为M A +M B ·g 2M B. 答案:D8.解析:汽车的速度v 0=90 km/h =25 m/s ,设汽车匀减速的加速度大小为a ,则a =v 0t=5 m/s 2,对乘客应用牛顿第二定律得:F =ma =70×5 N =350 N ,所以C 正确. 答案:C 9.解析:设圆柱半径为R ,滑板长l =R cos θ,a =g ·sin θ,t =2l a =4R g ·sin 2θ,分别将θ=30°,45°,60°代入计算可知,t a =t c ≠t b ,故D 对.答案:D10.解析:加速过程对物体运用牛顿第二定律得:F -F f =ma 1解得:a 1=1 m/s 25 s 末的速度:v =a 1t =5 m/s5 s 内的位移:x 1=12a 1t 2=12.5 m 减速过程由牛顿第二定律得:F f =ma 2解得:a 2=3 m/s 2减速位移:x 2=v 22a 2=4.2 m 总位移:x =x 1+x 2=16.7 m答案:16.7 m11.解析:(1)滑块的加速度大小a =Δv Δt =⎪⎪⎪⎪0-60.5m/s 2=12 m/s 2. (2)物体在冲上斜面过程中mg sin θ+μmg cos θ=maμ=a -g sin 30°g cos 30°=12-10×0.510×32=0.81. (3)滑块速度减小到零时,重力的分力小于最大静摩擦力,不能再下滑.x =v 202a =622×12 m =1.5 m 滑块停在距底端1.5 m 处.答案:(1)12 m/s 2 (2)0.81 (3)不能再下滑,滑块停在距底端1.5 m 处 12.解析:把跳高分为起跳过程和腾空过程两个阶段.第一阶段重心变化d =0.5 m.第二阶段重心上升高度Δh =H -h 2=⎝⎛⎭⎫2.15-1.82 m =1.25 m .腾空过程运动示意图如图甲所示,由竖直上拋运动规律可得v =2g Δh =5 m/s起跳过程运动示意图如图乙,此过程可认为是匀加速运动,则v 2=2ad得a =25 m/s 2,对人由牛顿第二定律可得F --mg =ma ,得F -=2 800 N.答案:5 m/s 2 800 N。
牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题
![牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题](https://img.taocdn.com/s3/m/bdf54464f242336c1eb95ef1.png)
学案12 牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题一、概念规律题组1.下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ) A.由F =ma 可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比B.由m =Fa 可知,物体的质量与其所受的合力成正比,与其运动的速度成反比C.由a =Fm 可知,物体的加速度与其所受的合力成正比,与其质量成反比D.由m =Fa可知,物体的质量可以通过测量经的加速度和它所受的合力而求出2.下列说法正确的是( )A .物体所受合力为零时,物体的加速度可以不为零B .物体所受合力越大,速度越大C .速度方向、加速度方向、合力方向总是相同的D .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同图13.如图1所示,质量为20 kg 的物体,沿水平面向右运动,它与水平面间的动摩擦因数为0.1,同时还受到大小为10 N 的水平向右的力的作用,则该物体(g 取10 m /s 2)( ) A .受到的摩擦力大小为20 N ,方向向左 B .受到的摩擦力大小为20 N ,方向向右 C .运动的加速度大小为1.5 m /s 2,方向向左 D .运动的加速度大小为0.5 m /s 2,方向向右 4.关于国秒单位制,下列说法正确的是( ) A .kg ,m /s ,N 是导出单位 B .kg ,m ,h 是基本单位C .在国际单位制中,质量的单位可以是kg ,也可以是gD .只有在国际单位制中,牛顿第二定律的表达式才是F =ma二、思想方法题组图25.(2011·淮南模拟)如图2所示,两个质量相同的物体1和2紧靠在一起,放在光滑水平面上,如果它们分别受到水平推力F 1和F 2的作用,而且F 1>F 2,则1施于2的作用力大小为( ) A .F 1 B .F 2 C .12(F 1+F 2) D .12(F 1-F 2)图36.如图3所示,在光滑水平面上,质量分别为m 1和m 2的木块A 和B 之下,以加速度a 做匀速直线运动,某时刻空然撤去拉力F ,此瞬时A 和B 的加速度a 1和a 2,则( ) A .a 1=a 2=0 B .a 1=a ,a 2=0C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2aD .a 1=a ,a 2=-m 1m 2a一、对牛顿第二定律的理解矢量性公式F=ma是矢量式,任一时刻,F与a总同向瞬时性a与F对应同一时刻,即a为某时刻的加速度时,F为该时刻物体所受的合外力因果性F是产生加速度a的原因,加速度a是F作用的结果同一性有三层意思:(1)加速度a是相对同一个惯性系的(一般指地面);(2)F=ma中,F、m、a对应同一个物体或同一个系统;(3)F=ma中,各量统一使用国际单位独立性(1)作用于物体上的每一个力各自产生的加速度都满足F=ma(2)物体的实际加速度等于每个力产生的加速度的矢量和(3)力和加速度在各个方向上的分量也满足F=ma即F x=ma x,F y=ma y【例1】(2010·上海·11)将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体()A.