厂典型零件工艺分析
典型轴类零件数控加工工艺分析
典型轴类零件数控加工工艺分析摘要: 随着数控技术的不断发展和应用领域的扩大,数控技术的应用给传统制造业带来了革命性的变化,因为效率、质量是先进制造业的主体。
高速、高精加工技术可极大地提升效率,提高产品的品质,缩短生产周期和提高市场竞争能力。
而对于数控加工,无论是手工编程还是自动编程,在编程前都要对所加工的零件进行工艺分析,制定合理的加工方案,选择合适的道具,确定科学的切削用量,对一些工艺问题(如对刀点、加工路线等)也需做一些分析处理。
并在加工过程掌握控制精度的方法,才能加工出合格的产品。
关键词: 工艺分析;加工方案;加工路线;控制尺寸一、零件加工工艺分析图1-1 典型轴类零件图1、零件技术要求(1)锐角倒钝;(2)未注形位公差应符合GB1184-80的要求;(3)未注长度尺寸运供需偏差±0.2mm;(4)不准使用锉刀、纱布进行修磨工件表面。
该零件由圆柱、圆弧、圆锥、槽、螺纹、内孔等表面组成。
选用毛培为45#钢,Φ50×130m m,无热处理和硬度要求。
2、确定加工方法加工方法的选择原则是保证加工表面的加工精度和表面粗糙度的要求。
由于获得同一级精度及表面粗糙度的加工方法一般有许多,因而在实际选择时,要结合零件的形状、尺寸大小和形位公差要求等全面考虑。
考虑加工的效率和加工的经济性,最理想的加工方式为车削,采用数控车床。
3、分析图样尺寸考虑到采用数控车床,在图样中有几个点的坐标值要加以确定如图1-2所示:需要确定的坐标有a点、b点、c点。
在确定三点坐标之前,先确定工件坐标系。
暂时以工件的右端面回转中心为工件坐标系的坐标原点O。
A点的计算 z值-13,x值23(半径值)B点的计算 z值(13+L1),x值13L1值的计算:462 -132 = L1 2 L1=18.973B点z值=(13+L1)=13+18.9763=31.973B点坐标Z-31.973 , X13C点的计算Z值-42, X值(23-L2)L2值的计算:cos10。
典型零件加工工艺分析
套筒类零件的安装
§6.2.3 套类零件孔的加工方法
套类零件的孔加工方法常用的有:钻孔、扩孔、 镗孔、车孔、铰孔、磨孔、拉孔、珩孔、研磨孔 及孔表面滚压加工。其中钻孔、扩孔、镗孔、车 孔常作为粗加工与半精加工;而铰孔、磨孔、拉 孔、珩孔、研磨孔及孔表面滚压加工作为精加工 方法。
1. 磨孔 内圆磨削具有以下特点:
(1) 孔与外圆的精度要求。 (2) 几何形状精度要求。 (3) 相互位置精度要求。
3、套筒类零件的材料及毛坯
材料 套类零件一般用钢、铸铁、青铜、黄铜制成。有 些滑动轴承可选用双金属结构,对一些强度和硬度要求 较高的套类零件(如镗床主轴套筒、伺服阀套),可选用 优质合金钢(38CrMoALA、18CrNiWA)。
深孔钻削
深孔镗削
浮动镗孔
深孔加工
精细镗孔 珩磨内孔 内孔研磨 滚压孔
精加工
§6.3 齿轮加工
§6.3.1 概述
齿轮的功用
圆柱齿轮是机械传动中的重要零件,其功用是按规 定的传动比传递运动和动力。它具有传动比准确、 传动力大、效率高、结构紧凑、可靠性好等优点, 广泛应用于各种现代机器和仪表中。
圆柱齿轮的结构与分类
• 圆柱齿轮可以看成由齿圈和轮体两部分所构成,
在轮圈上切出直齿、斜齿或人字齿(图6-9)等就 形成了齿轮。 • 按齿形曲线性质可分为渐开线、摆线、鼓形和圆 弧等。 • 齿轮的结构分类常以轮体结构的形状为依据,即 可分为单联齿轮、双联齿轮、三联齿轮、连轴齿轮、 内齿轮、装配齿轮、齿条及扇形齿轮等(图6-10)
图c) • 4 以顶尖孔安装——顶尖孔定心、定位。图d)
图6-12 齿形加工安装实例
• 二 齿坯的加工方式 • 1 内孔安装 控制端面跳动与内径公差。
典型铣削零件加工的工艺分析及编程
典型铣削零件加工的工艺分析及编程1. 引言铣削是一种常见的机械加工方法,广泛应用于零件加工领域。
在铣削加工中,我们通常需要进行工艺分析和编程,以保证零件加工的准确性和效率。
本文将针对典型铣削零件的加工过程进行工艺分析,并介绍如何进行编程。
2. 零件加工的工艺分析在进行铣削零件加工之前,我们首先需要对零件的形状、尺寸、加工材料进行分析,以确定合适的工艺路线和加工参数。
2.1 零件形状分析零件的形状对于确定铣削工艺有重要影响。
常见的零件形状包括平面零件、曲面零件、孔型零件等。
不同形状的零件需要采用不同的加工策略和工艺路线。
2.2 尺寸分析零件的尺寸要求对于决定加工工艺参数也非常重要。
尺寸分析包括零件的最大尺寸、最小尺寸、公差要求等。
根据不同的尺寸要求,我们可以选择合适的刀具和机床进行加工。
2.3 加工材料分析加工材料的硬度、韧性、热传导性等性质也会对加工工艺产生影响。
选择合适的切削速度、进给量和切削深度可以提高加工质量和效率。
3. 零件加工的编程在确定了合适的工艺路线和加工参数之后,我们需要进行编程,将加工过程转化为机床可以理解和执行的指令。
3.1 编程语言介绍目前,常用的铣削加工编程语言包括G代码和M代码。
G代码用于定义运动轨迹和加工方式,M代码用于定义辅助功能和机床控制。
3.2 编程步骤编程的步骤包括创建编程文件、选择刀具和工艺路线、编写加工指令、设定初始位置等。
在编程过程中,需要考虑刀具半径补偿、切削参数调整和刀具路径优化等问题。
3.3 编程实例以下是一个简单的铣削编程实例:1. G90 G54 G17 G40 ;刀具半径编程方式选择,选择工作坐标系,选择平面2. M3 S1000 ;主轴启动,设置主轴转速3. G0 X0 Y0 Z20 ;快速定位到初始位置4. G1 Z-5 ;快速下刀到指定深度5. G2 X50 Y0 I25 J0 F200 ;顺时针沿圆弧加工6. G1 X100 ;快速移动到指定位置7. G1 Z-10 F100 ;沿Z轴下刀到指定深度8. G1 X50 ;移动到指定位置9. G1 Z-20 ;下刀到指定深度10. G2 X0 Y0 I-25 J0 ;逆时针沿圆弧加工11. G0 Z20 ;快速抬刀12. M5 ;主轴停止13. M30 ;程序结束4. 总结本文针对典型铣削零件的加工过程进行了工艺分析,并介绍了编程的相关知识。
单元34-1第八章典型零件的选材与工艺路线分析
不锈钢具有优良的耐腐蚀性和机械性能,适用于制造高强度、耐腐蚀的零件,如压力容器、管道等。焊接工艺能够实现异种材料的连接,因此不锈钢材料与焊接工艺相匹配适用于这些零件的制造。
不锈钢材料与焊接工艺
典型零件的选材与工艺路线实例分析
#O4
#2022
轴类零件的选材与工艺路线分析
总结词
轴类零件是机械中常见的支撑和传动零件,其选材和工艺路线分析需考虑强度、耐磨性、耐腐蚀性和热处理工艺。
现有研究的不足与展望
列举了几个典型零件的选材和工艺路线分析案例,如轴类、齿轮类、箱体类等,通过实例说明了选材和工艺路线分析的实际应用和效果。
典型零件选材与工艺路线实例
总结了选材时应考虑的主要因素,包括材料的机械性能、工艺性能、经济性以及环境影响等。强调了选材时需权衡各种因素,以达到最佳的综合效果。
选材原则
铜及铜合金
常用材料介绍
材料性能与零件性能的关系
材料性能直接影响零件的性能,如强度、刚度、耐磨性等。 材料的物理和化学性质对零件的工作环境和使用寿命有重要影响,如耐腐蚀性、导电性、热膨胀系数等。 材料的机械性能对零件的加工制造和装配也有重要影响,如可加工性、焊接性、切削性等。
工艺路线分析
#O2
#2022
04
根据确定的工序顺序和设备、工艺方法,制定详细的工艺流程和工艺标准,明确各工序的加工要求、检验标准等。
制定工艺流程和工艺标准
在实际生产过程中,根据实际情况对工艺路线进行优化和完善,提高生产效率和产品质量。
优化和完善工艺路线
工艺路线制定流程
工艺路线优化方法
通过分析和改进生产过程,减少非增值环节,如等待、搬运、检验等,提高生产效率和产品质量。
[精编]典型零件加工工艺分析
[精编]典型零件加工工艺分析
零件加工工艺分析是设计、制造过程中一个重要环节,是实现目标产品功能性能要求
的关键技术手段。
因此,在设计制造各项工艺参数之前,都需要对零件加工工艺进行仔细
分析。
一般来说,零件加工工艺分析包括了材料分析、过程分析、方法分析以及可行性分析。
一般从这四个方面进行系统分析零件加工工艺,以更好地确定加工的方式、材料的选择,
既节省生产成本,又能保证加工质量。
首先,在进行零件加工工艺分析之前,要对零件的形状、尺寸、强度要求等基本参数
进行分析研究,由此决定该类零件的材料,并确定加工工艺。
其次,在选择加工过程前,应该全面分析以下情况:比如说零件加工过程中所耗费的
多少工序、每个工序耗费的时间、加工设备的选型、零件的表面处理等,以此确定最适合
的加工过程及做工的方法。
再者,在确定加工精度和质量时,要根据零件的加工精度要求、外观质量和内部质量
来进行评估,同时考虑加工工艺及其所使用的设备,以确定分析出加工工艺、材料等方面
的技术指标,对比加工质量达标程度。
最后,在加工技术分析中,还要进行可行性分析,旨在确定加工工艺是否可行,综合
考虑加工所需设备和设施、加工工艺、加工费用、质量等要素,实施零件的加工成本控制
及经济性分析,从而更好地将零件加工工艺应用于实践。
总之,准确评估零件加工工艺瓶颈,分析大量的工艺参数,实施有效的加工成本控制,是每一个零件加工企业的目标。