刚抛出时的速度最大B.在最高点的加速度为零C.上升时间大于下落时间D.上升时的加速度等于下落时的加速度[规范思维]【例2】(2009·宁夏理综·20)如图4所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()图4A.物块先向左运动,再向右运动B.物块向左运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零[规范思维][针对训练1] (2009·上海综合·7)图5如图5所示为蹦极运动的示意图.弹性绳的一端固定在O点,另一端和运动员相连.运动员从O点自由下落,至B点弹性绳自然伸直,经过合力为零的C点到达最低点D,然后弹起.整个过程中忽略空气阻力.分析这一过程,下列表述正确的是()①经过B点时,运动员的速率最大②经过C点时,运动员的速率最大③从C点到D点,运动员的加速度增大④从C点到D点,运动员的加速度不变A.①③B.②③C.①④D.②④二、动力学两类基本问题1.分析流程图2.应用牛顿第二定律的解题步骤(1)明确研究对象.根据问题的需要和解题的方便,选出被研究的物体.(2)分析物体的受力情况和运动情况.画好受力分析图,明确物体的运动性质和运动过程.(3)选取正方向或建立坐标系.通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向.(4)求合外力F合.(5)根据牛顿第二定律F合=ma列方程求解,必要时还要对结果进行讨论.特别提醒(1)物体的运动情况是由所受的力及物体运动的初始状态共同决定的.(2)无论是哪种情况,加速度都是联系力和运动的“桥梁”.(3)如果只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般用正交分解法求其合力.如果物体做直线运动,一般把力分解到沿运动方向和垂直于运动方向;当求加速度时,要沿着加速度的方向处理力即一般情况不分解加速度;特殊情况下当求某一个力时,可沿该力的方向分解加速度.【例3】如图6图6所示,一质量为m的物块放在水平地面上.现在对物块施加一个大小为F的水平恒力,使物块从静止开始向右移动距离x后立即撤去F,物块与水平地面间的动摩擦因数为μ,求:(1)撤去F时,物块的速度大小;(2)撤去F后,物块还能滑行多远.【例4】(2010·安徽理综·22)图7质量为2 kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v-t图象如图7所示.g取10 m/s2,求:(1)物体与水平面间的动摩擦因数μ;(2)水平推力F的大小;(3)0~10 s内物体运动位移的大小.[规范思维][针对训练2] (2009·江苏·13)航模兴趣小组设计出一架遥控飞行器,其质量m=2 kg,动力系统提供的恒定升力F=28 N.试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g取10 m/s2.(1)第一次试飞,飞行器飞行t1=8 s时到达高度H=64 m,求飞行器所受阻力f的大小.(2)第二次试飞,飞行器飞行t2=6 s时遥控器出现故障,飞行器立即失去升力.求飞行器能达到的最大高度h.(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3.【基础演练】1.(2011·海南华侨中学月考)在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下来的痕迹.在某次交通事故中,汽车的刹车线的长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10 m/s2,则汽车开始刹车时的速度为()A.7 m/s B.10 m/s C.14 m/s D.20 m/s2.(2011·吉林长春调研)竖直向上飞行的子弹,达到最高点后又返回原处,假设整个运动过程中,子弹受到的阻力与速度的大小成正比,则子弹在整个运动过程中,加速度大小的变化是()A.始终变大B.始终变小C.先变大后变小D.先变小后变大3.如图8甲所示,在粗糙水平面上,物体A在水平向右的外力F的作用下做直线运动,其速度—时间图象如图乙所示,下列判断正确的是()图8A.在0~1 s内,外力F不断增大B.在1~3 s内,外力F的大小恒定C.在3~4 s内,外力F不断增大D.在3~4 s内,外力F的大小恒定图94.(2009·广东理基·4)建筑工人用图9所示的定滑轮装置运送建筑材料,质量为70.0 kg的工人站在地面上,通过定滑轮将20.0 kg的建筑材料以0.500 m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2)()A.510 N B.490 NC.890 N D.910 N图105.如图10所示,足够长的传送带与水平面间夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tanθ.则图中能客观地反映小木块的速度随时间变化关系的是()图116.(2011·福建福州质检)商场搬运工要把一箱苹果沿倾角为θ的光滑斜面推上水平台,如图11所示.他由斜面底端以初速度v0开始将箱推出(箱与手分离),这箱苹果刚好能滑上平台.箱子的正中间是一个质量为m的苹果,在上滑过程中其他苹果对它的作用力大小是()A.mg B.mg sinθC.mg cosθ D.0题号 1 2 3 4 5 6答案7.在某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m=80 kg,他从静止开始匀加速下滑,在时间t=5 s内沿斜面滑下的位移x=50 m.(不计空气阻力,取g=10 m/s2).问:(1)游客连同滑草装置在下滑过程中受到的摩擦力F f为多大?(2)滑草装置与草皮之间的动摩擦因数μ为多大?