要更好地实现这一目标,必须对零件加工工艺进行全面系
统的分析,以帮助企业在生产加工过程中实施科学管理、有效控制成本。
典型难加工零件工艺分析及编程
绿色制造的推广
要点一
环保材料
采用环保材料,如可回收材料、低毒材料等,减少对环境 的污染。
要点二
节能技术
采用节能技术,如高效加工技术、能源回收技术等,降低 能源消耗和排放。
THANKS
感谢观看
工艺分析的方法
工艺流程规划
根据零件的结构和加工要求,规划合理的加工流 程和顺序。
刀具与夹具选择
根据加工要求和零件结构,选择合适的刀具和夹 具,确保加工过程的稳定性和精度。
ABCD
加工参数确定
根据材料特性、刀具性能和加工条件,选择合适 的切削速度、进给速度和切削深度等参数。
工艺风险评估
对工艺流程和参数进行风险评估,确保加工过程 的安全性和可靠性。
编程技巧的应用
总结词
运用有效的编程技巧可以提高程序的可读性和执行效率。
详细描述
使用条件语句、循环语句和子程序等结构化编程技巧,可以简化复杂的加工过程。同时,利用优化算法和并行处 理技术可以提高程序的运行速度。
数控编程软件的使用
总结词
熟练掌握数控编程软件是实现高效编程的关键。
详细描述
常用的数控编程软件包括Mastercam、Fusion 360和SolidWorks等。这些软件提供了丰富的库函数 和工具,可以帮助程序员快速生成准确的数控代码。此外,程序员还需要了解如何设置工件坐标系、 选择合适的加工策略和刀具路径优化等技术。
降低生产成本
准确的工艺分析有助于减少 材料浪费、降低能耗和减少 刀具磨损,从而降低生产成 本。
提高产品质量
合理的工艺安排和参数选择 有助于减小加工误差,提高 零件的精度和一致性,从而 提高产品质量。
保障生产安全
正确的工艺分析可以避免因 不合理的加工方法和参数导 致的设备故障或生产事故, 保障生产安全。
典型零件的选材及加工工艺路线分析讲解材料
轻量化
减轻材料重量,提高产品机动性,降低能源 消耗和排放。
环保化
发展可再生、可回收、可降解的材料,减少 对环境的污染。
智能化
研究具有自适应、自修复、自感应等功能的 智能材料。
新材料的研究与开发
碳纤维复合材料
具有高强度、轻质、耐高温等优点,广 泛应用于航空航天、汽车等领域。
高分子合成材料
具有优良的化学稳定性、绝缘性、耐 磨性等,在建筑、电子、化工等领域
03
材料的应用与发展趋势
材料的应用领域
01
航空航天
用于制造飞机、火箭等高强度、轻 质材料。
建筑领域
用于制造桥梁、高层建筑等高强度、 高耐久性材料。
03
02
汽车工业
用于制造发动机、变速器等耐磨、 耐高温材料。
电子产品
用于制造集成电路、晶体管等精密、 小型化材料。
04
材料的发展趋势
高性能化
提高材料的强度、硬度、耐高温等性能,以 满足更高要求的工业应用。
可加工性原则
材料应具有良好的可加工性, 以便于零件的制造和加工。
可维修性原则
材料应易于维修和更换,以提 高零件的使用寿命和降低维修 成本。
常用材料介绍
钢铁
钢铁是机械制造业中应用最广泛的材料之一,具 有高强度、良好的韧性和耐磨性。
铜及铜合金
铜及铜合金具有良好的导电性、导热性、耐腐蚀 性和加工性能,广泛应用于电气、电子、化工等 领域。
实例二:齿轮类零件的选材与加工工艺
灰铸铁
用于制造一般用途的齿轮,如减速器齿轮等。
球墨铸铁
用于制造高强度、高耐磨性的齿轮,如汽车变速毛坯准备
根据零件材料和尺寸要求,准备毛坯。
粗加工
[精选]典型零件加工工艺
[精选]典型零件加工工艺(一)数控车削加工典型零件工艺分析实例1.编写如图所示零件的加工工艺。
(1)零件图分析如图所示零件,由圆弧面、外圆锥面、球面构成。
其中Φ50外圆柱面直径处不加工,而Φ40外圆柱面直径处加工精度较高。
零件材料:45钢毛坯尺寸:Φ50×110(2)零件的装夹及夹具的选择采用机床三爪自动定心卡盘,零件伸出三爪卡盘外75mm左右,以外圆定位并夹紧。
(3)加工方案及加工顺序的确定以零件右端面和中心轴作为坐标原点建立工件坐标系。
根据零件尺寸精度及技术要求,零件从右向左加工,将粗、精加工分开来考虑。
加工工艺顺序为:车削右端面→复合型车削固定循环粗、精加工右端需要加工的所有轮廓(粗车Φ44、Φ40.5、Φ34.5、Φ28.5、Φ22.5、Φ16.5外圆柱面→粗车圆弧面R14.25→精车外圆柱面Φ40.5→粗车外圆锥面→粗车外圆弧面R4.75→精车圆弧面R14→精车外圆锥面→精车外圆柱面Φ40→精车外圆弧面R5)。
(4)选择刀具选择1号刀具为90°硬质合金机夹偏刀,用于粗、精车削加工。