(3)设游客滑下50 m后进入水平草坪,试求游客在水平面上滑动的最大距离.【能力提升】图128.如图12所示,有一长度x=1 m、质量M=10 kg的平板小车静止在光滑的水平面上,在小车一端放置一质量m=4 kg的小物块,物块与小车间的动摩擦因数μ=0.25,要使物块在2 s内运动到小车的另一端,求作用在物块上的水平力F是多少?(g取10 m/s2)图139.质量为10 kg的物体在F=200 N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°,如图13所示.力F作用2 s后撤去,物体在斜面上继续上滑了1.25 s后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移x.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)10.(2010.天星调研)图14如图14所示,长为L的薄木板放在长为L的正方形水平桌面上,木板的两端与桌面的两端对齐,一小木块放在木板的中点,木块、木板质量均为m,木块与木板之间、木板与桌面之间的动摩擦因数都为μ.现突然施加水平外力F在薄木板上将薄木板抽出,最后小木块恰好停在桌面边上,没从桌面上掉下.假设薄木板在被抽出的过程中始终保持水平,且在竖直方向上的压力全部作用在水平桌面上.求水平外力F的大小.学案12牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题【课前双基回扣】1.CD[牛顿第二定律的表达式F=ma表明了各物理量之间的数量关系,即已知两个量,可求第三个量,但物体的质量是由物体本身决定的,与受力无关;作用在物体上的合力,是由和它相互作用的物体作用产生的,与物体的质量和加速度无关.故排除A、B,选C、D.]2.D [由牛顿第二定律F =ma 知,F 合为零,加速度为零,由惯性定律知速度不一定为零;对某一物体,F 合越大,a 越大,由a =ΔvΔt知,a 大只能说明速度变化率大,速度不一定大,故A 、B 项错误;F 合、a 、Δv 三者方向一定相同,而速度方向与这三者方向不一定相同,故C 项错误,D 项正确.] 3.AD4.BD [所谓导出单位,是利用物理公式和基本单位推导出来的,力学中的基本单位只有三个,即kg 、m 、s ,其他单位都是由这三个基本单位衍生(推导)出来的,如“牛顿”(N)是导出单位,即1 N =1 kg·m/s 2(F =ma ),所以题中A 项错误,B 项正确.在国际单位制中,质量的单位只能是kg ,C 错误.在牛顿第二定律的表达式中,F =ma (k =1)只有在所有物理量都采用国际单位制时才能成立,D 项正确.]5.C [将物体1、2看做一个整体,其所受合力为:F 合=F 1-F 2,设质量均为m ,由第二定律得F 1-F 2=2ma ,所以a =F 1-F 22m以物体2为研究对象,受力情况如右图所示..由牛顿第二定律得F 12-F 2=ma ,所以F 12=F 2+ma =F 1+F 22.] 6.D [两物体在光滑的水平面上一起以加速度a 向右匀速运动时,弹簧的弹力F 弹=m 1a ,在力F 撤去的瞬间,弹簧的弹力来不及改变,大小仍为m 1a ,因此对A 来讲,加速度此时仍为a ;对B 物体,取向右为正方向,-m 1a =m 2a 2,a 2=-m 1m 2a ,所以只有D 项正确.]思维提升1.牛顿第二定律是一个实验定律,其公式也就不能像数学公式那样随意变换成不同的表达式.2.a =Δv Δt 是a 的定义式,a =Fm 是a 的决定式,a 虽可由a =Δv Δt进行计算,但a 决定于合外力F 与质量m .3.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法. 4.对于弹簧弹力和细绳弹力要区别开.5.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法,其常用的一种思路是:利用整体法求出物体的加速度,再利用隔离法求出物体间的相互作用力. 【核心考点突破】例1 A [最高点速度为零,物体受重力,合力不可能为零,加速度不为零,故B 项错.上升时做匀减速运动,h =12a 1t 21,下落时做匀加速运动,h =12a 2t 22,又因为a 1=mg +f m ,a 2=mg -f m,所以t 1<t 2,故C 、D 错误.根据能量守恒,开始时只有动能,因此开始时动能最大,速度最大,故A 项正确.][规范思维] 物体的加速度与合外力存在瞬时对应关系;加速度由合外力决定,合外力变化,加速度就变化. 例2 BC [由题意可知,当撤去外力,物块与木板都有向右的速度,但物块速度小于木板的速度,因此,木板给物块的动摩擦力向右,使物块向右加速,反过来,物块给木板的动摩擦力向左,使木板向右减速运动,直到它们速度相等,没有了动摩擦力,二者以共同速度做匀速运动,综上所述,选项B 、C 正确.][规范思维] 正确建立两物体的运动情景,明确物体的受力情况,进而确定加速度的大小方向,再进行运动状态分析.例3 (1) 2(F -μmg )x m (2)(Fμmg-1)x解析 (1)设撤去F 时物块的速度大小为v ,根据牛顿第二定律,物块的加速度 a =F -μmg m又由运动学公式v 2=2ax ,解得v = 2(F -μmg )xm(2)撤去F 后物块只受摩擦力,做匀减速运动至停止,根据牛顿第二定律,物块的加速度a ′=-μmg m =-μg 由运动学公式v ′2-v 2=2a ′x ′,且v ′=0解得x ′=(Fμmg-1)x[规范思维] 本题是已知物体的受力情况,求解运动情况,受力分析是求解的关键.如果物体的加速度或受力情况发生变化,则要分段处理,受力情况改变时的瞬时速度即是前后过程的联系量.多过程问题画出草图有助于解题.例4 (1)0.2 (2)6 N (3)46 m解析 (1)设物体做匀减速直线运动的时间为Δt 2、初速度为v 20、末速度为v 2t 、加速度为a 2,则a 2=v 2t -v 20Δt 2=-2 m/s 2①设物体所受的摩擦力为F f ,根据牛顿第二定律,有 F f =ma 2② F f =-μmg ③联立②③得μ=-a 2g=0.2④(2)设物体做匀加速直线运动的时间为Δt 1、初速度为v 10、末速度为v 1t 、加速度为a 1,则a 1=v 1t -v 10Δt 1=1 m/s 2⑤根据牛顿第二定律,有F +F f =ma 1⑥ 联立③⑥得F =μmg +ma 1=6 N(3)解法一 由匀变速直线运动位移公式,得x =x 1+x 2=v 10Δt 1+12a 1Δt 21+v 20Δt 2+12a 2Δt 22=46 m 解法二 根据v -t 图象围成的面积,得x =(v 10+v 1t 2×Δt 1+12×v 20×Δt 2)=46 m[规范思维] 本题是牛顿第二定律和运动图象的综合应用.本题是已知运动情况(由v -t 图象告知运动信息)求受力情况.在求解两类动力学问题时,加速度是联系力和运动的桥梁,受力分析和运动过程分析是两大关键,一般需列两类方程(牛顿第二定律,运动学公式)联立求解. [针对训练]1.B 2.(1)4 N (2)42 m (3)322s(或2.1 s)【课时效果检测】1.C 2.B 3.BC 4.B 5.D [m 刚放上时,mg sin θ+μmg cos θ=ma 1.当m 与带同速后,因带足够长,且μ<tan θ,故m 要继续匀加速.此时,mg sin θ-μmg cos θ=ma 2,a 2<a 1,故D 正确.]6.C [以箱子和里面所有苹果作为整体来研究,受力分析得,Mg sin θ=Ma ,则a =g sin θ,方向沿斜面向下;再以质量为m 的苹果为研究对象,受力分析得,合外力F =ma =mg sin θ,与苹果重力沿斜面的分力相同,由此可知,其他苹果给它的力的合力应与重力垂直于斜面的分力相等,即mg cos θ,故C 正确.]7.(1)80 N (2)315(3)100 3 m8.16 N解析 由下图中的受力分析,根据牛顿第二定律有F -F f =ma 物① F f ′=Ma 车②其中F f =F f ′=μmg ③由分析图结合运动学公式有x 1=12a 车t 2④x 2=12a 物t 2⑤x 2-x 1=x ⑥由②③解得a 车=1 m/s 2⑦ 由④⑤⑥⑦解得a 物=1.5 m/s 2所以F =F f +ma 物=m (μg +a 物)=4×(0.25×10+1.5) N =16 N. 9.0.25 16.25 m解析 设力F 作用时物体沿斜面上升的加速度大小为a 1撤去力F 后其加速度大小变为a 2,则: a 1t 1=a 2t 2①有力F 作用时,物体受力为:重力mg 、推力F 、支持力F N1、摩擦力F f1,如图所示.在沿斜面方向上,由牛顿第二定律可得: F cos θ-mg sin θ-F f1=ma 1②F f1=μF N1′=μ(mg cos θ+F sin θ)③撤去力F 后,物体受重力mg 、支持力F N2、摩擦力F f2,在沿斜面方向上,由牛顿第二定律得: mg sin θ+F f2=ma 2④F f2=μF N2′=μmg cos θ⑤联立①②③④⑤式,代入数据得:a 2=8 m/s 2 a 1=5 m/s 2 μ=0.25物体运动的总位移x =12a 1t 21+12a 2t 22=⎝⎛⎭⎫12×5×22+12×8×1.252 m =16.25 m 10.6μmg解析 设小木块离开薄木板之前的过程,所用时间为t ,小木块的加速度大小为a 1,移动的距离为x 1,薄木板被抽出后,小木块在桌面上做匀减速直线运动,所用时间为t ′,设其加速度大小为a 2,移动的距离为x 2,有 μmg =ma 1① μmg =ma 2②即有a 1=a 2=μg ③根据运动学规律有x 1=x 2,t =t ′④所以x 1=12μgt 2⑤x 2=12μgt 2⑥根据题意有x 1+x 2=12L ⑦解得t 2=L2μg⑧设小木块没有离开薄木板的过程中,薄木板的加速度为a ,移动的距离为x ,有 x =12at 2⑨ 根据题意有x =x 1+12L ⑩联立⑤⑧⑨⑩得a =3μg ⑪对薄木板,根据牛顿第二定律得F -3μmg =ma , 解得F =6μmg . 易错点评1.应用牛顿第二定律时,要注重对定律“四性”的理解.特别是“瞬时性”是常考要点之一;此外“独立性”也是解题中经常用到的.2.解决动力学两类基本问题的关键是找到加速度这一桥梁,除此之外,还应注意受力分析和运动过程分析,最好能画出受力分析图和运动过程草图.。
2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲牛顿第二定律 两类动力学问题(含解析)
![2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲牛顿第二定律 两类动力学问题(含解析)](https://img.taocdn.com/s3/m/82004a0576c66137ee0619f8.png)