(5)切削用量选择粗车主轴转速n=630r/min,精车主轴转速V=110m/min,进给速度粗车为f=0.2mm/r,精车为f=0.07mm/r。
2.编写如图1-26所示的轴承套的加工工艺(1)零件图分析零件表面由内圆锥面,顺圆弧,逆圆弧和外螺纹等组成。
有多个直径尺寸与轴向尺寸有较高的尺寸精度和表面粗糙度要求(如果加工质量要求较高的表面不多可列出)。
零件材料:45号钢毛坯尺寸:φ80×112(2)零件的装夹及夹具的选择内孔加工时,以外圆定位,用三爪自动定心卡盘夹紧,需掉头装夹;加工外轮廓时,以圆锥心轴定位,用三爪卡盘夹持心轴左端,右端利用中心孔顶紧。
(3)加工方案及加工顺序的确定以零件右端面中心作为坐标原点建立工件坐标系。
根据零件尺寸精度及技术要求,确定先内后外,先粗后精的原则。
典型零件工艺分析
第六章 典型零件工艺分析机械产品中的零件虽然各式各样,但形状、结构、工作特点等在不同方面、不同程度却存在着一定的共性,生产中往往根据其形状、结构的特征,一般将零件分为轴类、盘类、轴套类、箱体类、异形类等多种类型。
各类零件在多方面虽各具特点,但其中具备更多的相同、相似之处,即每类零件均具有一定共性问题及加工特色。
本章将通过各类典型零件由简单到复杂的具体案例进行制造工艺设计,计算和分析,把握制造典型零件的制造规律,并通过其规律的把握,达到灵活运用制造技术,合理设计零件制造工艺的目的。
第一节轴类零件工艺设计一、轴类零件特点1、功用轴类零件在机器中的功用主要是支承传动零件,传递运动和扭矩。
2、结构特点轴类零件属旋转体零件,主要由圆柱面、圆锥面、螺纹及键槽等表面构成,其长度大于直径。
根据其结构形状又可分为光轴、空心轴、半轴、阶梯轴、异型轴(十字轴、偏心轴、曲轴、凸轮轴)等。
3、技术要求轴类零件上安装支承轴承和传动件的部位是主要表面,粗糙度数值要求较低,加工精度要求较高。
除直径精度要求外还有圆度、圆柱度、同轴度、垂直度等方面的要求。
二、轴类零件制造工艺案例案例1:传动轴制造工艺零件图三维图1、零件工艺性分析(1)零件材料:45钢。
切削加工性良好,无特殊加工问题,故加工中不需采取特殊工艺措施。
刀具材料选择范围较大,高速钢或YT类硬质合金均能胜任。
刀具几何参数可根据不同刀具类型通过相关表格查取。
(2)零件组成表面:两端面,外圆及其台阶面,两端三角螺纹,键槽,倒角。
(3)主要表面分析:Ф25外圆表面用于支承传动件,为零件的配合面及工作面。
(4)主要技术条件:Ф25外圆精度要求:IT7 粗糙度要求Ra1.6µm。
它是零件上主要的基准,两端螺纹应与之保持基本的同轴关系,键槽亦与之对称。
(5)零件总体特点:长径比达12,为较典型的细长轴。
2、毛坯选择按零件特点,可选棒料。
根据标准,比较接近并能满足加工余量要求,可选Ф28mm,245mm。
典型零件的机械加工工艺分析
第4章典型零件的机械加工工艺分析本章要点本章介绍典型零件的机械加工工艺规程制订过程及分析,主要内容如下:1.介绍机械加工工艺规程制订的原则与步骤。
2.以轴类、箱体类、拨动杆零件为例,分析零件机械加工工艺规程制订的全过程。
本章要求:通过典型零件机械加工工艺规程制订的分析,能够掌握机械加工工艺规程制订的原则和方法,能制订给定零件的机械加工工艺规程。
§4.1 机械加工工艺规程的制订原则与步骤§4.1.1机械加工工艺规程的制订原则机械加工工艺规程的制订原则是优质、高产、低成本,即在保证产品质量前提下,能尽量提高劳动生产率和降低成本。
在制订工艺规程时应注意以下问题:1.技术上的先进性在制订机械加工工艺规程时,应在充分利用本企业现有生产条件的基础上,尽可能采用国内、外先进工艺技术和经验,并保证良好的劳动条件。
2.经济上的合理性在规定的生产纲领和生产批量下,可能会出现几种能保证零件技术要求的工艺方案,此时应通过核算或相互对比,一般要求工艺成本最低。
充分利用现有生产条件,少花钱、多办事。
3.有良好的劳动条件在制订工艺方案上要注意采取机械化或自动化的措施,尽量减轻工人的劳动强度,保障生产安全、创造良好、文明的劳动条件。
由于工艺规程是直接指导生产和操作的重要技术文件,所以工艺规程还应正确、完整、统一和清晰。
所用术语、符号、计量单位、编号都要符合相应标准。
必须可靠地保证零件图上技术要求的实现。
在制订机械加工工艺规程时,如果发现零件图某一技术要求规定得不适当,只能向有关部门提出建议,不得擅自修改零件图或不按零件图去做。
§4.1.2 制订机械加工工艺规程的内容和步骤1.计算零件年生产纲领,确定生产类型。
2.对零件进行工艺分析在对零件的加工工艺规程进行制订之前,应首先对零件进行工艺分析。
其主要内容包括:(1)分析零件的作用及零件图上的技术要求。
(2)分析零件主要加工表面的尺寸、形状及位置精度、表面粗糙度以及设计基准等;(3)分析零件的材质、热处理及机械加工的工艺性。
典型零件的加工工艺分析案例
典型零件的加工工艺分析案例实例. 以图A-54所示的平面槽形凸轮为例分析其数控铣削加工工艺。
图A-54 平面槽型凸轮简图案例分析:平面凸轮零件是数控铣削加工中常用的零件之一,基轮廓曲线组成不外乎直线—曲线、圆弧—圆弧、圆弧—非圆曲线及非圆曲线等几种。
所用数控机床多为两轴以上联动的数控铣床,加工工艺过程也大同小异。
1. 零件图纸工艺分析图样分析要紧分析凸轮轮廓形状、尺寸和技术要求、定位基准及毛坯等。
本例零件是一种平面槽行凸轮,其轮廓由圆弧HA、BC、DE、FG和直线AB、HG以及过渡圆弧CD、EF所组成,需要两轴联动的数控机床。
材料为铸铁、切削加工性较好。
该零件在数控铣削加工前,工件是一个通过加工、含有两个基准孔直径为φ280mm、厚度为18mm的圆盘。
圆盘底面A及φ35G7和φ12H7两孔可用作定位基准,无需另作工艺孔定位。
凸轮槽组成几何元素之前关系清晰,条件充分,编辑时所需基点坐标专门容易求得。
凸轮槽内外轮廓面对A面有垂直度要求,只要提高装夹度,使A面与铣刀轴线垂直,即可保证:φ35G7对A面的垂直度要求由前面的工序保证。
2. 确定装夹方案一样大型凸轮可用等高垫块垫在工作台上,然后用压板螺栓在凸轮的孔上压紧。
外轮廓平面盘形凸轮的垫板要小于凸轮的轮廓尺寸,不与铣刀发生干涉。
对小型凸轮,一样用心轴定位,压紧即可。
依照图A-54所示凸轮的结构特点,采纳〝一面两孔〞定位,设计一〝一面两销〞专用夹具。
用一块320mm×320mm×40mm的垫块,在垫块上分别精镗φ35mm及φ12mm两个定位销孔的中心连接线与机床的x轴平行,垫块的平面要保证与工作台面平行,并用百分表检查。
图A-55为本例凸轮零件的装夹方案示意图。
采纳双螺母夹紧,提高装夹刚性,防止铣削时因螺母松动引起的振动。
图A-55凸轮装夹示意图3. 确定进给路线进给路线包括平面内进给和深度进给两部分路线。
对平面内进给,对外凸轮廓从切线方向切入,对内凹轮廓从过渡圆弧切入。
数控车床车削典型零件工艺分析
数控车床车削典型零件工艺分析数控车床是一种利用数控技术进行自动化车削加工的机床,广泛应用于制造业的各个领域。
下面将以数控车床车削典型零件为例进行工艺分析。
以加工一台螺杆为例,工艺分析如下:1.零件材质选择:根据螺杆的使用要求,选择适当的材料,常见的有碳钢、不锈钢等。
2.设计图纸:根据产品需求,在CAD软件中绘制螺杆的设计图纸,包括尺寸、形状等。
3.工艺规程编制:根据零件的设计要求,编制螺杆的工艺规程,包括车削工序、工艺参数、刀具选择等。
4.刀具选择:根据工艺规程选择适合的刀具,考虑切削力、刀具寿命等因素。
5.数控编程:根据工艺规程,利用CAM软件编写数控程序,确定刀具路径、切削深度、进给速度等参数。
6.夹紧装夹:将材料切割到合适的长度后,将工件固定在数控车床的主轴上,使用合适的夹具夹紧。
7.车削加工:根据数控程序进行车削加工,包括外径车削、内径车削、螺纹加工等工序。
8.检测与修正:每一道工序完成后,需要进行质量检测,确保零件尺寸、表面粗糙度等符合要求。
若发现问题,及时进行修正。
9.表面处理:根据产品要求,对螺杆表面进行处理,如抛光、镀层等。
10.质量检验:经过表面处理后,对零件进行再次质量检验,确保各项指标符合要求。
11.包装运输:将加工好的螺杆进行包装和标识,便于运输和使用。
以上是加工一台螺杆的工艺流程,数控车床的精度高、重复性好,能够高效、精确地进行复杂零件的加工。
在实际应用中,根据不同的零部件要求,工艺流程可能会有所不同,但总的来说,工艺分析包括材料选择、工艺规程编制、刀具选择、数控编程、夹紧装夹、车削加工、检测与修正、表面处理、质量检验、包装运输等环节。
通过合理的工艺分析和流程设计,可以实现零件的高效、精确加工,提高生产效率和产品质量。
套筒零件加工工艺分析
3
粗车 空刀槽 2×0.5mm,取总长 40.5mm,车分割槽 Ф20×3mm, 中心孔
两端倒角 1.5×45°,5 件同加工,尺寸均相同
钻孔 Ф22H7 至 Ф22mm 成单件
4
钻
软爪夹 Ф42mm 外圆
• 车端面,取总长 40mm 至尺寸
5 车、铰
• 车内孔 Ф22H7 为 Ф22 mm • 车内槽 Ф24×16mm 至尺寸 • 铰孔 Ф22H7 至尺寸 • 孔两端倒角
由于外圆对内孔的径向圆跳 动要求在 0.01mm 内,用软卡爪装 夹无法保证。因此精车外圆时应以 内孔为定位基准,使轴承套在小锥
度心轴上定位,用两顶尖装夹。这 样可使加工基准和测量基准一致, 容易达到图纸要求。