第2讲牛顿第二定律两类动力学问题对应学生用书P45牛顿第二定律Ⅱ(考纲要求)【思维驱动】(多选)关于力和运动的关系,下列说法正确的是( ).A.物体的速度不断增大,表示物体必受力的作用B.物体的位移不断增大,表示物体必受力的作用C.若物体的位移与时间的平方成正比,表示物体必受力的作用D.物体的速率不变,则其所受合力必为0解析物体的速度不断增大,一定有加速度,由牛顿第二定律知,物体所受合力一定不为0,物体必受力的作用,A正确;位移与运动时间的平方成正比,说明物体做匀加速直线运动,合力不为0,C正确;做匀速直线运动的物体的位移也是逐渐增大的,但其所受合力为0,故B错误;当物体的速率不变,速度的方向变化时,物体具有加速度,合力不为0,D错误.答案AC【知识存盘】1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比.加速度的方向与作用力方向相同.2.表达式:F=ma.3.适用范围(1)只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).(2)只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.单位制【思维驱动】(多选)在牛顿第二定律公式F=kma中,比例系数k的数值( ).A.在任何情况下都等于1B.是由质量m、加速度a和力F三者的大小所决定的C.是由质量m、加速度a和力F三者的单位所决定的D.在国际单位制中一定等于1解析物理公式在确定物理量的数量关系的同时也确定了物理量单位的关系.课本上牛顿第二定律的公式F=ma是根据实验结论导出的,其过程简要如下:实验结论一:a∝F;实验结论二:a∝1 m .综合两个结论,得a∝Fm或F∝ma.上式写成等式为F=kma,其中k为比例常数.如果选用合适的单位,可使k=1.为此,对力的单位“N”做了定义:使质量是1 kg的物体产生1 m/s2的加速度的力,叫做1 N,即1 N=1 kg·m/s2.据此,公式F=kma中,如果各物理量都用国际单位(即F用N作单位、m用kg作单位、a用m/s2作单位),则k=1.由此可见,公式F=kma中的比例常数k的数值,是由质量m、加速度a和力F三者的单位所决定的,在国际单位制中k=1,并不是在任何情况下k都等于1,故选项A、B错,选项C、D正确.答案CD【知识存盘】1.力学单位制:单位制由基本单位和导出单位共同组成.2.力学中的基本单位:力学单位制中的基本单位有千克(kg)、米(m)和秒(s).3.导出单位:导出单位有N、m/s、m/s2等.牛顿运动定律的应用Ⅱ(考纲要求)【思维驱动】如图3-2-1所示,图3-2-1楼梯口一倾斜的天花板与水平面成θ=37°角,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F=10 N,刷子的质量为m =0.5 kg,刷子可视为质点,刷子与天花板间的动摩擦因数μ=0.5,天花板长为L=4 m.sin 37°=0.6,cos 37°=0.8,g取10 m/s2.试求:(1)刷子沿天花板向上的加速度.(2)工人把刷子从天花板底端推到顶端所用的时间.解析(1)刷子受力如图所示,对刷子沿斜面方向由牛顿第二定律得:F sin θ-mg sin θ-F f=ma垂直斜面方向上受力平衡,有:F cos θ=mg cos θ+F N其中F f=μF N由以上三式得:a=2 m/s2.(2)由L=12at2得:t=2 s.答案(1)2 m/s2(2)2 s【知识存盘】1.动力学的两类基本问题(1)由受力情况分析判断物体的运动情况;(2)由运动情况分析判断物体的受力情况.2.解决两类基本问题的方法:以加速度为桥梁,由运动学公式和牛顿第二定律列方程求解.国际单位制中的基本单位有:千克(kg)、米(m)、秒(s)、安培(A)、开尔文(K)(高中阶段所学)对应学生用书P46考点一 对牛顿第二定律的理解 牛顿第二定律的“五”性【典例1】 (单选)如图3-2-2所示,图3-2-2物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m ,2、4质量为M ,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( ).A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +MMg D .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +MMg 解析 在抽出木板的瞬时,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对3向上的弹力大小和对物块4向下的弹力大小仍为mg ,因此物块3满足mg =F ,a 3=0;由牛顿第二定律得物块4满足a 4=F +Mg M =M +mMg ,所以C 对. 答案 C【变式跟踪1】 (单选)(2013·常州联考)如图3-2-3所示,图3-2-3质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为( ). A .0 B.233g C .gD.33g解析 平衡时,小球受到三个力:重力mg 、木板AB 的支持力F N 和弹簧拉力F T ,受力情况如图所示.突然撤离木板时,F N 突然消失而其他力不变,因此F T 与重力mg 的合力F =mgcos 30°=233mg ,产生的加速度a =F m =233g ,B 正确. 答案 B,借题发挥1.分析物体在某一时刻瞬时加速度的关键: (1)先分析该时刻物体的受力情况及运动状态. (2)再由牛顿第二定律求出瞬时加速度. 2.几种常见模型:考点二 整体法、隔离法的灵活应用选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度.对于连接体问题,通常用隔离法,但有时也可采用整体法. 【典例2】 (单选)(2012·江苏卷,5)图3-2-4如图3-2-4所示,一夹子夹住木块,在力F 作用下向上提升.夹子和木块的质量分别为m 、M ,夹子与木块两侧间的最大静摩擦力均为f .若木块不滑动,力F 的最大值是( ). A.2f (m +M )MB.2f (m +M )mC.2f (m +M )M-(m +M )g D.2f (m +M )m+(m +M )g解析 对木块M ,受到两个静摩擦力f 和重力Mg 三个力而向上运动,由牛顿第二定律得木块不滑动的最大加速度大小为a m =2f -Mg M①.对整体,受到两个力,即力F 和整体重力(m +M )g ,由牛顿第二定律得F -(m +M )g =(m +M )a ②,代入最大加速度即得力F 的最大值F m =2f (m +M )MA 项正确.