车铰内孔时,应与端面在一次 装夹中加工出,以保证端面与内孔 轴线的垂直度在 0.01mm 以内。
3.精铰(浮动镗刀镗孔)到 Ф70±0.02mm,
表面粗糙度值 Ra 为 2.5µm
4
滚压孔 用滚压头滚压孔至 Ф70
mm,表面粗糙 一端用螺纹固定在夹具中, 另一
度值 Ra 为 0.32µm
端搭中心架
1.车去工艺螺纹,车 Ф82h6 到尺寸,割 R7 槽
软爪夹一端,以孔定位顶另一端
2.镗内锥孔 1°30′及车端面
5
车
软爪夹一端,中心架托另一端(百 分表找正孔)
3.调头,车 Ф82h6 到尺寸,割 R7 槽
软爪夹一端,顶另一端
4.镗内锥孔 1°30′及车端面
软爪夹一端,顶另一端
二、套筒类零件加工中的主要工艺问题
一般套筒类零件在机械加工中的主要工艺问题是保证内外圆的相互位置精度(即保证内、外圆表面的 同轴度以及轴线与端面的垂直度要求)和防止变形。
典型套筒类零件的加工工艺分析
典型套筒类零件的加工工艺分析引言:套筒类零件是机械零件中常见的一种,广泛应用于各种机械设备中。
其加工工艺分析对于提高零件的加工质量和降低成本具有重要意义。
本文将从设计、材料选择、工艺规划以及加工工艺等方面对典型套筒类零件的加工工艺进行详细分析。
一、设计:二、材料选择:三、工艺规划:1.工艺路线规划:根据零件的形状、材料和加工要求,确定合适的工艺路线。
典型的工艺路线包括铣削、车削、钻孔、镗孔、磨削等工序。
2.切削参数选择:根据零件的材料和加工要求,选择合适的切削参数,包括切削速度、进给速度、切削深度等。
通过试切试验和经验总结,不断优化和调整切削参数。
3.夹具设计:根据零件的形状和加工要求,设计合适的夹具,以保证零件在加工过程中的稳定性和精度。
四、加工工艺:1.车削工艺:车削是加工套筒类零件常用的工艺之一、根据零件的形状和加工要求,选择合适的切削工具和切削参数进行车削。
2.镗削工艺:镗削用于加工孔的精度要求较高的套筒类零件。
根据零件的尺寸和加工要求,选择合适的镗削刀具和切削参数进行镗削。
3.铣削工艺:铣削常用于加工套筒类零件的外形轮廓。
根据零件的形状和加工要求,选择合适的铣削刀具和切削参数进行铣削。
4.钻孔工艺:钻孔通常用于套筒类零件的孔加工。
根据零件的尺寸和加工要求,选择合适的钻孔刀具和切削参数进行钻孔。
5.磨削工艺:磨削常用于加工套筒类零件的表面精加工。
根据零件的表面粗糙度要求,选择合适的磨削工具和切削参数进行磨削。
五、加工装备和工具选择:根据零件的工艺要求,选择合适的加工装备和工具。
常用的加工设备包括车床、铣床、钻床、磨床等。
根据工艺要求和经济性考虑,选择合适的设备和工具。
六、检验和质量控制:在加工过程中,需要进行适当的检验和质量控制,以确保零件的加工质量。
常用的检验方法包括尺寸检验、形状检验、表面粗糙度检验等。
结论:典型套筒类零件的加工工艺分析对于提高零件的加工质量和降低成本具有重要意义。
通过合理的设计、材料选择、工艺规划和加工工艺,可以实现零件的精确加工和高效生产。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厂典型零件工艺分析1 汽车发动机缸体加工工艺分析1.1 汽车发动机缸体结构特点及其要紧技术要求发动机是汽车最要紧的组成部分,它的性能好坏直截了当决定汽车的行驶性能,故有汽车心脏之称。
而发动机缸体是发动机的基础零件,通过它把发动机的曲柄连杆机构(包括活塞、连杆、曲轴、飞轮等零件)和配气机构(包括缸盖、凸轮轴、进气门、排气门、进气歧管、排气歧管、气门弹簧,气门导管、挺杆、挺柱、摇臂、摇臂支座、正时齿轮)以及供油、润滑、冷却等机构联接成一个整体。
它的加工质量会直截了当阻碍发动机的性能。
1.1.1缸体的结构特点由于缸体的功用决定了其形状复杂、壁薄、呈箱形。
其上部有若干个经机械加的穴座,供安装气缸套用。
其下部与曲轴箱体上部做成一体,因此空腔较多,但受力严峻,因此它应有较高的刚性,同时也要减少铸件壁厚,从而减轻其重量,而气缸体内部除有复杂的水套外,还有许多油道。
1.1.2缸体的技术要求由于缸体是发动机的基础件,它的许多平面均作为其它零件的装配基准,这些零件之间的相对位置差不多上是由缸体来保证的。
缸体上的专门多螺栓孔、油孔、出砂孔、气孔以及各种安装孔都能直截了当阻碍发动机的装配质量和使用性能,因此对缸体的技术要求相当严格。
现将我国目前生产的几种缸体的技术要求归纳如下:1)主轴承孔的尺寸精度一样为IT5~IT7,表面粗糙度为Ral6—0.8μm,圆柱度为0.007~0.02mm,各孔对两端的同轴度公差值为¢0.025~0.04mm。
2)气缸孔尺寸精度为IT5~IT7,表面粗糙度为Ral.6~0.8μm,有止口时其深度公差为0.03~0.05mm,其各缸孔轴线对主轴承孔轴线的垂直度为0.05mm。
3)各凸轮轴轴承孔的尺寸精度为IT6~IT7,表面粗糙度为Ra3.2~0.8μm,各孔的同轴度公差值为0.03~0.04mm。
4)各凸轮轴轴承孔对各主轴承孔的平行度公差值为0.05~0.1mm。
5)挺杆尺寸精度为ITO~IT7,表面粗糙度为Ral.6~0.4m,且对凸轮轴轴线的垂直度为0.04~0.06mm。
6)以上各孔的位置公差为0.06~0.15mm。
7)顶面(缸盖的安装基面)及底面的平面度为0.05~0.10mm,顶面的表面粗糙度为Ral.6~0.8μm,且对主轴承中心线的尺寸公差为0.1~0.15mm。
8)后端面(离合器壳安装面)粗糙度为Ra3.2~1.6μm,且与主轴承孔轴线垂直度为0.05~0.08mm9)主轴承座接合面粗糙度为Ra3.2~1.6μm,锁口的宽度公差为0.025~0.05mm。
1.2 缸体的材料和毛坯制造1.2.1缸体的材料依照发动机的原理能够明白缸体的受力情形专门复杂,需要有足够的强度、刚度,耐磨性及抗振性,因此对缸体材料有较高的要求。
缸体的材料有一般铸铁、合金铸铁及铝合金等。
我国发动机缸体采纳HT200、HT250灰铸铁、合金铸铁和铝合金。
灰铸铁具有足够的韧性和良好的耐磨性,多用于不镶缸套的整体缸体。
由于价格较低,切削性能较好,故应用较广。
近年来随着发动机转速和功率的提高,为了提高缸体的耐磨性,国内、外都努力推行铸铁的合金化,即在原有的基础上增加了碳、硅、锰、铬、镍、铜等元素的比例,严格操纵硫和磷的含量,其结果不仅提高了缸体的耐磨性和抗拉强度,而且改善了铸造性能。
用铝合金制造缸体,不但重量轻、油耗少,而且导热性、抗磁性、抗蚀性和机械加工性均比铸铁好。
但由于铝缸体需镶嵌铸铁缸套或在缸孔工作表面上加以镀层,原材料价格较贵等缘故,因此其使用受到一定程度的限制。
1.2.2缸体的毛坯制造由于缸体内部有专门多复杂的型腔,其壁较薄(最薄达3~5mm),有专门多加强筋,因此缸体的毛坯采纳铸造方法生产。
而铸造过程中需用专门多型芯,因此不论是造型过程依旧浇注过程,都有专门严格的要求。
铸造缸体毛坯的要紧方法有,砂型铸造(多触点高压有箱造型),金属型铸造、压力铸造、低压铸造等。
缸体的浇注形式为卧式浇注,仅用两个砂箱,其型芯定位较为困难,因此容易引起毛坯尺寸及位置的偏移。
在机械加工往常,需经时效处理以排除铸件的内应力及改善材料的机械性能。
我国大多数汽车制造工厂还要求在铸造车间对缸体进行初次的水套水压试验1~3min,不得有渗漏现象。
关于缸体铸造毛坯的质量和外观,各厂都有自己的标准。
例如对非加工面不承诺有裂纹,缩孔、缩松及冷隔,缺肉、夹渣,粘砂、外来夹杂物及其它降低缸体强度和阻碍产品外观的铸造缺陷,专门是缸孔与缸套配合面,主轴承螺孔内表面、顶面、主轴承装轴瓦表面不承诺有任何缺陷。
缸体毛坯的质量对机械加工有专门大的阻碍,归纳起来表现在以下三个方面:1)加工余量过大,不但造成了原材料利用率降低及白费机加工时,而且还增加了机床的负荷,阻碍机床和刀具的寿命,甚至要增加生产面积和机床台数,使企业投资大为增加。
2)飞边过大会造成与加工余量过大的同样后果。
由于飞边表面硬度较高,将导致刀具耐用度降低。
3)由于冷热加工定位基准不统一,毛坯各部分相互间酌偏移会造成机械加工时余量不平均,甚至报废。
1.3 缸体的结构工艺性分析1.3.1缸体的要紧加工表面1)缸体属于薄壁型的壳体零件,在夹紧时容易变形,故不但要选择合理的夹紧点,而且还要操纵切削力的大小。
2)由于孔系的位置精度较高,故在加工时需采纳相对的工序集中方法,如此就需要高效多工位的专用机床。
3)因缸体是发动机的基础零件,紧固孔、安装孔专门多,需要用多面组合的组合钻床和组合攻丝机床来加工。
4)一些关键部位的孔系尺寸精度较高,其中有相当一部分孔须经周密加工,这在大量生产条件下生产率和生产节拍也是一个专门关键的咨询题,因此要安排成多道工序的加工。
5)缸体上有各个方向的深油道孔,加工时会造成排屑困难、刀具易折断、孔中心线歪斜、生产节拍较长等咨询题。
因此对深孔应采纳分段加工,对交叉油道应先加工大孔后加工小孔,也可采纳枪钻进行加工。
6)斜面和斜孔的加工要采纳较专门的安装方法或采纳专门的设备。
7)由于缸体各个接合面面积较大,且有较高的位置精度和粗糙度的要求,一次加工不可能满足要求,因此要划分成几个加工时期。
8)由于缸体的加工部位多、工艺路线长、工件输送又较难处理、使生产治理上较纷杂,因而导致了生产面积和投资的增大。