答案 A【变式跟踪2】 (单选)如图3-2-5所示,图3-2-550个大小相同、质量均为m 的小物块,在平行于斜面向上的恒力F 作用下一起沿斜面向上运动.已知斜面足够长,倾角为30°,各物块与斜面的动摩擦因数相同,重力加速度为g ,则第3个小物块对第2个小物块的作用力大小为( ). A.125F B.2425F C .24mg +F2D .因为动摩擦因数未知,所以不能确定解析 设题中50个小物块组成的整体沿斜面向上的加速度大小为a ,由牛顿第二定律可得F -50μmg cos 30°-50mg sin 30°=50ma ;从整体中将第3、4、…、50共48个小物块隔离出来进行受力分析,设第2个小物块对第3个小物块的作用力大小为F N ,由牛顿第二定律得F N -48μmg cos 30°-48mg sin 30°=48ma ;联立以上两式解得F N =2425F ,由牛顿第三定律可知,第3个小块对第2个小物块作用力大小为2425F ,故选项B 正确.答案 B,阅卷老师叮咛•考情报告牛顿运动定律是高频考点,甚至同一年同一试卷都有多处考查. •易失分点1.不能灵活运用整体法和隔离法选取研究对象.2.不理解力F 有最大值的条件―→M 、m 不相对滑动―→夹子与木块间达到最大静摩擦力.以题说法1.整体法与隔离法的应用技巧对于连接体各部分加速度相同时,一般的思维方法是2.使用隔离法时应注意两个原则(1)选出的隔离体应包含所求的未知量;(2)在独立方程的个数等于未知量的个数前提下,隔离体的数目应尽可能地少.考点三 动力学的两类基本问题 【典例3】 (2012·浙江卷,23)图3-2-6为了研究鱼所受水的阻力与其形状的关系.小明同学用石蜡做成两条质量均为m 、形状不同的“A 鱼”和“B 鱼”,如图3-2-6所示.在高出水面H 处分别静止释放“A 鱼”和“B 鱼”,“A 鱼”竖直下潜h A 后速度减为零,“B 鱼”竖直下潜h B 后速度减为零.“鱼”在水中运动时,除受重力外,还受浮力和水的阻力.已知“鱼”在水中所受浮力是其重力的109倍,重力加速度为g ,“鱼”运动的位移值远大于“鱼”的长度.假设“鱼”运动时所受水的阻力恒定,空气阻力不计.求: (1)“A 鱼”入水瞬间的速度v A 1; (2)“A 鱼”在水中运动时所受阻力f A ;(3)“A 鱼”与“B 鱼”在水中运动时所受阻力之比f A ∶f B . 规范解答 (1)“A 鱼”在入水前做自由落体运动,有v 2A 1-0=2gH ①得:v A 1=2gH ②(2)“A 鱼”在水中运动时受重力、浮力和阻力的作用,做匀减速运动,设加速度为a A ,有F 浮+f A -mg =ma A ③ 0-v 2A 1=-2a A h A ④ 由题意:F 浮=109mg 由②③④式得f A =mg⎝⎛⎭⎫H h A -19⑤ (3)考虑到“B 鱼”的受力、运动情况与“A 鱼”相似,有f B =mg ⎝⎛⎫Hh B -19⑥综合⑤、⑥两式,得。
2022年高考一轮复习 第3章 牛顿运动定律 第3课时 动力学的两类基本问题
![2022年高考一轮复习 第3章 牛顿运动定律 第3课时 动力学的两类基本问题](https://img.taocdn.com/s3/m/b9356316590216fc700abb68a98271fe910eafb0.png)
时间。下列关系正确的是
()
A.t1=t2
B.t2>t3
C.t1<t2
D.t1=t3
[解析] 设想还有一根光滑固定细杆 ca,则 ca、Oa、da 三 细杆交于圆的最低点 a,三杆顶点均在圆周上,根据等时圆模型 可知,由 c、O、d 无初速度释放的小滑环到达 a 点的时间相等, 即 tca=t1=t3;而由 c→a 和由 O→b 滑动的小滑环相比较,滑行 位移大小相同,初速度均为零,但加速度 aca>aOb,由 x=12at2 可 知,t2>tca,故选项 A 错误,B、C、D 均正确。
[典例] 新能源环保汽车在设计阶段要对各项性能进行测 试。某次新能源汽车性能测试中,如图甲显示的是牵引力传感器 传回的实时数据,但由于机械故障,速度传感器只传回了第 25 s 以后的数据,如图乙所示。已知汽车质量为 1 500 kg,若测试平 台是水平的,且汽车由静止开始做直线运动,所受阻力恒定。求:
考点二 动力学的图像问题 1.常见的动力学图像及问题类型
2.解题策略 (1)问题实质是力与运动的关系,解题的关键在于弄清图像 斜率、截距、交点、拐点、面积的物理意义。 (2)应用物理规律列出与图像对应的函数方程式,进而明确 “图像与公式”“图像与物体”间的关系,以便对有关物理问 题作出准确判断。
[解析] (1)由题图所示 v-t 图像可知, 加速度:a=ΔΔvt =84 m/s2=2 m/s2; 加速时间:t1=4 s, 加速位移:x1=v2t1=82×4 m=16 m, 匀速位移:x2=x-x1=100 m-16 m=84 m, 匀速时间:t2=xv2=884 s=10.5 s, 跑完 100 m 时间 t=t1+t2=14.5 s。
(1)运动员加速过程中的加速度大小 a 及跑完 100 m 所用的时间 t; (2)在加速阶段绳子对轮胎的拉力大小 T 及运动员与地面间的摩 擦力大小 f 人。
动力学的两类基本问题
![动力学的两类基本问题](https://img.taocdn.com/s3/m/ff40396889eb172dec63b71f.png)
动力学的两类基本问题
例1
水平面上有相距15 m 的A 、B 两点,一质
量为2 kg 的物体在大小为16 N 、方向斜向上的力F 作用下,从A 点由静止开始做直线运动.某
时刻撤去F ,物体到达B 点时速度为0.若物体与水平面间的动摩擦因数μ=34
,重力加速度g 取10 m/s 2.求物体从A 运动到B 的最短时间.
①由静止开始做直线运动;②某时刻撤去F ,
物体到达B 点时速度为0.