9)缸体加工过程中还穿插着必要的装配瓦盖和飞轮壳工序,这在大批量生产中应该合理地安排。
10)由于缸体加工部位较多,加工要求较高,因此检验工作比较复杂。
11)由于缸体形状复杂,螺孔专门多,油道多面深且交叉贯穿,因此清洗咨询题要予以足够的重视。
12)缸体各部分尺寸的设计基准不可能完全一致,故在加工时要充分考虑因基准不重合而造成的误差,必要时可考虑变更定位基准。
1.3.2缸体加工工艺过程应遵循的原则缸体形状复杂且有厚度不同的壁和筋,加工精度又比较高,因此,必须充分注意加工过程中由于内应力而引起的变形。
在安排工艺过程时应遵循以下原则;1)第一从大表面上切去余外的加工层,以便保证精加工后变形量专门小。
2)容易发觉零件内部缺陷的工序应安排在前面。
3)把各个深油孔尽可能安排在较前面的工序,以免因较大的内应力而阻碍后续的精加工工序。
1.4 定位基准的选择1.4.1粗基准的选择缸体属于箱体类零件,形状比较复杂、加工部位较多,因此选择粗基准时应满足两个差不多要求,即使加工的各要紧表面(包括主轴承孔、凸轮轴孔、气缸孔、前后端面和顶、底面等)余量平均和保证装入缸体的运动件(如曲轴、连杆等)与缸体不加工的内壁间有足够的间隙。
缸体加工的粗基准,通常选取两端的主轴承座孔和气缸内孔。
假如毛坯的铸造精度较高,能保证缸体侧面对气缸孔轴线的尺寸精度,也可选用侧面上的几个工艺凸台作为粗基准,如此便于定位和夹紧。
由于缸体毛坯有一定的铸造误差,故表面粗糙不平。
如直截了当用粗基准定位加工面积大的平面,因切削力和夹紧力较大,容易使工件产生变形,同时由于粗基准本身精度低,也容易因振动而使工件产生松动。
通常是采纳面积专门小、相距较远的几个工艺凸台作为过渡基准。
1.4.2精基准的选择在选择精基准时,应考虑如何保证加工精度和安装方便。
大多数缸体的精基准都选择底面及其上的两个工艺孔,其优点是:1)底面轮廓尺寸大,工件安装稳固可靠。
2)缸体的要紧加工表面,大多数都可用以作为基准,符合基准统一原则,减少了由于基准转换而引起的定位误差。
例如主轴承座孔、凸轮轴轴承孔、气缸孔以及主轴承座孔端面等,都可用它作为精基准来保证位置精度。
3)加工主轴承座孔和凸轮轴轴承孔时,便于在夹具上设置镗杆的支承导套,能捉高加工精度并能捉高切削用量。
4)由于多数工序都以此作为基准,各工序的夹具结构大同小异,夹具设计、制造简单,缩短了生产预备周期,降低了成本。
由于采纳单一的定位基准,可幸免加工过程中经常翻转工件,从而减轻了劳动量。
底面作为精基准也有一些缺点:1)用底面定位加工顶面时,必定存在基准不重合产生的定位误差,难以保证顶面至主轴承座孔轴线的距离公差(用来保证压缩比)。
2)加工时不便于观看切削过程。
也有采纳顶面为精基准的,其优缺点大致与上述相反。
主轴承座孔轴线尽管是设计基准,但由于其半圆孔结构和装夹不方便,因此当前国内生产中专门少用作精基准。
近年来国外已开始采纳主轴承座孔作为精基准。
1.5 加工时期的划分和加工顺序的安排1.5.1 加工时期的划分缸体的加工可划分为四个时期:1)粗加工时期该时期要紧是去除各个加工表面的余量并做出精基准,其关键咨询题是如何提高生产率。
2)半精加工时期该时期要紧是为最终保证产品和工艺要求作好预备,关于某些部位也能够由粗加工直截了当进入精加工而不用半精力旺,缸体上的要紧孔系的加工例如主轴承孔、凸轮轴孔、缸孔、挺杆孔等都有半精加工时期。
3)精加工时期该时期要紧是保证缸体的尺寸精度、形状精度、位置精度及表面粗糙度,是关键的加工时期。
缸体上大多数加工部位,通过这一加工时期都可完成。
4)精细加工时期当零件上某些加工部位的尺寸、形状要求专门高,表面粗糙度值要求专门低,用一样精加工手段较难达到要求时,则要用精细加工。
由于精细加工的余量专门小,只能提高尺寸精度和形状精度以及表面质量,而对位置精度的提高见效甚微。
缸体上的不镶套缸孔及主轴承座孔常有精细加工的要求。
1.5.2缸体工序顺序的安排由于缸体形状复杂,且有厚度不同的壁和筋在加工过程中由多种缘故造成的内应力易使工件产生变形。
因此,加工时应遵循以下原则:1)第一从大表面切去大部分加工余量,以保证精加工后零件的变形最小。
2)切削力大、夹紧力大以及易发觉零件内部缺陷的工序应安排在前面进行。
3)由于加工深油孔时容易产生内应力,安排时要注意对加工精度的不利阻碍。
4)正确地安排密封试验、衬套和轴承等的压装以及清洗检验等非加工工序。
从表10-1能够看出,缸体加工顺序的安排有下面几个特点:1)用作精基准的表面(底面及两个工艺孔)代先加工,如此使以后的加工都有一个统一的工艺基准,这不但关于简化设备工装及方使运输带来好处,而且为减少工件的定位误差提供了必要条件。