答案 4 s
解析 撤去F 前对物体受力分析如图所示,根据牛顿第二定律有
F cos α-F f =ma 1①
F f =μF N ②
F N =mg -F sin α③
x 1=12
a 1t 12④ 撤去F 后物体只受重力、弹力和摩擦力,利用牛顿第二定律有
μmg =ma 2⑤
x 2=12
a 2t 22⑥ x 1+x 2=s ⑦
a 1t 1=a 2t 2⑧
根据v -t 图象中速度与时间轴所围面积代表位移,由于减速过程物体的加速度不变,在总位移不变的情况下只有增大加速过程的加速度才能让时间变短.由①②③联立可得F cos α
-μ(mg -F sin α)=ma 1利用数学知识可得最大加速度a 1=F 1+μ2
m
-μg =2.5 m/s 2,联立④⑤⑥⑦⑧可求得t 1=3 s ,t 2=1 s ,则总时间t =t 1+t 2=4 s.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿第二定律两类动力学问题知识点、两类动力学问题1.动力学的两类基本问题第一类:已知受力情况求物体的运动情况。
第二类:已知运动情况求物体的受力情况。
2.解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图:对牛顿第二定律的理解1.牛顿第二定律的“五个性质”2.合力、加速度、速度的关系(1)物体的加速度由所受合力决定,与速度无必然联系。
(2)合力与速度夹角为锐角,物体加速;合力与速度夹角为钝角,物体减速。
(3)a=ΔvΔt是加速度的定义式,a与v、Δv无直接关系;a=Fm是加速度的决定式。
3.[应用牛顿第二定律定性分析]如图1所示,弹簧左端固定,右端自由伸长到O点并系住质量为m的物体,现将弹簧压缩到A点,然后释放,物体可以一直运动到B点。
如果物体受到的阻力恒定,则( )图1A.物体从A到O先加速后减速B.物体从A到O做加速运动,从O到B做减速运动C.物体运动到O点时,所受合力为零D.物体从A到O的过程中,加速度逐渐减小解析物体从A到O,初始阶段受到的向右的弹力大于阻力,合力向右。
随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大。
当物体向右运动至AO间某点(设为点O′)时,弹力减小到与阻力相等,物体所受合力为零,加速度为零,速度达到最大。
此后,随着物体继续向右运动,弹力继续减小,阻力大于弹力,合力方向变为向左。
至O点时弹力减为零,此后弹力向左且逐渐增大。
所以物体越过O′点后,合力(加速度)方向向左且逐渐增大,由于加速度与速度反向,故物体做加速度逐渐增大的减速运动。
综合以上分析,只有选项A正确。
答案A牛顿第二定律的瞬时性【典例】(2016·安徽合肥一中二模)两个质量均为m的小球,用两条轻绳连接,处于平衡状态,如图2所示。
现突然迅速剪断轻绳OA,让小球下落,在剪断轻绳的瞬间,设小球A、B的加速度分别用a1和a2表示,则( )图2A.a1=g,a2=g B.a1=0,a2=2gC.a1=g,a2=0 D.a1=2g,a2=0解析由于绳子张力可以突变,故剪断OA后小球A、B只受重力,其加速度a1=a2=g。
故选项A正确。
答案A【拓展延伸1】把“轻绳”换成“轻弹簧”在【典例】中只将A、B间的轻绳换成轻质弹簧,其他不变,如图3所示,则典例选项中正确的是( )图3解析剪断轻绳OA后,由于弹簧弹力不能突变,故小球A所受合力为2mg,小球B所受合力为零,所以小球A、B的加速度分别为a1=2g,a2=0。
故选项D正确。
答案D【拓展延伸2】改变平衡状态的呈现方式把【拓展延伸1】的题图放置在倾角为θ=30°的光滑斜面上,如图4所示系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,则下列说法正确的是( )图4A.a A=0 a B=1 2 gB.a A=g a B=0C.a A=g a B=gD.a A=0 a B=g解析细线被烧断的瞬间,小球B的受力情况不变,加速度为零。
烧断前,分析整体受力可知线的拉力为T=2mg sin θ,烧断瞬间,A受的合力沿斜面向下,大小为2mg sin θ,所以A球的瞬时加速度为a A=2g sin 30°=g,故选项B正确。
答案B方法技巧抓住“两关键”、遵循“四步骤”(1)分析瞬时加速度的“两个关键”:①明确绳或线类、弹簧或橡皮条类模型的特点。
②分析瞬时前、后的受力情况和运动状态。
(2)“四个步骤”:第一步:分析原来物体的受力情况。
第二步:分析物体在突变时的受力情况。
第三步:由牛顿第二定律列方程。
第四步:求出瞬时加速度,并讨论其合理性。
1.[静态瞬时问题]如图5所示,A、B两球质量相等,光滑斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有( )图5A.两图中两球加速度均为g sin θB.两图中A球的加速度均为零C.图乙中轻杆的作用力一定不为零D.图甲中B球的加速度是图乙中B球加速度的2倍解析撤去挡板前,挡板对B球的弹力大小为2mg sin θ,因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,图甲中A球所受合力为零,加速度为零,B球所受合力为2mg sin θ,加速度为2g sin θ;图乙中杆的弹力突变为零,A、B球所受合力均为mg sin θ,加速度均为g sin θ,可知只有D正确。
答案D2.[动态瞬时问题](2017·芜湖模拟)如图6所示,光滑水平面上,A、B两物体用轻弹簧连接在一起,A、B的质量分别为m1、m2,在拉力F作用下,A、B共同做匀加速直线运动,加速度大小为a,某时刻突然撤去拉力F,此瞬时A和B的加速度大小为a1和a2,则( )图6A.a1=0,a2=0B.a1=a,a2=m2m1+m2aC.a1=m1m1+m2a,a2=m2m1+m2aD.a1=a,a2=m 1 m 2 a解析撤去拉力F的瞬间,物体A的受力不变,所以a1=a,对物体A受力分析得:F弹=m1a;撤去拉力F的瞬间,物体B受到的合力大小为F弹′=m2a2,所以a 2=m1am2,故选项D正确。
答案D动力学两类基本问题1.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁。
2.解决动力学基本问题时对力的处理方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”。
(2)正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”。
【典例】(12分)如图7所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前得到越来越广泛的应用。
一架质量m=2 kg的无人机,其动力系统所能提供的最大升力F=36 N,运动过程中所受空气阻力大小恒为f=4 N。
g取10 m/s2。
图7(1)无人机在地面上从静止开始,以最大升力竖直向上起飞。
求在t=5 s时离地面的高度h;(2)当无人机悬停在距离地面高度H=100 m处,由于动力设备故障,无人机突然失去升力而坠落。
求无人机坠落地面时的速度v。
规范解答(1)设无人机上升时加速度为a,由牛顿第二定律,有F-mg-f=ma(2分)解得a=6 m/s2(2分)由h=12at2,解得h=75 m(2分)(2)设无人机坠落过程中加速度为a1,由牛顿第二定律,有mg-f=ma1(2分)解得a1=8 m/s2(2分)由v2=2a1H,解得v=40 m/s(2分)答案(1)75 m (2)40 m/s方法技巧两类动力学问题的解题步骤2.[已知运动分析受力](14分)一质量为m=2 kg的滑块能在倾角为θ=30°的足够长的斜面上以a= m/s2匀加速下滑。
如图9所示,若用一水平向右的恒力F 作用于滑块,使之由静止开始在t=2 s内沿斜面运动,其位移x=4 m。
g取10m/s2。
求:图9(1)滑块和斜面之间的动摩擦因数μ;(2)恒力F的大小。
解析(1)根据牛顿第二定律,有mg sin 30°-μmg cos 30°=ma(2分)解得μ=36(1分)(2)滑块沿斜面做匀加速直线运动时,加速度有向上和向下两种可能。
根据题意,由运动学公式,有x=12a1t2,(1分)可得a1=2 m/s2(1分)当加速度沿斜面向上时,有F cos 30°-mg sin 30°-f=ma1(2分) f=μ(F sin 30°+mg cos 30°)(1分)联立解得F=7635N(2分)当加速度沿斜面向下时,有mg sin 30°-F cos 30°-f=ma1(2分)联立解得F=437N。
(2分)答案(1)36(2)437N或7635N1.(多选)(2016·江苏单科,9)如图12所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面,若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中( )图12A.桌布对鱼缸摩擦力的方向向左B.鱼缸在桌布上的滑动时间和在桌面上的相等C.若猫增大拉力,鱼缸受到的摩擦力将增大D.若猫减小拉力,鱼缸有可能滑出桌面解析桌布对鱼缸摩擦力的方向向右,A项错误;各接触面间的动摩擦因数为μ,鱼缸的质量为m,由牛顿第二定律可得鱼缸在桌布和桌面上滑动的加速度大小相同,均为a=μg,鱼缸离开桌布时的速度为v,则鱼缸在桌布上和在桌面上滑动时间均为t=vμg,B项正确;猫增大拉力时,鱼缸受到的摩擦为f=μmg不变,C项错;若猫减小拉力,鱼缸在桌布上加速运动的时间变长,离开桌布时的速度v=μgt增大,加速运动的位移x1=12μgt2增大,且鱼缸在桌面上减速滑行的位移x2=v22μg也增大,则鱼缸有可能滑出桌面,D项对。
答案BD2.(2016·全国卷Ⅱ,19)(多选)两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量。
两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关。
若它们下落相同的距离,则( )A.甲球用的时间比乙球长B.甲球末速度的大小大于乙球末速度的大小C.甲球加速度的大小小于乙球加速度的大小D.甲球克服阻力做的功大于乙球克服阻力做的功解析小球的质量m=ρ·43πr3,由题意知m甲>m乙,ρ甲=ρ乙,则r甲>r乙。
空气阻力f=kr,对小球由牛顿第二定律得,mg-f=ma,则a=mg-fm=g-krρ·43πr3=g-3k4πρr2,可得a甲>a乙,由h=12at2知,t甲<t乙,选项A、C错误;由v=2ah知,v甲>v乙,故选项B正确;因f甲>f乙,由球克服阻力做功W f=f h知,甲球克服阻力做功较大,选项D正确。
答案BD3.(2015·海南单科,8)(多选)如图13所示,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态。
现将细线剪断,将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长量分别记为Δl1和Δl2,重力加速度大小为g。
在剪断的瞬间( )图13A.a1=3g B.a1=0C.Δl1=2Δl2D.Δl1=Δl2解析设物体的质量为m,剪断细线的瞬间,细线的拉力消失,弹簧还没有来得及发生形变,所以剪断细线的瞬间a受到重力和弹簧S1的拉力F T1,剪断前对b、c和弹簧组成的整体分析可知FT1=2mg,故a受到的合力F=mg+F T1=mg+2mg=3mg,故加速度a1=Fm=3g,A正确,B错误;设弹簧S2的拉力为F T2,则F T2=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确,D错误。